CN102723350B - PbSe colloidal quantum dot based array Hall element and preparation method thereof - Google Patents
PbSe colloidal quantum dot based array Hall element and preparation method thereof Download PDFInfo
- Publication number
- CN102723350B CN102723350B CN201210208512.8A CN201210208512A CN102723350B CN 102723350 B CN102723350 B CN 102723350B CN 201210208512 A CN201210208512 A CN 201210208512A CN 102723350 B CN102723350 B CN 102723350B
- Authority
- CN
- China
- Prior art keywords
- signal output
- quantum dot
- electrode
- colloidal quantum
- pbse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Hall/Mr Elements (AREA)
Abstract
本发明涉及一种新型结构的基于PbSe胶体量子点的阵列式霍尔元件及其制作方法。具有结构小,任意弯曲和灵敏度高等优点。所述PbSe胶体量子点敏感单元为多个串联在一起,并按点阵列式排列在柔性衬底上,该单元一端为电流输入端电极,另一端为电流输出端电极,每个PbSe胶体量子点敏感单元的信号分别通过各自信号输出电极I输出,所有PbSe胶体量子点敏感单元的信号输出电极I和II分别集中在一起排布并与各自的信号输出端接口相连,该单元的制作方法包括,首先制备出单个PbSe胶体量子点敏感单元8,然后蒸镀电极,先蒸镀信号输出电极I和信号输出电极II,在其上镀保护层,最后蒸镀电流输入端电极和电流输出端电极。
The invention relates to a novel structure array Hall element based on PbSe colloidal quantum dots and a manufacturing method thereof. It has the advantages of small structure, arbitrary bending and high sensitivity. The PbSe colloidal quantum dot sensitive unit is a plurality of connected in series and arranged on a flexible substrate in a dot array. One end of the unit is a current input terminal electrode, and the other end is a current output terminal electrode. Each PbSe colloidal quantum dot The signals of the sensitive units are respectively output through their respective signal output electrodes I, and the signal output electrodes I and II of all PbSe colloidal quantum dot sensitive units are arranged together and connected to their respective signal output ports. The manufacturing method of the unit includes: First, a single PbSe colloidal quantum dot sensitive unit 8 is prepared, and then the electrodes are evaporated, first the signal output electrode I and the signal output electrode II are evaporated, a protective layer is plated on them, and finally the current input terminal electrode and the current output terminal electrode are evaporated.
Description
技术领域 technical field
本发明涉及一种新型结构的基于PbSe胶体量子点的阵列式霍尔元件及其制作方法。这种霍尔元件采用PbSe胶体量子点材料,阵列式的排列方式,同时具有柔性好的特点。具有结构小,任意弯曲和灵敏度高等优点。 The invention relates to a novel structure array Hall element based on PbSe colloidal quantum dots and a manufacturing method thereof. This Hall element uses PbSe colloidal quantum dot material, arranged in an array, and has the characteristics of good flexibility. It has the advantages of small structure, arbitrary bending and high sensitivity. the
背景技术 Background technique
霍尔元件是根据霍尔效应进行磁电转换的磁敏元件。具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此将其广泛应用于电磁测量、非电量测量、自动控制、计算与通讯装置等领域中。 The Hall element is a magnetic sensitive element that performs magnetoelectric conversion according to the Hall effect. It has the advantages of sensitivity to magnetic field, simple structure, small size, wide frequency response, large output voltage change and long service life, so it is widely used in electromagnetic measurement, non-electrical measurement, automatic control, computing and communication devices and other fields. the
目前霍尔元件的材料多采用锗、硅、砷化镓、砷化铟、锑化铟等半导体材料,元件尺寸较大,而且这些半导体材料的载流子浓度、迁移率等特征参数随温度变化大,导致霍尔电阻率随温度变化大,霍尔元件工作温度受到限制。PbSe禁带窄、量子效率高、噪声低、对外界条件的影响反应比较灵敏。采用胶体量子点材料,可以制作出微纳尺寸的霍尔元件,灵敏度高且更具有柔韧性,这就使得对空间任意方向磁场的测量更加方便。 At present, the material of the Hall element is mostly semiconductor materials such as germanium, silicon, gallium arsenide, indium arsenide, and indium antimonide. The size of the element is relatively large, and the characteristic parameters of these semiconductor materials such as carrier concentration and mobility change with temperature. Large, causing the Hall resistivity to vary greatly with temperature, and the operating temperature of the Hall element is limited. PbSe has narrow band gap, high quantum efficiency, low noise, and is sensitive to the influence of external conditions. Using colloidal quantum dot materials, micro-nano-sized Hall elements can be produced, with high sensitivity and flexibility, which makes it more convenient to measure the magnetic field in any direction in space. the
目前很多霍尔元件都是采用单个霍尔元件独立工作或多个组装在一起,对于磁场的测量具有一定的局限性。将霍尔元件阵列集成在同一衬底上,可靠性、一致性及灵敏度高。 At present, many Hall elements use a single Hall element to work independently or assemble multiple Hall elements together, which has certain limitations for the measurement of the magnetic field. The Hall element array is integrated on the same substrate, which has high reliability, consistency and sensitivity. the
经查找发现我国国内没有采用PbSe胶体量子点作为敏感材料且集成于一个柔性衬底上的阵列霍尔元件报道。 After searching, it is found that there is no report of an array Hall element using PbSe colloidal quantum dots as a sensitive material and integrated on a flexible substrate in my country. the
发明内容 Contents of the invention
鉴于以上问题,本发明提出了基于PbSe胶体量子点的阵列式霍尔元件及其制作方法。这种霍尔元件阵列完全集成于一个柔性衬底上,并且采用PbSe胶体量子点作为敏感材料,大大简化了制作工艺,减小了霍尔元件的尺寸。 In view of the above problems, the present invention proposes an array Hall element based on PbSe colloidal quantum dots and a manufacturing method thereof. This Hall element array is fully integrated on a flexible substrate, and PbSe colloidal quantum dots are used as the sensitive material, which greatly simplifies the manufacturing process and reduces the size of the Hall element. the
本发明的上述目的通过以下技术方案实现,结合附图说明如下: Above-mentioned purpose of the present invention is realized by following technical scheme, is described as follows in conjunction with accompanying drawing:
一种基于PbSe胶体量子点的阵列式霍尔元件,包括PbSe胶体量子点敏感单元、电流输入端电极、电流输出端电极、信号输出电极I和信号输出电极II,所述PbSe胶体量子点敏感单元8为多个串联在一起,并按点阵列式排列在柔性衬底1上,PbSe胶体量子点敏感单元8一端为电流输入端电极2,另一端为电流输出端电极7,每个PbSe胶体量子点敏感单 元8的信号分别通过信号输出电极I 3和信号输出电极Ⅱ6输出,所有PbSe胶体量子点敏感单元8的信号输出电极I 3集中在一起排布并与信号输出端接口I 4相连,所有PbSe胶体量子点敏感单元8的信号输出电极Ⅱ6集中在一起排布并与信号输出端接口Ⅱ5相连。 An arrayed Hall element based on PbSe colloidal quantum dots, comprising a PbSe colloidal quantum dot sensitive unit, a current input terminal electrode, a current output terminal electrode, a signal output electrode I and a signal output electrode II, the PbSe colloidal quantum dot sensitive unit 8 is a plurality of connected in series and arranged on the flexible substrate 1 in a dot array. One end of the PbSe colloidal quantum dot sensitive unit 8 is the current input terminal electrode 2, and the other end is the current output terminal electrode 7. Each PbSe colloidal quantum dot The signal of the point sensitive unit 8 is output through the signal output electrode I3 and the signal output electrode II6 respectively, and the signal output electrodes I3 of all PbSe colloidal quantum dot sensitive units 8 are arranged together and connected to the signal output terminal interface I4, The signal output electrodes II6 of all PbSe colloidal quantum dot sensitive units 8 are collectively arranged and connected to the signal output port II5. the
如上述的一种基于PbSe胶体量子点的阵列式霍尔元件的制作方法,每个PbSe胶体量子点敏感单元8的制作方法完全相同,具体步骤如下: As above-mentioned a kind of manufacturing method based on the array type Hall element of PbSe colloidal quantum dot, the manufacturing method of each PbSe colloidal quantum dot sensitive unit 8 is exactly the same, and concrete steps are as follows:
1)将0.892g PbO、2.26g油酸和12.848g十八烯放入三口瓶中,在氮气环境中,将其加热到170℃,迅速注入质量比为10%的6.4g Se/三丁基膦溶液,反应溶液温度迅速降至148℃,生长3分钟后,使用甲苯溶液扑灭反应,并纯化获得PbSe量子点; 1) Put 0.892g of PbO, 2.26g of oleic acid and 12.848g of octadecene into a three-necked flask, heat it to 170°C in a nitrogen atmosphere, and quickly inject 6.4g of Se/tributyl with a mass ratio of 10%. Phosphine solution, the temperature of the reaction solution dropped rapidly to 148°C, after 3 minutes of growth, the reaction was extinguished with toluene solution, and purified to obtain PbSe quantum dots;
2)将PbSe量子点配置成浓度为15mg/mL的氯仿溶液,取5mL量子点溶液和3mLtert-butyl N-(2-mercaptoethyl)carbamate加入离心管中,将离心管震荡2个小时以上,用甲醇将量子点清洗两次,最后溶解到氯仿中,这样量子点表面配体就具备了光反应活性,此时胶体量子点为非极性体系; 2) Prepare the PbSe quantum dots into a chloroform solution with a concentration of 15 mg/mL, take 5 mL of the quantum dot solution and 3 mL of tert-butyl N-(2-mercaptoethyl) carbamate into a centrifuge tube, shake the centrifuge tube for more than 2 hours, wash with methanol The quantum dots are washed twice, and finally dissolved in chloroform, so that the ligands on the surface of the quantum dots have photoreactivity, and the colloidal quantum dots are non-polar systems at this time;
3)将30mg上述表面改性后的量子点和1.5mg di-tert-butylphenyliodonium perfluorobutane-sulfonate溶解到1mL氯仿中,使用匀胶机将混合溶液旋涂在清洗后的柔性衬底1上,形成PbSe胶体量子点层9,通过预先做好的掩膜模板11覆盖在PbSe胶体量子点层9上,掩膜模板11正好将单个PbSe胶体量子点敏感单元8所在位置暴露在外面,通过10分钟紫外灯照射掩膜模板11,使得单个PbSe胶体量子点敏感单元8所在位置表面配体断键,形成极性体系,然后在100℃的烤盘上,退火2分钟,使用正己烷清洗衬底,将未曝光的非极性量子点体系洗掉,这样就制备出了单个PbSe胶体量子点敏感单元8; 3) Dissolve 30 mg of the above-mentioned surface-modified quantum dots and 1.5 mg of di-tert-butylphenyliodonium perfluorobutane-sulfonate into 1 mL of chloroform, and spin-coat the mixed solution on the cleaned flexible substrate 1 using a homogenizer to form PbSe The colloidal quantum dot layer 9 is covered on the PbSe colloidal quantum dot layer 9 through a pre-made mask template 11. The mask template 11 just exposes the position of the single PbSe colloidal quantum dot sensitive unit 8 to the outside, and passes through a 10-minute ultraviolet lamp. Irradiate the mask template 11, so that the ligands on the surface of the single PbSe colloidal quantum dot sensitive unit 8 are bonded to form a polar system, and then anneal for 2 minutes on a baking tray at 100 ° C, and use n-hexane to clean the substrate. The exposed non-polar quantum dot system is washed away, so that a single PbSe colloidal quantum dot sensitive unit 8 is prepared;
4)蒸镀电极,由于电流输入端电极2、电流输出端电极7、信号输出电极I 3、信号输出电极II6在空间上有交叉,首先蒸镀信号输出电极I 3和信号输出电极II6,蒸镀电极时先按照设计尺寸制作掩膜板,覆盖好掩膜板后,使用热蒸镀技术,进行信号输出电极I 3和信号输出电极II6的蒸镀,蒸镀完电极后去除掩膜板,这样就完成了信号输出电极I 3和信号输出电极II6的蒸镀; 4) Evaporation electrodes, since the current input terminal electrode 2, the current output terminal electrode 7, the signal output electrode I 3, and the signal output electrode II6 intersect in space, first the signal output electrode I 3 and the signal output electrode II6 are evaporated, and evaporated When plating electrodes, first make a mask plate according to the design size. After covering the mask plate, use thermal evaporation technology to evaporate the signal output electrode I3 and signal output electrode II6. After the electrodes are evaporated, remove the mask plate. In this way, the vapor deposition of signal output electrode I3 and signal output electrode II6 has been completed;
5)镀保护层10,单个PbSe胶体量子点敏感单元8的左右两端和电流输入端电极2、电流输出端电极7相连的部分不用镀膜,蒸镀保护层10的方法与镀电极的方法相似,即制作适合的掩膜板,采用电子束蒸镀SiO2保护层后去除掩膜板; 5) Plating protective layer 10, the left and right ends of a single PbSe colloidal quantum dot sensitive unit 8 are connected to the current input terminal electrode 2 and the current output terminal electrode 7 without coating, and the method for evaporating the protective layer 10 is similar to the method for plating electrodes , that is to make a suitable mask, and remove the mask after evaporating the SiO2 protective layer by electron beam;
6)蒸镀电流输入端电极2和电流输出端电极7,镀电流输入端电极2和电流输出端电极7的方法和蒸镀信号输出电极I 3和信号输出电极II6的方法相同,这样就完成了基于PbSe胶体量子点的阵列式霍尔元件的制作。 6) Evaporating the current input terminal electrode 2 and the current output terminal electrode 7, the method of plating the current input terminal electrode 2 and the current output terminal electrode 7 is the same as the method of evaporating the signal output electrode I 3 and the signal output electrode II6, so that it is completed Fabrication of arrayed Hall elements based on PbSe colloidal quantum dots. the
本发明的技术效果是:这种霍尔元件尺寸小,制作简单灵活,对于空间磁场的测量与现有霍尔元件相比有着很明显的优势。 The technical effect of the invention is: the size of the Hall element is small, the manufacture is simple and flexible, and the measurement of the spatial magnetic field has obvious advantages compared with the existing Hall element. the
附图说明 Description of drawings
图1基于PbSe胶体量子点的阵列式霍尔元件总体结构图。 Figure 1 shows the overall structure of the arrayed Hall element based on PbSe colloidal quantum dots. the
图2基于PbSe胶体量子点的阵列式霍尔元件电气原理图。 Fig. 2 Electrical schematic diagram of arrayed Hall element based on PbSe colloidal quantum dots. the
图3单个PbSe胶体量子点敏感单元立体结构图。 Figure 3 is a three-dimensional structure diagram of a single PbSe colloidal quantum dot sensitive unit. the
图4PbSe胶体量子点敏感单元形状结构图。 Figure 4 PbSe colloidal quantum dot sensitive unit shape structure diagram. the
图5涂覆PbSe胶体量子点层示意图。 Figure 5 is a schematic diagram of coating PbSe colloidal quantum dot layer. the
图6(a)覆盖chrome/quartz模板示意图。 Figure 6(a) Overlay chrome/quartz template schematic diagram. the
图6(b)是图6(a)的俯视图。 Fig. 6(b) is a top view of Fig. 6(a). the
图7覆盖chrome/quartz模板立体示意图。 Figure 7 is a three-dimensional schematic diagram covering the chrome/quartz template. the
图8(a)刻蚀单个PbSe胶体量子点敏感单元示意图。 Figure 8(a) Schematic diagram of etching a single PbSe colloidal quantum dot sensitive unit. the
图8(b)是图8(a)的俯视图。 Fig. 8(b) is a top view of Fig. 8(a). the
图9(a)镀信号输出端导线示意图。 Fig. 9(a) schematic diagram of plating signal output wire. the
图9(b)是图9(a)的俯视图。 Fig. 9(b) is a top view of Fig. 9(a). the
图10镀保护层示意图。 Figure 10 Schematic diagram of plating protective layer. the
图11(a)镀电流输入端和电流输出端电极。 Figure 11(a) Plating current input and current output electrodes. the
图11(b)是图11(a)的俯视图。 Fig. 11(b) is a top view of Fig. 11(a). the
图中:1-柔性衬底 2-电流输入端电极 3-信号输出电极I 4-信号输出端接口I 5-信号输出端接口Ⅱ 6-信号输出电极I 7-电流输出端电极 8-PbSe胶体量子点敏感单元9-PbSe胶体量子点层 10-保护层 11-chrome/quartz模板 In the figure: 1-flexible substrate 2-current input electrode 3-signal output electrode I 4-signal output interface I 5-signal output interface II 6-signal output electrode I 7-current output electrode 8-PbSe colloid Quantum dot sensitive unit 9-PbSe colloidal quantum dot layer 10-protective layer 11-chrome/quartz template
具体实施方式 Detailed ways
以下仅为本发明的较佳实施例,不能以此限定本发明的范围。即但凡依本发明申请的专利范围所做的均等变化与修饰,皆应仍属本发明专利涵盖的范围。下面用实施例来具体说明本发明的结构和制作方法。 The following are only preferred embodiments of the present invention, and should not limit the scope of the present invention. That is, all equivalent changes and modifications made according to the patent scope of the present application shall still fall within the scope covered by the present patent. The structure and manufacturing method of the present invention are specifically described below with examples. the
本发明采取了图1所示的总体结构方案。以4×4点阵为例,2为电流输入端电极,7为电流输出端电极。由于每个PbSe胶体量子点敏感单元8的输入电压都一样,为了简化电路,将各个PbSe胶体量子点敏感单元8串联起来。同样,对4×4点阵来说,由于要依次读取每个PbSe胶体量子点敏感单元8的霍尔电压值,将每个PbSe胶体量子点敏感单元8的信号分别通过信号输出电极I 3和信号输出电极II6输出。为了防止短路现象的发生,电流输入端电极2和电流输出端电极7与信号输出电极I 3和信号输出电极Ⅱ6之间采用隔离的手段排线。所有PbSe胶体量子点敏感单元8的信号输出电极I 3集中在一起排布并与信号输出端接口I 4相连。所有PbSe胶体量子点敏感单元8的信号输出电极II6集中在一起排布并与信 号输出端接口Ⅱ5相连。由于整个霍尔元件所采用柔性衬底1,并且PbSe胶体量子点敏感单元8、电流输入端电极2、电流输出端电极7、信号输出电极I 3、信号输出电极II6厚度都很小,这使得真个霍尔元件能够任意弯曲,方便空间磁场测量。图1所述的总体结构的电气原理图如图2所示,在有磁场存在且有电流从电流输入端电极2输入和电流输出端电极7输出的情况下,能够通过信号输出端接口I 4和信号输出端接口Ⅱ5读取相应PbSe胶体量子点敏感单元8上的霍尔电压,这样就完成空间磁场的探测。 The present invention has taken the overall structural scheme shown in Fig. 1. Taking the 4×4 dot matrix as an example, 2 is the electrode of the current input terminal, and 7 is the electrode of the current output terminal. Since the input voltage of each PbSe colloidal quantum dot sensitive unit 8 is the same, in order to simplify the circuit, each PbSe colloidal quantum dot sensitive unit 8 is connected in series. Similarly, for the 4×4 dot matrix, since the Hall voltage value of each PbSe colloidal quantum dot sensitive unit 8 will be read in turn, the signal of each PbSe colloidal quantum dot sensitive unit 8 is passed through the signal output electrode I3 respectively. And signal output electrode II6 output. In order to prevent the occurrence of short circuit, the current input terminal electrode 2 and the current output terminal electrode 7 and the signal output electrode I 3 and the signal output electrode II 6 are connected by means of isolation. The signal output electrodes I3 of all PbSe colloidal quantum dot sensitive units 8 are arranged together and connected to the signal output port interface I4. The signal output electrodes II6 of all PbSe colloidal quantum dot sensitive units 8 are arranged together and connected to the signal output port interface II5. Because the flexible substrate 1 adopted by the whole Hall element, and the PbSe colloidal quantum dot sensitive unit 8, the current input terminal electrode 2, the current output terminal electrode 7, the signal output electrode I 3, and the signal output electrode II6 thickness are all very small, which makes The whole Hall element can be bent arbitrarily, which is convenient for space magnetic field measurement. The electrical schematic diagram of the overall structure described in Fig. 1 is shown in Fig. 2, in the case that there is a magnetic field and a current is input from the current input terminal electrode 2 and the current output terminal electrode 7 is output, it can pass through the signal output terminal interface I 4 And the signal output terminal interface II5 reads the Hall voltage on the corresponding PbSe colloidal quantum dot sensitive unit 8, thus completing the detection of the spatial magnetic field. the
根据图3所述为单个PbSe胶体量子点敏感单元8的立体结构,图4所述为单个PbSe胶体量子点敏感单元8平面形状。在柔性衬底1上旋涂有PbSe胶体量子点敏感单元8。在PbSe胶体量子点敏感单元8的左右两端蒸镀有电流输入端电极2和电流输出端电极7。在PbSe胶体量子点敏感单元8的上下两端则蒸镀有信号输出电极I 3和信号输出电极II6。在工作时,工作电流通过电流输入端电极2输入,接着经过PbSe胶体量子点敏感单元8,再通过电流输出端电极7输出。当有磁场存在时,在PbSe胶体量子点敏感单元8中有明显的霍尔现象,通过读取信号输出电极I 3和信号输出电极II6上的电压信号就能间接的实现磁场的测量。这样在同一柔性衬底1上按要求集成了这样的多个PbSe胶体量子点敏感单元8,将这些PbSe胶体量子点敏感单元8分别按照一定的电气规则连接起来,就构成了基于PbSe胶体量子点的阵列式霍尔元件。 According to FIG. 3 , it shows the three-dimensional structure of a single PbSe colloidal quantum dot sensitive unit 8 , and FIG. 4 shows the plane shape of a single PbSe colloidal quantum dot sensitive unit 8 . A PbSe colloidal quantum dot sensitive unit 8 is spin-coated on the flexible substrate 1 . A current input terminal electrode 2 and a current output terminal electrode 7 are evaporated on the left and right ends of the PbSe colloidal quantum dot sensitive unit 8 . On the upper and lower ends of the PbSe colloidal quantum dot sensitive unit 8, a signal output electrode I3 and a signal output electrode II6 are evaporated. When working, the working current is input through the electrode 2 of the current input terminal, then passes through the PbSe colloidal quantum dot sensitive unit 8, and then is output through the electrode 7 of the current output terminal. When there is a magnetic field, there is an obvious Hall phenomenon in the PbSe colloidal quantum dot sensitive unit 8, and the measurement of the magnetic field can be realized indirectly by reading the voltage signals on the signal output electrode I3 and the signal output electrode II6. In this way, a plurality of such PbSe colloidal quantum dot sensitive units 8 are integrated as required on the same flexible substrate 1, and these PbSe colloidal quantum dot sensitive units 8 are respectively connected according to certain electrical rules to form a PbSe colloidal quantum dot based Arrayed Hall elements. the
通过改变在柔性衬底上集成单个PbSe胶体量子点敏感单元8的数目,也可以制作成不同规格的霍尔元件。比如会有8×8、16×16、8×16等。简单的修改PbSe胶体量子点敏感单元8的数目或者调整PbSe胶体量子点敏感单元8的形状参数都是本发明的发明内容。 By changing the number of integrated PbSe colloidal quantum dot sensitive units 8 on the flexible substrate, Hall elements of different specifications can also be manufactured. For example, there will be 8×8, 16×16, 8×16 and so on. Simply modifying the number of PbSe colloidal quantum dot sensitive units 8 or adjusting the shape parameters of the PbSe colloidal quantum dot sensitive units 8 is the content of the invention. the
本发明为了更加清楚的说明这种新结构PbSe胶体量子点阵列式霍尔元件,取其中一个敏感单元予以说明,其他单元制作方法和此单元制作方法完全一样,并且在制作时是同步的。图5至图11是整个制作过程示意图 In order to illustrate this new structure PbSe colloidal quantum dot array Hall element more clearly, the present invention takes one of the sensitive units for illustration, and the manufacturing method of other units is exactly the same as the manufacturing method of this unit, and is synchronized during manufacture. Figures 5 to 11 are schematic diagrams of the entire production process
将0.892g PbO、2.26g油酸和12.848g十八烯放入三口瓶中,在氮气环境中,将其加热到170℃,迅速注入6.4g Se/三丁基膦溶液(质量比为10%),反应溶液温度迅速降至148℃,生长3分钟后,使用甲苯溶液扑灭反应,并纯化获得PbSe量子点。将PbSe量子点配置成浓度为15mg/mL的氯仿溶液,取5mL量子点溶液和3mL tert-butyl N-(2-mercaptoethyl)carbamate加入离心管中,将离心管震荡2个小时以上。用甲醇将量子点清洗两次,最后溶解到氯仿中。这样量子点表面配体就具备了光反应活性,此时胶体量子点为非极性体系。 Put 0.892g PbO, 2.26g oleic acid and 12.848g octadecene into a three-necked flask, heat it to 170°C in a nitrogen atmosphere, and quickly inject 6.4g Se/tributylphosphine solution (mass ratio is 10% ), the temperature of the reaction solution dropped rapidly to 148° C., and after 3 minutes of growth, the reaction was quenched with toluene solution, and purified to obtain PbSe quantum dots. Configure the PbSe quantum dots into a chloroform solution with a concentration of 15mg/mL, take 5mL of the quantum dot solution and 3mL of tert-butyl N-(2-mercaptoethyl)carbamate into a centrifuge tube, and shake the centrifuge tube for more than 2 hours. Quantum dots were washed twice with methanol and finally dissolved in chloroform. In this way, the ligands on the surface of the quantum dots have photoreactivity, and the colloidal quantum dots are non-polar systems at this time. the
参阅图5,30mg上述表面改性后的量子点和1.5mg di-tert-butylphenyliodonium perfluorobutane-sulfonate溶解到1mL氯仿中,使用匀胶机将混合溶液旋涂在清洗后的柔性衬底1上,形成PbSe胶体量子点层9。参阅图6和图7,通过预先做好的掩膜模板11覆盖在PbSe胶体量子点层9上,掩膜模板11正好将单个PbSe胶体量子点敏感单元8所在位置暴 露在外面,通过10分钟紫外灯照射掩膜模板11,使得单个PbSe胶体量子点敏感单元8所在位置表面配体断键,形成极性体系,然后在100℃的烤盘上,退火2分钟。使用正己烷清洗衬底,将未曝光的非极性量子点体系洗掉,这样就制备出了单个PbSe胶体量子点敏感单元8,结果参阅图8。 Referring to Fig. 5, 30 mg of the above-mentioned surface-modified quantum dots and 1.5 mg of di-tert-butylphenyliodonium perfluorobutane-sulfonate were dissolved in 1 mL of chloroform, and the mixed solution was spin-coated on the cleaned flexible substrate 1 using a coater to form PbSe colloidal quantum dot layer 9 . Referring to Fig. 6 and Fig. 7, cover on the PbSe colloidal quantum dot layer 9 by the pre-made mask template 11, the mask template 11 just exposes the position of the single PbSe colloidal quantum dot sensitive unit 8 outside, by 10 minutes The mask template 11 is irradiated by an ultraviolet lamp, so that the ligands on the surface of the single PbSe colloidal quantum dot sensitive unit 8 are bonded off to form a polar system, and then annealed on a baking tray at 100° C. for 2 minutes. The substrate was cleaned with n-hexane to wash off the unexposed non-polar quantum dot system, thus a single PbSe colloidal quantum dot sensitive unit 8 was prepared, and the result is shown in FIG. 8 . the
完成单个PbSe胶体量子点敏感单元8的制备后将是蒸镀电极,由于电流输入端电极2、电流输出端电极7、信号输出电极I 3、信号输出电极II6在空间上有交叉,所以不能同时蒸镀这些电极。参阅图9,首先蒸镀信号输出电极I 3和信号输出电极Ⅱ6。蒸镀电极时先按照设计尺寸制作掩膜板,覆盖好掩膜板后,使用热蒸镀技术,进行信号输出电极I 3和信号输出电极II6的蒸镀,蒸镀完电极后去除掩膜板,这样就完成了信号输出电极I 3和信号输出电极II6的蒸镀。完成以上步骤后,参阅图10,镀保护层10。保护层10的作用有两点,一是保护单个PbSe胶体量子点敏感单元8,防止其在空气中被氧化或受到外来破坏;再者是防止电流输入端电极2、电流输出端电极7和信号输出电极I 3、信号输出电极II6交叉时导电,起绝缘作用。在镀保护层10时,单个PbSe胶体量子点敏感单元8的左右两端和电流输入端电极2、电流输出端电极7相连的部分不用镀膜。蒸镀保护层10的方法和镀电极的情况相似,也是制作适合的掩膜板,采用电子束蒸镀SiO2保护层后去除掩膜板。镀完保护层10后,参阅图11,镀电流输入端电极2和电流输出端电极7。蒸镀电流输入端电极2和电流输出端电极7的方法和蒸镀信号输出电极I 3和信号输出电极Ⅱ6的方法相同。这样就完成了基于PbSe胶体量子点的阵列式霍尔元件的制作。 After completing the preparation of a single PbSe colloidal quantum dot sensitive unit 8, it will be an evaporation electrode. Because the current input terminal electrode 2, the current output terminal electrode 7, the signal output electrode I 3, and the signal output electrode II6 have intersections in space, they cannot be simultaneously These electrodes are evaporated. Referring to FIG. 9, first, the signal output electrode I3 and the signal output electrode II6 are evaporated. When evaporating electrodes, first make a mask plate according to the designed size. After covering the mask plate, use thermal evaporation technology to evaporate the signal output electrode I 3 and signal output electrode II6. After evaporating the electrodes, remove the mask plate , thus completing the evaporation of the signal output electrode I3 and the signal output electrode II6. After the above steps are completed, referring to FIG. 10 , a protective layer 10 is plated. The effect of protective layer 10 has two points, one is to protect single PbSe colloidal quantum dot sensitive unit 8, prevent it from being oxidized in the air or be subjected to external damage; When the output electrode I 3 and the signal output electrode II6 intersect, they conduct electricity and play an insulating role. When the protective layer 10 is plated, the left and right ends of the single PbSe colloidal quantum dot sensitive unit 8 are connected to the current input terminal electrode 2 and the current output terminal electrode 7 without coating. The method of evaporating the protective layer 10 is similar to that of electrode plating, and a suitable mask is also made, and the mask is removed after the SiO 2 protective layer is evaporated by an electron beam. After the protective layer 10 is plated, referring to FIG. 11 , the current input terminal electrode 2 and the current output terminal electrode 7 are plated. The method of evaporating the current input terminal electrode 2 and the current output terminal electrode 7 is the same as the method of evaporating the signal output electrode I3 and the signal output electrode II6. In this way, the fabrication of the arrayed Hall element based on PbSe colloidal quantum dots is completed.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210208512.8A CN102723350B (en) | 2012-06-21 | 2012-06-21 | PbSe colloidal quantum dot based array Hall element and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210208512.8A CN102723350B (en) | 2012-06-21 | 2012-06-21 | PbSe colloidal quantum dot based array Hall element and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102723350A CN102723350A (en) | 2012-10-10 |
CN102723350B true CN102723350B (en) | 2014-07-23 |
Family
ID=46949070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210208512.8A Expired - Fee Related CN102723350B (en) | 2012-06-21 | 2012-06-21 | PbSe colloidal quantum dot based array Hall element and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102723350B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104165706B (en) * | 2014-08-15 | 2016-08-31 | 吉林大学 | The making of PbSe quantum dot liquid-core optical fibre temperature sensor and temperature checking method |
JP6831627B2 (en) * | 2015-02-19 | 2021-02-17 | エイブリック株式会社 | Magnetic sensor and its manufacturing method |
EP3537138B1 (en) * | 2016-11-02 | 2023-12-27 | LG Chem, Ltd. | Quantum dot biosensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768301B1 (en) * | 1999-09-09 | 2004-07-27 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Hall sensor array for measuring a magnetic field with offset compensation |
CN102185099A (en) * | 2011-04-26 | 2011-09-14 | 北京大学 | Hall element and manufacturing method thereof |
CN102313563A (en) * | 2010-07-05 | 2012-01-11 | 精工电子有限公司 | Hall element |
-
2012
- 2012-06-21 CN CN201210208512.8A patent/CN102723350B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768301B1 (en) * | 1999-09-09 | 2004-07-27 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Hall sensor array for measuring a magnetic field with offset compensation |
CN102313563A (en) * | 2010-07-05 | 2012-01-11 | 精工电子有限公司 | Hall element |
CN102185099A (en) * | 2011-04-26 | 2011-09-14 | 北京大学 | Hall element and manufacturing method thereof |
Non-Patent Citations (4)
Title |
---|
姚官生等.短波红外纳米PbSe薄膜制备及光电性能研究.《航空兵器》.2011,(第3期), |
张宇.胶质PbSe半导体纳米晶的光学性质研究.《中国博士学位论文全文数据库工程科技I辑》.2010,(第8期),全文. |
短波红外纳米PbSe薄膜制备及光电性能研究;姚官生等;《航空兵器》;20110630(第3期);17-19,27 * |
胶质PbSe半导体纳米晶的光学性质研究;张宇;《中国博士学位论文全文数据库工程科技I辑》;20100815(第8期);32-34 * |
Also Published As
Publication number | Publication date |
---|---|
CN102723350A (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107564868B (en) | A kind of integrated encapsulation structure and method of Superconducting Quantum computing chip | |
CN103954920B (en) | A kind of single-chip tri-axis linear magnetic sensor and preparation method thereof | |
CN102723350B (en) | PbSe colloidal quantum dot based array Hall element and preparation method thereof | |
CN102723259B (en) | UV-LIGA (Ultraviolet-Lithografie, Galvanoformung, Abformung) method for manufacturing multi layers of mini-type inductance coils on silicon substrate | |
JP7436457B2 (en) | Gradiometric parallel superconducting quantum interference device | |
CN103474433B (en) | A kind of thin-film transistor array base-plate and preparation method thereof | |
CN111211165A (en) | A kind of quantum chip three-dimensional structure and its production and packaging method | |
CN106953000A (en) | Superconducting magnetic field coil integrated in Josephson junction and its preparation method | |
CN211789023U (en) | Quantum chip three-dimensional structure | |
CN113659039B (en) | Array interconnected CsPbCl3 ultraviolet photodetector and preparation method thereof | |
US8736003B2 (en) | Integrated hybrid hall effect transducer | |
RU2536317C1 (en) | Method to manufacture magnetoresistive sensor | |
CN111969037B (en) | Air gap graphene field effect tube structure and preparation method | |
CN109358301A (en) | A Miniature Fluxgate Sensor Based on Sewn Core Structure | |
CN108807519B (en) | Electronic Fabry-Perot interference device and preparation method thereof | |
CN104952784B (en) | Groove isolation construction, its production method and semiconductor devices and imaging sensor | |
CN105977206B (en) | Method for manufacturing an array substrate and array substrate | |
CN106601725B (en) | The manufacturing method of composite sapphire substrate epitaxy LED display module | |
KR20190143326A (en) | Circuit structure and method of manufacturing the same | |
KR101299079B1 (en) | V-type trench nanowire sensor | |
RU2617454C1 (en) | Method of producing magnetoresistive sensor | |
RU2659877C1 (en) | Method of manufacturing magnetoresistive sensor | |
KR101485341B1 (en) | Two-Electrode Structure Based on Semiconductor Fabrication Techniques | |
CN114999762B (en) | Soft magnetic thin film iron core and its preparation method, sensor | |
CN110957396B (en) | A zero-bias working graphene photoelectric device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140723 Termination date: 20150621 |
|
EXPY | Termination of patent right or utility model |