CN102723333B - Non-volatile memory with P+ floating gate electrode and preparation method thereof - Google Patents
Non-volatile memory with P+ floating gate electrode and preparation method thereof Download PDFInfo
- Publication number
- CN102723333B CN102723333B CN201210237668.9A CN201210237668A CN102723333B CN 102723333 B CN102723333 B CN 102723333B CN 201210237668 A CN201210237668 A CN 201210237668A CN 102723333 B CN102723333 B CN 102723333B
- Authority
- CN
- China
- Prior art keywords
- type
- region
- gate electrode
- floating gate
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Non-Volatile Memory (AREA)
Abstract
本发明涉及一种具有P+浮栅电极的非挥发性记忆体及其制备方法,其半导体基板内的上部设有记忆体细胞;记忆体细胞包括PMOS访问晶体管、控制电容及编程电容;半导体基板内的上部设有若干隔离沟槽,隔离沟槽内设置有隔离介质以形成领域介质区域;记忆体细胞内的PMOS访问晶体管、控制电容及编程电容通过领域介质区域相互隔离;半导体基板的第一主面上淀积有栅介质层,所述栅介质层覆盖隔离沟槽的槽口并覆盖半导体基板的第一主面;PMOS访问晶体管、控制电容两侧隔离沟槽的顶角正上方均设置P+浮栅电极,所述P+浮栅电极位于栅介质层上,并与相应隔离沟槽的顶角相对应。本发明能与CMOS逻辑工艺兼容,提高数据保留时间,提高非挥发性记忆体的使用可靠性。
The invention relates to a non-volatile memory with a P+ floating gate electrode and a preparation method thereof. The upper part of the semiconductor substrate is provided with a memory cell; the memory cell includes a PMOS access transistor, a control capacitor and a programming capacitor; The upper part of the upper part is provided with a number of isolation trenches, and an isolation medium is provided in the isolation trenches to form a domain dielectric area; the PMOS access transistor, control capacitor and programming capacitor in the memory cell are isolated from each other through the domain dielectric area; the first main body of the semiconductor substrate A gate dielectric layer is deposited on the surface, and the gate dielectric layer covers the notch of the isolation trench and covers the first main surface of the semiconductor substrate; the PMOS access transistor and the top corner of the isolation trench on both sides of the control capacitor are provided with P+ The floating gate electrode, the P+ floating gate electrode is located on the gate dielectric layer and corresponds to the top angle of the corresponding isolation trench. The invention is compatible with CMOS logic technology, improves data retention time and improves the use reliability of non-volatile memory.
Description
技术领域technical field
本发明涉及一种非挥发性记忆体及其制备方法,尤其是一种具有P+浮栅电极的非挥发性记忆体及其制备方法,具体地说是一种能提高数据保留时间的非挥发性记忆体及其制备方法,属于集成电路的技术领域。The present invention relates to a kind of non-volatile memory and its preparation method, especially a kind of non-volatile memory with P+ floating gate electrode and its preparation method, specifically a kind of non-volatile memory which can improve data retention time A memory and a preparation method thereof belong to the technical field of integrated circuits.
背景技术Background technique
对于片上系统(SoC)应用,它是把许多功能块集成到一个集成电路中。最常用的片上系统包括一个微处理器或微控制器、静态随机存取存储器(SRAM)模块、非挥发性记忆体以及各种特殊功能的逻辑块。然而,传统的非挥发性记忆体中的进程,这通常使用叠栅或分裂栅存储单元,与传统的逻辑工艺不兼容。For system-on-chip (SoC) applications, it is the integration of many functional blocks into an integrated circuit. The most commonly used SoCs include a microprocessor or microcontroller, static random access memory (SRAM) modules, nonvolatile memory, and logic blocks for various special functions. However, conventional non-volatile memory processes, which typically use stacked-gate or split-gate memory cells, are not compatible with conventional logic processes.
非挥发性记忆体(NVM)工艺和传统的逻辑工艺是不一样的。非挥发性记忆体(NVM)工艺和传统的逻辑工艺合在一起的话,将使工艺变成一个更为复杂和昂贵的组合;由于SoC应用的非挥发记忆体典型的用法是在关系到整体的芯片尺寸小,因此这种做法是不可取的。同时,由于现有非挥发性记忆体的工作原理使得写入数据容易丢失,影响使用的可靠性。The non-volatile memory (NVM) process is different from the traditional logic process. The combination of non-volatile memory (NVM) process and traditional logic process will make the process a more complex and expensive combination; since the typical use of non-volatile memory for SoC applications is in relation to the whole The chip size is small, so this approach is not advisable. At the same time, due to the working principle of the existing non-volatile memory, the written data is easily lost, which affects the reliability of use.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不足,提供一种具有P+浮栅电极的非挥发性记忆体及其制备方法,其结构紧凑,能与CMOS逻辑工艺兼容,提高数据保留时间,降低使用成本,提高非挥发性记忆体的使用可靠性。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide a non-volatile memory with P+ floating gate electrodes and a preparation method thereof, which is compact in structure, compatible with CMOS logic technology, improves data retention time, reduces Use cost, improve the use reliability of non-volatile memory.
按照本发明提供的技术方案,所述具有P+浮栅电极的非挥发性记忆体,包括半导体基板,所述半导体基板内的上部设有若干用于存储的记忆体细胞;所述记忆体细胞包括PMOS访问晶体管、控制电容及编程电容;所述半导体基板内的上部设有若干隔离沟槽,所述隔离沟槽内设置有隔离介质以形成领域介质区域;记忆体细胞内的PMOS访问晶体管、控制电容及编程电容通过领域介质区域相互隔离;半导体基板的第一主面上淀积有栅介质层,所述栅介质层覆盖隔离沟槽的槽口并覆盖半导体基板的第一主面;PMOS访问晶体管、控制电容两侧隔离沟槽的顶角正上方均设置P+浮栅电极,所述P+浮栅电极位于栅介质层上,并与相应隔离沟槽的顶角相对应。According to the technical solution provided by the present invention, the non-volatile memory with P+ floating gate electrodes includes a semiconductor substrate, and the upper part of the semiconductor substrate is provided with several memory cells for storage; the memory cells include PMOS access transistors, control capacitors and programming capacitors; the upper part of the semiconductor substrate is provided with a number of isolation trenches, and isolation dielectrics are provided in the isolation trenches to form domain dielectric regions; the PMOS access transistors, control The capacitor and the programming capacitor are isolated from each other by the domain dielectric region; a gate dielectric layer is deposited on the first main surface of the semiconductor substrate, and the gate dielectric layer covers the notch of the isolation trench and covers the first main surface of the semiconductor substrate; PMOS access P+ floating gate electrodes are arranged directly above the top corners of the isolation trenches on both sides of the transistor and the control capacitor, and the P+ floating gate electrodes are located on the gate dielectric layer and correspond to the top corners of the corresponding isolation trenches.
所述P+浮栅电极为P导电类型的导电多晶硅。The P+ floating gate electrode is conductive polysilicon of P conductivity type.
所述编程电容两侧隔离沟槽的顶角正上方设置P+浮栅电极,所述P+浮栅电极与编程电容两侧隔离沟槽的顶角相对应。A P+ floating gate electrode is arranged directly above the corners of the isolation trenches on both sides of the programming capacitor, and the P+ floating gate electrode corresponds to the corners of the isolation trenches on both sides of the programming capacitor.
所述半导体基板的材料包括硅,半导体基板为P导电类型基板或N导电类型基板;所述半导体基板为P导电类型基板时,所述PMOS访问晶体管、控制电容及编程电容通过P型导电类型基板内的第二N型区域及第二N型区域上方的第三N型区域与P型导电类型基板相隔离。The material of the semiconductor substrate includes silicon, and the semiconductor substrate is a P conductivity type substrate or an N conductivity type substrate; when the semiconductor substrate is a P conductivity type substrate, the PMOS access transistor, control capacitor and programming capacitor pass through the P type conductivity type substrate The second N-type region inside and the third N-type region above the second N-type region are isolated from the P-type conductivity type substrate.
所述栅介质层上设有浮栅电极,所述浮栅电极覆盖并贯穿PMOS访问晶体管、控制电容及编程电容上方对应的栅介质层,浮栅电极的两侧淀积有侧面保护层,侧面保护层覆盖浮栅电极的侧壁;PMOS访问晶体管包括第一N型区域及位于所述第一N型区域内上部的P型源极区与P型漏极区,控制电容包括P型区域A及位于所述P型区域A内上部的P型掺杂区域C与P型掺杂区域D;编程电容包括P型区域B及位于所述P型区域B内上部的P型掺杂区域E与P型掺杂区域F;P型掺杂区域C、P型掺杂区域D、P型掺杂区域E、P型掺杂区域F、P型源极区及P型漏极区与上方的浮栅电极相对应,并分别与相应的栅介质层及领域介质区域相接触。A floating gate electrode is provided on the gate dielectric layer, and the floating gate electrode covers and penetrates the corresponding gate dielectric layer above the PMOS access transistor, the control capacitor and the programming capacitor, and side protection layers are deposited on both sides of the floating gate electrode. The protection layer covers the sidewall of the floating gate electrode; the PMOS access transistor includes a first N-type region and a P-type source region and a P-type drain region located on the upper part of the first N-type region, and the control capacitor includes a P-type region A and the P-type doped region C and the P-type doped region D located in the upper part of the P-type region A; the programming capacitor includes the P-type region B and the P-type doped region E and D located in the upper part of the P-type region B. P-type doped region F; P-type doped region C, P-type doped region D, P-type doped region E, P-type doped region F, P-type source region and P-type drain region and the floating above The gate electrodes correspond to and are in contact with corresponding gate dielectric layers and domain dielectric regions respectively.
所述栅介质层的材料包括二氧化硅;所述侧面保护层为氮化硅或二氧化硅。The material of the gate dielectric layer includes silicon dioxide; the side protection layer is silicon nitride or silicon dioxide.
所述浮栅电极的材料包括N导电类型的导电多晶硅。The material of the floating gate electrode includes conductive polysilicon of N conductivity type.
一种具有P+浮栅电极的非挥发性记忆体制备方法,所述非挥发性记忆体的制备方法包括如下步骤:A kind of non-volatile memory preparation method with P+ floating gate electrode, the preparation method of described non-volatile memory comprises the steps:
a、提供半导体基板,所述半导体基板包括第一主面及第二主面;a, providing a semiconductor substrate, the semiconductor substrate comprising a first main surface and a second main surface;
b、在半导体基板的第一主面上进行所需的阻挡层淀积、阻挡层刻蚀及自对准离子注入,以在半导体基板内形成所需的第一N型区域、第三N型区域、P型区域A及P型区域B,第一N型区域位于P型区域A及P型区域B间,第三N型区域位于P型区域A及P型区域B的外侧;b. Perform the required barrier layer deposition, barrier layer etching and self-aligned ion implantation on the first main surface of the semiconductor substrate to form the required first N-type region and the third N-type region in the semiconductor substrate. region, P-type region A and P-type region B, the first N-type region is located between the P-type region A and the P-type region B, and the third N-type region is located outside the P-type region A and the P-type region B;
c、在上述半导体基板内进行沟槽刻蚀,以在半导体基板内形成所需的隔离沟槽,并在隔离沟槽内设置隔离介质,以在半导体基板内形成领域介质区域,所述领域介质区域从第一主面向下延伸,并使得第三N型区域、P型区域A、第一N型区域及P型区域B的上部相互隔离;c. Perform trench etching in the above-mentioned semiconductor substrate to form a required isolation trench in the semiconductor substrate, and set an isolation medium in the isolation trench to form a domain dielectric region in the semiconductor substrate, the domain dielectric The regions extend downward from the first main surface, and isolate the upper parts of the third N-type region, the P-type region A, the first N-type region, and the P-type region B from each other;
d、在上述半导体基板对应的第一主面上淀积栅介质层,所述栅介质层覆盖半导体基板的第一主面;d. Depositing a gate dielectric layer on the corresponding first main surface of the semiconductor substrate, the gate dielectric layer covering the first main surface of the semiconductor substrate;
e、在上述半导体基板的第一主面上淀积浮栅电极,所述浮栅电极覆盖于栅介质层上并贯穿P型区域A、第一N型区域及P型区域B上方对应的栅介质层上;e. Deposit a floating gate electrode on the first main surface of the above-mentioned semiconductor substrate, the floating gate electrode covers the gate dielectric layer and runs through the corresponding gate above the P-type region A, the first N-type region and the P-type region B on the medium layer;
f、在上述栅介质层上淀积第四阻挡层,并选择性地掩蔽和刻蚀第四阻挡层,以去除第一N型区域、P型区域A及P型区域B上方对应覆盖浮栅电极的第四阻挡层;f. Deposit a fourth barrier layer on the gate dielectric layer, and selectively mask and etch the fourth barrier layer to remove the first N-type region, the P-type region A and the P-type region B above the corresponding covering floating gate a fourth barrier layer of the electrode;
g、在上述第四阻挡层上方自对准注入P型杂质离子,在P型区域A内的上部得到第一P型轻掺杂区域及第二P型轻掺杂区域,在第一N型区域内的上部得到第三P型轻掺杂区域及第四P型轻掺杂区域,并在P型区域B内的上部得到第五P型轻掺杂区域与第六P型轻掺杂区域;g. Self-aligned implantation of P-type impurity ions above the fourth barrier layer to obtain a first P-type lightly doped region and a second P-type lightly doped region in the upper part of the P-type region A. In the first N-type The upper part of the region obtains the third P-type lightly doped region and the fourth P-type lightly doped region, and the upper part of the P-type region B obtains the fifth P-type lightly doped region and the sixth P-type lightly doped region ;
h、去除上述第四阻挡层,并在第一主面上淀积侧面保护材料,以在浮栅电极的两侧形成侧面保护层;h, removing the above-mentioned fourth barrier layer, and depositing a side protection material on the first main surface to form a side protection layer on both sides of the floating gate electrode;
i、在上述第一主面上淀积第五阻挡层,并选择性地掩蔽和刻蚀第五阻挡层,以去除P型区域A、第一N型区域及P型区域B上方对应淀积覆盖的第五阻挡层;i. Deposit a fifth barrier layer on the above-mentioned first main surface, and selectively mask and etch the fifth barrier layer to remove the corresponding deposition on the P-type region A, the first N-type region and the P-type region B Covered fifth barrier layer;
j、在上述第五阻挡层上方再次自对准注入P型杂质离子,在P型区域A内的上部得到第一P型重掺杂区域及第二P型重掺杂区域,在第一N型区域内的上部得到第三P型重掺杂区域及第四P型重掺杂区域,并在第三P型重掺杂区域内的上部得到第五P型重掺杂区域与第六P型重掺杂区域;j. Self-aligned implantation of P-type impurity ions again above the above-mentioned fifth barrier layer to obtain a first P-type heavily doped region and a second P-type heavily doped region in the upper part of the P-type region A. In the first N A third P-type heavily doped region and a fourth P-type heavily doped region are obtained in the upper part of the P-type heavily doped region, and a fifth P-type heavily doped region and a sixth P-type heavily doped region are obtained in the upper part of the third P-type heavily doped region. type heavily doped region;
k、去除第一主面上的第五阻挡层;k, removing the fifth barrier layer on the first main surface;
l、在半导体基板的第一主面上方淀积P+浮栅电极材料,并选择性地掩蔽和刻蚀P+浮栅电极材料,以在PMOS访问晶体管、控制电容两侧隔离沟槽的顶角正上方均形成P+浮栅电极。1. Deposit the P+ floating gate electrode material on the first main surface of the semiconductor substrate, and selectively mask and etch the P+ floating gate electrode material, so that the apex angles of the isolation trenches on both sides of the PMOS access transistor and the control capacitor are positive P+ floating gate electrodes are formed above.
当所述步骤a中,半导体基板为P导电类型基板时,所述步骤b包括When in the step a, the semiconductor substrate is a P conductivity type substrate, the step b includes
b1、在P导电类型基板的第一主面上淀积第一阻挡层,并选择性地掩蔽和刻蚀所述第一阻挡层,在第一阻挡层上方自对准注入N型杂质离子,以在半导体基板内得到第二N型区域;b1. Depositing a first barrier layer on the first main surface of the P conductivity type substrate, selectively masking and etching the first barrier layer, and self-aligning implanting N-type impurity ions above the first barrier layer, to obtain a second N-type region in the semiconductor substrate;
b2、去除上述P导电类型基板对应第一主面上的第一阻挡层,并在第一主面上淀积第二阻挡层;b2. removing the first barrier layer on the corresponding first main surface of the P conductivity type substrate, and depositing a second barrier layer on the first main surface;
b3、选择性地掩蔽和刻蚀第二阻挡层,并在第二阻挡层上方自对准注入N型杂质离子,以在半导体基板内形成第一N型区域及第三N型区域,第一N型区域及第三N型区域均位于第二N型区域的上方;b3. Selectively mask and etch the second barrier layer, and self-align implant N-type impurity ions above the second barrier layer to form a first N-type region and a third N-type region in the semiconductor substrate, the first Both the N-type region and the third N-type region are located above the second N-type region;
b4、去除上述P导电类型基板对应第一主面上的第二阻挡层,并在第一主面上淀积第三阻挡层;b4, removing the second barrier layer on the corresponding first main surface of the P conductivity type substrate, and depositing a third barrier layer on the first main surface;
b5、选择性地掩蔽和刻蚀第三阻挡层,并在第三阻挡层上方自对准注入P型杂质离子,以在第二N型区域上方形成P型区域A及P型区域B,P型区域A与P型区域B间通过第一N型区域隔离。b5. Selectively mask and etch the third barrier layer, and self-align implant P-type impurity ions above the third barrier layer to form a P-type region A and a P-type region B above the second N-type region, P The type region A and the P-type region B are separated by the first N-type region.
当所述步骤a中,半导体基板为N导电类型基板时,所述步骤b包括When in the step a, the semiconductor substrate is an N conductivity type substrate, the step b includes
s1、在第一主面上淀积第二阻挡层,并选择性地掩蔽和刻蚀第二阻挡层;s1, depositing a second barrier layer on the first main surface, and selectively masking and etching the second barrier layer;
s2、在上述第二阻挡层的上方自对准注入N型杂质离子,以在N导电类型基板内的上部得到所需的第一N型区域与第二N型区域;s2. Self-alignment implanting N-type impurity ions above the second barrier layer to obtain the required first N-type region and second N-type region in the upper part of the N-conductivity type substrate;
s3、去除第一主面上的第二阻挡层,并在第一主面上淀积第三阻挡层;s3, removing the second barrier layer on the first main surface, and depositing a third barrier layer on the first main surface;
s4、选择性地掩蔽和刻蚀第三阻挡层,并在第三阻挡层上方自对准注入P型杂质离子,以在N导电类型基板内得到P型区域A与P型区域B。s4. Selectively mask and etch the third barrier layer, and self-align implant P-type impurity ions on the third barrier layer, so as to obtain P-type region A and P-type region B in the N conductivity type substrate.
本发明的优点:半导体基板内的上部设有若干隔离沟槽,所述隔离沟槽内设置有隔离介质以形成领域介质区域,记忆体细胞内的PMOS访问晶体管、控制电容及编程电容通过领域介质区域相互隔离;隔离沟槽的顶角正上方设有P+浮栅电极,所述P+浮栅电极位于栅介质层上,并与隔离沟槽的顶角相对应分布,P+浮栅电极的宽度能完全遮挡顶角处较薄的氧化层,P+浮栅电极为P导电类型的导电多晶硅,P+浮栅电极上的电子为少子,这样当非挥发性记忆体存储电子时,由于P+浮栅电极的存在,电子很难再通过顶角处的氧化层漏电,从而提高了非挥发性记忆体的数据存储时间,结构紧凑,能与CMOS逻辑工艺兼容,降低使用成本,提高非挥发性记忆体的使用可靠性。Advantages of the present invention: the upper part of the semiconductor substrate is provided with several isolation trenches, and the isolation medium is provided in the isolation trenches to form a domain medium area, and the PMOS access transistors, control capacitors and programming capacitors in the memory cells pass through the domain medium The regions are isolated from each other; a P+ floating gate electrode is provided directly above the apex of the isolation trench, and the P+ floating gate electrode is located on the gate dielectric layer and distributed correspondingly to the apex of the isolation trench. The width of the P+ floating gate electrode can be Completely cover the thinner oxide layer at the top corner, the P+ floating gate electrode is conductive polysilicon of P conductivity type, and the electrons on the P+ floating gate electrode are minority carriers, so when the non-volatile memory stores electrons, due to the P+ floating gate electrode Existence, it is difficult for electrons to leak through the oxide layer at the top corner, thereby improving the data storage time of the non-volatile memory, compact structure, compatible with CMOS logic process, reducing the cost of use, and improving the use of non-volatile memory reliability.
附图说明Description of drawings
图1为本发明实施例1的结构示意图。Fig. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
图2为本发明实施例2的结构示意图。Fig. 2 is a schematic structural diagram of Embodiment 2 of the present invention.
图3~图14为本发明实施例1的具体实施工艺剖视图,其中:3 to 14 are cross-sectional views of the specific implementation process of Embodiment 1 of the present invention, wherein:
图3为本发明采用P导电类型基板的剖视图。FIG. 3 is a cross-sectional view of a substrate of P conductivity type used in the present invention.
图4为本发明得到第二N型区域后的剖视图。FIG. 4 is a cross-sectional view of the second N-type region obtained in the present invention.
图5为本发明得到第一N型区域及第三N型区域后的剖视图。FIG. 5 is a cross-sectional view of the first N-type region and the third N-type region obtained in the present invention.
图6为本发明得到P型区域A与P型区域B后的剖视图。FIG. 6 is a cross-sectional view of P-type region A and P-type region B obtained in the present invention.
图7为本发明得到领域介质区域后的剖视图。Fig. 7 is a cross-sectional view of the present invention after the domain medium region is obtained.
图8为本发明得到栅介质层后的剖视图。FIG. 8 is a cross-sectional view of the gate dielectric layer obtained in the present invention.
图9为本发明得到浮栅电极后的剖视图。FIG. 9 is a cross-sectional view of the floating gate electrode obtained in the present invention.
图10为本发明自对准注入P杂质离子得到轻掺杂区域后的剖视图。FIG. 10 is a cross-sectional view of lightly doped regions obtained by self-alignment implantation of P impurity ions according to the present invention.
图11为本发明得到侧面保护层后的剖视图。Fig. 11 is a cross-sectional view of the side protective layer obtained in the present invention.
图12为本发明自对准注入P杂质离子得到重掺杂区域后的剖视图。FIG. 12 is a cross-sectional view of the present invention after self-alignment implantation of P impurity ions to obtain a heavily doped region.
图13为本发明去除第五阻挡层后的剖视图。FIG. 13 is a cross-sectional view of the present invention after removing the fifth barrier layer.
图14为本发明得到P+浮栅电极后的剖视图。FIG. 14 is a cross-sectional view of the P+ floating gate electrode obtained in the present invention.
图15~图25为本发明实施例2的具体实施工艺剖视图,其中:Figures 15 to 25 are cross-sectional views of the specific implementation process of Embodiment 2 of the present invention, wherein:
图15为本发明采用的N导电类型基板的剖视图。Fig. 15 is a cross-sectional view of an N conductive type substrate used in the present invention.
图16为本发明得到第一N型区域与第二N型区域后的剖视图。FIG. 16 is a cross-sectional view of the first N-type region and the second N-type region obtained in the present invention.
图17为本发明得到P型区域A与P型区域B后的剖视图。FIG. 17 is a cross-sectional view of P-type region A and P-type region B obtained in the present invention.
图18为本发明得到领域介质区域后的剖视图。Fig. 18 is a cross-sectional view of the present invention after the domain medium region is obtained.
图19为本发明得到栅介质层后的剖视图。FIG. 19 is a cross-sectional view of the gate dielectric layer obtained in the present invention.
图20为本发明得到浮栅电极后的剖视图。Fig. 20 is a cross-sectional view of the floating gate electrode obtained in the present invention.
图21为本发明自对准注入P杂质离子得到轻掺杂区域后的剖视图。FIG. 21 is a cross-sectional view of lightly doped regions obtained by self-alignment implantation of P impurity ions according to the present invention.
图22为本发明得到侧面保护层后的剖视图。Fig. 22 is a cross-sectional view of the present invention after the side protective layer is obtained.
图23为本发明自对准注入P杂质离子得到重掺杂区域后的剖视图。FIG. 23 is a cross-sectional view of the present invention after self-alignment implantation of P impurity ions to obtain a heavily doped region.
图24为本发明去除第五阻挡层后的剖视图。Fig. 24 is a cross-sectional view of the present invention after removing the fifth barrier layer.
图25为本发明得到P+浮栅电极后的剖视图。Fig. 25 is a cross-sectional view after obtaining a P+ floating gate electrode according to the present invention.
附图标记说明:1-P导电类型基板、2-第一N型区域、3-第二N型区域、4-第三N型区域、5-P型区域A、6-P型掺杂区域C、7-第一P型重掺杂区域、8-第一P型轻掺杂区域、9-P型掺杂区域D、10-隔离沟槽、11-第二P型轻掺杂区域、12-第二P型重掺杂区域、13-P型源极区、14-领域介质区域、15-栅介质层、16-浮栅电极、17-侧面保护层、18-第三P型轻掺杂区域、19-第三P型重掺杂区域、20-P+浮栅电极、21-P型漏极区、22-第四P型轻掺杂区域、23-第四P型重掺杂区域、24-P型掺杂区域E、25-第五P型重掺杂区域、26-第五P型轻掺杂区域、27-P型掺杂区域F、28-第六P型轻掺杂区域、29-第六P型重掺杂区域、30-顶角、31-P型区域B、32-第一主面、33-第二主面、34-第一阻挡层、35-第二阻挡层、36-第三阻挡层、37-第四阻挡层、38-第五阻挡层、39-N导电类型基板、100-记忆体细胞、110-PMOS访问晶体管、120-控制电容及130-编程电容。Explanation of reference numerals: 1-P conductivity type substrate, 2-first N-type region, 3-second N-type region, 4-third N-type region, 5-P-type region A, 6-P-type doped region C, 7-first P-type heavily doped region, 8-first P-type lightly doped region, 9-P-type doped region D, 10-isolation trench, 11-second P-type lightly doped region, 12-Second P-type heavily doped region, 13-P-type source region, 14-Field dielectric region, 15-Gate dielectric layer, 16-Floating gate electrode, 17-Side protection layer, 18-Third P-type light Doped region, 19-third P-type heavily doped region, 20-P+ floating gate electrode, 21-P-type drain region, 22-fourth P-type lightly doped region, 23-fourth P-type heavily doped region Region, 24-P-type doped region E, 25-fifth P-type heavily doped region, 26-fifth P-type lightly doped region, 27-P-type doped region F, 28-sixth P-type lightly doped region Impurity region, 29-sixth P-type heavily doped region, 30-vertex, 31-P-type region B, 32-first main surface, 33-second main surface, 34-first barrier layer, 35-the first Second barrier layer, 36-third barrier layer, 37-fourth barrier layer, 38-fifth barrier layer, 39-N conductivity type substrate, 100-memory cell, 110-PMOS access transistor, 120-control capacitor and 130 - programming capacitor.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific drawings and embodiments.
一般地,非挥发性记忆体包括半导体基板,所述半导体基板内的上部设有若干用于存储的记忆体细胞100,所述记忆体细胞100包括PMOS访问晶体管110、控制电容120及编程电容130,所述PMOS访问晶体管110、控制电容120及编程电容130通过半导体基板上部的领域介质区域隔离14。在CMOS逻辑工艺中,为了能够缩小非挥发性记忆体的尺寸,在形成领域介质区域14时,一般先通过沟槽刻蚀,然后在沟槽内生长氧化层。在刻蚀形成沟槽时,沟槽具有顶角30,从非挥发性记忆体的截面上看,顶角30位于沟槽槽口的边缘,顶角30一般具有一定的坡度。当在沟槽内生长氧化层时,由于顶角30的存在,沟槽的顶角30处的氧化层厚度要比沟槽其他位置的氧化层都要薄;当通过非挥发性记忆体进行数据存储时,由于顶角30处较薄的氧化层,使得非挥发性记忆体内的电子能穿过较薄的氧化层进行漏电,即使得非挥发性记忆体的数据保留时间不能达到所需的要求,降低非挥发性记忆体存储数据的可靠性。为了能够提高非挥发性记忆体存储数据的保留时间,下面通过实施例1和实施例2对本发明进行说明。Generally, a non-volatile memory includes a semiconductor substrate, and a plurality of memory cells 100 for storage are arranged on the upper part of the semiconductor substrate, and the memory cells 100 include a PMOS access transistor 110, a control capacitor 120 and a programming capacitor 130 , the PMOS access transistor 110 , the control capacitor 120 and the programming capacitor 130 are isolated 14 through the domain dielectric region on the upper part of the semiconductor substrate. In the CMOS logic process, in order to reduce the size of the non-volatile memory, when the domain dielectric region 14 is formed, trench etching is generally performed first, and then an oxide layer is grown in the trench. When the groove is formed by etching, the groove has an apex 30 , and the apex 30 is located at the edge of the notch of the groove from the cross-section of the non-volatile memory, and the apex 30 generally has a certain slope. When growing an oxide layer in the trench, due to the existence of the corner 30, the thickness of the oxide layer at the top corner 30 of the trench is thinner than the oxide layer at other positions of the trench; During storage, due to the thinner oxide layer at the top corner 30, the electrons in the non-volatile memory can pass through the thinner oxide layer for leakage, that is, the data retention time of the non-volatile memory cannot meet the required requirements , reducing the reliability of non-volatile memory storage data. In order to improve the retention time of data stored in the non-volatile memory, the present invention will be described below through Embodiment 1 and Embodiment 2.
实施例1Example 1
如图1和图13所示:为了能够使得非挥发性记忆体与CMOS逻辑工艺相兼容,同时能够使得非挥发性记忆体能够存储更长的时间,非挥发性记忆体包括P导电类型基板1,P导电类型基板1的材料为硅。P导电类型基板1内的上部设有至少一个记忆体细胞100,所述记忆体细胞100包括PMOS访问晶体管110、控制电容120及编程电容130,P导电类型基板1的表面上淀积覆盖有栅介质层15,所述栅介质层15覆盖对应形成记忆体细胞100的表面,PMOS访问晶体管110、控制电容120及编程电容130间通过P导电类型基板1内的领域介质区域14相互隔离。领域介质区域14位于P导电类型基板1的隔离沟槽10内,所述隔离沟槽10位于P导电类型基板1的上部,从P导电类型基板1的第一主面32向下延伸,通过在隔离沟槽10内生长栅氧化层得到领域介质区域14,所述领域介质区域14的材料一般为二氧化硅。由上述分析可知,隔离沟槽10的顶角30处的氧化层厚度要比隔离沟槽10其他位置处的氧化层厚度薄。As shown in Figure 1 and Figure 13: In order to make the non-volatile memory compatible with the CMOS logic process and enable the non-volatile memory to store for a longer period of time, the non-volatile memory includes a P conductivity type substrate 1 , the material of the P conductivity type substrate 1 is silicon. At least one memory cell 100 is provided on the upper part of the P conductivity type substrate 1, and the memory cell 100 includes a PMOS access transistor 110, a control capacitor 120 and a programming capacitor 130, and a gate electrode is deposited on the surface of the P conductivity type substrate 1. The dielectric layer 15 , the gate dielectric layer 15 covers the surface corresponding to the memory cell 100 , and the PMOS access transistor 110 , the control capacitor 120 and the programming capacitor 130 are isolated from each other by the domain dielectric region 14 in the P conductivity type substrate 1 . The domain dielectric region 14 is located in the isolation trench 10 of the P conductivity type substrate 1, the isolation trench 10 is located on the upper part of the P conductivity type substrate 1, extends downward from the first main surface 32 of the P conductivity type substrate 1, and passes through the A gate oxide layer is grown in the isolation trench 10 to obtain a domain dielectric region 14, and the material of the domain dielectric region 14 is generally silicon dioxide. It can be seen from the above analysis that the thickness of the oxide layer at the top corner 30 of the isolation trench 10 is thinner than that at other positions of the isolation trench 10 .
为了提高本发明中非挥发性记忆体的数据保留时间,在PMOS访问晶体管110、控制电容120两侧隔离沟槽10的顶角30的正上方均设置P+浮栅电极20,所述P+浮栅电极20位于栅介质层15上,且P+浮栅电极20的宽度与顶角30相对应分布,具体地说即P+浮栅电极20的宽度能完全遮挡顶角30处较薄的氧化层。P+浮栅电极20为P导电类型的导电多晶硅,P+浮栅电极20上的电子为少子,这样当非挥发性记忆体存储电子时,由于P+浮栅电极20的存在,电子很难再通过顶角30处的氧化层漏电,从而提高了非挥发性记忆体的数据存储时间。In order to improve the data retention time of the non-volatile memory in the present invention, a P+ floating gate electrode 20 is set directly above the top corner 30 of the isolation trench 10 on both sides of the PMOS access transistor 110 and the control capacitor 120, and the P+ floating gate The electrode 20 is located on the gate dielectric layer 15 , and the width of the P+ floating gate electrode 20 is distributed corresponding to the corner 30 , specifically, the width of the P+ floating gate electrode 20 can completely cover the thinner oxide layer at the corner 30 . The P+ floating gate electrode 20 is conductive polysilicon of P conductivity type, and the electrons on the P+ floating gate electrode 20 are minority carriers, so when the non-volatile memory stores electrons, due to the existence of the P+ floating gate electrode 20, it is difficult for the electrons to pass through the top again. The oxide layer at the corner 30 leaks electricity, thereby improving the data storage time of the non-volatile memory.
在本发明实施例中,为了能够进一步提高非挥发性记忆体的数据存储时间,在编程电容130两侧隔离沟槽10的顶角30正上方均设置P+浮栅电极20,所述P+浮栅电极20与编程电容130两侧隔离沟槽10的顶角30相对应,以覆盖相应顶角30。本发明实施例中,在本发明非挥发性记忆体的截面上看,所述PMOS访问晶体管110、控制电容120及编程电容130两侧隔离沟槽10的顶角30是指浮栅电极16两侧的顶角30区域。同时,在本发明非挥发性记忆体的截面上,在记忆体细胞100外侧隔离沟槽10的顶角30正上方也可以设置P+浮栅电极20,在本发明实施例附图中,记忆体细胞100的外侧的P+浮栅电极20是指左右两端的P+浮栅电极20;经过上述设置后,以形成在每个隔离沟槽20的顶角30正上方均设置P+浮栅电极20,能进一步提高非挥发性记忆体的数据保留时间。In the embodiment of the present invention, in order to further improve the data storage time of the non-volatile memory, P+ floating gate electrodes 20 are arranged directly above the corners 30 of the isolation trenches 10 on both sides of the programming capacitor 130, and the P+ floating gate electrodes 20 The electrodes 20 correspond to the top corners 30 of the isolation trenches 10 on both sides of the programming capacitor 130 to cover the corresponding top corners 30 . In the embodiment of the present invention, viewed from the cross-section of the non-volatile memory of the present invention, the apex 30 of the isolation trench 10 on both sides of the PMOS access transistor 110, the control capacitor 120, and the programming capacitor 130 refers to the two sides of the floating gate electrode 16. 30 area of the top corner of the side. At the same time, on the cross-section of the non-volatile memory of the present invention, the P+ floating gate electrode 20 can also be arranged directly above the corner 30 of the isolation groove 10 outside the memory cell 100. In the drawings of the embodiment of the present invention, the memory The P+ floating gate electrodes 20 on the outside of the cell 100 refer to the P+ floating gate electrodes 20 at the left and right ends; after the above-mentioned settings, the P+ floating gate electrodes 20 are arranged directly above the corners 30 of each isolation trench 20, which can Further improve the data retention time of non-volatile memory.
栅介质层15上淀积有浮栅电极16,所述浮栅电极16覆盖于栅介质层15上,并贯穿覆盖PMOS访问晶体管110、控制电容120及编程电容130对应的栅介质层15,从而将PMOS访问晶体管110、控制电容120及编程电容130相互连接配合。浮栅电极16的两侧覆盖有侧面保护层17,所述侧面保护层17覆盖浮栅电极16对应的外壁表面。在本发明实施例的非挥发性记忆体的俯视平面上看,P+浮栅电极20与浮栅电极16相接触。A floating gate electrode 16 is deposited on the gate dielectric layer 15, and the floating gate electrode 16 covers the gate dielectric layer 15 and penetrates through the gate dielectric layer 15 corresponding to the PMOS access transistor 110, the control capacitor 120 and the programming capacitor 130, thereby The PMOS access transistor 110 , the control capacitor 120 and the programming capacitor 130 are connected and cooperated with each other. Both sides of the floating gate electrode 16 are covered with a side protection layer 17 , and the side protection layer 17 covers the corresponding outer wall surface of the floating gate electrode 16 . Seen from the top view plane of the non-volatile memory in the embodiment of the present invention, the P+ floating gate electrode 20 is in contact with the floating gate electrode 16 .
所述PMOS访问晶体管110、控制电容120及编程电容130通过外侧的第三N型区域4及下方的第二N型区域3与P导电类型基板1内的P导电类型区域隔离,P导电类型基板1内的P导电区域形成第一P型区域。浮栅电极16的材料包括导电多晶硅,栅介质层15为二氧化硅,侧面保护层17为二氧化硅或氮化硅;领域介质区域14为二氧化硅。The PMOS access transistor 110, the control capacitor 120 and the programming capacitor 130 are isolated from the P conductivity type region in the P conductivity type substrate 1 through the third N type region 4 on the outside and the second N type region 3 below, and the P conductivity type substrate The P-conductive region within 1 forms the first P-type region. The material of the floating gate electrode 16 includes conductive polysilicon, the gate dielectric layer 15 is silicon dioxide, the side protection layer 17 is silicon dioxide or silicon nitride; the field dielectric region 14 is silicon dioxide.
所述PMOS访问晶体管110包括第一N型区域2,所述第一N型区域2内的上部设有对称分布的P型源极区13及P型漏极区21,所述P型源极区13、P型漏极区21与对应的领域介质区域14及上方的栅介质层15相接触。P型源极区13包括第三P型轻掺杂区域18及第三P型重掺杂区域19,所述第三P型重掺杂区域19的掺杂浓度大于第三P型轻掺杂区域18的掺杂浓度。P型漏极区21包括第四P型轻掺杂区域22及第四P型重掺杂区域23,所述第四P型重掺杂区域23的掺杂浓度大于第四P型轻掺杂区域22的掺杂浓度。第三P型轻掺杂区域18与第四P型轻掺杂区域22为同一制造层,第三P型重掺杂区域19与第四P型重掺杂区域23为同一制造层。第三P型轻掺杂区域18与第三P型重掺杂区域19相接触,并通过第三P型重掺杂区域19与领域介质区域14相接触,第三P型轻掺杂区域18在第一N型区域2内延伸的宽度与侧面保护层17的厚度相一致;同时,第四P型轻掺杂区域22的设置与第三P型轻掺杂区域18的分布设置相同。The PMOS access transistor 110 includes a first N-type region 2, and a symmetrically distributed P-type source region 13 and a P-type drain region 21 are arranged on the upper part of the first N-type region 2, and the P-type source region The region 13 and the P-type drain region 21 are in contact with the corresponding domain dielectric region 14 and the upper gate dielectric layer 15 . The P-type source region 13 includes a third P-type lightly doped region 18 and a third P-type heavily doped region 19, and the doping concentration of the third P-type heavily doped region 19 is greater than that of the third P-type lightly doped region. The doping concentration of region 18. The P-type drain region 21 includes a fourth P-type lightly doped region 22 and a fourth P-type heavily doped region 23, and the doping concentration of the fourth P-type heavily doped region 23 is greater than that of the fourth P-type lightly doped region. The doping concentration of region 22. The third P-type lightly doped region 18 and the fourth P-type lightly doped region 22 are in the same manufacturing layer, and the third P-type heavily doped region 19 and the fourth P-type heavily doped region 23 are in the same manufacturing layer. The third P-type lightly doped region 18 is in contact with the third P-type heavily doped region 19, and is in contact with the domain dielectric region 14 through the third P-type heavily doped region 19. The third P-type lightly doped region 18 The width extending in the first N-type region 2 is consistent with the thickness of the side protection layer 17 ; meanwhile, the distribution of the fourth P-type lightly doped region 22 is the same as that of the third P-type lightly doped region 18 .
控制电容120包括P型区域A5,所述P型区域A5内的上部设有P型掺杂区域C6及P型掺杂区域D9;所述P型掺杂区域C6与P型掺杂区域D9对称分布于P型区域A5内。P型掺杂区域C6、P型掺杂区域D9与对应领域介质区域14及栅介质层15相接触。P型掺杂区域C6包括第一P型轻掺杂区域8及第一P型重掺杂区域7,第一P型轻掺杂区域8通过第一P型重掺杂区域7与领域介质区域14相接触,第一P型轻掺杂区域8在P型区域A5内的延伸距离与侧面保护层17的厚度相一致。P型掺杂区域D9包括第二P型轻掺杂区域11及第二P型重掺杂区域12,所述第二P型轻掺杂区域11通过第二P型重掺杂区域12与领域介质区域14相接触,第二P型轻掺杂区域11与第一P型轻掺杂区域8的分布设置相一致。浮栅电极16与栅介质层15及栅介质层15下方的P型区域A5间形成电容结构,即控制电容120。同理,浮栅电极16与栅介质层15及栅介质层15下方的P型区域B31间也形成电容结构,即编程电容130。The control capacitor 120 includes a P-type region A5, and the upper part of the P-type region A5 is provided with a P-type doped region C6 and a P-type doped region D9; the P-type doped region C6 is symmetrical to the P-type doped region D9 Distributed in the P-type area A5. The P-type doped region C6 and the P-type doped region D9 are in contact with the corresponding field dielectric region 14 and the gate dielectric layer 15 . The P-type doped region C6 includes a first P-type lightly doped region 8 and a first P-type heavily doped region 7, and the first P-type lightly doped region 8 passes through the first P-type heavily doped region 7 and the domain dielectric region. 14 , the extension distance of the first P-type lightly doped region 8 in the P-type region A5 is consistent with the thickness of the side protection layer 17 . The P-type doped region D9 includes a second P-type lightly doped region 11 and a second P-type heavily doped region 12, and the second P-type lightly doped region 11 communicates with the second P-type heavily doped region 12. The dielectric region 14 is in contact with each other, and the distribution of the second P-type lightly doped region 11 is consistent with that of the first P-type lightly doped region 8 . A capacitor structure, namely a control capacitor 120 , is formed between the floating gate electrode 16 and the gate dielectric layer 15 and the P-type region A5 below the gate dielectric layer 15 . Similarly, a capacitor structure, ie, a programming capacitor 130 , is also formed between the floating gate electrode 16 and the gate dielectric layer 15 and the P-type region B31 below the gate dielectric layer 15 .
编程电容130包括P型区域B31,所述P型区域B31内的上部设有P型掺杂区域E24及P型掺杂区域F27,所述P型掺杂区域E24与P型掺杂区域F27对称分布于P型区域B31内。P型掺杂区域E24包括第五P型轻掺杂区域26及第五P型重掺杂区域25,第五P型重掺杂区域25的掺杂浓度大于第五P型轻掺杂区域26的掺杂浓度,第五P型轻掺杂区域26通过第五P型重掺杂区域25与领域介质区域14相接触,第五P型轻掺杂区域26在P型区域B31内的延伸距离与侧面保护层17的厚度相一致。P型掺杂区域F27包括第六P型轻掺杂区域28及第六P型重掺杂区域29,第六P型轻掺杂区域28通过第四N型轻掺杂区域29与领域介质区域14相接触,第六P型轻掺杂区域28与第五P型轻掺杂区域26的分布设置相一致。第五P型轻掺杂区域26与第六P型轻掺杂区域28为同一制造层,第五P型重掺杂区域25与第六P型重掺杂区域29为同一制造层。The programming capacitor 130 includes a P-type region B31, the upper part of the P-type region B31 is provided with a P-type doped region E24 and a P-type doped region F27, and the P-type doped region E24 is symmetrical to the P-type doped region F27 distributed in the P-type region B31. The P-type doped region E24 includes a fifth P-type lightly doped region 26 and a fifth P-type heavily doped region 25, and the fifth P-type heavily doped region 25 has a higher doping concentration than the fifth P-type lightly doped region 26. The doping concentration of the fifth P-type lightly doped region 26 is in contact with the domain dielectric region 14 through the fifth P-type heavily doped region 25, and the extension distance of the fifth P-type lightly doped region 26 in the P-type region B31 It is consistent with the thickness of the side protection layer 17 . The P-type doped region F27 includes a sixth P-type lightly doped region 28 and a sixth P-type heavily doped region 29, and the sixth P-type lightly doped region 28 passes through the fourth N-type lightly doped region 29 and the domain dielectric region. 14 , the distribution of the sixth P-type lightly doped region 28 is consistent with that of the fifth P-type lightly doped region 26 . The fifth P-type lightly doped region 26 and the sixth P-type lightly doped region 28 are in the same manufacturing layer, and the fifth P-type heavily doped region 25 and the sixth P-type heavily doped region 29 are in the same manufacturing layer.
通过编程电容130能够对对记忆体细胞100进行写入数据,或者将记忆体细胞100内的数据擦除;通过PMOS访问晶体管110能够读取记忆体细胞100内的存储数据状态,通过控制电容120能够将电压值传到浮栅电极16上,实现浮栅电极16与编程电容130间电压值,根据相应的电压值能够实现数据写入、擦除及读取操作。Data can be written into the memory cell 100 through the programming capacitor 130, or the data in the memory cell 100 can be erased; the stored data state in the memory cell 100 can be read through the PMOS access transistor 110, and the stored data state in the memory cell 100 can be read through the control capacitor 120 The voltage value can be transmitted to the floating gate electrode 16 to realize the voltage value between the floating gate electrode 16 and the programming capacitor 130 , and data writing, erasing and reading operations can be realized according to the corresponding voltage value.
如图3~图13所示:上述结构的非挥发性记忆体可以通过下述工艺步骤实现,具体地:As shown in Figure 3 to Figure 13: the non-volatile memory with the above structure can be realized through the following process steps, specifically:
a、提供P导电类型基板1,所述P导电类型基板1包括第一主面32及第二主面33;如图3所示:所述P导电类型基板1与常规CMOS工艺制备要求相兼容一致,P导电类型基板1的材料可以选用常用的硅,第一主面32与第二主面33相对应;a. Provide a P conductivity type substrate 1, the P conductivity type substrate 1 includes a first main surface 32 and a second main surface 33; as shown in Figure 3: the P conductivity type substrate 1 is compatible with conventional CMOS process preparation requirements Consistently, the material of the P conductivity type substrate 1 can be commonly used silicon, and the first main surface 32 corresponds to the second main surface 33;
b、在P导电类型基板1的第一主面32上进行所需的阻挡层淀积、阻挡层刻蚀及自对准离子注入,以在P导电类型基板1内形成所需的第一N型区域2、第三N型区域4、P型区域A5及P型区域B31,第一N型区域2位于P型区域A5及P型区域B31间,第三N型区域4位于P型区域A5及P型区域B31的外侧;b. Perform required barrier layer deposition, barrier layer etching and self-aligned ion implantation on the first main surface 32 of the P conductivity type substrate 1 to form the required first N Type region 2, the third N-type region 4, P-type region A5 and P-type region B31, the first N-type region 2 is located between the P-type region A5 and the P-type region B31, and the third N-type region 4 is located in the P-type region A5 and the outside of the P-type area B31;
如图4~图6所示,具体地形成过程为:As shown in Figures 4 to 6, the specific formation process is as follows:
b1、在P导电类型基板1的第一主面32上淀积第一阻挡层34,并选择性地掩蔽和刻蚀所述第一阻挡层34,在第一阻挡层34上方自对准注入N型杂质离子,以在P导电类型基板1内得到第二N型区域3;如图4所示,所述第一阻挡层34为二氧化硅或氮化硅;当第一主面32上淀积第一阻挡层34后,通过刻蚀中心区域的第一阻挡层34,当自对准注入N型杂质离子后,能在P导电类型基板1内得到第二N型区域3;所述N型杂质离子为半导体工艺中常用的杂质离子,通过控制N型杂质离子注入的剂量及能量,能够形成所需的第二N型区域3;b1. Deposit a first barrier layer 34 on the first main surface 32 of the P conductivity type substrate 1, and selectively mask and etch the first barrier layer 34, and perform self-aligned implantation on the first barrier layer 34 N-type impurity ions to obtain a second N-type region 3 in the P conductivity type substrate 1; as shown in Figure 4, the first barrier layer 34 is silicon dioxide or silicon nitride; when the first main surface 32 After depositing the first barrier layer 34, by etching the first barrier layer 34 in the central region, after implanting N-type impurity ions in self-alignment, a second N-type region 3 can be obtained in the P conductivity type substrate 1; N-type impurity ions are impurity ions commonly used in semiconductor technology, and the required second N-type region 3 can be formed by controlling the dose and energy of N-type impurity ion implantation;
b2、去除上述P导电类型基板1对应第一主面32上的第一阻挡层34,并在第一主面32上淀积第二阻挡层35;b2, removing the first barrier layer 34 corresponding to the first main surface 32 of the above-mentioned P conductivity type substrate 1, and depositing a second barrier layer 35 on the first main surface 32;
b3、选择性地掩蔽和刻蚀第二阻挡层35,并在第二阻挡层35上方自对准注入N型杂质离子,以在半导体基板1内形成第一N型区域2及第三N型区域4,第一N型区域2及第三N型区域4均位于第二N型区域3的上方;如图5所示:选择性地掩蔽和刻蚀第二阻挡层35后,将需要形成第一N型区域2及第三N型区域4上方对应的第二阻挡层35刻蚀掉,当注入N型杂质离子后,能形成第一N型区域2及第三N型区域4,第三N型区域4与第一N型区域2的外侧;b3. Selectively mask and etch the second barrier layer 35, and self-align implant N-type impurity ions above the second barrier layer 35 to form the first N-type region 2 and the third N-type region 2 in the semiconductor substrate 1 Region 4, the first N-type region 2 and the third N-type region 4 are all located above the second N-type region 3; as shown in Figure 5: After selectively masking and etching the second barrier layer 35, it will be necessary to form The corresponding second barrier layer 35 above the first N-type region 2 and the third N-type region 4 is etched away, and after implanting N-type impurity ions, the first N-type region 2 and the third N-type region 4 can be formed. outside of the third N-type region 4 and the first N-type region 2;
b4、去除上述P导电类型基板1对应第一主面32上的第二阻挡层35,并在第一主面32上淀积第三阻挡层36;b4, removing the second barrier layer 35 corresponding to the first main surface 32 of the above-mentioned P conductivity type substrate 1, and depositing a third barrier layer 36 on the first main surface 32;
b5、选择性地掩蔽和刻蚀第三阻挡层36,并在第三阻挡层36上方自对准注入P型杂质离子,以在第二N型区域3上方形成P型区域A5及P型区域B31,P型区域A5与P型区域B31间通过第一N型区域2隔离;b5. Selectively mask and etch the third barrier layer 36, and self-align implant P-type impurity ions above the third barrier layer 36 to form a P-type region A5 and a P-type region above the second N-type region 3 B31, the P-type region A5 is isolated from the P-type region B31 by the first N-type region 2;
如图6所示:刻蚀第三阻挡层36时,将P型区域A5及P型区域B31上方对应的第三阻挡层36去除,当自对准注入P型杂质离子后,能形成P型区域A5及P型区域B31;As shown in Figure 6: when etching the third barrier layer 36, the corresponding third barrier layer 36 above the P-type region A5 and the P-type region B31 is removed, and after self-alignment implantation of P-type impurity ions, a P-type impurity ion can be formed Area A5 and P-type area B31;
c、在上述半导体基板内进行沟槽刻蚀,以在半导体基板内形成所需的隔离沟槽10,并在隔离沟槽10内设置隔离介质,以在半导体基板内形成领域介质区域14,所述领域介质区域14从第一主面32向下延伸,并使得第三N型区域4、P型区域A5、第一N型区域2及P型区域B31的上部相互隔离;c. Perform trench etching in the above-mentioned semiconductor substrate to form the required isolation trench 10 in the semiconductor substrate, and set an isolation medium in the isolation trench 10 to form a field dielectric region 14 in the semiconductor substrate, so The dielectric region 14 extends downward from the first main surface 32, and isolates the upper parts of the third N-type region 4, the P-type region A5, the first N-type region 2, and the P-type region B31 from each other;
如图7所示:领域介质区域14为二氧化硅,可以通过常规在隔离沟槽10内热氧化生长得到;As shown in FIG. 7 : the domain dielectric region 14 is silicon dioxide, which can be obtained by conventional thermal oxidation growth in the isolation trench 10 ;
d、在上述P导电类型基板1对应的第一主面32上淀积栅介质层15,所述栅介质层15覆盖半导体基板1的第一主面32;如图8所示:所述栅介质层15为二氧化硅,栅介质层15覆盖于领域介质区域14及半导体基板1对应的表面;d. Deposit a gate dielectric layer 15 on the first main surface 32 corresponding to the above-mentioned P conductivity type substrate 1, and the gate dielectric layer 15 covers the first main surface 32 of the semiconductor substrate 1; as shown in FIG. 8: the gate The dielectric layer 15 is silicon dioxide, and the gate dielectric layer 15 covers the corresponding surface of the domain dielectric region 14 and the semiconductor substrate 1;
e、在上述P导电类型基板1的第一主面32上淀积浮栅电极16,所述浮栅电极16覆盖于栅介质层15上并贯穿P型区域A5、第一N型区域2及P型区域B31上方对应的栅介质层15上;如图9所示:图中P型区域A5、第一N型区域2及P型区域B31上方对应的浮栅电极16为同一制造层,且相互连接成一体;此处为了能够显示本发明的结构,采用间隔剖视方法得到本发明的剖视图;浮栅电极16在栅介质层15上呈T字形;e. Deposit a floating gate electrode 16 on the first main surface 32 of the above-mentioned P conductivity type substrate 1, the floating gate electrode 16 covers the gate dielectric layer 15 and penetrates the P-type region A5, the first N-type region 2 and On the corresponding gate dielectric layer 15 above the P-type region B31; as shown in FIG. Connected to one another; here, in order to be able to show the structure of the present invention, the sectional view of the present invention is obtained by adopting the spaced sectional method; the floating gate electrode 16 is T-shaped on the gate dielectric layer 15;
f、在上述栅介质层15上淀积第四阻挡层37,并选择性地掩蔽和刻蚀第四阻挡层37,去除第一N型区域2、P型区域A5及P型区域B31上方对应覆盖浮栅电极16的第四阻挡层37;f. Deposit the fourth barrier layer 37 on the above gate dielectric layer 15, and selectively mask and etch the fourth barrier layer 37 to remove the first N-type region 2, the P-type region A5 and the corresponding upper part of the P-type region B31 a fourth barrier layer 37 covering the floating gate electrode 16;
g、在上述第四阻挡层37上方自对准注入P型杂质离子,在P型区域A5内的上部得到第一P型轻掺杂区域8及第二P型轻掺杂区域11,在第一N型区域2内的上部得到第三P型轻掺杂区域18及第四P型轻掺杂区域22,并在P型区域B31内的上部得到第五P型轻掺杂区域26与第六P型轻掺杂区域28;如图10所示:第四阻挡层37为二氧化硅或氮化硅;当选择性地掩蔽和刻蚀第四阻挡层37后,使得除P型区域A5、第一N型区域2及P型区域B31外相应的区域均能阻挡P型杂质离子注入P型导电类型基板1内;采用常规的自对准注入P型杂质离子,能够同时得到所需的P型轻掺杂区域;g. Self-aligned implantation of P-type impurity ions above the fourth barrier layer 37 to obtain a first P-type lightly doped region 8 and a second P-type lightly doped region 11 in the upper part of the P-type region A5. A third P-type lightly doped region 18 and a fourth P-type lightly doped region 22 are obtained in the upper part of the N-type region 2, and a fifth P-type lightly doped region 26 and a fourth P-type lightly doped region 22 are obtained in the upper part of the P-type region B31. Six P-type lightly doped regions 28; as shown in Figure 10: the fourth barrier layer 37 is silicon dioxide or silicon nitride; after selectively masking and etching the fourth barrier layer 37, except for the P-type region A5 1. Both the first N-type region 2 and the corresponding regions outside the P-type region B31 can block the implantation of P-type impurity ions into the P-type conductivity type substrate 1; the conventional self-aligned implantation of P-type impurity ions can simultaneously obtain the required P-type lightly doped region;
h、去除上述第四阻挡层37,并在第一主面32上淀积侧面保护材料,以在浮栅电极16的两侧形成侧面保护层17;如图11所示:所述侧面保护层17的材料为氧化硅或二氧化硅,通过侧面保护层17能够在形成所需的重掺杂区域,同时能使得相应的轻掺杂区域与侧面保护层17相对应一致;h. Remove the above-mentioned fourth barrier layer 37, and deposit a side protection material on the first main surface 32 to form a side protection layer 17 on both sides of the floating gate electrode 16; as shown in FIG. 11 : the side protection layer The material of 17 is silicon oxide or silicon dioxide, and the required heavily doped region can be formed through the side protection layer 17, and at the same time, the corresponding lightly doped region can be correspondingly consistent with the side protection layer 17;
i、在上述第一主面32上淀积第五阻挡层38,并选择性地掩蔽和刻蚀第五阻挡层38,以去除P型区域A5、第一N型区域2及P型区域B31上方对应淀积覆盖的第五阻挡层38;淀积并选择性地掩蔽和刻蚀第五阻挡层38,主要是避免在形成重掺杂区域时,避免离子注入P型导电类型基板1内其他区域内;第五阻挡层38为二氧化硅或氮化硅;i. Deposit the fifth barrier layer 38 on the first main surface 32, and selectively mask and etch the fifth barrier layer 38 to remove the P-type region A5, the first N-type region 2 and the P-type region B31 The fifth barrier layer 38 is correspondingly deposited and covered on the top; the fifth barrier layer 38 is deposited and selectively masked and etched, mainly to avoid ion implantation into the P-type conductivity type substrate 1 when forming a heavily doped region. In the area; the fifth barrier layer 38 is silicon dioxide or silicon nitride;
j、在上述第五阻挡层38上方再次自对准注入P型杂质离子,在P型区域A5内的上部得到第一P型重掺杂区域7及第二P型重掺杂区域12,在第一N型区域2内的上部得到第三P型重掺杂区域19及第四P型重掺杂区域23,并在第三P型重掺杂区域31内的上部得到第五P型重掺杂区域25与第六P型重掺杂区域29;如图12所示:所述自对准注入P型杂质离子的浓度大于步骤g的离子浓度,由于有第五阻挡层38及侧面保护层17的阻挡,能够使得在相应形成轻掺杂区域的位置形成重掺杂区域,且保留的轻掺杂区域能与侧面保护层17相一致,从而得到所需的单一多晶架构;j. Self-aligned implantation of P-type impurity ions again above the fifth barrier layer 38 to obtain a first P-type heavily doped region 7 and a second P-type heavily doped region 12 in the upper part of the P-type region A5. The upper part of the first N-type region 2 obtains the third P-type heavily doped region 19 and the fourth P-type heavily doped region 23, and the upper part of the third P-type heavily doped region 31 obtains the fifth P-type heavily doped region. Doped region 25 and the sixth P-type heavily doped region 29; as shown in Figure 12: the concentration of the self-aligned implanted P-type impurity ions is greater than the ion concentration of step g, due to the fifth barrier layer 38 and side protection The barrier of the layer 17 can make a heavily doped region be formed at the position corresponding to the lightly doped region, and the remaining lightly doped region can be consistent with the side protection layer 17, thereby obtaining the required single polycrystalline structure;
k、去除第一主面32上的第五阻挡层38。如图13所示:去除第五阻挡层38,得到所需的非挥发性记忆体。k. Removing the fifth barrier layer 38 on the first main surface 32 . As shown in FIG. 13 : the fifth barrier layer 38 is removed to obtain the required non-volatile memory.
l、在上述栅介质层15上淀积P+浮栅电极材料,并选择性地掩蔽和刻蚀P+浮栅电极材料,以在PMOS访问晶体管110、控制电容120两侧隔离沟槽10的顶角30正上方均形成P+浮栅电极20如图14所示。1. Deposit the P+ floating gate electrode material on the above-mentioned gate dielectric layer 15, and selectively mask and etch the P+ floating gate electrode material, so as to isolate the top corner of the trench 10 on both sides of the PMOS access transistor 110 and the control capacitor 120 30 are formed directly above the P+ floating gate electrodes 20 as shown in FIG. 14 .
实施例2Example 2
如图2和图25所示:本实施例中半导体基板为N导电类型基板39,当采用N导电类型基板39后,在N导电类型基板39内不用形成第二N型区域3,即P型区域A5及P型区域B31直接与N型导电类型基板39相接触,同时,第一N型区域2与第三N型区域4也直接与N导电类型基板39相接触。采用N导电类型基板39后的其余结构与实施例1的设置均相同。As shown in Fig. 2 and Fig. 25: in this embodiment, the semiconductor substrate is an N-conductivity type substrate 39. After the N-conductivity type substrate 39 is adopted, there is no need to form a second N-type region 3 in the N-conductivity type substrate 39, that is, a P-type region. The region A5 and the P-type region B31 are in direct contact with the N-type conductive type substrate 39 , and meanwhile, the first N-type region 2 and the third N-type region 4 are also in direct contact with the N-type conductive type substrate 39 . After adopting the N conductive type substrate 39 , the rest of the structure is the same as that of Embodiment 1.
如图15~图25所示:上述结构的非挥发性记忆体可以通过下述工艺步骤实现,具体地:As shown in Figure 15 to Figure 25: the non-volatile memory with the above structure can be realized through the following process steps, specifically:
a、提供N导电类型基板39,所述N导电类型基板39包括第一主面32及第二主面33;如图15所示,N导电类型基板39的材料可以为硅;a. Provide an N conductive type substrate 39, the N conductive type substrate 39 includes a first main surface 32 and a second main surface 33; as shown in FIG. 15 , the material of the N conductive type substrate 39 can be silicon;
b、在半导体基板的第一主面32上进行所需的阻挡层淀积、阻挡层刻蚀及自对准离子注入,以在半导体基板内形成所需的第一N型区域2、第三N型区域4、P型区域A5及P型区域B31,第一N型区域2位于P型区域A5及P型区域B31间,第三N型区域4位于P型区域A5及P型区域B31的外侧;b. Perform required barrier layer deposition, barrier layer etching and self-aligned ion implantation on the first main surface 32 of the semiconductor substrate to form the required first N-type region 2, the third N-type region 4, P-type region A5 and P-type region B31, the first N-type region 2 is located between P-type region A5 and P-type region B31, and the third N-type region 4 is located between P-type region A5 and P-type region B31 outside;
步骤b的形成过程可以分为:The forming process of step b can be divided into:
s1、在第一主面32上淀积第二阻挡层35,并选择性地掩蔽和刻蚀第二阻挡层35;s1, depositing a second barrier layer 35 on the first main surface 32, and selectively masking and etching the second barrier layer 35;
s2、在上述第二阻挡层35的上方自对准注入N型杂质离子,以在N导电类型基板39内的上部得到所需的第一N型区域2与第二N型区域4,如图16所示;S2. Self-aligned implantation of N-type impurity ions above the second barrier layer 35 to obtain the required first N-type region 2 and second N-type region 4 in the upper part of the N-conductivity type substrate 39, as shown in FIG. 16 shown;
s3、去除第一主面32上的第二阻挡层35,并在第一主面32上淀积第三阻挡层36;s3, removing the second barrier layer 35 on the first main surface 32, and depositing a third barrier layer 36 on the first main surface 32;
s4、选择性地掩蔽和刻蚀第三阻挡层36,并在第三阻挡层36上方自对准注入P型杂质离子,以在N导电类型基板39内得到P型区域A5与P型区域B31,如图17所示;s4, selectively masking and etching the third barrier layer 36, and implanting P-type impurity ions on the third barrier layer 36 by self-alignment, so as to obtain the P-type region A5 and the P-type region B31 in the N-conductivity type substrate 39 , as shown in Figure 17;
c、在上述半导体基板内进行沟槽刻蚀,以在半导体基板内形成所需的隔离沟槽10,并在隔离沟槽10内设置隔离介质,以在半导体基板内形成领域介质区域14,所述领域介质区域14从第一主面32向下延伸,并使得第三N型区域4、P型区域A5、第一N型区域2及P型区域B31的上部相互隔离;如图18所示;c. Perform trench etching in the above-mentioned semiconductor substrate to form the required isolation trench 10 in the semiconductor substrate, and set an isolation medium in the isolation trench 10 to form a field dielectric region 14 in the semiconductor substrate, so The dielectric region 14 extends downward from the first main surface 32, and isolates the upper parts of the third N-type region 4, the P-type region A5, the first N-type region 2 and the P-type region B31 from each other; as shown in FIG. 18 ;
d、在上述半导体基板对应的第一主面32上淀积栅介质层15,所述栅介质层15覆盖半导体基板1的第一主面32,如图19所示;d. Depositing a gate dielectric layer 15 on the corresponding first main surface 32 of the semiconductor substrate, the gate dielectric layer 15 covering the first main surface 32 of the semiconductor substrate 1, as shown in FIG. 19 ;
e、在上述半导体基板的第一主面32上淀积浮栅电极16,所述浮栅电极16覆盖于栅介质层15上并贯穿P型区域A5、第一N型区域2及P型区域B31上方对应的栅介质层15上,如图20所示;e. Deposit a floating gate electrode 16 on the first main surface 32 of the semiconductor substrate, the floating gate electrode 16 covers the gate dielectric layer 15 and penetrates the P-type region A5, the first N-type region 2 and the P-type region on the corresponding gate dielectric layer 15 above B31, as shown in FIG. 20;
f、在上述栅介质层15上淀积第四阻挡层37,并选择性地掩蔽和刻蚀第四阻挡层37,去除第一N型区域2,P型区域A5及P型区域B31上方对应覆盖浮栅电极16的第四阻挡层37;f. Deposit the fourth barrier layer 37 on the above-mentioned gate dielectric layer 15, and selectively mask and etch the fourth barrier layer 37 to remove the first N-type region 2, corresponding to the top of the P-type region A5 and the P-type region B31 a fourth barrier layer 37 covering the floating gate electrode 16;
g、在上述第四阻挡层37上方自对准注入P型杂质离子,在P型区域A5内的上部得到第一P型轻掺杂区域8及第二P型轻掺杂区域11,在第一N型区域2内的上部得到第三P型轻掺杂区域18及第四P型轻掺杂区域22,并在P型区域B31内的上部得到第五P型轻掺杂区域26与第六P型轻掺杂区域28,如图21所示;g. Self-aligned implantation of P-type impurity ions above the fourth barrier layer 37 to obtain a first P-type lightly doped region 8 and a second P-type lightly doped region 11 in the upper part of the P-type region A5. A third P-type lightly doped region 18 and a fourth P-type lightly doped region 22 are obtained in the upper part of the N-type region 2, and a fifth P-type lightly doped region 26 and a fourth P-type lightly doped region 22 are obtained in the upper part of the P-type region B31. Six P-type lightly doped regions 28, as shown in FIG. 21;
h、去除上述第四阻挡层37,并在第一主面32上淀积侧面保护材料,以在浮栅电极16的两侧形成侧面保护层17,如图22所示;h. Remove the above-mentioned fourth barrier layer 37, and deposit a side protection material on the first main surface 32 to form a side protection layer 17 on both sides of the floating gate electrode 16, as shown in FIG. 22 ;
i、在上述第一主面32上淀积第五阻挡层38,并选择性地掩蔽和刻蚀第五阻挡层38,以去除P型区域A5、第一N型区域2及P型区域B31上方对应淀积覆盖的第五阻挡层38;i. Deposit the fifth barrier layer 38 on the first main surface 32, and selectively mask and etch the fifth barrier layer 38 to remove the P-type region A5, the first N-type region 2 and the P-type region B31 The fifth barrier layer 38 is correspondingly deposited and covered above;
j、在上述第五阻挡层38上方再次自对准注入P型杂质离子,在P型区域A5内的上部得到第一P型重掺杂区域7及第二P型重掺杂区域12,在第一N型区域2内的上部得到第三P型重掺杂区域19及第四P型重掺杂区域23,并在第三P型重掺杂区域31内的上部得到第五P型重掺杂区域25与第六P型重掺杂区域29,如图23所示;j. Self-aligned implantation of P-type impurity ions again above the fifth barrier layer 38 to obtain a first P-type heavily doped region 7 and a second P-type heavily doped region 12 in the upper part of the P-type region A5. The upper part of the first N-type region 2 obtains the third P-type heavily doped region 19 and the fourth P-type heavily doped region 23, and the upper part of the third P-type heavily doped region 31 obtains the fifth P-type heavily doped region. The doped region 25 and the sixth P-type heavily doped region 29, as shown in FIG. 23;
k、去除第一主面32上的第五阻挡层38,如图24所示。k. Removing the fifth barrier layer 38 on the first main surface 32 , as shown in FIG. 24 .
l、在上述栅介质层15上淀积P+浮栅电极材料,并选择性地掩蔽和刻蚀P+浮栅电极材料,以在PMOS访问晶体管110、控制电容120两侧隔离沟槽10的顶角30正上方均形成P+浮栅电极20,如图25所示。1. Deposit the P+ floating gate electrode material on the above-mentioned gate dielectric layer 15, and selectively mask and etch the P+ floating gate electrode material, so as to isolate the top corner of the trench 10 on both sides of the PMOS access transistor 110 and the control capacitor 120 P+ floating gate electrodes 20 are formed directly above 30, as shown in FIG. 25 .
上述描述中,本发明实施例均以记忆体细胞100包括PMOS访问晶体管110、控制电容120及编程电容130的结构,PMOS访问晶体管110、控制电容110及编程电容120均通过领域介质区域14相互隔离,本技术领域人员可知,当在制备记忆体细胞100的过程中,在隔离沟槽10内形成领域介质区域14时,均可以在隔离沟槽10的顶角30设置P+浮栅电极20,即除本发明描述的记忆体细胞100的结构外,其余结构的记忆体细胞100也可以利用本发明设置P+浮栅电极20的方法提高数据保留时间。其余结构的记忆体细胞100结构为本技术领域人员所熟知,其余结构的记忆体细胞100结构利用本发明设置P+浮栅电极20形成的结构此处不再一一列举描述。In the above description, the embodiments of the present invention assume that the memory cell 100 includes a PMOS access transistor 110, a control capacitor 120, and a programming capacitor 130. , those skilled in the art know that when the domain dielectric region 14 is formed in the isolation trench 10 during the process of preparing the memory cell 100, the P+ floating gate electrode 20 can be arranged at the corner 30 of the isolation trench 10, namely Except for the structure of the memory cell 100 described in the present invention, the memory cell 100 of other structures can also use the method of the present invention to arrange the P+ floating gate electrode 20 to improve the data retention time. The structures of the memory cells 100 of other structures are well known to those skilled in the art, and the structures of the memory cells 100 of the other structures are formed by setting the P+ floating gate electrode 20 of the present invention and will not be listed and described here.
同时,上述描述非挥发性记忆体时,均以记忆体细胞100包括PMOS访问晶体管110、控制电容120及编程电容130的结构来描述完整的制备过程。当非挥发性记忆体的记忆体细胞100采用其他结构时,采用与CMOS逻辑工艺兼容的实施步骤均可,只要在半导体基板上制备记忆体细胞过程中形成隔离沟槽10,并在隔离沟槽10内生长隔离介质形成领域介质区域14,通过领域介质区域14隔离记忆体细胞100内的晶体管与电容即可,其余结构的记忆体细胞100制备过程此处不再详述。At the same time, when describing the non-volatile memory above, the complete preparation process is described with the structure of the memory cell 100 including the PMOS access transistor 110 , the control capacitor 120 and the programming capacitor 130 . When the memory cell 100 of the non-volatile memory adopts other structures, the implementation steps compatible with the CMOS logic process can be adopted, as long as the isolation trench 10 is formed in the process of preparing the memory cell on the semiconductor substrate, and the isolation trench The isolation medium is grown in 10 to form the domain medium region 14, and the transistors and capacitors in the memory cell 100 can be isolated through the domain medium region 14, and the preparation process of the memory cell 100 with other structures will not be described in detail here.
如图1和图14所示:对于单个记忆体细胞100来说,其可以实现单个二进制数据的写入、读取及擦除。下面通过对单个记忆体细胞100写入、读取及擦除过程来说明本发明非挥发记忆体的工作机理。当需要写入输入据时,将P导电类型基板1内的P型区域电压始终置0电位,第一N型区域2、第二N型区域3及第三N型区域4均置位5电位,P型区域A5也置位0电位,P型区域B31的电压为-5V,编程电容130的P型掺杂区域E24及P型掺杂区域F27的电压均置位-5V,控制电容120的P型掺杂区域C6及P型掺杂区域D9均置位5V;由于控制电容120的传递作用,能够将5V的电压值传递到浮栅电极16上,浮栅电极16上产生4~5V的电压值,此时浮栅电极16与P型区域B31间的电压值为9~10V,就会达到场发射特性也称为FN(Fowler-Nordheim)隧道效应所需的电场,电子就会通过栅介质层15到达浮栅电极16内,实现数据的写入。由于浮栅电极16下方通过栅介质层15隔绝,侧面通过侧面保护层17进行隔绝,因此电子能在浮栅电极16内能长时间保留。As shown in FIG. 1 and FIG. 14 : for a single memory cell 100 , it can realize writing, reading and erasing of a single binary data. The working mechanism of the non-volatile memory of the present invention will be described below through the process of writing, reading and erasing a single memory cell 100 . When it is necessary to write input data, the voltage of the P-type region in the P-conductivity type substrate 1 is always set to 0 potential, and the first N-type region 2, the second N-type region 3 and the third N-type region 4 are all set to 5 potential , the P-type region A5 is also set at 0 potential, the voltage of the P-type region B31 is -5V, the voltages of the P-type doped region E24 and the P-type doped region F27 of the programming capacitor 130 are both set at -5V, and the voltage of the control capacitor 120 Both the P-type doped region C6 and the P-type doped region D9 are set at 5V; due to the transfer effect of the control capacitor 120, the voltage value of 5V can be transferred to the floating gate electrode 16, and a voltage of 4-5V is generated on the floating gate electrode 16. At this time, the voltage value between the floating gate electrode 16 and the P-type region B31 is 9-10V, and the electric field required by the field emission characteristic, also known as FN (Fowler-Nordheim) tunneling effect, will be reached, and the electrons will pass through the gate The dielectric layer 15 reaches into the floating gate electrode 16 to implement data writing. Since the bottom of the floating gate electrode 16 is isolated by the gate dielectric layer 15 and the side is isolated by the side protection layer 17 , electrons can remain in the floating gate electrode 16 for a long time.
当需要擦除记忆体细胞100内的数据时,将P导电类型基板1内的P型区域电压始终置0电位,第一N型区域2、第二N型区域3及第三N型区域4的电压均置位5V电压,P型区域A5的电压置位-5V,P型掺杂区域C6、P型掺杂区域D9的电压均置位-5V,P型区域B31的电压置位5V,P型掺杂区域E24及P型掺杂区域F27均置位5V电压,在控制电容120作用下,能使得浮栅电极16内产生-4V~-5V的电压,此时浮栅电极16与P型区域B31间的电压值为-9~-10V,就会达到场发射特性也称为FN(Fowler-Nordheim)隧道效应所需的电场,电子会通过栅介质层15进入P型区域B31内,从而实现将浮栅电极16内数据擦除。When it is necessary to erase the data in the memory cell 100, the voltage of the P-type area in the P-conductive type substrate 1 is always set to 0 potential, the first N-type area 2, the second N-type area 3 and the third N-type area 4 The voltage of the P-type region A5 is set to 5V, the voltage of the P-type region A5 is set to -5V, the voltages of the P-type doped region C6 and the P-type doped region D9 are set to -5V, and the voltage of the P-type region B31 is set to 5V. Both the P-type doped region E24 and the P-type doped region F27 are set at a voltage of 5V. Under the action of the control capacitor 120, a voltage of -4V~-5V can be generated in the floating gate electrode 16. At this time, the floating gate electrode 16 and the P The voltage value between the P-type region B31 is -9~-10V, which will reach the electric field required by the field emission characteristic, also known as FN (Fowler-Nordheim) tunneling effect, and electrons will enter the P-type region B31 through the gate dielectric layer 15, In this way, data in the floating gate electrode 16 can be erased.
当需要读取记忆体细胞100内的数据时,将P导电类型基板1内的P型区域电压始终置0电位,第一N型区域2、第二N型区域3及第三N型区域4的电压均置位5V电压,P型区域A5置位-1V,P型掺杂区域C6及P型掺杂区域D9均置位-1V,PMOS访问晶体管源极区13及PMOS访问晶体管漏极区21均置位0.5V,P型区域B31置位5V电压,P型掺杂区域E24及P型掺杂区域F27均置位5V电压。当加载上述电压值后,当记忆体细胞100内写入数据时,浮栅电极16内有大量电子,当记忆体细胞100内数据被擦除时,电子从浮栅电极16内流出;当浮栅电极16内有电子时,通过PMOS访问晶体管源极区13的电流较大,当电子从浮栅电极16内流出时,通过PMOS访问晶体管源极区13的电流较小,从而根据相应电流的大小,能够知道记忆体细胞100是写入数据状态还是处于数据擦除状态。When it is necessary to read the data in the memory cell 100, the voltage of the P-type area in the P-conductive type substrate 1 is always set to 0 potential, the first N-type area 2, the second N-type area 3 and the third N-type area 4 The voltage of the P-type region A5 is set to -1V, the P-type doped region C6 and the P-type doped region D9 are both set to -1V, and the PMOS access transistor source region 13 and the PMOS access transistor drain region 21 are both set to 0.5V, the P-type region B31 is set to a voltage of 5V, and the P-type doped region E24 and the P-type doped region F27 are both set to a voltage of 5V. After the above-mentioned voltage value is loaded, when data is written in the memory cell 100, there are a large amount of electrons in the floating gate electrode 16, and when the data in the memory cell 100 is erased, the electrons flow out from the floating gate electrode 16; When there are electrons in the gate electrode 16, the current for accessing the source region 13 of the transistor through the PMOS is relatively large, and when electrons flow out from the floating gate electrode 16, the current for accessing the source region 13 of the transistor through the PMOS is relatively small. size, it can be known whether the memory cell 100 is in the state of writing data or in the state of erasing data.
由于P型掺杂区域C6、P型掺杂区域D9、P型源极区13、P型漏极区21、P型掺杂区域E24及P型掺杂区域F27中对应P+区域中可以移动的负离子(电子)是少子,这样当把吸入的数据操持的更久,存储使用时更加安全可靠。Since the P-type doped region C6, the P-type doped region D9, the P-type source region 13, the P-type drain region 21, the P-type doped region E24, and the P-type doped region F27 can move in the corresponding P+ region Negative ions (electrons) have a small number of particles, so that when the inhaled data is stored for a longer period of time, it is safer and more reliable when stored and used.
同时,在隔离沟槽10的顶角30的正上方设置P+浮栅电极20,P+浮栅电极20为P导电类型的导电多晶硅,P+浮栅电极20上的电子为少子,这样当非挥发性记忆体存储电子时,由于P+浮栅电极20的存在,电子很难再通过顶角30处的氧化层漏电,从而进一步提高了非挥发性记忆体的数据存储时间。Simultaneously, the P+ floating gate electrode 20 is set directly above the vertex 30 of the isolation trench 10, the P+ floating gate electrode 20 is conductive polysilicon of P conductivity type, and the electrons on the P+ floating gate electrode 20 are minority carriers. When the memory stores electrons, due to the existence of the P+ floating gate electrode 20 , it is difficult for electrons to leak through the oxide layer at the top corner 30 , thereby further improving the data storage time of the non-volatile memory.
如图2和图23所示:采用N导电类型基板39对应形成的单一多晶架构的非挥发性记忆体,需要进行的写入、擦除及读取时,需要相应的加载电压,以实现相应的写入、擦除及读取操作。具体地,相应的写入、擦除及读取的电压加载与采用P导电类型基板1对应形成的单一多晶架构的非挥发性记忆体操作时电压相一致,此处不再详细叙述。As shown in Figure 2 and Figure 23: the non-volatile memory with a single polycrystalline structure formed by using the N conductivity type substrate 39 requires a corresponding loading voltage when writing, erasing and reading. To achieve the corresponding write, erase and read operations. Specifically, the corresponding writing, erasing and reading voltages are consistent with the operation voltage of the non-volatile memory with a single polycrystalline structure corresponding to the P conductivity type substrate 1 , which will not be described in detail here.
本发明半导体基板内的上部设有若干隔离沟槽10,所述隔离沟槽10内设置有隔离介质以形成领域介质区域14,记忆体细胞100内的PMOS访问晶体管110、控制电容120及编程电容130通过领域介质区域14相互隔离;隔离沟槽10的顶角30正上方设有P+浮栅电极20,所述P+浮栅电极20位于栅介质层15上,并与隔离沟槽10的顶角30相对应分布,P+浮栅电极20的宽度能完全遮挡顶角30处较薄的氧化层,P+浮栅电极20为P导电类型的导电多晶硅,P+浮栅电极20上的电子为少子,这样当非挥发性记忆体存储电子时,由于P+浮栅电极20的存在,电子很难再通过顶角30处的氧化层漏电,从而提高了非挥发性记忆体的数据存储时间。The upper part of the semiconductor substrate of the present invention is provided with a plurality of isolation trenches 10, and isolation dielectrics are arranged in the isolation trenches 10 to form domain dielectric regions 14, PMOS access transistors 110, control capacitors 120 and programming capacitors in memory cells 100 130 are isolated from each other by the field dielectric region 14; a P+ floating gate electrode 20 is provided directly above the apex 30 of the isolation trench 10, and the P+ floating gate electrode 20 is located on the gate dielectric layer 15 and connected to the apex of the isolation trench 10 30 corresponds to the distribution, the width of the P+ floating gate electrode 20 can completely cover the thinner oxide layer at the top corner 30, the P+ floating gate electrode 20 is conductive polysilicon of P conductivity type, and the electrons on the P+ floating gate electrode 20 are minority electrons, so When the non-volatile memory stores electrons, due to the existence of the P+ floating gate electrode 20, it is difficult for the electrons to leak through the oxide layer at the top corner 30, thereby improving the data storage time of the non-volatile memory.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210237668.9A CN102723333B (en) | 2012-07-11 | 2012-07-11 | Non-volatile memory with P+ floating gate electrode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210237668.9A CN102723333B (en) | 2012-07-11 | 2012-07-11 | Non-volatile memory with P+ floating gate electrode and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102723333A CN102723333A (en) | 2012-10-10 |
CN102723333B true CN102723333B (en) | 2014-09-03 |
Family
ID=46949053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210237668.9A Expired - Fee Related CN102723333B (en) | 2012-07-11 | 2012-07-11 | Non-volatile memory with P+ floating gate electrode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102723333B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1909211A (en) * | 2005-08-04 | 2007-02-07 | 三星电子株式会社 | Nonvolatile memory devices and methods of fabricating the same |
CN101136375A (en) * | 2006-08-31 | 2008-03-05 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
CN102544074A (en) * | 2012-02-21 | 2012-07-04 | 无锡来燕微电子有限公司 | Non-volatile memory compatible with complementary metal oxide semiconductor (CMOS) logical process and preparation method for non-volatile memory |
CN202712188U (en) * | 2012-07-11 | 2013-01-30 | 无锡来燕微电子有限公司 | Nonvolatile memory body with P+ floating-gate electrodes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2838554B1 (en) * | 2002-04-15 | 2004-07-09 | St Microelectronics Sa | NON-VOLATILE, PROGRAMMABLE AND ELECTRICALLY ERASABLE MEMORY CONDUCTOR WITH A SINGLE LAYER OF GRID MATERIAL, AND CORRESPONDING MEMORY PLAN |
-
2012
- 2012-07-11 CN CN201210237668.9A patent/CN102723333B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1909211A (en) * | 2005-08-04 | 2007-02-07 | 三星电子株式会社 | Nonvolatile memory devices and methods of fabricating the same |
CN101136375A (en) * | 2006-08-31 | 2008-03-05 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
CN102544074A (en) * | 2012-02-21 | 2012-07-04 | 无锡来燕微电子有限公司 | Non-volatile memory compatible with complementary metal oxide semiconductor (CMOS) logical process and preparation method for non-volatile memory |
CN202712188U (en) * | 2012-07-11 | 2013-01-30 | 无锡来燕微电子有限公司 | Nonvolatile memory body with P+ floating-gate electrodes |
Also Published As
Publication number | Publication date |
---|---|
CN102723333A (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102544122B (en) | Non-volatile memory with P+ single polycrystalline architecture and preparation method for non-volatile memory | |
US8890232B2 (en) | Methods and apparatus for non-volatile memory cells with increased programming efficiency | |
US8405137B2 (en) | Single transistor floating-body DRAM devices having vertical channel transistor structures | |
CN104882447B (en) | A kind of half floating-gate device and manufacturing method of drain region insertion inversion layer | |
TWI645570B (en) | Semiconductor device | |
US8975679B1 (en) | Single-poly non-volatile memory cell | |
CN102315174B (en) | SONOS flash memories containing separate gate structures and preparation method thereof, operational approach | |
TW200401432A (en) | Nonvolatile semiconductor memory device | |
KR20090098675A (en) | Manufacturing Method of Nonvolatile Semiconductor Memory and Nonvolatile Semiconductor Memory | |
CN104517970A (en) | Nonvolatile memory structure | |
KR100932134B1 (en) | Single polypyropyrom and preparation method thereof | |
KR940005898B1 (en) | Nonvolatile Semiconductor Device | |
US20070020820A1 (en) | Process for forming an electronic device including discontinuous storage elements | |
CN103633118A (en) | Floating gate electricity erasable read-only memory and manufacturing method thereof | |
US11545498B2 (en) | OTP memory and method for making the same | |
JP2001257276A (en) | Non-volatile memory | |
CN102544074B (en) | Non-volatile memory compatible with complementary metal oxide semiconductor (CMOS) logical process and preparation method for non-volatile memory | |
CN104600076B (en) | Connection storage grid storage unit and its operation and manufacture method | |
CN102723333B (en) | Non-volatile memory with P+ floating gate electrode and preparation method thereof | |
CN110021606A (en) | Single level polysilicon non-volatile memory cell | |
KR20100038619A (en) | Eeprom and method for manufacturing the eeprom | |
CN103022046B (en) | It is a kind of with P+ single polycrystalline architecture and the non-volatility memory and preparation method thereof mutually compatible with CMOS technology | |
KR20110037673A (en) | Semiconductor device and manufacturing method | |
KR20080069481A (en) | Nonvolatile memory device having a buried split gate and its manufacturing method | |
US11705526B2 (en) | Method of fabricating semiconductor memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180206 Address after: No. 966 Pujiang County, Zhejiang province 322200 Jinhua yidianhong Avenue (Science Park building D) Patentee after: Zhejiang Fengxiang Microelectronics Co.,Ltd. Address before: Room 207-3, Wuxi national integrated circuit design Park (Chuang yuan mansion), No. 21-1, Wuxi new area, Jiangsu new area, Changjiang Road, Jiangsu Patentee before: WUXI ADVANCE SUNRISE Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180906 Address after: 322200 No. 188 Bailian Road, Pujiang County, Jinhua, Zhejiang Patentee after: Zhejiang Feng Hua Chuang Xin Microelectronics Co.,Ltd. Address before: 322200 966 Pujiang Road, Jinhua County, Zhejiang province (D building, Ke Chuang garden) Patentee before: Zhejiang Fengxiang Microelectronics Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140903 |
|
CF01 | Termination of patent right due to non-payment of annual fee |