CN102722713B - Handwritten numeral recognition method based on lie group structure data and system thereof - Google Patents
Handwritten numeral recognition method based on lie group structure data and system thereof Download PDFInfo
- Publication number
- CN102722713B CN102722713B CN201210041116.0A CN201210041116A CN102722713B CN 102722713 B CN102722713 B CN 102722713B CN 201210041116 A CN201210041116 A CN 201210041116A CN 102722713 B CN102722713 B CN 102722713B
- Authority
- CN
- China
- Prior art keywords
- group structure
- lie group
- structure data
- training
- digital image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000547 structure data Methods 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 52
- 238000012706 support-vector machine Methods 0.000 claims abstract description 36
- 239000011159 matrix material Substances 0.000 claims abstract description 30
- 239000000284 extract Substances 0.000 claims abstract description 6
- 238000012549 training Methods 0.000 claims description 74
- 230000008569 process Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 230000006870 function Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007635 classification algorithm Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明实施例提供一种基于李群结构数据的手写体数字识别方法及系统。所述方法从原始的手写体数字图像数据中提取对应的李群结构数据,通过构造矩阵高斯核函数,利用支持向量机算法训练出分类器模型,将待测手写体数字图像数据对应的李群结构数据,分别输入到训练得到的分类器模型中,得到对应的数字类别,从而对待测手写体数字图像数据对应的李群结构数据进行非线性特征的捕获,更好的实现了手写体数字识别。
Embodiments of the present invention provide a handwritten digit recognition method and system based on Lie group structure data. The method extracts the corresponding Lie group structure data from the original handwritten digital image data, constructs a matrix Gaussian kernel function, uses the support vector machine algorithm to train a classifier model, and extracts the Lie group structure data corresponding to the handwritten digital image data to be tested , respectively input into the trained classifier model to obtain the corresponding digital category, so as to capture the nonlinear features of the Lie group structure data corresponding to the handwritten digital image data to be tested, and better realize the handwritten digital recognition.
Description
技术领域 technical field
本发明涉及手写体数字识别技术领域,更具体地说,涉及一种基于李群结构数据的手写体数字识别方法及系统。The present invention relates to the technical field of handwritten digit recognition, more specifically, to a handwritten digit recognition method and system based on Lie group structure data.
背景技术 Background technique
近年来随着计算机技术和数字图像处理技术的飞速发展,手写体数字识别技术在大规模数据统计,邮件分拣,财务、税务和金融领域中得到了广泛的应用,于此同时,随着机器学习技术的普及应用,很多物理学家和化学家开始广泛使用李群理论研究相关领域的数据。相应的,在手写体数字识别技术领域,李群结构数据以其良好的数学结构已被广泛应用。In recent years, with the rapid development of computer technology and digital image processing technology, handwritten digit recognition technology has been widely used in large-scale data statistics, mail sorting, finance, taxation and financial fields. At the same time, with machine learning With the popularization and application of technology, many physicists and chemists have begun to widely use Lie group theory to study data in related fields. Correspondingly, in the field of handwritten digit recognition technology, Lie group structure data has been widely used due to its good mathematical structure.
目前,基于李群结构数据的手写体数字识别一般都是通过分类算法建立分类器模型,从而对手写体数字图像的李群结构数据进行分类处理,得到分类器输出结果,进而依据分类器的输出结果获得手写体数字的识别结果。现有技术常用的分类算法为李群Fisher算法,李群Fisher算法需对原始的李群结构数据进行一个线性变换投影,使得同类数据尽量投影到一起,不同类数据尽可能地远离,虽然投影后的数据具有很好的可分性,但采用线性分类方法的李群Fisher算法必然不能捕获李群结构数据的非线性特征,这就造成李群Fisher算法在处理李群结构数据的非线性特征上存在一定缺陷。At present, handwritten digit recognition based on Lie group structure data generally establishes a classifier model through a classification algorithm, so as to classify and process the Lie group structure data of handwritten digital images, obtain the output result of the classifier, and then obtain Recognition results for handwritten digits. The commonly used classification algorithm in the prior art is the Lie group Fisher algorithm. The Lie group Fisher algorithm needs to perform a linear transformation projection on the original Lie group structure data, so that the data of the same type can be projected together as much as possible, and the data of different types can be separated as much as possible. The data has good separability, but the Lie group Fisher algorithm using the linear classification method must not capture the nonlinear characteristics of the Lie group structure data, which causes the Lie group Fisher algorithm to deal with the nonlinear characteristics of the Lie group structure data. There are certain defects.
发明内容 Contents of the invention
有鉴于此,本发明提供一种基于李群结构数据的手写体数字识别方法及系统,以解决现有的手写体数字识别技术在处理李群结构数据的非线性特征上存在的缺陷,以实现李群结构数据的非线性处理。In view of this, the present invention provides a handwritten digit recognition method and system based on Lie group structure data, to solve the defects existing in the existing handwritten digit recognition technology in dealing with the nonlinear characteristics of Lie group structure data, to realize Lie group Nonlinear processing of structured data.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种基于李群结构数据的手写体数字识别方法,包括步骤:A method for recognizing handwritten digits based on Lie group structure data, comprising the steps of:
A.从原始的手写体数字图像数据中提取对应数量的李群结构数据;A. extract corresponding quantity of Lie group structure data from original handwritten digital image data;
B.将李群结构数据与其对应的手写体数字图像数据的类别标签的对应关系作为训练样本,得到与所述对应数量的李群结构数据相对应的训练样本集合,同时构造处理李群结构数据的矩阵高斯核函数:B. using the correspondence between the Lie group structure data and the category labels of its corresponding handwritten digital image data as a training sample, obtain a training sample set corresponding to the Lie group structure data of the corresponding quantity, and simultaneously construct and process the Lie group structure data Matrix Gaussian kernel function:
C.利用支持向量机算法,以所述矩阵高斯核函数为核函数,输入训练样本,训练得到分类器模型;C. Utilize support vector machine algorithm, take described matrix Gaussian kernel function as kernel function, input training sample, train and obtain classifier model;
D.将待测手写体数字图像数据对应的李群结构数据,分别输入到训练得到的分类器模型中,得到对应的数字类别。D. Input the Lie group structure data corresponding to the handwritten digital image data to be tested into the trained classifier model to obtain the corresponding digital category.
本发明还提供一种基于李群结构数据的手写体数字识别系统,包括:The present invention also provides a handwritten digit recognition system based on Lie group structure data, comprising:
李群结构数据提取模块,用于从原始的手写体数字图像数据中提取对应数量的李群结构数据;Lie group structure data extraction module, for extracting the Lie group structure data of corresponding quantity from original handwritten digital image data;
预处理模块,用于将李群结构数据与其对应的手写体数字图像数据的类别标签的对应关系作为训练样本,得到与所述对应数量的李群结构数据相对应的训练样本集合,同时,构造处理李群结构数据的矩阵高斯核函数:The preprocessing module is used to use the correspondence between the Lie group structure data and the category labels of the corresponding handwritten digital image data as a training sample to obtain a training sample set corresponding to the Lie group structure data of the corresponding number, and at the same time, construct processing Matrix Gaussian kernel function for Lie group structured data:
模型训练模块,用于利用支持向量机算法,以所述矩阵高斯核函数为核函数,输入训练样本,训练得到分类器模型;The model training module is used to utilize the support vector machine algorithm, take the matrix Gaussian kernel function as the kernel function, input the training samples, and train to obtain the classifier model;
分类模块,用于将待测手写体数字图像数据对应的李群结构数据,分别输入到训练得到的分类器模型中,得到对应的数字类别。The classification module is used to input the Lie group structure data corresponding to the handwritten digital image data to be tested into the trained classifier model to obtain corresponding digital categories.
基于以上技术方案,本发明实施例通过构造矩阵高斯核函数,利用支持向量机算法处理李群结构数据,借助支持向量机算法在识别小样本、非线性及高维模式下图像的优势,实现了李群结构数据的非线性处理。Based on the above technical solutions, the embodiment of the present invention realizes the realization of the advantages of the support vector machine algorithm in identifying images in small samples, nonlinear and high-dimensional modes by constructing a matrix Gaussian kernel function and using the support vector machine algorithm to process Lie group structure data. Nonlinear processing of Lie group structured data.
附图说明 Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明一种基于李群结构数据的手写体数字识别方法的流程图;Fig. 1 is a kind of flowchart of the handwritten numeral recognition method based on Lie group structure data of the present invention;
图2为李群均值算法,李群Fisher算法和本发明方法对数字1和7的分类性能的对比图;Fig. 2 is the Lie group mean algorithm, the contrast figure of Lie group Fisher algorithm and the classification performance of the inventive method to numeral 1 and 7;
图3为李群均值算法和本发明方法对数字1,7和9的分类性能的对比图;Fig. 3 is the comparative figure of the classification performance of number 1,7 and 9 for Lie group mean algorithm and the inventive method;
图4为李群均值算法和本发明方法对数字1,2,7和9的分类性能的对比图;Fig. 4 is the contrast figure of the classification performance of number 1,2,7 and 9 for Lie group mean algorithm and the inventive method;
图5为本发明一种基于李群结构数据的手写体数字识别系统的结构框图;Fig. 5 is a structural block diagram of a handwritten digit recognition system based on Lie group structure data of the present invention;
图6为本发明模型训练模块的结构框图;Fig. 6 is the structural block diagram of model training module of the present invention;
图7为本发明分类模块的结构框图。Fig. 7 is a structural block diagram of the classification module of the present invention.
具体实施方式 Detailed ways
发明人通过研究发现支持向量机算法具有结构风险最小化和良好的泛化能力等优点,采用支持向量机算法实现基于李群结构数据的手写体数字识别,能够解决手写体数字在小样本、非线性及高维模式下的识别问题,从而解决现有手写体数字识别技术在捕获李群结构数据的非线性特征上存在的缺陷。但是发明人通过研究还发现由于李群结构数据为矩阵数据而不是矢量数据,目前标准应用的支持向量机算法并不支持矩阵数据的处理,因此目前标准应用的支持向量机法并无法对李群结构数据进行处理。The inventor found through research that the support vector machine algorithm has the advantages of minimizing structural risk and good generalization ability. Using the support vector machine algorithm to realize the recognition of handwritten digits based on Lie group structure data can solve the problem of handwritten digits in small samples, nonlinear and The problem of recognition in high-dimensional mode, so as to solve the defects of existing handwritten digit recognition technology in capturing the nonlinear characteristics of Lie group structure data. However, the inventor also found through research that because the Lie group structure data is matrix data rather than vector data, the current standard application of the support vector machine algorithm does not support the processing of matrix data, so the current standard application of the support vector machine method cannot be used for Lie group data. Structured data is processed.
发明人通过更进一步的研究后发现可通过构造矩阵高斯核函数,利用支持向量机算法,建立相应的分类器模型,对李群结构数据进行分类处理,进而实现本发明的目的。After further research, the inventor found that the purpose of the present invention can be realized by constructing a matrix Gaussian kernel function and using a support vector machine algorithm to establish a corresponding classifier model to classify Lie group structure data.
结合上述本发明思想,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Combining the ideas of the present invention above, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, rather than Full examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图1为本发明一种基于李群结构数据的手写体数字识别方法的流程图。参照图1,该方法可以包括:Fig. 1 is a flowchart of a method for recognizing handwritten digits based on Lie group structured data in the present invention. Referring to Figure 1, the method may include:
步骤S100、从原始的手写体数字图像数据中提取对应数量的李群结构数据;Step S100, extracting a corresponding number of Lie group structure data from the original handwritten digital image data;
为便于描述,本发明实施例中用x表示手写体数字图像数据,用z表示李群结构数据,且设原始的手写体数字图像数据x的个数为l(l为整数,且l≥1),则原始的手写体数字图像数据x分别为x1,…xl,对应数量的李群结构数据为z1,…zl;For the convenience of description, in the embodiment of the present invention, x represents handwritten digital image data, and z represents Lie group structure data, and the number of original handwritten digital image data x is l (l is an integer, and l≥1), Then the original handwritten digital image data x are respectively x 1 ,...x l , and the corresponding number of Lie group structure data are z 1 ,...z l ;
以一个手写体数字图像数据提取李群结构数据为例,设rv为参考向量,在x图像数据的笔画区域上随机取k个点,构成k个向量
步骤S200、将李群结构数据与其对应的手写体数字图像数据的类别标签的对应关系作为训练样本,得到与所述对应数量的李群结构数据相对应的训练样本集合,同时构造处理李群结构数据的矩阵高斯核函数;Step S200, using the correspondence between the Lie group structure data and the category labels of the corresponding handwritten digital image data as training samples, obtaining a training sample set corresponding to the corresponding number of Lie group structure data, and constructing and processing the Lie group structure data at the same time The matrix Gaussian kernel function;
设y为手写体数字图像数据x的类别标签,y∈{1,…c},c为手写体数字图像数据x的类别数,则将提取的李群结构数据z1,…zl与对应的手写体数字图像数据的类别标签y1,…yl进行组合,可得到包含x与y对应关系的训练样本集合{(z1,y1),…(zl,yl)};Suppose y is the category label of handwritten digital image data x, y∈{1,…c}, c is the number of categories of handwritten digital image data x, then the extracted Lie group structure data z 1 ,…z l and the corresponding handwritten Combining the category labels y 1 , ... y l of the digital image data, a training sample set {(z 1 ,y 1 ),...(z l ,y l )} containing the corresponding relationship between x and y can be obtained;
目前标准应用的支持向量机算法并不支持李群结构数据的处理,因此现有支持向量机算法的核函数对于本发明并不适应,为解决支持向量机算法对李群结构数据的适用问题,可构建支持向量机算法的矩阵高斯核函数,使得李群结构数据与支持向量机算法相兼容,矩阵高斯核函数具体公式如下:The support vector machine algorithm of current standard application does not support the processing of Lie group structure data, so the kernel function of existing support vector machine algorithm is not suitable for the present invention, in order to solve the applicable problem of support vector machine algorithm to Lie group structure data, The matrix Gaussian kernel function of the support vector machine algorithm can be constructed to make the Lie group structure data compatible with the support vector machine algorithm. The specific formula of the matrix Gaussian kernel function is as follows:
步骤S300、利用支持向量机算法,以所述矩阵高斯核函数为核函数,输入训练样本,训练得到分类器模型;Step S300, using the support vector machine algorithm, using the matrix Gaussian kernel function as a kernel function, inputting training samples, and training to obtain a classifier model;
本领域技术人员可以知道利用支持向量机算法,进行机器训练的常规方法;而本发明实施例所要提供的是一种支持李群结构数据的多分类问题处理的机器训练方法,该训练方法具体为:将所述各李群结构数据分别输入到所述c取2的组合数个分类器模型中,一个李群结构数据得到对应的c取2的组合数个分类器输出结果,统计所述输出结果中该李群结构数据被分为c类中某一类的值,并从中寻找最大值,将所述最大值确定为该李群结构数据对应的手写体数字图像数据的数字类别。Those skilled in the art can know the conventional method of machine training using the support vector machine algorithm; and what the embodiment of the present invention will provide is a machine training method that supports multi-classification problem processing of Lie group structure data, the training method is specifically : Input each Lie group structure data into the classifier model of the combined number of c to 2 respectively, one Lie group structure data obtains the corresponding output result of the combined number of classifiers with c taken as 2, and counts the output As a result, the Lie group structure data is divided into values of one of the c categories, and the maximum value is found therefrom, and the maximum value is determined as the digital category of the handwritten digital image data corresponding to the Lie group structure data.
为了便于对本发明实施例的机器训练方法进行详细了解,下文将提供具体的训练过程。In order to facilitate a detailed understanding of the machine training method of the embodiment of the present invention, a specific training process will be provided below.
训练样本集合{(z1,y1),…(zl,yl)}的类别数为c,从中任取两类类别标签对应的样本,即所取出的样本只包括该两类标签,且未取出的训练样本集合中的样本的标签不为该两类标签,以两类类别标签对应的样本为一个组合可得到c取2的组合数个组合,为方便表述,现以c取2的组合数个组合中的一个组合第i,j(i,j均∈{1,…c},且i≠j)两类标签对应的样本为例,说明分类器模型的训练过程,具体训练过程为:The number of categories of the training sample set {(z 1 ,y 1 ),…(z l ,y l )} is c, from which samples corresponding to two types of category labels are randomly selected, that is, the samples taken out only include the two types of labels, And the labels of the samples in the training sample set that have not been taken out are not the two types of labels. Taking the samples corresponding to the two types of category labels as a combination, we can get the number of combinations in which c takes 2. For the convenience of expression, we now use c to take 2 A combination of several combinations of the i, j (i, j ∈ {1,...c}, and i≠j) samples corresponding to the two types of labels as an example, to illustrate the training process of the classifier model, the specific training The process is:
从训练样本集合{(z1,y1),…(zl,yl)}中提取得第i,j两类样本后,将所述第i,j两类样本进行形式优化可得:令 其中,上标ij表示与第i,j两类相关的数据信息,下标m表示一个索引,表示第i,j两类相关李群结构数据,lij表示i,j两类的样本之和,为对应的类别标签,且当
本发明基于李群结构数据,使用支持向量机法来识别手写体数字的图像数据,那么在使用支持向量机法处理手写体数字图像数据的第i,j两类分类时,则需要求解如下优化问题:The present invention is based on Lie group structure data, uses the support vector machine method to recognize the image data of handwritten digits, then when using the support vector machine method to process the i, j two types of classification of handwritten digits image data, then need to solve following optimization problem:
其中m,n均表示一个索引,为对应的类别标签,m,n均为整数,且m,n均∈{1,…lij},为支持向量机算法训练产生模型系数,S为支持向量机算法训练需要的正则参数,依上述优化训练产生如下分类器模型:Among them, m and n both represent an index, for The corresponding category labels, Both m and n are integers, and m and n are both ∈ {1,...l ij }, The model coefficients are generated for the training of the support vector machine algorithm, and S is the regular parameter required for the training of the support vector machine algorithm. According to the above optimization training, the following classifier model is generated:
上式中sgn()表示符号函数,bij是模型阈值,可由下式计算所得:In the above formula, sgn() represents the sign function, and b ij is the model threshold, which can be calculated by the following formula:
上述得出了i,j两类样本对应的分类器模型,若还存在从训练样本中提取出的其余组合,则其余组合训练分类器模型的原理与此相同,可相互对照,此处不再赘述。The classifier model corresponding to the two types of samples i and j is obtained above. If there are other combinations extracted from the training samples, the principle of training the classifier model for the other combinations is the same, which can be compared with each other, and will not be repeated here repeat.
步骤S400、将待测手写体数字图像数据对应的李群结构数据,分别输入到训练得到的分类器模型中,得到对应的数字类别。Step S400 , respectively input Lie group structure data corresponding to the handwritten digital image data to be tested into the trained classifier model to obtain corresponding digital categories.
步骤S300得到分类器模型后,可从待测的手写体数字图像数据中提取对应的李群结构数据,以便对待测手写体数字图像数据进行分类,得到对应数字类别。需要说明的是,步骤S100中的原始手写体数字图像数据的用途为训练分类器模型,其可认为是一个庞大的手写体数字图像数据库;而步骤S400中待测手写体数字图像数据,为本发明手写体数字识别方法的识别对象,为需要进行识别的手写体数字的图像数据。After the classifier model is obtained in step S300, the corresponding Lie group structure data can be extracted from the handwritten digital image data to be tested, so as to classify the handwritten digital image data to obtain the corresponding digital category. It should be noted that the purpose of the original handwritten digital image data in step S100 is to train a classifier model, which can be considered as a huge handwritten digital image database; and the handwritten digital image data to be tested in step S400 is the handwritten digital image of the present invention. The recognition object of the recognition method is image data of handwritten digits that need to be recognized.
本发明实施例所训练出的分类器模型可以处理李群结构数据的多分类问题,在具体分类识别上,可依照下述方式进行:将待测手写体数字图像数据对应的李群结构数据分别输入到所述c取2的组合数个分类器模型中,一个李群结构数据得到对应的c取2的组合数个分类器输出结果,统计所述输出结果中该李群结构数据被分为c类中某一类的值,并从中寻找最大值,将所述最大值确定为该李群结构数据对应的手写体数字图像数据的数字类别;The classifier model trained by the embodiment of the present invention can deal with the multi-classification problem of Lie group structure data. In terms of specific classification and recognition, it can be carried out in the following manner: respectively input the Lie group structure data corresponding to the handwritten digital image data to be tested. In the combined number classifier model where c takes 2, a Lie group structure data obtains the corresponding output result of the combined number classifiers where c takes 2, and the Lie group structure data in the output results are divided into c The value of a certain class in the class, and find the maximum value therefrom, and determine the maximum value as the digital category of the handwritten digital image data corresponding to the Lie group structure data;
所述分类器输出结果可用公式fij(z)表示,i,j=1,…c,且i≠j,具体的当要统计该李群结构数据被分为i类的值时,可通过如下公式进行:The output result of the classifier can be represented by the formula f ij (z), i, j=1,...c, and i≠j, specifically when the Lie group structure data is to be classified into the value of the i class, it can be obtained by The following formula is carried out:
通过上式可得到所统计的该李群结构数据被分为i类的c个值,通过公式从该c个值中寻找最大值,所寻找到的最大值所对应的数字类别就是该李群结构数据所对应的手写体数字图像数据的类别。Through the above formula, it can be obtained that the statistical Lie group structure data is divided into c values of class i, through the formula The maximum value is found from the c values, and the digital category corresponding to the found maximum value is the category of the handwritten digital image data corresponding to the Lie group structure data.
本发明实施例通过构造矩阵高斯核函数,利用支持向量机算法处理手写体数字图像数据对应的李群结构数据,借助支持向量机算法识别小样本、非线性及高维模式下图像的优势,实现了李群结构数据的非线性特征捕获;In the embodiment of the present invention, by constructing a matrix Gaussian kernel function, using the support vector machine algorithm to process the Lie group structure data corresponding to the handwritten digital image data, and using the support vector machine algorithm to identify the advantages of images in small samples, nonlinear and high-dimensional modes, it is realized. Nonlinear feature capture of Lie group structured data;
其次,通过将李群结构数据的多分类问题简化为多个两分类问题,并依据支持向量机算法来进行分类处理,实现了李群结构数据的多分类问题处理,从而更好的实现手写体数字识别。Secondly, by simplifying the multi-classification problem of Lie group structure data into multiple two-classification problems, and performing classification processing according to the support vector machine algorithm, the multi-classification problem processing of Lie group structure data is realized, so as to better realize the handwritten digits. identify.
下面通过如下实验验证本发明所能带来的有益效果:Verify the beneficial effect that the present invention can bring by following experiment below:
手写体数字数据库一般可存储的手写体数字图像数据的类别数为10类,现选择其中的四类,得到数字1,2,7和9来进行实验,每类分别从训练集合和测试集合中取前200个,即每类均具有200个训练样本和测试样本。然后在训练样本上用十倍交叉验证来挑选参数,其中正则因子的取值范围为:{2-1,20,…24},矩阵高斯核参数取值范围为{2-10,2-9,…2-6}。然后应用挑选好的参数来重新训练一个模型,在测试集合估计性能获得识别率。进一步,可考虑点云数量对识别率的影响,点云数的取值集合为{5,10,15,20,25,30,35,40,50},点云是随机产生的,可重复5次实验,给出一个平均结果。图2至图4示出了采用李群均值算法,李群Fisher算法和本发明技术方案进行实验所得到的实验结果。The number of handwritten digital image data that can be stored in the handwritten digital database is generally 10 categories. Now select four of them and get the numbers 1, 2, 7 and 9 to conduct experiments. Each category is selected from the training set and the test set respectively. 200, that is, each class has 200 training samples and test samples. Then use ten-fold cross-validation to select parameters on the training samples, where the value range of the regular factor is: {2 -1 ,2 0 ,...2 4 }, and the value range of the matrix Gaussian kernel parameter is {2 -10 ,2 -9 ,...2 -6 }. Then apply the selected parameters to retrain a model, and estimate the performance on the test set to obtain the recognition rate. Further, the influence of the number of point clouds on the recognition rate can be considered. The value set of the number of point clouds is {5, 10, 15, 20, 25, 30, 35, 40, 50}. The point clouds are randomly generated and can be repeated 5 experiments, giving an average result. Figures 2 to 4 show the experimental results obtained by using the Lie group mean algorithm, the Lie group Fisher algorithm and the technical solution of the present invention.
图2为李群均值算法,李群Fisher算法和本发明方法对数字1和7的分类性能的对比图。参照图2,可以发现基于本发明的分类效果明显优于李群均值算法和李群Fisher算法,且识别率随着每个样本取点数目的增多而呈现增大趋势。图3为李群均值算法和本发明方法对数字1,7和9的分类性能的对比图,图4为李群均值算法和本发明方法对数字1,2,7和9的分类性能的对比图,参照图3和图4,可以看出本发明多分类效果明显优于李群均值算法。Fig. 2 is a comparison diagram of Lie group mean algorithm, Lie group Fisher algorithm and the method of the present invention to the classification performance of numbers 1 and 7. Referring to Fig. 2, it can be found that the classification effect based on the present invention is significantly better than the Lie group mean algorithm and the Lie group Fisher algorithm, and the recognition rate shows an increasing trend with the increase of the number of points for each sample. Fig. 3 is the comparison diagram of Lie group mean algorithm and the classification performance of the inventive method to numeral 1,7 and 9, and Fig. 4 is the comparison of the classification performance of Lie group mean algorithm and the inventive method to numeral 1,2,7 and 9 Fig. 3 and Fig. 4, it can be seen that the multi-classification effect of the present invention is obviously better than the Lie group mean algorithm.
图5为本发明一种基于李群结构数据的手写体数字识别系统的结构框图。参照图5,该系统可以包括:Fig. 5 is a structural block diagram of a handwritten digit recognition system based on Lie group structured data in the present invention. Referring to Figure 5, the system may include:
李群结构数据提取模块100,用于从原始的手写体数字图像数据中提取对应数量的李群结构数据;Lie group structure data extraction module 100, for extracting the Lie group structure data of corresponding quantity from original handwritten digital image data;
预处理模块200,用于将李群结构数据与其对应的手写体数字图像数据的类别标签的对应关系作为训练样本,得到与所述对应数量的李群结构数据相对应的训练样本集合,同时,构造处理李群结构数据的矩阵高斯核函数:The preprocessing module 200 is used to use the correspondence between the Lie group structure data and the category labels of the corresponding handwritten digital image data as a training sample to obtain a training sample set corresponding to the corresponding number of Lie group structure data, and at the same time, construct Matrix Gaussian kernel function for Lie group structured data:
模型训练模块300,用于利用支持向量机算法,以所述矩阵高斯核函数为核函数,输入训练样本,训练得到分类器模型;The model training module 300 is used for utilizing the support vector machine algorithm, using the matrix Gaussian kernel function as a kernel function, inputting training samples, and training to obtain a classifier model;
分类模块400,用于将待测手写体数字图像数据对应的李群结构数据,分别输入到训练得到的分类器模型中,得到对应的数字类别。The classification module 400 is used to input the Lie group structure data corresponding to the handwritten digital image data to be tested into the trained classifier model to obtain corresponding digital categories.
其中,模型训练模块300的结构可如图6所示,包括:Wherein, the structure of the model training module 300 can be shown in Figure 6, including:
组合获取单元301,用于从所述训练样本集合中任取两类类别标签对应的样本,得到c取2的组合数个组合,c为手写体数字图像数据的类别数;The combination acquisition unit 301 is used to arbitrarily get samples corresponding to two types of category labels from the training sample set, and obtain a number of combinations in which c is 2, and c is the category number of handwritten digital image data;
循环训练单元302,用于以每个组合为单位,分别利用支持向量机算法,以所述矩阵高斯核函数为核函数,输入各组合对应的样本,训练得到c取2的组合数个分类器模型。The loop training unit 302 is used to take each combination as a unit, use the support vector machine algorithm respectively, use the matrix Gaussian kernel function as the kernel function, input the samples corresponding to each combination, and train the combination number classifiers in which c is 2 Model.
进一步,循环训练单元302可以包括Further, the cycle training unit 302 may include
训练子单元(未图示),用于提取包含i,j两类样本的组合,i,j均∈{1,…c},且i≠j,执行训练分类器模型的流程:令 l表示手写体数字图像数据的个数,x表示手写体数字图像数据,z表示李群结构数据,y为手写体数字图像数据x的类别标签,y∈{1,…c},上标ij表示与第i,j两类相关的数据信息,下标m表示一个索引,表示第i,j两类相关李群结构数据,lij表示i,j两类的样本之和,为对应的类别标签,且当
m,n均表示一个索引,m,n均为整数,且m,n均∈{1,…lij},为支持向量机算法训练产生模型系数,S为支持向量机算法训练需要的正则参数,依据上述求解结果得到分类器模型
循环子单元(未图示),用于在所述训练子单元完成上述训练分类器模型的流程后,提取另一个组合,再执行上述分类器模型训练流程,直至得到c取2的组合数个分类器模型。The loop subunit (not shown) is used to extract another combination after the training subunit completes the above-mentioned process of training the classifier model, and then execute the above-mentioned classifier model training process until the number of combinations in which c is 2 is obtained classifier model.
分类模块400的结构可如图7所示,包括:The structure of the classification module 400 can be shown in Figure 7, including:
计算单元401,用于将待测手写体数字图像数据对应的李群结构数据分别输入到所述c取2的组合数个分类器模型中,一个李群结构数据得到对应的c取2的组合数个分类器输出结果;The calculation unit 401 is used to input the Lie group structure data corresponding to the handwritten digital image data to be tested into the classifier models with the number of combinations where c is 2, and a Lie group structure data corresponding to the number of combinations where c is 2 is obtained. output of a classifier;
统计单元402,用于统计所述输出结果中该李群结构数据被分为c类中某一类的值,并从中寻找最大值;Statistical unit 402, used to count the value of the Lie group structure data in the output result being classified into a certain category in the c category, and find the maximum value therefrom;
确定单元403,用于将所述统计单元寻找到的最大值确定为该李群结构数据对应的手写体数字图像数据的数字类别。The determining unit 403 is configured to determine the maximum value found by the statistical unit as the digital category of the handwritten digital image data corresponding to the Lie group structure data.
进一步,统计单元402可以包括:Further, the statistical unit 402 may include:
类值统计子单元(未图示),用于依据公式i∈{1,…c}统计所述输出结果中该李群结构数据被分为i类的值,所述i类为假设的所要统计的c类中的某一类;Class value statistics subunit (not shown) for formula i∈{1,...c} counts the value of the Lie group structure data in the output result being divided into the i category, and the i category is a certain category in the assumed c category to be counted;
最大值查找子单元(未图示),用于依据公式:Maximum Find Subunit (not shown), used by the formula:
寻找所述统计子单元统计的数值中的最大值。 Find the maximum value among the values counted by the statistical subunit.
本发明基于李群结构数据的手写体数字识别系统,与基于李群结构数据的手写体数字识别方法相互对应,系统具体功能实现可参见对应的方法不再,此处不再赘述。The handwritten digit recognition system based on the Lie group structure data of the present invention corresponds to the handwritten digit recognition method based on the Lie group structure data. The specific functions of the system can be realized by referring to the corresponding method, and will not be repeated here.
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210041116.0A CN102722713B (en) | 2012-02-22 | 2012-02-22 | Handwritten numeral recognition method based on lie group structure data and system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210041116.0A CN102722713B (en) | 2012-02-22 | 2012-02-22 | Handwritten numeral recognition method based on lie group structure data and system thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102722713A CN102722713A (en) | 2012-10-10 |
CN102722713B true CN102722713B (en) | 2014-07-16 |
Family
ID=46948463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210041116.0A Expired - Fee Related CN102722713B (en) | 2012-02-22 | 2012-02-22 | Handwritten numeral recognition method based on lie group structure data and system thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102722713B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102982343B (en) * | 2012-11-12 | 2015-03-25 | 信阳师范学院 | Handwritten number recognition and incremental type obscure support vector machine method |
CN103218613B (en) * | 2013-04-10 | 2016-04-20 | 苏州大学 | Handwritten Numeral Recognition Method and device |
CN103164701B (en) * | 2013-04-10 | 2016-06-01 | 苏州大学 | Handwritten Numeral Recognition Method and device |
CN103258211A (en) * | 2013-05-31 | 2013-08-21 | 苏州大学 | Handwriting digital recognition method and system |
CN103310217B (en) * | 2013-06-20 | 2016-06-01 | 苏州大学 | Based on Handwritten Numeral Recognition Method and the device of image covariance feature |
CN103310237B (en) * | 2013-07-09 | 2016-08-24 | 苏州大学 | Handwritten Numeral Recognition Method and system |
CN103400161A (en) * | 2013-07-18 | 2013-11-20 | 苏州大学 | Handwritten numeral recognition method and system |
CN108647670A (en) * | 2018-05-22 | 2018-10-12 | 哈尔滨理工大学 | A kind of characteristic recognition method of the lateral vehicle image based on support vector machines |
CN109002461B (en) * | 2018-06-04 | 2023-04-18 | 平安科技(深圳)有限公司 | Handwriting model training method, text recognition method, device, equipment and medium |
CN109978064A (en) * | 2019-03-29 | 2019-07-05 | 苏州大学 | Lie group dictionary learning classification method based on image set |
CN111026897A (en) * | 2019-11-19 | 2020-04-17 | 武汉大学 | Scene classification method and system based on Lie-Fisher remote sensing image |
CN111062417A (en) * | 2019-11-19 | 2020-04-24 | 武汉大学 | A Lie-Mean-based Defect Detection Method and System for Flat Shells |
CN111191618A (en) * | 2020-01-02 | 2020-05-22 | 武汉大学 | A scene classification method and system based on matrix group KNN |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1624712A (en) * | 2004-12-09 | 2005-06-08 | 上海交通大学 | Handwritten Digit Recognition Method Based on Kernel Function |
-
2012
- 2012-02-22 CN CN201210041116.0A patent/CN102722713B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1624712A (en) * | 2004-12-09 | 2005-06-08 | 上海交通大学 | Handwritten Digit Recognition Method Based on Kernel Function |
Non-Patent Citations (9)
Title |
---|
Gradient-Based Adaptation of General Gaussian Kernels;Tobias Glasmachers et al.;《Neural Computation》;20051231;2099-2105 * |
Tobias Glasmachers et al..Gradient-Based Adaptation of General Gaussian Kernels.《Neural Computation》.2005,2099-2105. |
一种新的李群分类器在手写体数字中的应用;王晓乾等;《计算机工程与科学》;20130228;第35卷(第2期);85-90 * |
一种李群机器学习线性分类算法研究;陈明等;《微电子学与计算机》;20091031;第26卷(第10期);170-173 * |
李凡长.基于Lie群的机器学习理论框架.《云南民族大学学报(自然科学版)》.2004,第13卷(第4期),251-255. * |
李群核学习算法研究;高聪等;《计算机科学与探索》;20121115;第6卷(第11期);1026-1037 * |
王晓乾等.一种新的李群分类器在手写体数字中的应用.《计算机工程与科学》.2013,第35卷(第2期),85-90. |
陈明等.一种李群机器学习线性分类算法研究.《微电子学与计算机》.2009,第26卷(第10期),170-173. |
高聪等.李群核学习算法研究.《计算机科学与探索》.2012,第6卷(第11期),1026-1037. |
Also Published As
Publication number | Publication date |
---|---|
CN102722713A (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102722713B (en) | Handwritten numeral recognition method based on lie group structure data and system thereof | |
CN109934293B (en) | Image recognition method, device, medium and confusion perception convolutional neural network | |
CN111915437B (en) | Training method, device, equipment and medium of money backwashing model based on RNN | |
CN103632168B (en) | Classifier integration method for machine learning | |
CN105760821B (en) | The face identification method of the grouped accumulation rarefaction representation based on nuclear space | |
CN102156871B (en) | Image classification method based on category correlated codebook and classifier voting strategy | |
WO2020164278A1 (en) | Image processing method and device, electronic equipment and readable storage medium | |
CN112199536A (en) | A cross-modality-based fast multi-label image classification method and system | |
CN106372581A (en) | Method for constructing and training human face identification feature extraction network | |
CN107491729B (en) | Handwritten digit recognition method based on cosine similarity activated convolutional neural network | |
CN110287311A (en) | File classification method and device, storage medium, computer equipment | |
CN110414587A (en) | Deep Convolutional Neural Network Training Method and System Based on Progressive Learning | |
CN106845358A (en) | A kind of method and system of handwritten character characteristics of image identification | |
CN109685065A (en) | Printed page analysis method, the system of paper automatic content classification | |
CN105069774A (en) | Object segmentation method based on multiple-instance learning and graph cuts optimization | |
CN103679161B (en) | A kind of face identification method and device | |
CN111178196B (en) | Cell classification method, device and equipment | |
CN105320764A (en) | 3D model retrieval method and 3D model retrieval apparatus based on slow increment features | |
CN104951791A (en) | Data classification method and apparatus | |
CN117892298A (en) | Malware type identification method, device, equipment and storage medium | |
CN115640401A (en) | Text content extraction method and device | |
CN110414622A (en) | Classifier training method and device based on semi-supervised learning | |
CN111582372A (en) | Image classification method, model, storage medium and electronic device | |
CN113807425B (en) | Tissue pathology image classification method based on self-adaptive regular depth clustering | |
CN115272692A (en) | Small sample image classification method and system based on feature pyramid and feature fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Li Inventor after: Wang Xiaoqian Inventor after: Yang Jiwen Inventor after: He Shuping Inventor after: Li Fanchang Inventor after: Zhang Zhao Inventor before: Zhang Li Inventor before: Wang Xiaoqian Inventor before: Yang Jiwen Inventor before: He Shuping Inventor before: Li Fanchang |
|
COR | Change of bibliographic data | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140716 |