[go: up one dir, main page]

CN102722613A - Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination - Google Patents

Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination Download PDF

Info

Publication number
CN102722613A
CN102722613A CN2012101778209A CN201210177820A CN102722613A CN 102722613 A CN102722613 A CN 102722613A CN 2012101778209 A CN2012101778209 A CN 2012101778209A CN 201210177820 A CN201210177820 A CN 201210177820A CN 102722613 A CN102722613 A CN 102722613A
Authority
CN
China
Prior art keywords
population
value
chromosome
target
hbest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101778209A
Other languages
Chinese (zh)
Other versions
CN102722613B (en
Inventor
陈爱新
姜维维
房见
姜铁华
杨绰
安康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201210177820.9A priority Critical patent/CN102722613B/en
Publication of CN102722613A publication Critical patent/CN102722613A/en
Application granted granted Critical
Publication of CN102722613B publication Critical patent/CN102722613B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,该方法在遗传算法的基础上,通过模拟退火算法进行二次寻优,克服了遗传算法微调能力差的缺点,同时将遗传算法优化得到的最优个体作为模拟退火算法待优化变量的初值,避免了模拟退火算法对初值的依赖。此外,针对天线匹配网络的优化问题,该组合方法采用了多目标并列选择法,用于兼顾天线驻波比和转换效率两个重要的技术指标的要求,引入交叉和变异算子的自适应调节,有利于提高算法的计算速度和效率。同时引入最优解保留策略,避免最优个体的流失。

Figure 201210177820

The invention discloses a method for optimizing the parameters of electronic components in an antenna broadband matching network by using a genetic-simulated annealing combination. The method is based on a genetic algorithm and performs secondary optimization through a simulated annealing algorithm, which overcomes the fine-tuning ability of the genetic algorithm At the same time, the optimal individual obtained by genetic algorithm optimization is used as the initial value of the variable to be optimized by the simulated annealing algorithm, which avoids the dependence of the simulated annealing algorithm on the initial value. In addition, for the optimization of the antenna matching network, the combination method adopts the multi-objective parallel selection method to take into account the requirements of the two important technical indicators of the antenna standing wave ratio and conversion efficiency, and introduces the adaptive adjustment of the crossover and mutation operators , which is conducive to improving the calculation speed and efficiency of the algorithm. At the same time, the optimal solution retention strategy is introduced to avoid the loss of the optimal individual.

Figure 201210177820

Description

采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法Optimization Method of Electronic Component Parameters in Broadband Matching Network of Antenna Using Genetic-Simulated Annealing Combination

技术领域 technical field

本发明涉及电磁领域的一种天线宽带匹配网络的参数优化方法,更特别地说,是指一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法。The invention relates to a method for optimizing parameters of an antenna broadband matching network in the field of electromagnetics, and more particularly refers to a method for optimizing parameters of electronic components in an antenna broadband matching network by using a genetic-simulated annealing combination.

背景技术 Background technique

在现代电子设备中,由于天线性能要求和安装条件等诸多方面的限制因素,单独的天线设计在很多情况下往往难以同时满足宽带化、小型化的设计要求。对于结构形式已定的天线,设计宽带匹配网络是进一步改善天线小型化和宽带化性能的一种有效技术手段。In modern electronic equipment, due to many limiting factors such as antenna performance requirements and installation conditions, it is often difficult for a single antenna design to meet the design requirements of broadband and miniaturization at the same time in many cases. For an antenna with a fixed structure, designing a broadband matching network is an effective technical means to further improve the antenna's miniaturization and broadband performance.

目前宽带匹配网络的设计方法主要有解析法、数值法和智能优化法三种。解析法以单匹配网络设计理论为基础,但解析法在增益函数最优形式的确定、源和负载的解析表达等方面存在明显不足,很难满足实际工程设计的要求。数值法以实频数据法和参量技术法为代表。数值法相比解析法具有明显的优势,但是也存在着一些固有的缺点,比如难以获得全局最优解、对初值的选择很敏感、实频数据法中的两次优化计算可靠性差等。随着全局搜索技术的发展,遗传算法(国防工业出版社,1999年6月出版,《遗传算法的原理及应用》,作者周明、孙树栋)、模拟退火算法(科学出版社,2003年5月,《非数值并行算法-模拟退火算法》,作者康立山、谢云、尤矢勇、罗祖华)等一些智能算法的出现,为宽带匹配网络的设计提供了新的技术手段。与解析法和数值法相比,智能优化方法无须对负载进行解析表示,而是依据负载频带内的一些离散阻抗值,通过最优化技术寻求网络元件值的最优解,在工程应用方面更具灵活性和实用性。但智能优化方法在收敛速度、微调能力、计算效率、算法稳定性等方面也并非尽善尽美,智能优化方法的选择和应用对于具体的设计问题需要具体分析。At present, there are mainly three design methods of broadband matching network: analytical method, numerical method and intelligent optimization method. The analytical method is based on the theory of single-matching network design, but the analytical method has obvious deficiencies in the determination of the optimal form of the gain function, the analytical expression of the source and load, etc., and it is difficult to meet the requirements of actual engineering design. Numerical methods are represented by real frequency data method and parametric technology method. Compared with the analytical method, the numerical method has obvious advantages, but there are also some inherent disadvantages, such as difficulty in obtaining the global optimal solution, sensitivity to the selection of initial values, and poor reliability of the two optimization calculations in the real-frequency data method. With the development of global search technology, genetic algorithm (National Defense Industry Press, published in June 1999, "Principle and Application of Genetic Algorithm", authors Zhou Ming, Sun Shudong), simulated annealing algorithm (Science Press, May 2003, "Non-Numerical Parallel Algorithm-Simulated Annealing Algorithm", authors Kang Lishan, Xie Yun, You Shiyong, Luo Zuhua) and other intelligent algorithms have provided new technical means for the design of broadband matching networks. Compared with the analytical method and numerical method, the intelligent optimization method does not need to analyze the load, but seeks the optimal solution of the network element value through optimization technology based on some discrete impedance values in the load frequency band, which is more flexible in engineering applications sex and practicality. However, intelligent optimization methods are not perfect in terms of convergence speed, fine-tuning ability, computational efficiency, algorithm stability, etc. The selection and application of intelligent optimization methods require specific analysis for specific design problems.

发明内容 Contents of the invention

本发明的目的是提出一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,该优化方法采用遗传-模拟退火组合方法设计出天线宽带匹配网络中各集总参数元件的参数值,以遗传算法得到遗传算法中的最优解,然后通过模拟退火算法进行二次寻优,克服了遗传算法微调能力差的缺点,同时将所述的遗传算法中的最优解作为模拟退火算法待优化变量的初值,避免了模拟退火算法对初值的依赖。此外,针对天线宽带匹配网络的优化问题,该组合方法采用了多目标并列选择法,用于兼顾天线驻波比和转换效率两个重要的技术指标的要求,引入交叉和变异算子的自适应调节,有利于提高遗传算法的计算速度和效率。引入最优解保留策略,避免了最优个体的流失。The purpose of the present invention is to propose a method for optimizing the parameters of electronic components in the antenna broadband matching network by using the genetic-simulated annealing combination method. Parameter value, the optimal solution in the genetic algorithm is obtained by the genetic algorithm, and then the secondary optimization is carried out through the simulated annealing algorithm, which overcomes the shortcoming of the poor fine-tuning ability of the genetic algorithm, and at the same time uses the optimal solution in the genetic algorithm as a simulation The initial value of the variable to be optimized by the annealing algorithm avoids the dependence of the simulated annealing algorithm on the initial value. In addition, for the optimization problem of antenna broadband matching network, the combination method adopts the multi-objective parallel selection method, which is used to take into account the requirements of the two important technical indicators of antenna standing wave ratio and conversion efficiency, and introduces the self-adaptive Adjustment is beneficial to improve the calculation speed and efficiency of genetic algorithm. The optimal solution retention strategy is introduced to avoid the loss of the optimal individual.

本发明的一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其包括有下列步骤:A method for optimizing the parameters of the electronic components in the antenna broadband matching network using a combination of genetic-simulated annealing of the present invention comprises the following steps:

步骤一:基于遗传算法的种群初始化,获得待优化变量X={XCa,XLb,XRd,XTe};Step 1: Based on the population initialization of the genetic algorithm, obtain the variables to be optimized X={XC a , XL b , XR d , XT e };

在步骤一中,将宽带匹配网络等效电路中电容、电感和电阻采用基于遗传算法的的种群处理,得到待优化变量X={XCa,XLb,XRd,XTe};In step 1, the capacitance, inductance and resistance in the equivalent circuit of the broadband matching network are processed by the population based on the genetic algorithm, and the variables to be optimized X={XC a , XL b , XR d , XT e } are obtained;

所述待优化变量X={XCa,XLb,XRd,XTe}中XCa表示电容种群,a表示等效电路中电容的标识,如第一电容C1的第一电容种群记为XCC1;同理可得,第二电容种群记为XCC2,第三电容种群记为XCC3,第四电容种群记为XCC4,第五电容种群记为XCC5;等效电路中所有电容种群采用集合形式表示为XCa={XCC1,XCC2,XCC3,XCC4,XCC5};In the variable X to be optimized X={XC a , XL b , XR d , XT e }, XC a represents the capacitance population, and a represents the identity of the capacitance in the equivalent circuit, such as the first capacitance population of the first capacitance C1 is denoted as XC C1 ; in the same way, the second capacitor population is marked as XC C2 , the third capacitor population is marked as XC C3 , the fourth capacitor population is marked as XC C4 , and the fifth capacitor population is marked as XC C5 ; all capacitor populations in the equivalent circuit Expressed as XC a ={XC C1 , XC C2 , XC C3 , XC C4 , XC C5 } in a set form;

XLb表示电感种群,b表示等效电路中电感的标识,如第一电感L1的第一电感种群记为XLL1;同理可得,第二电感种群记为XLL2,第三电感种群记为XLL3,第四电感种群记为XLL4,第五电感种群记为XLL5;等效电路中所有电感种群采用集合形式表示为XLb={XLL1,XLL2,XLL3,XLL4,XLL5};XL b represents the inductance population, and b represents the identity of the inductance in the equivalent circuit. For example, the first inductance population of the first inductance L1 is denoted as XL L1 ; similarly, the second inductance population is denoted as XL L2 , and the third inductance population is denoted as XL L2 . is XL L3 , the fourth inductance population is denoted as XL L4 , the fifth inductance population is denoted as XL L5 ; all inductance populations in the equivalent circuit are represented as XL b = {XL L1 , XL L2 , XL L3 , XL L4 , XL L5 };

XRd表示电阻种群,d表示等效电路中电阻的标识,如第一电阻R1的第一电阻种群记为XRR1;同理可得,第二电阻种群记为XRR2,第三电阻种群记为XRR3;等效电路中所有电阻种群采用集合形式表示为XRd={XRR1,XRR2,XRR3};XR d represents the resistance population, and d represents the identification of the resistance in the equivalent circuit. For example, the first resistance population of the first resistance R1 is marked as XR R1 ; similarly, the second resistance population is marked as XR R2 , and the third resistance population is marked as XR R2 . is XR R3 ; all resistance populations in the equivalent circuit are expressed as XR d ={XR R1 , XR R2 , XR R3 } in a collective form;

XTe表示变压器种群,e表示等效电路中变压器的输入/输出电压比;XT e represents the transformer population, and e represents the input/output voltage ratio of the transformer in the equivalent circuit;

步骤二:基于遗传算法的染色体处理,获得总种群

Figure BDA00001713824600021
Step 2: Chromosome processing based on genetic algorithm to obtain the total population
Figure BDA00001713824600021

在步骤二中,基于遗传算法中的染色体,对电容种群XCa在变量取值DC中随机生成m个变量值

Figure BDA00001713824600022
0<DC≤800pF;
Figure BDA00001713824600023
表示标识a电容种群在第1个染色体中的变量值,
Figure BDA00001713824600024
表示标识a电容种群在第2个染色体中的变量值,……,
Figure BDA00001713824600025
表示标识a电容种群在第m个染色体中的变量值,也称标识a电容种群在任意一个染色体中的变量值;In step two, based on the chromosomes in the genetic algorithm, randomly generate m variable values in the variable value DC for the capacitance population XC a
Figure BDA00001713824600022
0<DC≤800pF;
Figure BDA00001713824600023
Indicates the variable value that identifies the a capacitance population in the first chromosome,
Figure BDA00001713824600024
Indicates the variable value that identifies the a capacitance population in the second chromosome, ...,
Figure BDA00001713824600025
Indicates the variable value that identifies the a-capacitance population in the mth chromosome, also known as the variable value that identifies the a-capacitance population in any chromosome;

基于遗传算法中的染色体,对电感种群XLb在变量取值DL中随机生成w个变量值

Figure BDA00001713824600026
0<DL≤0.1μH;
Figure BDA00001713824600027
表示标识b电感种群在第1个染色体中的变量值,
Figure BDA00001713824600028
表示标识b电感种群在第2个染色体中的变量值,……,
Figure BDA00001713824600029
表示标识b电感种群在第w个染色体中的变量值,也称标识b电感种群在任意一个染色体中的变量值;Based on the chromosome in the genetic algorithm, randomly generate w variable values in the variable value DL for the inductance population XL b
Figure BDA00001713824600026
0<DL≤0.1μH;
Figure BDA00001713824600027
Indicates the variable value identifying the b inductance population in the first chromosome,
Figure BDA00001713824600028
Indicates the variable value that identifies the b inductance population in the second chromosome, ...,
Figure BDA00001713824600029
Indicates the variable value that identifies the b inductance population in the wth chromosome, also known as the variable value that identifies the b inductance population in any chromosome;

基于遗传算法中的染色体,对电阻种群XRd在变量取值DR中随机生成v个变量值

Figure BDA000017138246000210
0<DR≤5kΩ;
Figure BDA000017138246000211
表示标识d电阻种群在第1个染色体中的变量值,
Figure BDA000017138246000212
表示标识d电阻种群在第2个染色体中的变量值,……,表示标识d电阻种群在第v个染色体中的变量值,也称标识d电阻种群在任意一个染色体中的变量值;Based on the chromosome in the genetic algorithm, randomly generate v variable values in the variable value DR for the resistance population XR d
Figure BDA000017138246000210
0<DR≤5kΩ;
Figure BDA000017138246000211
Indicates the variable value identifying the d resistance population in the first chromosome,
Figure BDA000017138246000212
Indicates the variable value that identifies the d resistance population in the second chromosome, ..., Indicates the variable value that identifies the d resistance population in the vth chromosome, also known as the variable value that identifies the d resistance population in any chromosome;

基于遗传算法中的染色体,对变压器种群XTe在变量取值DT中随机生成n个变量值

Figure BDA000017138246000214
0.1≤DT≤10;
Figure BDA000017138246000215
表示标识e变压器种群在第1个染色体中的变量值,
Figure BDA000017138246000216
表示标识e变压器种群在第2个染色体中的变量值,……,
Figure BDA00001713824600031
表示标识e变压器种群在第n个染色体中的变量值,也称标识e变压器种群在任意一个染色体中的变量值;Based on the chromosome in the genetic algorithm, randomly generate n variable values in the variable value DT for the transformer population XT e
Figure BDA000017138246000214
0.1≤DT≤10;
Figure BDA000017138246000215
Indicates the variable value identifying the e-transformer population in the first chromosome,
Figure BDA000017138246000216
Indicates the variable value identifying the e-transformer population in the second chromosome, ...,
Figure BDA00001713824600031
Indicates the variable value identifying the e-transformer population in the nth chromosome, also known as the variable value identifying the e-transformer population in any chromosome;

对于待优化变量X={XCa,XLb,XRd,XTe}经遗传算法中的染色体处理得到总种群

Figure BDA00001713824600032
For the variable X={XC a , XL b , XR d , XT e } to be optimized, the total population is obtained by the chromosome processing in the genetic algorithm
Figure BDA00001713824600032

步骤三:以多目标优化函数,按照并列选择法为目标函数中各个函数分配种群;Step 3: use the multi-objective optimization function to allocate populations for each function in the objective function according to the parallel selection method;

在步骤三中,将总种群

Figure BDA00001713824600033
中的染色体按目标函数M目标={f目标,l目标}的个数均等地划分为第一子群体Q1和第二子群体Q2,对每个子群体分配目标函数M目标={f目标,l目标}中的一个进行优化;In step three, the total population
Figure BDA00001713824600033
Chromosomes in are equally divided into the first subgroup Q 1 and the second subgroup Q 2 according to the number of the objective function Mobjective ={ fobjective , lobjective }, and each subgroup is assigned the objective function Mobjective ={ fobjective , one of lobjective } to optimize;

步骤四:以交叉变异获取子种群的优化量;Step 4: Obtain the optimized amount of the subpopulation by crossover mutation;

在步骤四中,对第一子群体Q1进行交叉变异,保留每一代优化量,即第一优化量DQ1;对第二子群体Q2进行交叉变异,保留每一代优化量,即第二优化量DQ2;交叉变异获取每一代优化量的具体步骤为:In step 4, cross-mutation is performed on the first subgroup Q1 , and the optimized amount of each generation is retained, that is, the first optimized amount DQ1 ; cross-mutation is performed on the second subgroup Q2 , and the optimized amount of each generation is retained, that is, the second optimized amount The optimization quantity DQ 2 ; the specific steps for cross-mutation to obtain the optimization quantity of each generation are:

步骤401:获取第一子群体Q1中的任意2个染色体

Figure BDA00001713824600034
作为当前染色体也称为当前第一染色体
Figure BDA00001713824600036
Step 401: Obtain any 2 chromosomes in the first subgroup Q 1
Figure BDA00001713824600034
as the current chromosome also known as the current first chromosome
Figure BDA00001713824600036

获取第二子群体Q2中的任意2个染色体

Figure BDA00001713824600037
作为当前染色体
Figure BDA00001713824600038
也称为当前第二染色体 Get any 2 chromosomes in the second subpopulation Q 2
Figure BDA00001713824600037
as the current chromosome
Figure BDA00001713824600038
also known as the current second chromosome

步骤402:对当前第一染色体中的两个个体进行交叉处理,生成新第一染色体表示交叉后第一个染色体,

Figure BDA000017138246000312
表示交叉后第二个染色体;所述交叉处理依据第一适应性策略模型 P c 1 = ( f min - f avg ) / ( f min - f ) , f &le; f avg 1.0 , f > f avg 进行的;Pc1表示第一子群体Q1的交叉概率(也称为第一交叉概率),fmin表示第一子群体Q1中最佳个体适应度值,f表示为要交叉的两个个体中较适应的适应值,且f=min{f1,f2},f1表示染色体
Figure BDA000017138246000314
对应的驻波比优化目标f目标的值,f2表示染色体
Figure BDA000017138246000315
对应的驻波比优化目标f目标的值,favg表示第一子群体Q1的平均适应度值;Step 402: For the current first chromosome The two individuals in are crossed over to generate a new first chromosome Indicates the first chromosome after crossover,
Figure BDA000017138246000312
Indicates the second chromosome after crossover; the crossover process is based on the first adaptive strategy model P c 1 = ( f min - f avg ) / ( f min - f ) , f &le; f avg 1.0 , f > f avg carried out; P c1 represents the crossover probability of the first subgroup Q 1 (also called the first crossover probability), f min represents the best individual fitness value in the first subgroup Q1 , and f represents the two The more adaptive fitness value in the individual, and f=min{f 1 , f 2 }, f 1 represents the chromosome
Figure BDA000017138246000314
The value of the corresponding SWR optimization target f target , f 2 represents the chromosome
Figure BDA000017138246000315
The value of the corresponding standing wave ratio optimization target f target , f avg represents the average fitness value of the first subgroup Q1 ;

对当前第二染色体

Figure BDA000017138246000316
中的两个个体进行交叉处理,生成新第二染色体
Figure BDA000017138246000317
表示交叉后第三个染色体,
Figure BDA000017138246000318
表示交叉后第四个染色体;所述交叉处理依据第二适应性策略模型 P c 2 = ( l max - l ) / ( l max - l avg ) , l &GreaterEqual; l avg 1.0 , l < l avg 进行的;Pc2表示第二子群体Q2的交叉概率,也称为第二交叉概率,lmax表示第二子群体Q2中最佳个体适应度值,l表示为要交叉的两个个体中较适应的适应值,且l=max{l1,l2},l1表示染色体
Figure BDA000017138246000320
对应的功率优化目标l目标的值,l2表示染色体
Figure BDA000017138246000321
对应的功率优化目标l目标的值,lavg表示第二子群体Q2的平均适应度值;to the current second chromosome
Figure BDA000017138246000316
Two individuals in are crossed over to generate a new second chromosome
Figure BDA000017138246000317
Indicates the third chromosome after crossover,
Figure BDA000017138246000318
Indicates the fourth chromosome after crossover; the crossover process is based on the second adaptive strategy model P c 2 = ( l max - l ) / ( l max - l avg ) , l &Greater Equal; l avg 1.0 , l < l avg carried out; P c2 represents the crossover probability of the second subgroup Q2 , also known as the second crossover probability, l max represents the best individual fitness value in the second subgroup Q2 , and l represents the two individuals to be crossover The more adaptive fitness value in , and l=max{l 1 , l 2 }, l 1 represents the chromosome
Figure BDA000017138246000320
The value of the corresponding power optimization target l target , l 2 represents the chromosome
Figure BDA000017138246000321
The value of the corresponding power optimization target l target , l avg represents the average fitness value of the second subgroup Q2 ;

步骤403:比较f1与f3和f2与f4,若f1≥f3且f2≥f4时,用AQ交叉代替AQ当前;若f1<f3或f2<f4时,则AQ当前不变;f3表示交叉后第一个染色体

Figure BDA00001713824600041
对应的驻波比优化目标f目标的值,f4表示交叉后第二个染色体
Figure BDA00001713824600042
对应的驻波比优化目标f目标的值;Step 403: Compare f 1 and f 3 and f 2 and f 4 , if f 1 ≥ f 3 and f 2 ≥ f 4 , use AQ cross instead of AQ current ; if f 1 < f 3 or f 2 < f 4 , then AQ is currently unchanged; f 3 means the first chromosome after crossover
Figure BDA00001713824600041
The value of the corresponding VSWR optimization target f target , f 4 means the second chromosome after crossover
Figure BDA00001713824600042
The value of the corresponding SWR optimization target f target ;

比较l1与l3和l2与l4,若l1≤l3且l2≤l4时,用BQ交叉代替BQ当前;若l1>l3或l2>l4时,则BQ当前不变;l3表示交叉后第三个染色体

Figure BDA00001713824600043
对应的功率优化目标l目标的值,l4表示交叉后第四染色体对应的功率优化目标l目标的值;Compare l 1 and l 3 and l 2 and l 4 , if l 1l 3 and l 2 ≤ l 4 , use BQ cross instead of BQ current ; if l 1 > l 3 or l 2 > l 4 , then BQ Currently unchanged; l 3 means the third chromosome after crossover
Figure BDA00001713824600043
The value of the corresponding power optimization target l target , l 4 means the fourth chromosome after crossover The value of the corresponding power optimization target l target ;

步骤404:对当前第一染色体

Figure BDA00001713824600045
中的两个个体分别进行变异处理,生成变异第一染色体
Figure BDA00001713824600046
表示
Figure BDA00001713824600047
变异后的染色体,
Figure BDA00001713824600048
表示
Figure BDA00001713824600049
变异后的染色体;所述的变异处理依据第三适应性策略模型 P m 1 = 0.5 ( f min - f avg ) / ( f min - f &prime; ) , f &prime; &le; f avg 0.5 , f &prime; > f avg 进行的;Pm1表示第一子群体Q1的变异概率(也称为第一变异概率),fmin表示第一子群体Q1中最佳个体适应度值,favg表示第一子群体Q1的平均适应度值,f′为需要变异个体的适应度值,且
Figure BDA000017138246000411
f1表示染色体
Figure BDA000017138246000412
对应的驻波比优化目标f目标的值,f2表示染色体
Figure BDA000017138246000413
对应的驻波比优化目标f目标的值;Step 404: For the current first chromosome
Figure BDA00001713824600045
The two individuals in are mutated separately to generate the mutated first chromosome
Figure BDA00001713824600046
express
Figure BDA00001713824600047
mutated chromosomes,
Figure BDA00001713824600048
express
Figure BDA00001713824600049
Chromosomes after mutation; the mutation processing is based on the third adaptive strategy model P m 1 = 0.5 ( f min - f avg ) / ( f min - f &prime; ) , f &prime; &le; f avg 0.5 , f &prime; > f avg carried out; P m1 represents the mutation probability of the first subgroup Q 1 (also known as the first mutation probability), f min represents the best individual fitness value in the first subgroup Q1 , and f avg represents the first subgroup Q The average fitness value of 1 , f' is the fitness value of the individual that needs to be mutated, and
Figure BDA000017138246000411
f 1 means chromosome
Figure BDA000017138246000412
The value of the corresponding SWR optimization target f target , f 2 represents the chromosome
Figure BDA000017138246000413
The value of the corresponding SWR optimization target f target ;

对当前第二染色体

Figure BDA000017138246000414
中的两个个体分别进行变异处理,生成变异第二染色体
Figure BDA000017138246000415
表示
Figure BDA000017138246000416
变异后的染色体,
Figure BDA000017138246000417
表示
Figure BDA000017138246000418
变异后的染色体;所述变异处理依据第四适应性策略模型 P m 2 = 0.5 ( l max - l &prime; ) / ( l max - l avg ) , l &prime; &GreaterEqual; l avg 0.5 , l &prime; < l avg 进行的;Pm2表示第二子群体Q2的变异概率,也称为第二变异概率,lmax表示第二子群体Q2中最佳个体适应度值,lavg表示第二子群体Q2的平均适应度值,l′为要变异个体的适应度值且l1表示染色体
Figure BDA000017138246000421
对应的功率优化目标l目标的值,l2表示染色体
Figure BDA000017138246000422
对应的功率优化目标l目标的值;to the current second chromosome
Figure BDA000017138246000414
The two individuals in are mutated separately to generate the mutated second chromosome
Figure BDA000017138246000415
express
Figure BDA000017138246000416
mutated chromosomes,
Figure BDA000017138246000417
express
Figure BDA000017138246000418
Chromosomes after mutation; the mutation processing is based on the fourth adaptive strategy model P m 2 = 0.5 ( l max - l &prime; ) / ( l max - l avg ) , l &prime; &Greater Equal; l avg 0.5 , l &prime; < l avg carried out; P m2 represents the mutation probability of the second subgroup Q2 , also known as the second mutation probability, l max represents the best individual fitness value in the second subgroup Q2 , and l avg represents the second subgroup Q2 The average fitness value of , l' is the fitness value of the individual to be mutated and l 1 means chromosome
Figure BDA000017138246000421
The value of the corresponding power optimization target l target , l 2 represents the chromosome
Figure BDA000017138246000422
The value of the corresponding power optimization target l target ;

步骤405:比较f1与f5,若f1>f5时,用

Figure BDA000017138246000423
代替
Figure BDA000017138246000424
若f1≤f5时,则
Figure BDA000017138246000425
不变;f5表示
Figure BDA000017138246000426
变异后的染色体
Figure BDA000017138246000427
对应的驻波比优化目标f目标的值;Step 405: compare f 1 and f 5 , if f 1 > f 5 , use
Figure BDA000017138246000423
replace
Figure BDA000017138246000424
If f 1 ≤ f 5 , then
Figure BDA000017138246000425
No change; f 5 means
Figure BDA000017138246000426
mutated chromosome
Figure BDA000017138246000427
The value of the corresponding SWR optimization target f target ;

比较f2与f6,若f2>f6时,用

Figure BDA000017138246000428
代替
Figure BDA000017138246000429
若f2≤f6时,则
Figure BDA000017138246000430
不变;f6表示
Figure BDA000017138246000431
变异后的染色体
Figure BDA000017138246000432
对应的驻波比优化目标f目标的值;Compare f 2 and f 6 , if f 2 > f 6 , use
Figure BDA000017138246000428
replace
Figure BDA000017138246000429
If f 2 ≤ f 6 , then
Figure BDA000017138246000430
No change; f 6 means
Figure BDA000017138246000431
mutated chromosome
Figure BDA000017138246000432
The value of the corresponding SWR optimization target f target ;

比较l1与l5,若l1<l5时,用

Figure BDA000017138246000433
代替
Figure BDA000017138246000434
若l1≥l5时,则
Figure BDA000017138246000435
不变;l5表示
Figure BDA000017138246000436
变异后的染色体
Figure BDA000017138246000437
对应的功率优化目标l目标的值;Compare l 1 and l 5 , if l 1 < l 5 , use
Figure BDA000017138246000433
replace
Figure BDA000017138246000434
If l 1l 5 , then
Figure BDA000017138246000435
unchanged; l 5 means
Figure BDA000017138246000436
mutated chromosome
Figure BDA000017138246000437
The value of the corresponding power optimization target l target ;

比较l2与l6,若l2<l6时,用

Figure BDA000017138246000438
代替
Figure BDA000017138246000439
若l2≥l6时,则
Figure BDA000017138246000440
不变;l6表示
Figure BDA000017138246000441
变异后的染色体
Figure BDA000017138246000442
对应的功率优化目标l目标的值;Compare l 2 and l 6 , if l 2 <l 6 , use
Figure BDA000017138246000438
replace
Figure BDA000017138246000439
If l 2l 6 , then
Figure BDA000017138246000440
unchanged; l 6 means
Figure BDA000017138246000441
mutated chromosome
Figure BDA000017138246000442
The value of the corresponding power optimization target l target ;

重复步骤401至步骤405,直到第一子群体Q1和第二子群体Q2中染色体全部交叉变异完成,得到当前世代第一子群体Q1的最优优化量,即第一优化量DQ1,第二子群体Q2的最优优化量,即第二优化量DQ2Repeat steps 401 to 405 until all the cross-mutation of chromosomes in the first subgroup Q1 and the second subgroup Q2 is completed, and the optimal optimization quantity of the first subgroup Q1 of the current generation is obtained, that is, the first optimization quantity DQ1 , the optimal optimization quantity of the second subgroup Q 2 , that is, the second optimization quantity DQ 2 ;

步骤五:依据目标函数M目标={f目标,l目标}遍历优化总种群Q′中所有的染色体得到遗传算法中的当前代最优个体;Step 5: According to the objective function M objective = {f objective , l objective }, traverse all chromosomes in the optimized total population Q total ' to obtain the current generation optimal individual in the genetic algorithm;

在步骤五中,合并第一优化量DQ1和第二优化量DQ2组成新的种群,即优化总种群Q′,依据目标函数M目标={f目标,l目标}遍历优化总种群Q′中所有的染色体得到遗传算法中的当前代最优个体

Figure BDA00001713824600051
并把赋给Ihbest,以便下一代最优个体与当前代的最优个体进行比较,在两者中选择出较优个体,并且赋给Ihbest;In step 5, the first optimized quantity DQ 1 and the second optimized quantity DQ 2 are combined to form a new population, that is, the optimized total population Q total ', and the total optimized population Q is traversed according to the objective function M target = {f target , l target } All the chromosomes in the total ' get the optimal individual of the current generation in the genetic algorithm
Figure BDA00001713824600051
and put Assign to I hbest so that the best individual of the next generation can be compared with the best individual of the current generation, select a better individual from the two, and assign to I hbest ;

判断是否达到遗传算法的终止条件,若不满足遗传终止条件,则返回步骤四,若满足遗传终止条件,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;所述遗传算法的终止条件是指迭代步数K是否为0,若迭代步数K不为0,则返回步骤三,若迭代步数K为0,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;为了与待优化变量X={XCa,XLb,XRd,XTe}的表达形式相对应,所述的电子元件参数最优解Ihbest集合表达形式为 I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest ; Judging whether the termination condition of the genetic algorithm is reached, if the termination condition of the genetic algorithm is not satisfied, then return to step 4, if the termination condition of the genetic algorithm is met, then the optimal individual I hbest in the genetic algorithm is obtained, and retained, and then step 6 is entered; The termination condition of the genetic algorithm refers to whether the number of iteration steps K is 0. If the number of iteration steps K is not 0, return to step 3. If the number of iteration steps K is 0, the optimal individual I hbest in the genetic algorithm is obtained. And keep it, go to step six; in order to correspond to the expression form of the variable X={XC a , XL b , XR d , XT e } to be optimized, the expression form of the optimal solution I hbest set of electronic component parameters is I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest ;

步骤六:对当前代最优个体Ihbest进行初始退火赋值,得到初始个体I初始;对 I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest 进行初始退火赋值,则有模拟退火算法的初始个体为 Step 6: Perform initial annealing assignment on the best individual I hbest of the current generation to obtain the initial individual I initial ; I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest Perform initial annealing assignment, then the initial individual with simulated annealing algorithm is

步骤七:对当前代最优个体Ihbest进行试探赋值,得到试探个体I试探Step 7: Assign a trial value to the best individual I hbest of the current generation to obtain the trial individual I trial ;

对模拟退火算法的初始个体

Figure BDA00001713824600056
进行试探赋值,则有新试探值个体
Figure BDA00001713824600061
The initial individual for the simulated annealing algorithm
Figure BDA00001713824600056
If tentative assignment is performed, there will be a new tentative value individual
Figure BDA00001713824600061

步骤八:依据目标函数M目标={f目标,l目标}、初始个体I初始和试探个体I试探进行模拟退火优化,得到电子元件参数的优化解;Step 8: Perform simulated annealing optimization according to the objective function M target ={f target , l target }, the initial individual I initial and the trial individual I trial to obtain the optimized solution of the electronic component parameters;

步骤801:计算试探个体

Figure BDA00001713824600062
对应的目标函数M目标={f目标,l目标}的值分别为ff1和ll1,ff1表示试探个体I试探对应的驻波比优化目标f目标的值,ll1表示试探个体I试探对应的功率优化目标l目标的值;Step 801: Calculate the trial individual
Figure BDA00001713824600062
The values of the corresponding objective function M target = {f target , l target } are respectively ff 1 and ll 1 , ff 1 represents the value of the SWR optimization target f target corresponding to the trial individual I trial , and ll 1 represents the value of the trial individual I trial The value of the corresponding power optimization target l target ;

步骤802:计算初始个体对应的目标函数值M目标={f目标,l目标}的值分别为ff2和ll2,ff2表示初始个体I初始对应的驻波比优化目标f目标的值,ll2表示初始个体I初始对应的功率优化目标l目标的值;Step 802: Calculate the initial individual The values of the corresponding objective function value M target = {f target , l target } are ff 2 and ll 2 respectively, ff 2 represents the value of initial individual I corresponding to the SWR optimization target f target , ll 2 represents the initial individual I The value of the initial corresponding power optimization target l target ;

步骤803:判断试探个体I试探的目标函数值M目标={f目标,l目标}的值ff1和ll1是否优于初始个体I初始对应的目标函数值M目标={f目标,l目标}的值ff2和ll2,若ff1≤ff2且ll1≥ll2,则进入步骤804,否则返回步骤801;Step 803: Judging whether the values ff 1 and ll 1 of the objective function value Mtarget ={ ftarget , ltarget } of the trial individual I are better than the initial corresponding objective function value Mtarget ={ ftarget , ltarget } values ff 2 and ll 2 , if ff 1 ≤ ff 2 and ll 1 ≥ ll 2 , enter step 804, otherwise return to step 801;

步骤804:计算试探个体I试探是否满足接收函数关系 P VSWR = exp ( ff 1 - ff 2 T now ) > r &Element; [ 0,1 ] P G = exp ( ll 2 - ll 1 T now ) > r &Element; [ 0,1 ] , 若满足则将试探个体I试探替代初始个体I初始,进入步骤805;若不满足则返回步骤801;PVSWR表示驻波比对应的接收概率,PG表示转换增益对应的接收概率,Tnow表示当前温度,r是在[0,1]范围内以均匀分布函数的概率随机生成的随机数,即r=RAN(0,1)Step 804: Calculate whether the trial individual I trial satisfies the receiver function relationship P VSWR = exp ( ff 1 - ff 2 T now ) > r &Element; [ 0,1 ] P G = exp ( ll 2 - ll 1 T now ) > r &Element; [ 0,1 ] , If it is satisfied, the trial individual I will replace the initial individual I, and enter step 805; if not, return to step 801; P VSWR represents the receiving probability corresponding to the standing wave ratio, PG represents the receiving probability corresponding to the conversion gain, and T now represents The current temperature, r is a random number randomly generated with the probability of a uniform distribution function in the range [0, 1], that is, r = RAN(0, 1)

步骤805:在退火算法中以降温速度a进行温度降低,并判断当前温度Tnow是否小于截止温度Tend,若Tnow大于Tend,则返回步骤801;若Tnow小于等于Tend,则将优化后的初始个体I初始作为遗传-模拟退火处理后的电子元件参数优化解Ibest I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest . Step 805: In the annealing algorithm, the temperature is lowered at the cooling speed a, and it is judged whether the current temperature T now is less than the cut-off temperature T end , if T now is greater than T end , return to step 801; if T now is less than or equal to T end , then set The optimized initial individual I is initially used as the electronic component parameter optimization solution I best after genetic-simulated annealing treatment, I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest .

本发明天线宽带匹配网络中电子元件参数优化方法的优点在于:The advantages of the electronic component parameter optimization method in the antenna broadband matching network of the present invention are:

1.并列选择法1. Parallel selection method

天线宽带匹配网络的设计力求在满足驻波比要求的同时,使传输的转换功率增益最大。因此,这是一个典型的双目标优化问题。在标准遗传算法的基础上,引入多目标并列选择法,可以兼顾驻波比和转换功率增益两个性能指标的要求。并列选择法的基本思想是,先将总种群中的全部个体按目标函数的个数均等地划分为一些子群体,对每个子群体分配目标函数中的一个函数,目标函数中的各个函数在相应的子群体中独立地进行选择运算,各自选择出一些适应度高的个体组成一个新的子群体,然后再将所有这些新生成的子群体合并成新的种群,如此不断地进行“分割-并列选择-合并”操作,最终可求出多目标函数中优化问题的最优解。该方法与常规求解多目标优化问题的适应度函数线性求和不同之处在于,这种将所有个体混合起来的做法其权重不需人为选定,而是取决于当前世代。The design of antenna broadband matching network strives to maximize the conversion power gain of transmission while meeting the standing wave ratio requirements. Therefore, this is a typical bi-objective optimization problem. On the basis of the standard genetic algorithm, the multi-objective parallel selection method is introduced, which can take into account the requirements of the two performance indicators of standing wave ratio and conversion power gain. The basic idea of the parallel selection method is to first divide all individuals in the total population into some subgroups equally according to the number of objective functions, and assign a function in the objective function to each subgroup, and each function in the objective function is in the corresponding The selection operation is carried out independently in the subgroups, and some individuals with high fitness are selected to form a new subgroup, and then all these newly generated subgroups are merged into a new population, so that the "segmentation-parallelization" is continuously carried out. Select-merge operation can finally find the optimal solution of the optimization problem in the multi-objective function. The difference between this method and the linear summation of fitness functions for solving multi-objective optimization problems is that the weight of this method of mixing all individuals does not need to be selected artificially, but depends on the current generation.

2.进化准则2. Evolution criteria

在遗传算法的计算过程中,根据个体的具体情况,自适应地改变交叉概率和变异概率的大小,有利于提高算法的计算速度和效率。采用适应性遗传策略可以使遗传进化过程具有较好的全局搜索能力,以较大的概率避免陷于局部极值点。In the calculation process of the genetic algorithm, according to the specific situation of the individual, the size of the crossover probability and the mutation probability are adaptively changed, which is beneficial to improve the calculation speed and efficiency of the algorithm. The adaptive genetic strategy can make the genetic evolution process have a better global search ability, and avoid being trapped in local extreme points with a greater probability.

3.最优结果保留策略3. Optimal result retention strategy

本发明中的算法保存搜索过程中遇到过的所有最好结果,当算法过程结束时,将所得最终解与保留的过程最优解比较,并取较优者作为最后结果。这样在进化的过程中始终能够保持最优解不被遗失。The algorithm in the present invention saves all the best results encountered in the search process, and when the algorithm process ends, compares the obtained final solution with the reserved process optimal solution, and takes the better one as the final result. In this way, the optimal solution can always be kept from being lost during the evolution process.

4.模拟退火算法的二次寻优4. Secondary optimization of simulated annealing algorithm

采用遗传算法在计算较少的种群、迭代较少的次数的情况下得到遗传算法中的最优解后,将这个最优解作为模拟退火算法的初值,进行二次寻优。这有利于改善遗传算法微调能力差的缺点和早熟现象,并且将遗传算法的优化结果作为模拟退火算法的初值,也避免了模拟退火算法对初值的依赖。二者的结合从整体上提高了算法稳定性和对初值的依赖。After using the genetic algorithm to obtain the optimal solution in the genetic algorithm with fewer populations and fewer iterations, the optimal solution is used as the initial value of the simulated annealing algorithm for secondary optimization. This is conducive to improving the shortcomings of poor fine-tuning ability and premature phenomenon of genetic algorithm, and the optimization result of genetic algorithm is used as the initial value of simulated annealing algorithm, which also avoids the dependence of simulated annealing algorithm on the initial value. The combination of the two improves the stability of the algorithm and the dependence on the initial value as a whole.

附图说明 Description of drawings

图1是传统天线宽带匹配网络的结构示意图。Fig. 1 is a schematic structural diagram of a traditional antenna broadband matching network.

图2是待优化天线宽带匹配网络的电路原理图。Fig. 2 is a circuit schematic diagram of the antenna broadband matching network to be optimized.

图3是本发明混合遗传-模拟退火算法流程图。Fig. 3 is a flowchart of the hybrid genetic-simulated annealing algorithm of the present invention.

图4是优化后的天线宽带匹配网络的电路原理图。Fig. 4 is a circuit schematic diagram of the optimized antenna broadband matching network.

具体实施方式 Detailed ways

下面将结合附图和实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

在本发明中,天线宽带匹配网络设置在天线和同轴电缆之间(参见图1所示),而天线宽带匹配网络至少由电感、电容、电阻和阻抗变换器构成(参见图2所示)。In the present invention, the antenna broadband matching network is arranged between the antenna and the coaxial cable (see Figure 1), and the antenna broadband matching network is at least composed of inductance, capacitance, resistance and impedance converter (see Figure 2) .

在本发明中,天线是指能够服务于VHF/UHF频段,且与机载共形的小尺寸天线。所述VHF,Very high frequency。译文为:甚高频。所述VHF是指频率为30~3000MHz的无线电电波。所述UHF,Ultra High Frequency。译文为:特高频。所述UHF是指频率为300~3000MHz的特高频无线电电波。In the present invention, the antenna refers to a small-sized antenna that can serve the VHF/UHF frequency band and is conformal to the airborne. The VHF, Very high frequency. The translation is: very high frequency. The VHF refers to radio waves with a frequency of 30-3000 MHz. The UHF, Ultra High Frequency. The translation is: UHF. The UHF refers to ultra-high frequency radio waves with a frequency of 300-3000 MHz.

在本发明中,天线宽带匹配网络是由2阶T形L-C网络构成。此外,在天线宽带匹配网络的前端和后端分别引入了由阻抗变换器和电阻组成的附加网络。T形L-C网络有滤波和匹配的作用,附加网络旨在对天线的阻抗进行一定的修正,使其易于匹配。In the present invention, the antenna broadband matching network is composed of a 2-order T-shaped L-C network. In addition, additional networks consisting of impedance transformers and resistors are introduced at the front end and back end of the antenna broadband matching network, respectively. The T-shaped L-C network has the function of filtering and matching, and the additional network is designed to modify the impedance of the antenna to make it easy to match.

参见图2所示,本发明是一种具有实现阻抗变换特性的机载小型天线宽带匹配网络,该宽带匹配网络等效电路中包括有两个T形L-C网络、电阻和变压器T0组成的附加网络;T形网络由串联L-C网络和并联L-C网络构成;Referring to shown in Fig. 2, the present invention is a kind of airborne small-sized antenna broadband matching network that realizes impedance transformation characteristic, includes the additional network that two T-shaped L-C networks, resistance and transformer T0 are formed in this broadband matching network equivalent circuit ; The T-shaped network is composed of a series L-C network and a parallel L-C network;

第一个T形网络由第一电容C1与第一电感L1串联、第二电容C2与第二电感L2并联和第三电容C3与第三电感L3串联构成;The first T-shaped network is composed of the first capacitor C1 connected in series with the first inductor L1, the second capacitor C2 connected in parallel with the second inductor L2, and the third capacitor C3 connected in series with the third inductor L3;

第二个T形网络由第三电容C3与第三电感L3串联、第四电容C4与第四电感L4并联和第五电容C5与第五电感L5串联构成;两个T形网络形成多次滤波;附加网络中的电阻网络由第一电阻R1、第二电阻R2和第三电阻R3构成,附加网络是为了变换天线的阻抗;The second T-shaped network is composed of the third capacitor C3 connected in series with the third inductor L3, the fourth capacitor C4 connected in parallel with the fourth inductor L4, and the fifth capacitor C5 connected in series with the fifth inductor L5; two T-shaped networks form multiple filtering ; The resistor network in the additional network is composed of the first resistor R1, the second resistor R2 and the third resistor R3, and the additional network is to transform the impedance of the antenna;

天线的连接端与变压器T0的1端连接;变压器T0的2端接地;变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第五电容C5、第五电感L5、第一电阻R1后与同轴电缆的1端(即电缆的输入端)连接;变压器T0的4端与同轴电缆的2端(即电缆的接地端)连接;同轴电缆的2端(即电缆的接地端)接地;The connection terminal of the antenna is connected to the 1 terminal of the transformer T0; the 2 terminals of the transformer T0 are grounded; the 3 terminals of the transformer T0 pass through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, and the fifth capacitor in sequence C5, the fifth inductance L5, and the first resistor R1 are connected to the 1 end of the coaxial cable (ie, the input end of the cable); the 4 ends of the transformer T0 are connected to the 2 ends of the coaxial cable (ie, the grounding end of the cable); The 2 ends of the shaft cable (that is, the grounding end of the cable) are grounded;

变压器T0的3端顺次经第一电容C1、第一电感L1、第二电容C2后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductor L1, and the second capacitor C2 in sequence;

变压器T0的3端顺次经第一电容C1、第一电感L1、第二电感L2后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductance L1, and the second inductance L2 in sequence;

变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第四电容C4后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, and the fourth capacitor C4 in sequence;

变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第四电感L4后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductance L1, the third capacitor C3, the third inductance L3, and the fourth inductance L4 in sequence;

变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第五电容C5、第五电感L5、第二电阻R2后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, the fifth capacitor C5, the fifth inductor L5, and the second resistor R2 in sequence ;

变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第五电容C5、第五电感L5、第一电阻R1、第三电阻R3后接入变压器T0的4端。在本发明中,在变压器T0的副边与同轴电缆接入端之间运用多级滤波(由两个T形L-C网络构成)的处理方式对天线阻抗进行匹配,使得宽带匹配网络等效电路的结构合理。The three terminals of the transformer T0 are sequentially connected through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, the fifth capacitor C5, the fifth inductor L5, the first resistor R1, and the third resistor R3 Terminal 4 of transformer T0. In the present invention, between the secondary side of the transformer T0 and the coaxial cable access end, the antenna impedance is matched by using a multi-stage filter (consisting of two T-shaped L-C networks), so that the equivalent circuit of the broadband matching network The structure is reasonable.

所述具有可实现阻抗变换特性的机载小型天线宽带匹配网络中变压器和电阻网络可以对天线和负载网络的阻抗进行变换;两个T形L-C网络起到滤波和匹配的作用,使得天线的阻抗值通过变压器、两个T形L-C网络、电阻网络后接近同轴线的特性阻抗值,最终达到预定的匹配。The transformer and the resistance network in the airborne small antenna broadband matching network with the characteristics of impedance transformation can transform the impedance of the antenna and the load network; two T-shaped L-C networks play the role of filtering and matching, so that the impedance of the antenna After the value passes through the transformer, two T-shaped L-C networks, and the resistor network, it is close to the characteristic impedance value of the coaxial line, and finally reaches the predetermined matching.

在本发明中,从天线匹配网络工作宽带的角度来定义天线匹配网络带宽内各频率点的驻波比。第1个频率点ω1的驻波比记为VSWR(ω1),第2个频率点ω2的驻波比记为VSWR(ω2),同理任意个(第i个)频率点ωi的驻波比记为VSWR(ωi),则带宽内各个频率点的驻波比之和记为VSWR(ω)=VSWR(ω1)+VSWR(ω2)+…+VSWR(ωi)。为了进行天线匹配网络中电子元件参数的优化,将带宽内各个频率点的驻波比之和作为驻波比优化目标

Figure BDA00001713824600091
在本技术领域,驻波比优化目标
Figure BDA00001713824600092
取值越小则天线匹配网络性能越好。ω表示频率,ωi表示天线在工作带宽内的第i个频率点,VSWR(ωi)表示第i个频率点对应的驻波比,N表示天线在工作带宽内的频率点个数。In the present invention, the standing wave ratio of each frequency point within the bandwidth of the antenna matching network is defined from the perspective of the working bandwidth of the antenna matching network. The standing wave ratio of the first frequency point ω 1 is denoted as VSWR(ω 1 ), and the standing wave ratio of the second frequency point ω 2 is denoted as VSWR(ω 2 ). Similarly, any (i-th) frequency point ω The standing wave ratio of i is recorded as VSWR(ω i ), and the sum of the standing wave ratios of each frequency point within the bandwidth is recorded as VSWR(ω sum)=VSWR(ω 1 ) +VSWR(ω 2 )+…+VSWR(ω i ). In order to optimize the parameters of electronic components in the antenna matching network, the sum of the standing wave ratio of each frequency point within the bandwidth is used as the optimization target of the standing wave ratio
Figure BDA00001713824600091
In this technical field, the VSWR optimization objective
Figure BDA00001713824600092
The smaller the value, the better the performance of the antenna matching network. ω represents the frequency, ω i represents the i-th frequency point of the antenna within the working bandwidth, VSWR(ω i ) represents the standing wave ratio corresponding to the i-th frequency point, and N represents the number of frequency points of the antenna within the working bandwidth.

在本发明中,从天线转换效率最大的角度来定义天线匹配网络带宽,所述天线匹配网络带宽内的第1个频率点的转换功率增益记为G(ω1),第2个频率点的转换功率增益记为G(ω2),同理任意个(第i个)频率点的转换功率增益记为G(ωi),则带宽内各个频率点的转换功率增益之和记为G(ω)=G(ω1)+G(ω2)+…+G(ωi)。为了进行天线匹配网络中电子元件参数的优化,将带宽内各个频率点的转换功率增益之和作为功率优化目标

Figure BDA00001713824600093
Figure BDA00001713824600094
在本技术领域,功率优化目标
Figure BDA00001713824600095
取值越大则天线匹配网络性能越好。ωi表示天线在工作带宽内的第i个频率点,G(ωi)表示第i个频率点对应的转换功率增益,Pouti)表示从匹配网络供给同轴线缆的平均功率,Pini)表示从天线获得的最大平均功率。In the present invention, the antenna matching network bandwidth is defined from the perspective of the maximum antenna conversion efficiency, the conversion power gain of the first frequency point within the antenna matching network bandwidth is denoted as G(ω 1 ), and the conversion power gain of the second frequency point The conversion power gain is denoted as G(ω 2 ), similarly the conversion power gain of any (i-th) frequency point is denoted as G(ω i ), then the sum of the conversion power gains of each frequency point within the bandwidth is denoted as G( ω and )=G(ω 1 )+G(ω 2 )+...+G(ω i ). In order to optimize the parameters of electronic components in the antenna matching network, the sum of the conversion power gains of each frequency point within the bandwidth is used as the power optimization target
Figure BDA00001713824600093
head
Figure BDA00001713824600094
In the art, power optimization targets
Figure BDA00001713824600095
The larger the value, the better the performance of the antenna matching network. ω i represents the i-th frequency point of the antenna within the operating bandwidth, G(ω i ) represents the conversion power gain corresponding to the i-th frequency point, P outi ) represents the average power supplied from the matching network to the coaxial cable , P ini ) represents the maximum average power obtained from the antenna.

在本发明中,为了实现最好天线匹配网络性能,将驻波比优化目标

Figure BDA00001713824600096
和功率优化目标
Figure BDA00001713824600097
作为遗传算法与模拟退火算法相结合的目标函数,所述的目标函数采用数学集合表达形式为M目标={f目标,l目标}。In the present invention, in order to achieve the best antenna matching network performance, the VSWR optimization target
Figure BDA00001713824600096
and power optimization target
Figure BDA00001713824600097
As the objective function combining the genetic algorithm and the simulated annealing algorithm, the objective function adopts a mathematical set expression as M objective = {f objective , l objective }.

为了对天线宽带匹配网络等效电路中的各电子元件的参数值进行最优取值选取,本发明方法运行在安装有Matlab(Matlab 2008版本或者Matlab 2010版本)仿真软件的计算机上。所述计算机是一种能够按照事先存储的程序,自动、高速地进行大量数值计算和各种信息处理的现代化智能电子设备。最低配置为CPU 2GHz,内存2GB,硬盘180GB;操作系统为windows 2000/2003/XP。本发明采用了遗传算法与模拟退火算法相结合的优化方法,具体天线宽带匹配网络中的电子元件参数值优化匹配包括有下列步骤:In order to carry out optimum value selection to the parameter values of each electronic component in the antenna broadband matching network equivalent circuit, the inventive method operates on the computer that Matlab (Matlab 2008 version or Matlab 2010 version) emulation software is installed. The computer is a modern intelligent electronic device that can automatically and high-speed perform a large number of numerical calculations and various information processing according to pre-stored programs. The minimum configuration is CPU 2GHz, memory 2GB, hard disk 180GB; operating system is windows 2000/2003/XP. The present invention adopts the optimization method combining the genetic algorithm and the simulated annealing algorithm, and the optimal matching of the parameter values of the electronic components in the specific antenna broadband matching network includes the following steps:

步骤一:基于遗传算法的种群初始化,获得待优化变量X={XCa,XLb,XRd,XTe};Step 1: Based on the population initialization of the genetic algorithm, obtain the variables to be optimized X={XC a , XL b , XR d , XT e };

在步骤一中,将宽带匹配网络等效电路中电容、电感和电阻采用基于遗传算法的的种群处理,得到待优化变量X={XCa,XLb,XRd,XTe}。在本发明中,采用基于遗传算法的的种群处理是为了对等效电路中电子元件进行数字化的定义,以方便进行遗传算法中各参数的优化设置。宽带匹配网络等效电路由电容、电感、变压器和电阻形成等效电路结构,较好的等效电路结构是为了满足与机载共形的天线的使用要求。In step 1, the capacitance, inductance and resistance in the equivalent circuit of the broadband matching network are processed by a genetic algorithm-based population to obtain the variable X={XC a , XL b , XR d , XT e }. In the present invention, the population processing based on the genetic algorithm is used to digitally define the electronic components in the equivalent circuit, so as to facilitate the optimal setting of each parameter in the genetic algorithm. The equivalent circuit of the broadband matching network is composed of capacitors, inductors, transformers and resistors to form an equivalent circuit structure. A better equivalent circuit structure is to meet the requirements of the airborne conformal antenna.

所述待优化变量X={XCa,XLb,XRd,XTe}中XCa表示电容种群,a表示等效电路中电容的标识,如第一电容C1的第一电容种群记为XCC1;同理可得,第二电容种群记为XCC2,第三电容种群记为XCC3,第四电容种群记为XCC4,第五电容种群记为XCC5;等效电路中所有电容种群采用集合形式表示为XCa={XCC1,XCC2,XCC3,XCC4,XCC5};In the variable X to be optimized X={XC a , XL b , XR d , XT e }, XC a represents the capacitance population, and a represents the identity of the capacitance in the equivalent circuit, such as the first capacitance population of the first capacitance C1 is denoted as XC C1 ; in the same way, the second capacitor population is marked as XC C2 , the third capacitor population is marked as XC C3 , the fourth capacitor population is marked as XC C4 , and the fifth capacitor population is marked as XC C5 ; all capacitor populations in the equivalent circuit Expressed as XC a ={XC C1 , XC C2 , XC C3 , XC C4 , XC C5 } in a set form;

XLb表示电感种群,b表示等效电路中电感的标识,如第一电感L1的第一电感种群记为XLL1;同理可得,第二电感种群记为XLL2,第三电感种群记为XLL3,第四电感种群记为XLL4,第五电感种群记为XLL5;等效电路中所有电感种群采用集合形式表示为XLb={XLL1,XLL2,XLL3,XLL4,XLL5};XL b represents the inductance population, and b represents the identity of the inductance in the equivalent circuit. For example, the first inductance population of the first inductance L1 is denoted as XL L1 ; similarly, the second inductance population is denoted as XL L2 , and the third inductance population is denoted as XL L2 . is XL L3 , the fourth inductance population is denoted as XL L4 , the fifth inductance population is denoted as XL L5 ; all inductance populations in the equivalent circuit are represented as XL b = {XL L1 , XL L2 , XL L3 , XL L4 , XL L5 };

XRd表示电阻种群,d表示等效电路中电阻的标识,如第一电阻R1的第一电阻种群记为XRR1;同理可得,第二电阻种群记为XRR2,第三电阻种群记为XRR3;等效电路中所有电阻种群采用集合形式表示为XRd={XRR1,XRR2,XRR3};XR d represents the resistance population, and d represents the identification of the resistance in the equivalent circuit. For example, the first resistance population of the first resistance R1 is marked as XR R1 ; similarly, the second resistance population is marked as XR R2 , and the third resistance population is marked as XR R2 . is XR R3 ; all resistance populations in the equivalent circuit are expressed as XR d ={XR R1 , XR R2 , XR R3 } in a collective form;

XTe表示变压器种群,e表示等效电路中变压器的输入/输出电压比。而发明中采用的变压器T0的输入/输出电压比为DT∶1。XT e represents the transformer population, and e represents the input/output voltage ratio of the transformer in the equivalent circuit. The input/output voltage ratio of the transformer T0 used in the invention is DT:1.

在本发明中,待优化变量X={XCa,XLb,XRd,XTe}也可以展开表示为 X = XC C 1 , XC C 2 , XC C 3 , XC C 4 , XC C 5 XL L 1 , XL L 2 , XL L 3 , XL L 4 , XL L 5 XR R 1 , XR R 2 , XR R 3 XT e . In the present invention, the variable X={XC a , XL b , XR d , XT e } to be optimized can also be expressed as x = XC C 1 , XC C 2 , XC C 3 , XC C 4 , XC C 5 XL L 1 , XL L 2 , XL L 3 , XL L 4 , XL L 5 XR R 1 , XR R 2 , XR R 3 XT e .

步骤二:基于遗传算法的染色体处理,获得总种群

Figure BDA00001713824600102
Step 2: Chromosome processing based on genetic algorithm to obtain the total population
Figure BDA00001713824600102

在步骤二中,基于遗传算法中的染色体,对电容种群XCa在变量取值DC中随机生成m个变量值

Figure BDA00001713824600103
0<DC≤800pF。
Figure BDA00001713824600104
表示标识a电容种群在第1个染色体中的变量值,表示标识a电容种群在第2个染色体中的变量值,……,
Figure BDA00001713824600106
表示标识a电容种群在第m个染色体中的变量值,也称标识a电容种群在任意一个染色体中的变量值。In step two, based on the chromosomes in the genetic algorithm, randomly generate m variable values in the variable value DC for the capacitance population XC a
Figure BDA00001713824600103
0<DC≤800pF.
Figure BDA00001713824600104
Indicates the variable value that identifies the a capacitance population in the first chromosome, Indicates the variable value that identifies the a capacitance population in the second chromosome, ...,
Figure BDA00001713824600106
Indicates the variable value that identifies the a-capacitance population in the mth chromosome, and is also called the variable value that identifies the a-capacitance population in any chromosome.

基于遗传算法中的染色体,对电感种群XLb在变量取值DL中随机生成w个变量值

Figure BDA00001713824600107
0<DL≤0.1μH。
Figure BDA00001713824600108
表示标识b电感种群在第1个染色体中的变量值,
Figure BDA00001713824600109
表示标识b电感种群在第2个染色体中的变量值,……,
Figure BDA000017138246001010
表示标识b电感种群在第w个染色体中的变量值,也称标识b电感种群在任意一个染色体中的变量值。Based on the chromosome in the genetic algorithm, randomly generate w variable values in the variable value DL for the inductance population XL b
Figure BDA00001713824600107
0<DL≤0.1μH.
Figure BDA00001713824600108
Indicates the variable value identifying the b inductance population in the first chromosome,
Figure BDA00001713824600109
Indicates the variable value that identifies the b inductance population in the second chromosome, ...,
Figure BDA000017138246001010
Indicates the variable value that identifies the b-inductance population in the wth chromosome, and is also called the variable value that identifies the b-inductance population in any chromosome.

基于遗传算法中的染色体,对电阻种群XRd在变量取值DR中随机生成v个变量值

Figure BDA000017138246001011
0<DR≤5kΩ。
Figure BDA000017138246001012
表示标识d电阻种群在第1个染色体中的变量值,
Figure BDA00001713824600111
表示标识d电阻种群在第2个染色体中的变量值,……,
Figure BDA00001713824600112
表示标识d电阻种群在第v个染色体中的变量值,也称标识d电阻种群在任意一个染色体中的变量值。Based on the chromosome in the genetic algorithm, randomly generate v variable values in the variable value DR for the resistance population XR d
Figure BDA000017138246001011
0<DR≤5kΩ.
Figure BDA000017138246001012
Indicates the variable value identifying the d resistance population in the first chromosome,
Figure BDA00001713824600111
Indicates the variable value that identifies the d resistance population in the second chromosome, ...,
Figure BDA00001713824600112
Indicates the variable value that identifies the d-resistance population in the vth chromosome, and is also called the variable value that identifies the d-resistance population in any chromosome.

基于遗传算法中的染色体,对变压器种群XTe在变量取值DT中随机生成n个变量值

Figure BDA00001713824600113
0.1≤DT≤10。
Figure BDA00001713824600114
表示标识e变压器种群在第1个染色体中的变量值,
Figure BDA00001713824600115
表示标识e变压器种群在第2个染色体中的变量值,……,
Figure BDA00001713824600116
表示标识e变压器种群在第n个染色体中的变量值,也称标识e变压器种群在任意一个染色体中的变量值。Based on the chromosome in the genetic algorithm, randomly generate n variable values in the variable value DT for the transformer population XT e
Figure BDA00001713824600113
0.1≤DT≤10.
Figure BDA00001713824600114
Indicates the variable value identifying the e-transformer population in the first chromosome,
Figure BDA00001713824600115
Indicates the variable value identifying the e-transformer population in the second chromosome, ...,
Figure BDA00001713824600116
Indicates the variable value that identifies the e-transformer population in the nth chromosome, and is also called the variable value that identifies the e-transformer population in any chromosome.

在本发明中,染色体的变量m、w、v和n的取值为200个。对变量组中的所有数值分别进行编码,变量组转化为染色体,一个编码称为染色体中的一个个体。对于待优化变量X={XCa,XLb,XRd,XTe}经遗传算法中的染色体处理得到总种群

Figure BDA00001713824600117
In the present invention, the variables m, w, v and n of the chromosome take 200 values. All values in the variable group are coded separately, and the variable group is transformed into a chromosome, and one code is called an individual in the chromosome. For the variable X={XC a , XL b , XR d , XT e } to be optimized, the total population is obtained by the chromosome processing in the genetic algorithm
Figure BDA00001713824600117

步骤三:以多目标优化函数,按照并列选择法为目标函数中各个函数分配种群;Step 3: use the multi-objective optimization function to allocate populations for each function in the objective function according to the parallel selection method;

在步骤三中,将总种群

Figure BDA00001713824600118
中的全部个体(染色体)按目标函数M目标={f目标,l目标}的个数均等地划分为两个子群体Q1和Q2(子群体Q1也称为第一子群体,子群体Q2也称为第二子群体),对每个子群体分配目标函数M目标={f目标,l目标}中的一个进行优化。在本发明中,若第一子群体Q1采用了目标函数M目标={f目标,l目标}中的天线驻波比f目标进行优化,则第二子群体Q2应当采用目标函数M目标={f目标,l目标}中的转换功率增益l目标进行优化;反之,若第二子群体Q2采用了目标函数M目标={f目标,l目标}中的天线驻波比f目标标进行优化,则第一子群体Q1应当采用目标函数M目标={f目标,l目标}中的转换功率增益l目标进行优化。In step three, the total population
Figure BDA00001713824600118
All individuals (chromosomes) in the target function M target ={f target , l target } are equally divided into two subgroups Q1 and Q2 (subgroup Q1 is also called the first subgroup, subgroup Q 2 is also called the second subgroup), and each subgroup is assigned one of the objective functions Mobjective ={ fobjective , lobjective } for optimization. In the present invention, if the first subgroup Q1 adopts the antenna standing wave ratio f target in the objective function M target ={f target , l target } to optimize, then the second subgroup Q2 should adopt the objective function M target ={f target , l target in the conversion power gain l target is optimized; On the contrary, if the second subgroup Q2 has adopted the antenna standing wave ratio f target in the objective function M target ={f target , l target } For optimization, the first subgroup Q 1 should be optimized using the conversion power gain l objective in the objective function M objective = {f objective , l objective }.

步骤四:以交叉变异获取子种群的优化量;Step 4: Obtain the optimized amount of the subpopulation by crossover mutation;

在步骤四中,对第一子群体Q1进行交叉变异,保留每一代优化量DQ1(也称为第一优化量DQ1);对第二子群体Q2进行交叉变异,保留每一代优化量DQ2(也称为第二优化量DQ2);交叉变异获取每一代优化量的具体步骤为:In step 4, carry out cross-mutation on the first subpopulation Q 1 , and retain the optimization amount DQ 1 of each generation (also called the first optimization amount DQ 1 ); carry out cross-mutation on the second sub-population Q 2 , and retain the optimization amount DQ 1 of each generation. Quantity DQ 2 (also known as the second optimization quantity DQ 2 ); the specific steps for obtaining the optimization quantity of each generation through cross mutation are:

步骤401:获取第一子群体Q1中的任意2个染色体

Figure BDA00001713824600119
作为当前染色体
Figure BDA000017138246001110
也称为当前第一染色体
Figure BDA000017138246001111
Step 401: Obtain any 2 chromosomes in the first subgroup Q 1
Figure BDA00001713824600119
as the current chromosome
Figure BDA000017138246001110
also known as the current first chromosome
Figure BDA000017138246001111

获取第二子群体Q2中的任意2个染色体

Figure BDA000017138246001112
作为当前染色体
Figure BDA000017138246001113
也称为当前第二染色体 Get any 2 chromosomes in the second subpopulation Q 2
Figure BDA000017138246001112
as the current chromosome
Figure BDA000017138246001113
also known as the current second chromosome

步骤402:对当前第一染色体

Figure BDA000017138246001115
中的两个个体进行交叉处理,生成新第一染色体
Figure BDA000017138246001116
表示交叉后第一个染色体,
Figure BDA000017138246001117
表示交叉后第二个染色体;所述交叉处理依据第一适应性策略模型 P c 1 = ( f min - f avg ) / ( f min - f ) , f &le; f avg 1.0 , f > f avg 进行的;Pc1表示第一子群体Q1的交叉概率(也称为第一交叉概率),fmin表示第一子群体Q1中最佳个体适应度值,f表示为要交叉的两个个体中较适应的适应值,且f=min{f1,f2},f1表示染色体
Figure BDA000017138246001119
对应的驻波比优化目标f目标的值,f2表示染色体
Figure BDA00001713824600121
对应的驻波比优化目标f目标的值,favg表示第一子群体Q1的平均适应度值;Step 402: For the current first chromosome
Figure BDA000017138246001115
The two individuals in are crossed over to generate a new first chromosome
Figure BDA000017138246001116
Indicates the first chromosome after crossover,
Figure BDA000017138246001117
Indicates the second chromosome after crossover; the crossover process is based on the first adaptive strategy model P c 1 = ( f min - f avg ) / ( f min - f ) , f &le; f avg 1.0 , f > f avg carried out; P c1 represents the crossover probability of the first subgroup Q 1 (also called the first crossover probability), f min represents the best individual fitness value in the first subgroup Q1 , and f represents the two The more adaptive fitness value in the individual, and f=min{f 1 , f 2 }, f 1 represents the chromosome
Figure BDA000017138246001119
The value of the corresponding SWR optimization target f target , f 2 represents the chromosome
Figure BDA00001713824600121
The value of the corresponding standing wave ratio optimization target f target , f avg represents the average fitness value of the first subgroup Q1 ;

对当前第二染色体

Figure BDA00001713824600122
中的两个个体进行交叉处理,生成新第二染色体
Figure BDA00001713824600123
表示交叉后第三个染色体,
Figure BDA00001713824600124
表示交叉后第四个染色体;所述交叉处理依据第二适应性策略模型 P c 2 = ( l max - l ) / ( l max - l avg ) , l &GreaterEqual; l avg 1.0 , l < l avg 进行的;Pc2表示第二子群体Q2的交叉概率,也称为第二交叉概率,lmax表示第二子群体Q2中最佳个体适应度值,l表示为要交叉的两个个体中较适应的适应值,且l=max{l1,l2},l1表示染色体
Figure BDA00001713824600126
对应的功率优化目标l目标的值,l2表示染色体
Figure BDA00001713824600127
对应的功率优化目标l目标的值,lavg表示第二子群体Q2的平均适应度值;to the current second chromosome
Figure BDA00001713824600122
Two individuals in are crossed over to generate a new second chromosome
Figure BDA00001713824600123
Indicates the third chromosome after crossover,
Figure BDA00001713824600124
Indicates the fourth chromosome after crossover; the crossover process is based on the second adaptive strategy model P c 2 = ( l max - l ) / ( l max - l avg ) , l &Greater Equal; l avg 1.0 , l < l avg carried out; P c2 represents the crossover probability of the second subgroup Q2 , also known as the second crossover probability, l max represents the best individual fitness value in the second subgroup Q2 , and l represents the two individuals to be crossover The more adaptive fitness value in , and l=max{l 1 , l 2 }, l 1 represents the chromosome
Figure BDA00001713824600126
The value of the corresponding power optimization target l target , l 2 represents the chromosome
Figure BDA00001713824600127
The value of the corresponding power optimization target l target , l avg represents the average fitness value of the second subgroup Q2 ;

步骤403:比较f1与f3和f2与f4,若f1≥f3且f2≥f4时,用AQ交叉代替AQ当前;若f1<f3或f2<f4时,则AQ当前不变;f3表示交叉后第一个染色体

Figure BDA00001713824600128
对应的驻波比优化目标f目标的值,f4表示交叉后第二个染色体
Figure BDA00001713824600129
对应的驻波比优化目标f目标的值;Step 403: Compare f 1 and f 3 and f 2 and f 4 , if f 1 ≥ f 3 and f 2 ≥ f 4 , use AQ cross instead of AQ current ; if f 1 < f 3 or f 2 < f 4 , then AQ is currently unchanged; f 3 means the first chromosome after crossover
Figure BDA00001713824600128
The value of the corresponding VSWR optimization target f target , f 4 means the second chromosome after crossover
Figure BDA00001713824600129
The value of the corresponding SWR optimization target f target ;

比较l1与l3和l2与l4,若l1≤l3且l2≤l4时,用BQ交叉代替BQ当前;若l1>l3或l2>l4时,则BQ当前不变;l3表示交叉后第三个染色体

Figure BDA000017138246001210
对应的功率优化目标l目标的值,l4表示交叉后第四染色体
Figure BDA000017138246001211
对应的功率优化目标l目标的值;Compare l 1 and l 3 and l 2 and l 4 , if l 1l 3 and l 2 ≤ l 4 , use BQ cross instead of BQ current ; if l 1 > l 3 or l 2 > l 4 , then BQ Currently unchanged; l 3 means the third chromosome after crossover
Figure BDA000017138246001210
The value of the corresponding power optimization target l target , l 4 means the fourth chromosome after crossover
Figure BDA000017138246001211
The value of the corresponding power optimization target l target ;

步骤404:对当前第一染色体

Figure BDA000017138246001212
中的两个个体分别进行变异处理,生成变异第一染色体
Figure BDA000017138246001213
表示变异后的染色体,
Figure BDA000017138246001215
表示
Figure BDA000017138246001216
变异后的染色体;所述的变异处理依据第三适应性策略模型 P m 1 = 0.5 ( f min - f avg ) / ( f min - f &prime; ) , f &prime; &le; f avg 0.5 , f &prime; > f avg 进行的;Pm1表示第一子群体Q1的变异概率(也称为第一变异概率),fmin表示第一子群体Q1中最佳个体适应度值,favg表示第一子群体Q1的平均适应度值,f′为需要变异个体的适应度值,且f1表示染色体对应的驻波比优化目标f目标的值,f2表示染色体
Figure BDA000017138246001220
对应的驻波比优化目标f目标的值;Step 404: For the current first chromosome
Figure BDA000017138246001212
The two individuals in are mutated separately to generate the mutated first chromosome
Figure BDA000017138246001213
express mutated chromosomes,
Figure BDA000017138246001215
express
Figure BDA000017138246001216
Chromosomes after mutation; the mutation processing is based on the third adaptive strategy model P m 1 = 0.5 ( f min - f avg ) / ( f min - f &prime; ) , f &prime; &le; f avg 0.5 , f &prime; > f avg carried out; P m1 represents the mutation probability of the first subgroup Q 1 (also known as the first mutation probability), f min represents the best individual fitness value in the first subgroup Q1 , and f avg represents the first subgroup Q The average fitness value of 1 , f' is the fitness value of the individual that needs to be mutated, and f 1 means chromosome The value of the corresponding SWR optimization target f target , f 2 represents the chromosome
Figure BDA000017138246001220
The value of the corresponding SWR optimization target f target ;

对当前第二染色体

Figure BDA000017138246001221
中的两个个体分别进行变异处理,生成变异第二染色体
Figure BDA000017138246001222
表示
Figure BDA000017138246001223
变异后的染色体,
Figure BDA000017138246001224
表示
Figure BDA000017138246001225
变异后的染色体;所述变异处理依据第四适应性策略模型 P m 2 = 0.5 ( l max - l &prime; ) / ( l max - l avg ) , l &prime; &GreaterEqual; l avg 0.5 , l &prime; < l avg 进行的;Pm2表示第二子群体Q2的变异概率,也称为第二变异概率,lmax表示第二子群体Q2中最佳个体适应度值,lavg表示第二子群体Q2的平均适应度值,l′为要变异个体的适应度值且
Figure BDA000017138246001227
l1表示染色体
Figure BDA00001713824600131
对应的功率优化目标l目标的值,l2表示染色体
Figure BDA00001713824600132
对应的功率优化目标l目标的值;to the current second chromosome
Figure BDA000017138246001221
The two individuals in are mutated separately to generate the mutated second chromosome
Figure BDA000017138246001222
express
Figure BDA000017138246001223
mutated chromosomes,
Figure BDA000017138246001224
express
Figure BDA000017138246001225
Chromosomes after mutation; the mutation processing is based on the fourth adaptive strategy model P m 2 = 0.5 ( l max - l &prime; ) / ( l max - l avg ) , l &prime; &Greater Equal; l avg 0.5 , l &prime; < l avg carried out; P m2 represents the mutation probability of the second subgroup Q2 , also known as the second mutation probability, l max represents the best individual fitness value in the second subgroup Q2 , and l avg represents the second subgroup Q2 The average fitness value of , l' is the fitness value of the individual to be mutated and
Figure BDA000017138246001227
l 1 means chromosome
Figure BDA00001713824600131
The value of the corresponding power optimization target l target , l 2 represents the chromosome
Figure BDA00001713824600132
The value of the corresponding power optimization target l target ;

步骤405:比较f1与f5,若f1>f5时,用

Figure BDA00001713824600133
代替
Figure BDA00001713824600134
若f1≤f5时,则
Figure BDA00001713824600135
不变;f5表示
Figure BDA00001713824600136
变异后的染色体
Figure BDA00001713824600137
对应的驻波比优化目标f目标的值;Step 405: compare f 1 and f 5 , if f 1 > f 5 , use
Figure BDA00001713824600133
replace
Figure BDA00001713824600134
If f 1 ≤ f 5 , then
Figure BDA00001713824600135
No change; f 5 means
Figure BDA00001713824600136
mutated chromosome
Figure BDA00001713824600137
The value of the corresponding SWR optimization target f target ;

比较f2与f6,若f2>f6时,用

Figure BDA00001713824600138
代替
Figure BDA00001713824600139
若f2≤f6时,则
Figure BDA000017138246001310
不变;f6表示变异后的染色体
Figure BDA000017138246001312
对应的驻波比优化目标f目标的值;Compare f 2 and f 6 , if f 2 > f 6 , use
Figure BDA00001713824600138
replace
Figure BDA00001713824600139
If f 2 ≤ f 6 , then
Figure BDA000017138246001310
No change; f 6 means mutated chromosome
Figure BDA000017138246001312
The value of the corresponding SWR optimization target f target ;

比较l1与l5,若l1<l5时,用

Figure BDA000017138246001313
代替若l1≥l5时,则
Figure BDA000017138246001315
不变;l5表示
Figure BDA000017138246001316
变异后的染色体
Figure BDA000017138246001317
对应的功率优化目标l目标的值;Compare l 1 and l 5 , if l 1 < l 5 , use
Figure BDA000017138246001313
replace If l 1l 5 , then
Figure BDA000017138246001315
unchanged; l 5 means
Figure BDA000017138246001316
mutated chromosome
Figure BDA000017138246001317
The value of the corresponding power optimization target l target ;

比较l2与l6,若l2<l6时,用代替

Figure BDA000017138246001319
若l2≥l6时,则
Figure BDA000017138246001320
不变;l6表示变异后的染色体
Figure BDA000017138246001322
对应的功率优化目标l目标的值;Compare l 2 and l 6 , if l 2 <l 6 , use replace
Figure BDA000017138246001319
If l 2l 6 , then
Figure BDA000017138246001320
unchanged; l 6 means mutated chromosome
Figure BDA000017138246001322
The value of the corresponding power optimization target l target ;

重复步骤401至步骤405,直到第一子群体Q1和第二子群体Q2中染色体全部交叉变异完成,得到当前世代第一子群体Q1的最优优化量,即第一优化量DQ1,第二子群体Q2的最优优化量,即第二优化量DQ2Repeat steps 401 to 405 until all the cross-mutation of chromosomes in the first subgroup Q1 and the second subgroup Q2 is completed, and the optimal optimization quantity of the first subgroup Q1 of the current generation is obtained, that is, the first optimization quantity DQ1 , the optimal optimization quantity of the second subgroup Q 2 , that is, the second optimization quantity DQ 2 .

步骤五:依据目标函数M目标={f目标,l目标}遍历优化总种群Q′中所有的染色体得到遗传算法中的当前代最优个体;Step 5: According to the objective function M objective = {f objective , l objective }, traverse all chromosomes in the optimized total population Q total ' to obtain the current generation optimal individual in the genetic algorithm;

在步骤五中,合并第一优化量DQ1和第二优化量DQ2组成新的种群,即优化总种群Q′,依据目标函数M目标={f目标,l目标}遍历优化总种群Q′中所有的染色体得到遗传算法中的当前代最优个体

Figure BDA000017138246001323
并把
Figure BDA000017138246001324
赋给Ihbest,以便下一代最优个体与当前代的最优个体进行比较,在两者中选择出较优个体,并且赋给Ihbest。In step 5, the first optimized quantity DQ 1 and the second optimized quantity DQ 2 are combined to form a new population, that is, the optimized total population Q total ', and the total optimized population Q is traversed according to the objective function M objective = {f objective , l objective } All the chromosomes in the total ' get the optimal individual of the current generation in the genetic algorithm
Figure BDA000017138246001323
and put
Figure BDA000017138246001324
It is assigned to I hbest , so that the optimal individual of the next generation can be compared with the optimal individual of the current generation, and a better individual is selected from the two, and assigned to I hbest .

判断是否达到遗传算法的终止条件,若不满足遗传终止条件,则返回步骤四,若满足遗传终止条件,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;所述遗传算法的终止条件是指迭代步数K是否为0,若迭代步数K不为0,则返回步骤三,若迭代步数K为0,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;为了与待优化变量X={XCa,XLb,XRd,XTe}的表达形式相对应,所述的电子元件参数最优解Ihbest集合表达形式为 I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest . Judging whether the termination condition of the genetic algorithm is reached, if the termination condition of the genetic algorithm is not satisfied, then return to step 4, if the termination condition of the genetic algorithm is met, then the optimal individual I hbest in the genetic algorithm is obtained, and retained, and then step 6 is entered; The termination condition of the genetic algorithm refers to whether the number of iteration steps K is 0. If the number of iteration steps K is not 0, return to step 3. If the number of iteration steps K is 0, the optimal individual I hbest in the genetic algorithm is obtained. And keep it, go to step six; in order to correspond to the expression form of the variable X={XC a , XL b , XR d , XT e } to be optimized, the expression form of the optimal solution I hbest set of electronic component parameters is I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest .

Figure BDA000017138246001326
表示第一电容种群XCC1经遗传算法后的最优电容值;
Figure BDA000017138246001326
Indicates the optimal capacitance value of the first capacitance population XC C1 after genetic algorithm;

Figure BDA000017138246001327
表示第二电容种群XCC2经遗传算法后的最优电容值;
Figure BDA000017138246001327
Indicates the optimal capacitance value of the second capacitance population XC C2 after genetic algorithm;

表示第三电容种群XCC3经遗传算法后的最优电容值; Indicates the optimal capacitance value of the third capacitor population XC C3 after genetic algorithm;

表示第四电容种群XCC4经遗传算法后的最优电容值; Indicates the optimal capacitance value of the fourth capacitance population XC C4 after genetic algorithm;

Figure BDA000017138246001330
表示第五电容种群XCC5经遗传算法后的最优电容值;
Figure BDA000017138246001330
Indicates the optimal capacitance value of the fifth capacitor population XC C5 after genetic algorithm;

Figure BDA000017138246001331
表示第一电感种群XLL1经遗传算法后的最优电感值;
Figure BDA000017138246001331
Indicates the optimal inductance value of the first inductance population XL L1 after genetic algorithm;

Figure BDA00001713824600141
表示第二电感种群XLL2经遗传算法后的最优电感值;
Figure BDA00001713824600141
Indicates the optimal inductance value of the second inductance population XL L2 after genetic algorithm;

Figure BDA00001713824600142
表示第三电感种群XLL3经遗传算法后的最优电感值;
Figure BDA00001713824600142
Indicates the optimal inductance value of the third inductance population XL L3 after genetic algorithm;

Figure BDA00001713824600143
表示第四电感种群XLL4经遗传算法后的最优电感值;
Figure BDA00001713824600143
Indicates the optimal inductance value of the fourth inductance population XL L4 after genetic algorithm;

Figure BDA00001713824600144
表示第五电感种群XLL5经遗传算法后的最优电感值;
Figure BDA00001713824600144
Indicates the optimal inductance value of the fifth inductance population XL L5 after genetic algorithm;

表示第一电阻种群XRR1经遗传算法后的最优电组值; Indicates the optimal electrical group value of the first resistance population XR R1 after genetic algorithm;

Figure BDA00001713824600146
表示第二电阻种群XRR2经遗传算法后的最优电组值;
Figure BDA00001713824600146
Indicates the optimal electrical group value of the second resistance population XR R2 after genetic algorithm;

Figure BDA00001713824600147
表示第三电阻种群XRR3经遗传算法后的最优电组值;
Figure BDA00001713824600147
Indicates the optimal electrical group value of the third resistance population XR R3 after genetic algorithm;

Figure BDA00001713824600148
表示变压器种群XTe经遗传算法后的最优变压器的输入/输出电压比值。
Figure BDA00001713824600148
Indicates the input/output voltage ratio of the optimal transformer of the transformer population XT e after the genetic algorithm.

步骤六:对当前代最优个体Ihbest进行初始退火赋值,得到初始个体I初始Step 6: Perform an initial annealing assignment on the best individual I hbest of the current generation to obtain the initial individual I;

在本发明中,对 I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest 进行初始退火赋值,则有模拟退火算法的初始个体为

Figure BDA000017138246001410
In the present invention, for I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest Perform initial annealing assignment, then the initial individual with simulated annealing algorithm is
Figure BDA000017138246001410

Figure BDA000017138246001411
表示第一电容种群XCC1在模拟退火算法中设置的初始值,且
Figure BDA000017138246001412
Figure BDA000017138246001411
Represents the initial value of the first capacitance population XC C1 set in the simulated annealing algorithm, and
Figure BDA000017138246001412

Figure BDA000017138246001413
表示第二电容种群XCC2在模拟退火算法中设置的初始值,且
Figure BDA000017138246001414
Figure BDA000017138246001413
Represents the initial value of the second capacitance population XC C2 set in the simulated annealing algorithm, and
Figure BDA000017138246001414

Figure BDA000017138246001415
表示第三电容种群XCC3在模拟退火算法中设置的初始值,且
Figure BDA000017138246001416
Figure BDA000017138246001415
Represents the initial value of the third capacitance population XC C3 set in the simulated annealing algorithm, and
Figure BDA000017138246001416

Figure BDA000017138246001417
表示第四电容种群XCC4在模拟退火算法中设置的初始值,且
Figure BDA000017138246001418
Figure BDA000017138246001417
Represents the initial value of the fourth capacitance population XC C4 set in the simulated annealing algorithm, and
Figure BDA000017138246001418

Figure BDA000017138246001419
表示第五电容种群XCC5在模拟退火算法中设置的初始值,且
Figure BDA000017138246001419
Represents the initial value of the fifth capacitance population XC C5 set in the simulated annealing algorithm, and

Figure BDA000017138246001421
表示第一电感种群XLL1在模拟退火算法中设置的初始值,且
Figure BDA000017138246001422
Figure BDA000017138246001421
Represents the initial value of the first inductance population XL L1 set in the simulated annealing algorithm, and
Figure BDA000017138246001422

表示第二电感种群XLL2在模拟退火算法中设置的初始值,且

Figure BDA000017138246001424
Represents the initial value of the second inductance population XL L2 set in the simulated annealing algorithm, and
Figure BDA000017138246001424

Figure BDA000017138246001425
表示第三电感种群XLL3在模拟退火算法中设置的初始值,且
Figure BDA000017138246001425
Represents the initial value of the third inductance population XL L3 set in the simulated annealing algorithm, and

Figure BDA000017138246001427
表示第四电感种群XLL4在模拟退火算法中设置的初始值,且
Figure BDA000017138246001428
Figure BDA000017138246001427
Represents the initial value of the fourth inductance population XL L4 set in the simulated annealing algorithm, and
Figure BDA000017138246001428

Figure BDA000017138246001429
表示第五电感种群XLL5在模拟退火算法中设置的初始值,且
Figure BDA000017138246001430
Figure BDA000017138246001429
Indicates the initial value of the fifth inductance population XL L5 set in the simulated annealing algorithm, and
Figure BDA000017138246001430

Figure BDA000017138246001431
表示第一电阻种群XRR1在模拟退火算法中设置的初始值,且
Figure BDA000017138246001432
Figure BDA000017138246001431
Represents the initial value of the first resistance population XR R1 set in the simulated annealing algorithm, and
Figure BDA000017138246001432

表示第二电阻种群XRR2在模拟退火算法中设置的初始值,且

Figure BDA000017138246001434
Represents the initial value of the second resistance population XR R2 set in the simulated annealing algorithm, and
Figure BDA000017138246001434

Figure BDA000017138246001435
表示第三电阻种群XRR3在模拟退火算法中设置的初始值,且
Figure BDA000017138246001436
Figure BDA000017138246001435
Represents the initial value of the third resistance population XR R3 set in the simulated annealing algorithm, and
Figure BDA000017138246001436

Figure BDA000017138246001437
表示变压器种群XTe在模拟退火算法中设置的初始值,且
Figure BDA000017138246001438
Figure BDA000017138246001437
Represents the initial value of the transformer population XT e set in the simulated annealing algorithm, and
Figure BDA000017138246001438

步骤七:对当前代最优个体Ihbest进行试探赋值,得到试探个体I试探Step 7: Assign a trial value to the best individual I hbest of the current generation to obtain the trial individual I trial ;

在本发明中,对模拟退火算法的初始个体

Figure BDA00001713824600151
进行试探赋值,则有新试探值个体
Figure BDA00001713824600152
In the present invention, the initial individual of the simulated annealing algorithm
Figure BDA00001713824600151
If tentative assignment is performed, there will be a new tentative value individual
Figure BDA00001713824600152

Figure BDA00001713824600153
是第一电容种群XCC1在变量取值范围为ΔxC1内随机生成的,
Figure BDA00001713824600154
Figure BDA00001713824600153
is randomly generated by the first capacitor population XC C1 within the variable value range of Δx C1 ,
Figure BDA00001713824600154

是第二电容种群XCC2在变量取值范围为ΔxC2内随机生成的,

Figure BDA00001713824600156
is randomly generated by the second capacitor population XC C2 within the variable value range of Δx C2 ,
Figure BDA00001713824600156

Figure BDA00001713824600157
是第三电容种群XCC3在变量取值范围为ΔxC3内随机生成的,
Figure BDA00001713824600158
Figure BDA00001713824600157
is randomly generated by the third capacitor population XC C3 within the variable value range of Δx C3 ,
Figure BDA00001713824600158

是第四电容种群XCC4在变量取值范围为ΔxC4内随机生成的,

Figure BDA000017138246001510
is randomly generated by the fourth capacitor population XC C4 within the variable value range of Δx C4 ,
Figure BDA000017138246001510

Figure BDA000017138246001511
是第五电容种群XCC5在变量取值范围为ΔxC5内随机生成的,
Figure BDA000017138246001512
Figure BDA000017138246001511
is randomly generated by the fifth capacitor population XC C5 within the variable value range of Δx C5 ,
Figure BDA000017138246001512

Figure BDA000017138246001513
是第一电感种群XLL1在变量取值范围为ΔxL1内随机生成的,
Figure BDA000017138246001514
Figure BDA000017138246001513
is randomly generated by the first inductance population XL L1 within the variable value range of Δx L1 ,
Figure BDA000017138246001514

是第二电感种群XLL2在变量取值范围为ΔxL2内随机生成的,

Figure BDA000017138246001516
is randomly generated by the second inductance population XL L2 within the variable value range of Δx L2 ,
Figure BDA000017138246001516

Figure BDA000017138246001517
是第三电感种群XLL3在变量取值范围为ΔxL3内随机生成的,
Figure BDA000017138246001518
Figure BDA000017138246001517
is randomly generated by the third inductance population XL L3 within the variable value range of Δx L3 ,
Figure BDA000017138246001518

是第四电感种群XLL4在变量取值范围为ΔxL4内随机生成的,

Figure BDA000017138246001520
is randomly generated by the fourth inductance population XL L4 within the variable value range of Δx L4 ,
Figure BDA000017138246001520

Figure BDA000017138246001521
是第五电感种群XLL5在变量取值范围为ΔxL5内随机生成的,
Figure BDA000017138246001522
Figure BDA000017138246001521
is randomly generated by the fifth inductance population XL L5 within the variable value range of Δx L5 ,
Figure BDA000017138246001522

Figure BDA000017138246001523
是第一电阻种群XRR1在变量取值范围为ΔxR1内随机生成的,
Figure BDA000017138246001524
Figure BDA000017138246001523
is randomly generated by the first resistance population XR R1 within the variable value range of Δx R1 ,
Figure BDA000017138246001524

Figure BDA000017138246001525
是第二电阻种群XRR2在变量取值范围为ΔxR2内随机生成的,
Figure BDA000017138246001525
is randomly generated by the second resistance population XR R2 within the variable value range of Δx R2 ,

Figure BDA000017138246001527
是第三电阻种群XRR3在变量取值范围为ΔxR3内随机生成的,
Figure BDA000017138246001528
Figure BDA000017138246001527
is randomly generated by the third resistance population XR R3 within the variable value range of Δx R3 ,
Figure BDA000017138246001528

Figure BDA000017138246001529
是变压器种群XTe在变量取值范围为ΔxTe内随机生成的,
Figure BDA000017138246001530
Figure BDA000017138246001529
is randomly generated by the transformer population XT e within the variable value range Δx Te ,
Figure BDA000017138246001530

步骤八:依据目标函数M目标={f目标,l目标}、初始个体I初始和试探个体I试探进行模拟退火优化,得到电子元件参数的优化解;Step 8: Perform simulated annealing optimization according to the objective function M target ={f target , l target }, the initial individual I initial and the trial individual I trial to obtain the optimized solution of the electronic component parameters;

步骤801:计算试探个体

Figure BDA000017138246001531
对应的目标函数M目标={f目标,l目标}的值分别为ff1和ll1,ff1表示试探个体I试探对应的驻波比优化目标f目标的值,ll1表示试探个体I试探对应的功率优化目标l目标的值;Step 801: Calculate the trial individual
Figure BDA000017138246001531
The values of the corresponding objective function M target = {f target , l target } are respectively ff 1 and ll 1 , ff 1 represents the value of the SWR optimization target f target corresponding to the trial individual I trial , and ll 1 represents the value of the trial individual I trial The value of the corresponding power optimization target l target ;

步骤802:计算初始个体

Figure BDA00001713824600161
对应的目标函数值M目标={f目标,l目标}的值分别为ff2和ll2,ff2表示初始个体I初始对应的驻波比优化目标f目标的值,ll2表示初始个体I初始对应的功率优化目标l目标的值;Step 802: Calculate the initial individual
Figure BDA00001713824600161
The values of the corresponding objective function value M target = {f target , l target } are ff 2 and ll 2 respectively, ff 2 represents the value of initial individual I corresponding to the SWR optimization target f target , ll 2 represents the initial individual I The value of the initial corresponding power optimization target l target ;

步骤803:判断试探个体I试探的目标函数值M目标={f目标,l目标}的值ff1和ll1是否优于初始个体I初始对应的目标函数值M目标={f目标,l目标}的值ff2和ll2,若ff1≤ff2且ll1≥ll2,则进入步骤804,否则返回步骤801;Step 803: Judging whether the values ff 1 and ll 1 of the objective function value Mtarget ={ ftarget , ltarget } of the trial individual I are better than the initial corresponding objective function value Mtarget ={ ftarget , ltarget } values ff 2 and ll 2 , if ff 1 ≤ ff 2 and ll 1 ≥ ll 2 , enter step 804, otherwise return to step 801;

步骤804:计算试探个体I试探是否满足接收函数关系 P VSWR = exp ( ff 1 - ff 2 T now ) > r &Element; [ 0,1 ] P G = exp ( ll 2 - ll 1 T now ) > r &Element; [ 0,1 ] , 若满足则将试探个体I试探替代初始个体I初始,进入步骤805;若不满足则返回步骤801;PVSWR表示驻波比对应的接收概率,PG表示转换增益对应的接收概率,Tnow表示当前温度,r是在[0,1]范围内以均匀分布函数的概率随机生成的随机数,即r=RAN(0,1)Step 804: Calculate whether the trial individual I trial satisfies the receiver function relationship P VSWR = exp ( ff 1 - ff 2 T now ) > r &Element; [ 0,1 ] P G = exp ( ll 2 - ll 1 T now ) > r &Element; [ 0,1 ] , If it is satisfied, the trial individual I will replace the initial individual I, and enter step 805; if not, return to step 801; P VSWR represents the receiving probability corresponding to the standing wave ratio, PG represents the receiving probability corresponding to the conversion gain, and T now represents The current temperature, r is a random number randomly generated with the probability of a uniform distribution function in the range [0, 1], that is, r = RAN(0, 1)

步骤805:在退火算法中以降温速度a进行温度降低,并判断当前温度Tnow是否小于截止温度Tend,若Tnow大于Tend,则返回步骤801;若Tnow小于等于Tend,则将优化后的初始个体I初始作为遗传-模拟退火处理后的电子元件参数优化解Ibest I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest . Step 805: In the annealing algorithm, the temperature is lowered at the cooling speed a, and it is judged whether the current temperature T now is less than the cut-off temperature T end , if T now is greater than T end , return to step 801; if T now is less than or equal to T end , then set The optimized initial individual I is initially used as the electronic component parameter optimization solution I best after genetic-simulated annealing treatment, I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest .

遗传算法和模拟退火算法的实现都需要合理选择多个控制参数。本发明的控制参数选择如下:The realization of both genetic algorithm and simulated annealing algorithm needs to select several control parameters reasonably. The control parameters of the present invention are selected as follows:

遗传算法部分:迭代步数K为250。Genetic algorithm part: the number of iteration steps K is 250.

模拟退火算法部分:初始温度T0为0.05度,截止温度Tend为0.00001度,降温速度a为0.9。Simulated annealing algorithm part: the initial temperature T 0 is 0.05 degrees, the cut-off temperature T end is 0.00001 degrees, and the cooling rate a is 0.9.

采用matlab软件对匹配网络中电子元件(如图2所示)参数进行遗传-模拟退火组合算法仿真处理,得到的各优化参数如表1所示。Matlab software is used to simulate the parameters of the electronic components in the matching network (as shown in Figure 2) by genetic-simulated annealing combination algorithm, and the optimized parameters are shown in Table 1.

表1遗传-模拟退火组合算法优化得到的匹配网络元件值Table 1 The matching network component values obtained by the optimization of genetic-simulated annealing combined algorithm

  元件 component   元件值 component value   元件 component   元件值 component value   T0(DT:1) T0 (DT: 1)   0.88 0.88   R1 R1   7.2Ω 7.2Ω   R2 R2   955Ω 955Ω   R3 R3   900Ω 900Ω   C1 C1   23pF 23pF   L1 L1   1.8pH 1.8pH

  C2 C2   9pF 9pF   L2 L2   18nH 18nH   C3 C3   7.8pF 7.8pF   L3 L3   10nH 10nH   C4 C4   0pF 0pF   L4 L4   25nH 25nH   C5 C5   15pF 15pF   L5 L5   1.1pH 1.1pH

由于优化得到的匹配网络中L1、C4、L5的元件值很小,其对匹配网络的贡献不大,可将这部分元件去掉。简化后的天线宽带匹配网络的结构示意图如图4所示。在图4中,该宽带匹配网络等效电路中天线的连接端与变压器T0的1端连接;变压器T0的2端接地;同轴电缆的1端与第一电阻R1的一端连接,同轴电缆的2端接地,同轴电缆的1端和2端之间并联有第三电阻R3;Because the component values of L1, C4, and L5 in the optimized matching network are very small, and their contribution to the matching network is not large, these components can be removed. The structure diagram of the simplified antenna broadband matching network is shown in Fig. 4 . In Fig. 4, the connection end of the antenna in the equivalent circuit of the broadband matching network is connected to the 1 end of the transformer T0; the 2 ends of the transformer T0 are grounded; the 1 end of the coaxial cable is connected to the end of the first resistor R1, and the coaxial cable 2 ends of the coaxial cable are grounded, and a third resistor R3 is connected in parallel between 1 end and 2 ends of the coaxial cable;

变压器T0的3端经第一电容C1、第二电容C2后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to terminal 4 of the transformer T0 through the first capacitor C1 and the second capacitor C2;

变压器T0的3端经第一电容C1、第二电感L2后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to terminal 4 of the transformer T0 through the first capacitor C1 and the second inductance L2;

变压器T0的3端经第一电容C1、第三电容C3、第三电感L3、第四电感L4后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to terminal 4 of the transformer T0 through the first capacitor C1, the third capacitor C3, the third inductor L3, and the fourth inductor L4;

变压器T0的3端经第一电容C1、第三电容C3、第三电感L3、第五电容C5、第二电阻R2后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to terminal 4 of the transformer T0 through the first capacitor C1, the third capacitor C3, the third inductor L3, the fifth capacitor C5, and the second resistor R2;

变压器T0的3端经第一电容C1、第三电容C3、第三电感L3、第五电容C5、第一电阻R1、第三电阻R3后接入变压器T0的4端。Terminal 3 of the transformer T0 is connected to terminal 4 of the transformer T0 via the first capacitor C1 , the third capacitor C3 , the third inductor L3 , the fifth capacitor C5 , the first resistor R1 and the third resistor R3 .

在本发明中,在变压器T0的副边与同轴电缆接入端之间运用多级滤波(由两个T形L-C网络构成)的处理方式对天线阻抗进行匹配,使得宽带匹配网络等效电路的结构合理。In the present invention, between the secondary side of the transformer T0 and the coaxial cable access end, the antenna impedance is matched by using a multi-stage filter (consisting of two T-shaped L-C networks), so that the broadband matching network equivalent circuit The structure is reasonable.

Claims (6)

1.一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其特征在于包括有下列步骤:1. a method for optimizing the parameters of electronic components in the antenna broadband matching network using genetic-simulated annealing combination, is characterized in that comprising the following steps: 步骤一:基于遗传算法的种群初始化,获得待优化变量X={XCa,XLb,XRd,XTe};Step 1: Initialize the population based on the genetic algorithm, and obtain the variables to be optimized X={XC a , XL b , XR d , XT e }; 在步骤一中,将宽带匹配网络等效电路中电容、电感和电阻采用基于遗传算法的的种群处理,得到待优化变量X={XCa,XLb,XRd,XTe};In step 1, the capacitance, inductance and resistance in the equivalent circuit of the broadband matching network are processed by the population based on the genetic algorithm, and the variables to be optimized X={XC a , XL b , XR d , XT e } are obtained; 所述待优化变量X={XCa,XLb,XRd,XTe}中XCa表示电容种群,a表示等效电路中电容的标识,如第一电容C1的第一电容种群记为XCC1;同理可得,第二电容种群记为XCC2,第三电容种群记为XCC3,第四电容种群记为XCC4,第五电容种群记为XCCC5;等效电路中所有电容种群采用集合形式表示为XCa={XCC1,XCC2,XCC3,XCC4,XCC5};In the variable X={XC a , XL b , XR d , XT e } to be optimized, XC a represents the capacitance population, and a represents the identification of the capacitance in the equivalent circuit, such as the first capacitance population of the first capacitance C1 is denoted as XC C1 ; similarly, the second capacitor population is marked as XC C2 , the third capacitor population is marked as XC C3 , the fourth capacitor population is marked as XC C4 , and the fifth capacitor population is marked as XCC C5 ; all capacitor populations in the equivalent circuit Expressed as XC a = {XC C1 , XC C2 , XC C3 , XC C4 , XC C5 } in a set form; XLb表示电感种群,b表示等效电路中电感的标识,如第一电感L1的第一电感种群记为XLL1;同理可得,第二电感种群记为XLL2,第三电感种群记为XLL3,第四电感种群记为XLL4,第五电感种群记为XLL5;等效电路中所有电感种群采用集合形式表示为XLb={XLL1,XLL2,XLL3,XLL4,XLL5};XL b represents the inductance population, and b represents the identity of the inductance in the equivalent circuit. For example, the first inductance population of the first inductance L1 is denoted as XL L1 ; similarly, the second inductance population is denoted as XL L2 , and the third inductance population is denoted as XL L2 . is XL L3 , the fourth inductance population is denoted as XL L4 , the fifth inductance population is denoted as XL L5 ; all inductance populations in the equivalent circuit are represented as XL b = {XL L1 , XL L2 , XL L3 , XL L4 , XL L5 }; XRd表示电阻种群,d表示等效电路中电阻的标识,如第一电阻R1的第一电阻种群记为XRR1;同理可得,第二电阻种群记为XRR2,第三电阻种群记为XRR3;等效电路中所有电阻种群采用集合形式表示为XRd={XRR1,XRR2,XRR3};XR d represents the resistance population, and d represents the identification of the resistance in the equivalent circuit. For example, the first resistance population of the first resistance R1 is marked as XR R1 ; similarly, the second resistance population is marked as XR R2 , and the third resistance population is marked as XR R2 . is XR R3 ; all resistance populations in the equivalent circuit are expressed as XR d ={XR R1 , XR R2 , XR R3 } in a collective form; XTe表示变压器种群,e表示等效电路中变压器的输入/输出电压比;XT e represents the transformer population, and e represents the input/output voltage ratio of the transformer in the equivalent circuit; 步骤二:基于遗传算法的染色体处理,获得总种群
Figure FDA00001713824500011
Step 2: Chromosome processing based on genetic algorithm to obtain the total population
Figure FDA00001713824500011
在步骤二中,基于遗传算法中的染色体,对电容种群XCa在变量取值DC中随机生成m个变量值 DXC a m = { XC a 1 , XC a 2 , &CenterDot; &CenterDot; &CenterDot; , XC a m } , 0<DC≤800pF;
Figure FDA00001713824500013
表示标识a电容种群在第1个染色体中的变量值,
Figure FDA00001713824500014
表示标识a电容种群在第2个染色体中的变量值,……,
Figure FDA00001713824500015
表示标识a电容种群在第m个染色体中的变量值,也称标识a电容种群在任意一个染色体中的变量值;
In step two, based on the chromosomes in the genetic algorithm, randomly generate m variable values in the variable value DC for the capacitance population XC a DXC a m = { XC a 1 , XC a 2 , &CenterDot; &CenterDot; &CenterDot; , XC a m } , 0<DC≤800pF;
Figure FDA00001713824500013
Indicates the variable value that identifies the a capacitance population in the first chromosome,
Figure FDA00001713824500014
Indicates the variable value that identifies the a capacitance population in the second chromosome, ...,
Figure FDA00001713824500015
Indicates the variable value that identifies the a-capacitance population in the mth chromosome, also known as the variable value that identifies the a-capacitance population in any chromosome;
基于遗传算法中的染色体,对电感种群XLb在变量取值DL中随机生成w个变量值
Figure FDA00001713824500016
0<DL≤0.1μH;
Figure FDA00001713824500017
表示标识b电感种群在第1个染色体中的变量值,
Figure FDA00001713824500018
表示标识b电感种群在第2个染色体中的变量值,……,
Figure FDA00001713824500019
表示标识b电感种群在第w个染色体中的变量值,也称标识b电感种群在任意一个染色体中的变量值;
Based on the chromosome in the genetic algorithm, randomly generate w variable values in the variable value DL for the inductance population XL b
Figure FDA00001713824500016
0<DL≤0.1μH;
Figure FDA00001713824500017
Indicates the variable value identifying the b inductance population in the first chromosome,
Figure FDA00001713824500018
Indicates the variable value that identifies the b inductance population in the second chromosome, ...,
Figure FDA00001713824500019
Indicates the variable value that identifies the b inductance population in the wth chromosome, also known as the variable value that identifies the b inductance population in any chromosome;
基于遗传算法中的染色体,对电阻种群XRd在变量取值DR中随机生成v个变量值
Figure FDA00001713824500021
0<DR≤5kΩ;
Figure FDA00001713824500022
表示标识d电阻种群在第1个染色体中的变量值,
Figure FDA00001713824500023
表示标识d电阻种群在第2个染色体中的变量值,……,表示标识d电阻种群在第v个染色体中的变量值,也称标识d电阻种群在任意一个染色体中的变量值;
Based on the chromosome in the genetic algorithm, randomly generate v variable values in the variable value DR for the resistance population XR d
Figure FDA00001713824500021
0<DR≤5kΩ;
Figure FDA00001713824500022
Indicates the variable value identifying the d resistance population in the first chromosome,
Figure FDA00001713824500023
Indicates the variable value that identifies the d resistance population in the second chromosome, ..., Indicates the variable value that identifies the d resistance population in the vth chromosome, also known as the variable value that identifies the d resistance population in any chromosome;
基于遗传算法中的染色体,对变压器种群XTe在变量取值DT中随机生成n个变量值
Figure FDA00001713824500025
0.1≤DT≤10;
Figure FDA00001713824500026
表示标识e变压器种群在第1个染色体中的变量值,
Figure FDA00001713824500027
表示标识e变压器种群在第2个染色体中的变量值,……,表示标识e变压器种群在第n个染色体中的变量值,也称标识e变压器种群在任意一个染色体中的变量值;
Based on the chromosome in the genetic algorithm, randomly generate n variable values in the variable value DT for the transformer population XT e
Figure FDA00001713824500025
0.1≤DT≤10;
Figure FDA00001713824500026
Indicates the variable value identifying the e-transformer population in the first chromosome,
Figure FDA00001713824500027
Indicates the variable value identifying the e-transformer population in the second chromosome, ..., Indicates the variable value identifying the e-transformer population in the nth chromosome, also known as the variable value identifying the e-transformer population in any chromosome;
对于待优化变量X={XCa,XLb,XRd,XTe}经遗传算法中的染色体处理得到总种群
Figure FDA00001713824500029
For the variable X={XC a , XL b , XR d , XT e } to be optimized, the total population is obtained by the chromosome processing in the genetic algorithm
Figure FDA00001713824500029
步骤三:以多目标优化函数,按照并列选择法为目标函数中各个函数分配种群;Step 3: use the multi-objective optimization function to allocate populations for each function in the objective function according to the parallel selection method; 在步骤三中,将总种群
Figure FDA000017138245000210
中的染色体按目标函数M目标={f目标,l目标}的个数均等地划分为第一子群体Q1和第二子群体Q2,对每个子群体分配目标函数M目标={f目标,l目标}中的一个进行优化;
In step three, the total population
Figure FDA000017138245000210
Chromosomes in are equally divided into the first subgroup Q 1 and the second subgroup Q 2 according to the number of the objective function Mobjective ={ fobjective , lobjective }, and each subgroup is assigned the objective function Mobjective ={ fobjective , one of lobjective } to optimize;
步骤四:以交叉变异获取子种群的优化量;Step 4: Obtain the optimized amount of the subpopulation by crossover mutation; 在步骤四中,对第一子群体Q1进行交叉变异,保留每一代优化量,即第一优化量DQ1;对第二子群体Q2进行交叉变异,保留每一代优化量,即第二优化量DQ2;交叉变异获取每一代优化量的具体步骤为:In step 4, cross-mutation is performed on the first subgroup Q1 , and the optimized amount of each generation is retained, that is, the first optimized amount DQ1 ; cross-mutation is performed on the second subgroup Q2 , and the optimized amount of each generation is retained, that is, the second optimized amount The optimization quantity DQ 2 ; the specific steps for cross-mutation to obtain the optimization quantity of each generation are: 步骤401:获取第一子群体Q1中的任意2个染色体
Figure FDA000017138245000211
作为当前染色体
Figure FDA000017138245000212
也称为当前第一染色体
Figure FDA000017138245000213
Step 401: Obtain any 2 chromosomes in the first subgroup Q 1
Figure FDA000017138245000211
as the current chromosome
Figure FDA000017138245000212
also known as the current first chromosome
Figure FDA000017138245000213
获取第二子群体Q2中的任意2个染色体
Figure FDA000017138245000214
作为当前染色体
Figure FDA000017138245000215
也称为当前第二染色体
Figure FDA000017138245000216
Get any 2 chromosomes in the second subpopulation Q 2
Figure FDA000017138245000214
as the current chromosome
Figure FDA000017138245000215
also known as the current second chromosome
Figure FDA000017138245000216
步骤402:对当前第一染色体
Figure FDA000017138245000217
中的两个个体进行交叉处理,生成新第一染色体
Figure FDA000017138245000219
表示交叉后第一个染色体,
Figure FDA000017138245000220
表示交叉后第二个染色体;所述交叉处理依据第一适应性策略模型 P c 1 = ( f min - f avg ) / ( f min - f ) , f &le; f avg 1.0 , f > f avg 进行的;Pc1表示第一子群体Q1的交叉概率(也称为第一交叉概率),fmin表示第一子群体Q1中最佳个体适应度值,f表示为要交叉的两个个体中较适应的适应值,且f=min{f1,f2},f1表示染色体
Figure FDA000017138245000222
对应的驻波比优化目标f目标的值,f2表示染色体
Figure FDA000017138245000223
对应的驻波比优化目标f目标的值,favg表示第一子群体Q1的平均适应度值;
Step 402: For the current first chromosome
Figure FDA000017138245000217
The two individuals in are crossed over to generate a new first chromosome
Figure FDA000017138245000219
Indicates the first chromosome after crossover,
Figure FDA000017138245000220
Indicates the second chromosome after crossover; the crossover process is based on the first adaptive strategy model P c 1 = ( f min - f avg ) / ( f min - f ) , f &le; f avg 1.0 , f > f avg carried out; P c1 represents the crossover probability of the first subgroup Q 1 (also called the first crossover probability), f min represents the best individual fitness value in the first subgroup Q1 , and f represents the two The more adaptive fitness value in the individual, and f=min{f 1 ,f 2 }, f 1 represents the chromosome
Figure FDA000017138245000222
The value of the corresponding SWR optimization target f target , f 2 represents the chromosome
Figure FDA000017138245000223
The value of the corresponding standing wave ratio optimization target f target , f avg represents the average fitness value of the first subgroup Q1 ;
对当前第二染色体
Figure FDA00001713824500031
中的两个个体进行交叉处理,生成新第二染色体
Figure FDA00001713824500032
Figure FDA00001713824500033
表示交叉后第三个染色体,
Figure FDA00001713824500034
表示交叉后第四个染色体;所述交叉处理依据第二适应性策略模型 P c 2 = ( l max - l ) / ( l max - l avg ) , l &GreaterEqual; l avg 1.0 , l < l avg 进行的;Pc2表示第二子群体Q2的交叉概率,也称为第二交叉概率,lmax表示第二子群体Q2中最佳个体适应度值,l表示为要交叉的两个个体中较适应的适应值,且l=max{l1,l2},l1表示染色体
Figure FDA00001713824500036
对应的功率优化目标l目标的值,l2表示染色体
Figure FDA00001713824500037
对应的功率优化目标l目标的值,lavg表示第二子群体Q2的平均适应度值;
to the current second chromosome
Figure FDA00001713824500031
Two individuals in are crossed over to generate a new second chromosome
Figure FDA00001713824500032
Figure FDA00001713824500033
Indicates the third chromosome after crossover,
Figure FDA00001713824500034
Indicates the fourth chromosome after crossover; the crossover process is based on the second adaptive strategy model P c 2 = ( l max - l ) / ( l max - l avg ) , l &Greater Equal; l avg 1.0 , l < l avg carried out; P c2 represents the crossover probability of the second subgroup Q2 , also known as the second crossover probability, l max represents the best individual fitness value in the second subgroup Q2 , and l represents the two individuals to be crossover The more adaptive fitness value in , and l=max{l 1 ,l 2 }, l 1 represents the chromosome
Figure FDA00001713824500036
The value of the corresponding power optimization target l target , l 2 represents the chromosome
Figure FDA00001713824500037
The value of the corresponding power optimization target l target , l avg represents the average fitness value of the second subgroup Q2 ;
步骤403:比较f1与f3和f2与f4,若f1≥f3且f2≥f4时,用AQ交叉代替AQ当前;若f1<f3或f2<f4时,则AQ当前不变;f3表示交叉后第一个染色体
Figure FDA00001713824500038
对应的驻波比优化目标f目标的值,f4表示交叉后第二个染色体
Figure FDA00001713824500039
对应的驻波比优化目标f目标的值;
Step 403: Compare f 1 and f 3 and f 2 and f 4 , if f 1 ≥ f 3 and f 2 ≥ f 4 , use AQ cross instead of AQ current ; if f 1 < f 3 or f 2 < f 4 , then AQ is currently unchanged; f 3 means the first chromosome after crossover
Figure FDA00001713824500038
The value of the corresponding VSWR optimization target f target , f 4 means the second chromosome after crossover
Figure FDA00001713824500039
The value of the corresponding SWR optimization target f target ;
比较l1与l3和l2与l4,若l1≤l3且l2≤l4时,用BQ交叉代替BQ当前;若l1>l3或l2>l4时,则BQ当前不变;l3表示交叉后第三个染色体
Figure FDA000017138245000310
对应的功率优化目标l目标的值,l4表示交叉后第四染色体
Figure FDA000017138245000311
对应的功率优化目标l目标的值;
Compare l 1 and l 3 and l 2 and l 4 , if l 1l 3 and l 2 ≤ l 4 , use BQ cross instead of BQ current ; if l 1 > l 3 or l 2 > l 4 , then BQ Currently unchanged; l 3 means the third chromosome after crossover
Figure FDA000017138245000310
The value of the corresponding power optimization target l target , l 4 means the fourth chromosome after crossover
Figure FDA000017138245000311
The value of the corresponding power optimization target l target ;
步骤404:对当前第一染色体
Figure FDA000017138245000312
中的两个个体分别进行变异处理,生成变异第一染色体
Figure FDA000017138245000313
表示
Figure FDA000017138245000315
变异后的染色体,表示
Figure FDA000017138245000317
变异后的染色体;所述的变异处理依据第三适应性策略模型
Figure FDA000017138245000318
进行的;Pm1表示第一子群体Q1的变异概率(也称为第一变异概率),fmin表示第一子群体Q1中最佳个体适应度值,favg表示第一子群体Q1的平均适应度值,f′为需要变异个体的适应度值,且f1表示染色体
Figure FDA000017138245000320
对应的驻波比优化目标f目标的值,f2表示染色体
Figure FDA000017138245000321
对应的驻波比优化目标f目标的值;
Step 404: For the current first chromosome
Figure FDA000017138245000312
The two individuals in are mutated separately to generate the mutated first chromosome
Figure FDA000017138245000313
express
Figure FDA000017138245000315
mutated chromosomes, express
Figure FDA000017138245000317
Chromosomes after mutation; the mutation processing is based on the third adaptive strategy model
Figure FDA000017138245000318
carried out; P m1 represents the mutation probability of the first subgroup Q 1 (also called the first mutation probability), f min represents the best individual fitness value in the first subgroup Q1, and f avg represents the first subgroup Q 1 The average fitness value of , f' is the fitness value of the individual that needs to be mutated, and f 1 means chromosome
Figure FDA000017138245000320
The value of the corresponding SWR optimization target f target , f 2 represents the chromosome
Figure FDA000017138245000321
The value of the corresponding SWR optimization target f target ;
对当前第二染色体
Figure FDA000017138245000322
中的两个个体分别进行变异处理,生成变异第二染色体
Figure FDA000017138245000324
表示变异后的染色体,
Figure FDA000017138245000326
表示
Figure FDA000017138245000327
变异后的染色体;所述变异处理依据第四适应性策略模型 P m 2 = 0.5 ( l max - l &prime; ) / ( l max - l avg ) , l &prime; &GreaterEqual; l avg 0.5 , l &prime; < l avg 进行的;Pm2表示第二子群体Q2的变异概率,也称为第二变异概率,lmax表示第二子群体Q2中最佳个体适应度值,lavg表示第二子群体Q2的平均适应度值,l′为要变异个体的适应度值且
Figure FDA00001713824500041
l1表示染色体
Figure FDA00001713824500042
对应的功率优化目标l目标的值,l2表示染色体
Figure FDA00001713824500043
对应的功率优化目标l目标的值;
to the current second chromosome
Figure FDA000017138245000322
The two individuals in are mutated separately to generate the mutated second chromosome
Figure FDA000017138245000324
express mutated chromosomes,
Figure FDA000017138245000326
express
Figure FDA000017138245000327
Chromosomes after mutation; the mutation processing is based on the fourth adaptive strategy model P m 2 = 0.5 ( l max - l &prime; ) / ( l max - l avg ) , l &prime; &Greater Equal; l avg 0.5 , l &prime; < l avg carried out; P m2 represents the mutation probability of the second subgroup Q2 , also known as the second mutation probability, l max represents the best individual fitness value in the second subgroup Q2 , and l avg represents the second subgroup Q2 The average fitness value of , l' is the fitness value of the individual to be mutated and
Figure FDA00001713824500041
l 1 means chromosome
Figure FDA00001713824500042
The value of the corresponding power optimization target l target , l 2 represents the chromosome
Figure FDA00001713824500043
The value of the corresponding power optimization target l target ;
步骤405:比较f1与f5,若f1>f5时,用
Figure FDA00001713824500044
代替
Figure FDA00001713824500045
若f1≤f5时,则
Figure FDA00001713824500046
不变;f5表示
Figure FDA00001713824500047
变异后的染色体
Figure FDA00001713824500048
对应的驻波比优化目标f目标的值;
Step 405: compare f 1 and f 5 , if f 1 > f 5 , use
Figure FDA00001713824500044
replace
Figure FDA00001713824500045
If f 1 ≤ f 5 , then
Figure FDA00001713824500046
No change; f 5 means
Figure FDA00001713824500047
mutated chromosome
Figure FDA00001713824500048
The value of the corresponding SWR optimization target f target ;
比较f2与f6,若f2>f6时,用代替若f2≤f6时,则
Figure FDA000017138245000411
不变;f6表示
Figure FDA000017138245000412
变异后的染色体
Figure FDA000017138245000413
对应的驻波比优化目标f目标的值;
Compare f 2 and f 6 , if f 2 > f 6 , use replace If f 2 ≤ f 6 , then
Figure FDA000017138245000411
No change; f 6 means
Figure FDA000017138245000412
mutated chromosome
Figure FDA000017138245000413
The value of the corresponding SWR optimization target f target ;
比较l1与l5,若l1<l5时,用
Figure FDA000017138245000414
代替若l1≥l5时,则
Figure FDA000017138245000416
不变;l5表示
Figure FDA000017138245000417
变异后的染色体
Figure FDA000017138245000418
对应的功率优化目标l目标的值;
Compare l 1 and l 5 , if l 1 < l 5 , use
Figure FDA000017138245000414
replace If l 1l 5 , then
Figure FDA000017138245000416
unchanged; l 5 means
Figure FDA000017138245000417
mutated chromosome
Figure FDA000017138245000418
The value of the corresponding power optimization target l target ;
比较l2与l6,若l2<l6时,用
Figure FDA000017138245000419
代替
Figure FDA000017138245000420
若l2≥l6时,则
Figure FDA000017138245000421
不变;l6表示
Figure FDA000017138245000422
变异后的染色体对应的功率优化目标l目标的值;
Compare l 2 and l 6 , if l 2 <l 6 , use
Figure FDA000017138245000419
replace
Figure FDA000017138245000420
If l 2l 6 , then
Figure FDA000017138245000421
unchanged; l 6 means
Figure FDA000017138245000422
mutated chromosome The value of the corresponding power optimization target l target ;
重复步骤401至步骤405,直到第一子群体Q1和第二子群体Q2中染色体全部交叉变异完成,得到当前世代第一子群体Q1的最优优化量,即第一优化量DQ1,第二子群体Q2的最优优化量,即第二优化量DQ2Repeat steps 401 to 405 until all the cross-mutation of chromosomes in the first subgroup Q1 and the second subgroup Q2 is completed, and the optimal optimization quantity of the first subgroup Q1 of the current generation is obtained, that is, the first optimization quantity DQ1 , the optimal optimization quantity of the second subgroup Q 2 , that is, the second optimization quantity DQ 2 ; 步骤五:依据目标函数M目标={f目标,l目标}遍历优化总种群Q′中所有的染色体得到遗传算法中的当前代最优个体;Step 5: According to the objective function M objective = {f objective , l objective }, traverse all chromosomes in the optimized total population Q total ' to obtain the current generation optimal individual in the genetic algorithm; 在步骤五中,合并第一优化量DQ1和第二优化量DQ2组成新的种群,即优化总种群Q′,依据目标函数M目标={f目标,l目标}遍历优化总种群Q′中所有的染色体得到遗传算法中的当前代最优个体并把
Figure FDA000017138245000425
赋给Ihbest,以便下一代最优个体与当前代的最优个体进行比较,在两者中选择出较优个体,并且赋给Ihbest
In step 5, the first optimized quantity DQ 1 and the second optimized quantity DQ 2 are combined to form a new population, that is, the optimized total population Q total ', and the total optimized population Q is traversed according to the objective function M target = {f target , l target } All the chromosomes in the total ' get the optimal individual of the current generation in the genetic algorithm and put
Figure FDA000017138245000425
Assign to I hbest so that the best individual of the next generation can be compared with the best individual of the current generation, select a better individual from the two, and assign to I hbest ;
判断是否达到遗传算法的终止条件,若不满足遗传终止条件,则返回步骤四,若满足遗传终止条件,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;所述遗传算法的终止条件是指迭代步数K是否为O,若迭代步数K不为0,则返回步骤三,若迭代步数K为O,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;为了与待优化变量X={XCa,XLb,XRd,XTe}的表达形式相对应,所述的电子元件参数最优解Ihbest集合表达形式为 I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest ; 其中,
Figure FDA000017138245000427
表示第一电容种群XCC1经遗传算法后的最优电容值;
Figure FDA000017138245000428
表示第二电容种群XCC2经遗传算法后的最优电容值;
Figure FDA000017138245000429
表示第三电容种群XCC3经遗传算法后的最优电容值;
Figure FDA000017138245000430
表示第四电容种群XCC4经遗传算法后的最优电容值;
Figure FDA00001713824500051
表示第五电容种群XCC5经遗传算法后的最优电容值;
Figure FDA00001713824500052
表示第一电感种群XLL1经遗传算法后的最优电感值;
Figure FDA00001713824500053
表示第二电感种群XLL2经遗传算法后的最优电感值;
Figure FDA00001713824500054
表示第三电感种群XLL3经遗传算法后的最优电感值;
Figure FDA00001713824500055
表示第四电感种群XLL4经遗传算法后的最优电感值;
Figure FDA00001713824500056
表示第五电感种群XLL5经遗传算法后的最优电感值;
Figure FDA00001713824500057
表示第一电阻种群XRR1经遗传算法后的最优电组值;
Figure FDA00001713824500058
表示第二电阻种群XRR2经遗传算法后的最优电组值;
Figure FDA00001713824500059
表示第三电阻种群XRR3经遗传算法后的最优电组值;
Figure FDA000017138245000510
表示变压器种群XT。经遗传算法后的最优变压器的输入/输出电压比值;
Judging whether the termination condition of the genetic algorithm is reached, if the termination condition of the genetic algorithm is not satisfied, then return to step 4, if the termination condition of the genetic algorithm is met, then the optimal individual I hbest in the genetic algorithm is obtained, and retained, and then step 6 is entered; The termination condition of the genetic algorithm refers to whether the number of iteration steps K is 0, if the number of iteration steps K is not 0, then return to step 3, if the number of iteration steps K is 0, then the optimal individual I hbest in the genetic algorithm is obtained, And keep it, enter step six; in order to correspond to the expression form of the variable X={XC a , XL b , XR d , XT e } to be optimized, the expression form of the optimal solution I hbest set of the electronic component parameters is I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest ; in,
Figure FDA000017138245000427
Indicates the optimal capacitance value of the first capacitance population XC C1 after genetic algorithm;
Figure FDA000017138245000428
Indicates the optimal capacitance value of the second capacitance population XC C2 after genetic algorithm;
Figure FDA000017138245000429
Indicates the optimal capacitance value of the third capacitor population XC C3 after genetic algorithm;
Figure FDA000017138245000430
Indicates the optimal capacitance value of the fourth capacitance population XC C4 after genetic algorithm;
Figure FDA00001713824500051
Indicates the optimal capacitance value of the fifth capacitor population XC C5 after genetic algorithm;
Figure FDA00001713824500052
Indicates the optimal inductance value of the first inductance population XL L1 after genetic algorithm;
Figure FDA00001713824500053
Indicates the optimal inductance value of the second inductance population XL L2 after genetic algorithm;
Figure FDA00001713824500054
Indicates the optimal inductance value of the third inductance population XL L3 after genetic algorithm;
Figure FDA00001713824500055
Indicates the optimal inductance value of the fourth inductance population XL L4 after genetic algorithm;
Figure FDA00001713824500056
Indicates the optimal inductance value of the fifth inductance population XL L5 after genetic algorithm;
Figure FDA00001713824500057
Indicates the optimal electrical group value of the first resistance population XR R1 after genetic algorithm;
Figure FDA00001713824500058
Indicates the optimal electrical group value of the second resistance population XR R2 after genetic algorithm;
Figure FDA00001713824500059
Indicates the optimal electrical group value of the third resistance population XR R3 after genetic algorithm;
Figure FDA000017138245000510
Indicates the transformer population XT. The input/output voltage ratio of the optimal transformer after genetic algorithm;
步骤六:对当前代最优个体Ihbest进行初始退火赋值,得到初始个体I初始;对 I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest 进行初始退火赋值,则有模拟退火算法的初始个体为
Figure FDA000017138245000512
其中,
Figure FDA000017138245000513
表示第一电容种群XCC1在模拟退火算法中设置的初始值,且
Figure FDA000017138245000514
Figure FDA000017138245000515
表示第二电容种群XCC2在模拟退火算法中设置的初始值,且
Figure FDA000017138245000516
Figure FDA000017138245000517
表示第三电容种群XCC3在模拟退火算法中设置的初始值,且
Figure FDA000017138245000518
Figure FDA000017138245000519
表示第四电容种群XCC4在模拟退火算法中设置的初始值,且
Figure FDA000017138245000520
Figure FDA000017138245000521
表示第五电容种群XCC5在模拟退火算法中设置的初始值,且
Figure FDA000017138245000523
表示第一电感种群XLL1在模拟退火算法中设置的初始值,且
Figure FDA000017138245000524
表示第二电感种群XLL2在模拟退火算法中设置的初始值,且
Figure FDA000017138245000526
Figure FDA000017138245000527
表示第三电感种群XLL3在模拟退火算法中设置的初始值,且
Figure FDA000017138245000528
Figure FDA000017138245000529
表示第四电感种群XLL4在模拟退火算法中设置的初始值,且 表示第五电感种群XLL5在模拟退火算法中设置的初始值,且
Figure FDA000017138245000532
Figure FDA000017138245000533
表示第一电阻种群XRR1在模拟退火算法中设置的初始值,且
Figure FDA000017138245000534
Figure FDA000017138245000535
表示第二电阻种群XRR2在模拟退火算法中设置的初始值,且 表示第三电阻种群XRR3在模拟退火算法中设置的初始值,且
Figure FDA000017138245000538
Figure FDA000017138245000539
表示变压器种群XTe在模拟退火算法中设置的初始值,且
Figure FDA000017138245000540
Step 6: Perform initial annealing assignment on the best individual I hbest of the current generation to obtain the initial individual I initial ; I hbest = C C 1 hbest , C C 2 hbest , C C 3 hbest , C C 4 hbest , C C 5 hbest L L 1 hbest , L L 2 hbest , L L 3 hbest , L L 4 hbest , L L 5 hbest R R 1 hbest , R R 2 hbest , R R 3 hbest T e hbest Perform initial annealing assignment, then the initial individual with simulated annealing algorithm is
Figure FDA000017138245000512
in,
Figure FDA000017138245000513
Represents the initial value of the first capacitance population XC C1 set in the simulated annealing algorithm, and
Figure FDA000017138245000514
Figure FDA000017138245000515
Represents the initial value of the second capacitance population XC C2 set in the simulated annealing algorithm, and
Figure FDA000017138245000516
Figure FDA000017138245000517
Represents the initial value of the third capacitance population XC C3 set in the simulated annealing algorithm, and
Figure FDA000017138245000518
Figure FDA000017138245000519
Represents the initial value of the fourth capacitance population XC C4 set in the simulated annealing algorithm, and
Figure FDA000017138245000520
Figure FDA000017138245000521
Represents the initial value of the fifth capacitance population XC C5 set in the simulated annealing algorithm, and
Figure FDA000017138245000523
Represents the initial value of the first inductance population XL L1 set in the simulated annealing algorithm, and
Figure FDA000017138245000524
Represents the initial value of the second inductance population XL L2 set in the simulated annealing algorithm, and
Figure FDA000017138245000526
Figure FDA000017138245000527
Represents the initial value of the third inductance population XL L3 set in the simulated annealing algorithm, and
Figure FDA000017138245000528
Figure FDA000017138245000529
Represents the initial value of the fourth inductance population XL L4 set in the simulated annealing algorithm, and Indicates the initial value of the fifth inductance population XL L5 set in the simulated annealing algorithm, and
Figure FDA000017138245000532
Figure FDA000017138245000533
Represents the initial value of the first resistance population XR R1 set in the simulated annealing algorithm, and
Figure FDA000017138245000534
Figure FDA000017138245000535
Represents the initial value of the second resistance population XR R2 set in the simulated annealing algorithm, and Represents the initial value of the third resistance population XR R3 set in the simulated annealing algorithm, and
Figure FDA000017138245000538
Figure FDA000017138245000539
Represents the initial value of the transformer population XT e set in the simulated annealing algorithm, and
Figure FDA000017138245000540
步骤七:对当前代最优个体Ihbest进行试探赋值,得到试探个体I试探Step 7: Assign a trial value to the best individual I hbest of the current generation to obtain the trial individual I trial ; 对模拟退火算法的初始个体
Figure FDA00001713824500061
进行试探赋值,则有新试探值个体
Figure FDA00001713824500062
其中,
The initial individual for the simulated annealing algorithm
Figure FDA00001713824500061
If tentative assignment is performed, there will be a new tentative value individual
Figure FDA00001713824500062
in,
是第一电容种群XCC1在变量取值范围为ΔxC1内随机生成的,
Figure FDA00001713824500064
is randomly generated by the first capacitor population XC C1 within the variable value range of Δx C1 ,
Figure FDA00001713824500064
Figure FDA00001713824500065
是第二电容种群XCC2在变量取值范围为ΔxC2内随机生成的,
Figure FDA00001713824500066
Figure FDA00001713824500065
is randomly generated by the second capacitor population XC C2 within the variable value range of Δx C2 ,
Figure FDA00001713824500066
Figure FDA00001713824500067
是第三电容种群XCC3在变量取值范围为ΔxC3内随机生成的,
Figure FDA00001713824500067
is randomly generated by the third capacitor population XC C3 within the variable value range of Δx C3 ,
Figure FDA00001713824500069
是第四电容种群XCC4在变量取值范围为ΔxC4内随机生成的,
Figure FDA000017138245000610
Figure FDA00001713824500069
is randomly generated by the fourth capacitor population XC C4 within the variable value range of Δx C4 ,
Figure FDA000017138245000610
Figure FDA000017138245000611
是第五电容种群XCC5在变量取值范围为ΔxC5内随机生成的,
Figure FDA000017138245000611
is randomly generated by the fifth capacitor population XC C5 within the variable value range of Δx C5 ,
Figure FDA000017138245000613
是第一电感种群XLL1在变量取值范围为ΔxL1内随机生成的,
Figure FDA000017138245000614
Figure FDA000017138245000613
is randomly generated by the first inductance population XL L1 within the variable value range of Δx L1 ,
Figure FDA000017138245000614
Figure FDA000017138245000615
是第二电感种群XLL2在变量取值范围为ΔxL2内随机生成的,
Figure FDA000017138245000616
Figure FDA000017138245000615
is randomly generated by the second inductance population XL L2 within the variable value range of Δx L2 ,
Figure FDA000017138245000616
Figure FDA000017138245000617
是第三电感种群XLL3在变量取值范围为ΔxL3内随机生成的,
Figure FDA000017138245000618
Figure FDA000017138245000617
is randomly generated by the third inductance population XL L3 within the variable value range of Δx L3 ,
Figure FDA000017138245000618
Figure FDA000017138245000619
是第四电感种群XLL4在变量取值范围为ΔxL4内随机生成的,
Figure FDA000017138245000620
Figure FDA000017138245000619
is randomly generated by the fourth inductance population XL L4 within the variable value range of Δx L4 ,
Figure FDA000017138245000620
Figure FDA000017138245000621
是第五电感种群XLL5在变量取值范围为ΔxL5内随机生成的,
Figure FDA000017138245000622
Figure FDA000017138245000621
is randomly generated by the fifth inductance population XL L5 within the variable value range of Δx L5 ,
Figure FDA000017138245000622
Figure FDA000017138245000623
是第一电阻种群XRR1在变量取值范围为ΔxR1内随机生成的,
Figure FDA000017138245000624
Figure FDA000017138245000623
is randomly generated by the first resistance population XR R1 within the variable value range of Δx R1 ,
Figure FDA000017138245000624
Figure FDA000017138245000625
是第二电阻种群XRR2在变量取值范围为ΔxR2内随机生成的,
Figure FDA000017138245000626
Figure FDA000017138245000625
is randomly generated by the second resistance population XR R2 within the variable value range of Δx R2 ,
Figure FDA000017138245000626
Figure FDA000017138245000627
是第三电阻种群XRR3在变量取值范围为ΔxR3内随机生成的,
Figure FDA000017138245000627
is randomly generated by the third resistance population XR R3 within the variable value range of Δx R3 ,
Figure FDA000017138245000629
是变压器种群XTe在变量取值范围为ΔxTe内随机生成的,
Figure FDA000017138245000630
Figure FDA000017138245000629
is randomly generated by the transformer population XT e within the variable value range Δx Te ,
Figure FDA000017138245000630
步骤八:依据目标函数M目标={f目标,l目标}、初始个体I初始和试探个体I试探进行模拟退火优化,得到电子元件参数的优化解;Step 8: Perform simulated annealing optimization according to the objective function M target ={f target , l target }, the initial individual I initial and the trial individual I trial to obtain the optimized solution of the electronic component parameters; 步骤801:计算试探个体
Figure FDA000017138245000631
对应的目标函数M目标={f目标,l目标}的值分别为ff1和ll1,ff1表示试探个体I试探对应的驻波比优化目标f目标的值,ll1表示试探个体I试探对应的功率优化目标l目标的值;
Step 801: Calculate the trial individual
Figure FDA000017138245000631
The values of the corresponding objective function M target = {f target , l target } are ff 1 and ll 1 respectively, ff 1 represents the value of the SWR optimization target f target corresponding to the trial individual I trial , ll 1 represents the value of the trial individual I trial The value of the corresponding power optimization target l target ;
步骤802:计算初始个体
Figure FDA00001713824500071
对应的目标函数值M目标={f目标,l目标}的值分别为ff2和ll2,ff2表示初始个体I初始对应的驻波比优化目标f目标的值,ll2表示初始个体I初始对应的功率优化目标l目标的值;
Step 802: Calculate the initial individual
Figure FDA00001713824500071
The values of the corresponding objective function value M target = {f target , l target } are ff 2 and ll 2 respectively, ff 2 represents the value of the initial SWR optimization target f target corresponding to the initial individual I, and ll 2 represents the value of the initial individual I The value of the initial corresponding power optimization target l target ;
步骤803:判断试探个体I试探的目标函数值M目标={f目标,l目标}的值ff1和ll2是否优于初始个体I初始对应的目标函数值M目标={f目标,l目标}的值ff2和ll2,若ff1≤ff2且ll1≥ll2,则进入步骤804,否则返回步骤801;Step 803: Judging whether the values ff 1 and ll 2 of the objective function value Mtarget={ ftarget , ltarget } of the trial individual I are better than the initial corresponding objective function value Mtarget ={ ftarget , ltarget} of the initial individual I } values ff 2 and ll 2 , if ff 1 ≤ ff 2 and ll 1 ≥ ll 2 , enter step 804, otherwise return to step 801; 步骤804:计算试探个体I试探是否满足接收函数关系 P VSWR = exp ( ff 1 - ff 2 T now ) > r &Element; [ 0,1 ] P G = exp ( ll 2 - ll 1 T now ) > r &Element; [ 0,1 ] , 若满足则将试探个体I试探替代初始个体I初始,进入步骤805;若不满足则返回步骤801;PVSWR表示驻波比对应的接收概率,PG表示转换增益对应的接收概率,Tnow表示当前温度,r是在[0,1]范围内以均匀分布函数的概率随机生成的随机数,即r=RAN(0,1)Step 804: Calculate whether the trial individual I trial satisfies the receiver function relationship P VSWR = exp ( ff 1 - ff 2 T now ) > r &Element; [ 0,1 ] P G = exp ( ll 2 - ll 1 T now ) > r &Element; [ 0,1 ] , If it is satisfied, the trial individual I will replace the initial individual I, and enter step 805; if not, return to step 801; P VSWR represents the receiving probability corresponding to the standing wave ratio, PG represents the receiving probability corresponding to the conversion gain, and T now represents The current temperature, r is a random number generated randomly with the probability of a uniform distribution function in the range [0,1], that is, r=RAN(0,1) 步骤805:在退火算法中以降温速度a进行温度降低,并判断当前温度Tnow是否小于截止温度Tend,若Tnow大于Tend,则返回步骤801;若Tnow小于等于Tend,则将优化后的初始个体I初始作为遗传-模拟退火处理后的电子元件参数优化解IbestStep 805: In the annealing algorithm, the temperature is lowered at the cooling speed a, and it is judged whether the current temperature T now is less than the cut-off temperature T end , if T now is greater than T end , return to step 801; if T now is less than or equal to T end , then set The optimized initial individual I is initially used as the electronic component parameter optimization solution I best after genetic-simulated annealing treatment, II bestthe best == CC CC 11 bestthe best ,, CC CC 22 bestthe best ,, CC CC 33 bestthe best ,, CC CC 44 bestthe best ,, CC CC 55 bestthe best LL LL 11 bestthe best ,, LL LL 22 bestthe best ,, LL LL 33 bestthe best ,, LL LL 44 bestthe best ,, LL LL 55 bestthe best RR RR 11 bestthe best ,, RR RR 22 bestthe best ,, RR RR 33 bestthe best TT ee bestthe best ..
2.根据权利要求1所述的采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其特征在于:若第一子群体Q1采用了目标函数M目标={f目标,l目标}中的天线驻波比f目标进行优化,则第二子群体Q2应当采用目标函数M目标={f目标,l目标}中的转换功率增益l目标进行优化;反之,若第二子群体Q2采用了目标函数M目标={f目标,l目标}中的天线驻波比f目标进行优化,则第一子群体Q1应当采用目标函数M目标={f目标,l目标}中的转换功率增益l目标进行优化。2. adopt genetic-simulated annealing combination according to claim 1 to the optimization method of electronic component parameter in antenna broadband matching network, it is characterized in that: if first subpopulation Q 1 has adopted objective function M target ={f target , The antenna standing wave ratio f target in the l target } is optimized, then the second subgroup Q2 should adopt the conversion power gain l target in the objective function M target ={f target , l target } to optimize; otherwise , if the second The subgroup Q 2 adopts the antenna standing wave ratio f objective in the objective function M objective = {f objective , l objective } to optimize, then the first subgroup Q 1 should use the objective function M objective = {f objective , l objective } The conversion power gain l target in is optimized. 3.根据权利要求1所述的采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其特征在于:采用的变压器TO的输入/输出电压比为DT:1。3. adopt genetic-simulated annealing combination according to claim 1 to the optimization method of electronic component parameter in antenna broadband matching network, it is characterized in that: the input/output voltage ratio of the transformer T0 that adopts is DT:1. 4.根据权利要求1所述的采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其特征在于:染色体的变量m、w、v和n的取值为200个。4. The method for optimizing the parameters of the electronic components in the antenna broadband matching network by using genetic-simulated annealing combination according to claim 1, characterized in that: the values of the variables m, w, v and n of the chromosome are 200. 5.根据权利要求1所述的采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其特征在于:所述遗传算法中选用的迭代步数K为250。5. The method for optimizing the electronic component parameters in the antenna broadband matching network by using genetic-simulated annealing combination according to claim 1, characterized in that: the number of iteration steps K selected in the genetic algorithm is 250. 6.根据权利要求1所述的采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其特征在于:所述模拟退火算法中选用的初始温度T0为0.05度,截止温度Tend为0.00001度,降温速度a为0.9。6. according to claim 1, adopt genetic-simulated annealing combination to optimize the electronic component parameter in antenna broadband matching network, it is characterized in that: the initial temperature T selected in the described simulated annealing algorithm is 0.05 degree, cut-off temperature T end is 0.00001 degrees, and the cooling rate a is 0.9.
CN201210177820.9A 2012-05-31 2012-05-31 Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination Active CN102722613B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210177820.9A CN102722613B (en) 2012-05-31 2012-05-31 Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210177820.9A CN102722613B (en) 2012-05-31 2012-05-31 Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination

Publications (2)

Publication Number Publication Date
CN102722613A true CN102722613A (en) 2012-10-10
CN102722613B CN102722613B (en) 2014-06-25

Family

ID=46948373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210177820.9A Active CN102722613B (en) 2012-05-31 2012-05-31 Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination

Country Status (1)

Country Link
CN (1) CN102722613B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930340A (en) * 2012-10-26 2013-02-13 上海电力学院 Adaptive genetic annealing calculation method for solving zero-one knapsack problem
CN103107963A (en) * 2013-01-09 2013-05-15 王少夫 Broadband matching network optimization method based on hybrid genetic algorithm
CN104504229A (en) * 2014-09-19 2015-04-08 杭州电子科技大学 Intelligent bus scheduling method based on hybrid heuristic algorithm
CN105160184A (en) * 2015-09-08 2015-12-16 合肥工业大学 Analysis method of mutual diffusion coefficient of multicomponent melt
CN105933013A (en) * 2016-06-17 2016-09-07 上海大学 Communication antenna matching system based on Android platform
CN106934115A (en) * 2017-02-21 2017-07-07 中国电力科学研究院 A kind of method and system of the wideband model for setting up gas-insulated switchgear damping bus
CN108153955A (en) * 2017-12-20 2018-06-12 湖州师范学院 Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm
CN109446665A (en) * 2018-10-31 2019-03-08 中国科学院电子学研究所 A kind of NLFM signal optimization method and device, storage medium
CN109447369A (en) * 2018-11-09 2019-03-08 浙江大学 A kind of production capacity end power distribution method multifactor based on the considerations of simulated annealing
CN110398219A (en) * 2019-08-05 2019-11-01 安徽工业大学 A Parameter Calibration Method for Articulated Arm Coordinate Measuring Machine Based on Hybrid Optimization Algorithm
CN110728021A (en) * 2019-09-05 2020-01-24 杭州电子科技大学 Microstrip filter antenna design method based on improved binary whale optimization algorithm
CN110912534A (en) * 2019-12-12 2020-03-24 中国科学院地质与地球物理研究所 A modular design method and module of a broadband impedance matching transformer for acoustic logging
CN112486111A (en) * 2020-11-17 2021-03-12 湖南师范大学 Edible oil alkali refining process intelligent adjusting method based on data analysis
CN112978935A (en) * 2021-02-03 2021-06-18 齐鲁工业大学 Sewage treatment system and method for microbial fuel cell
CN115329710A (en) * 2022-08-26 2022-11-11 苏州大学 Layout optimization method of heat pipe constraint components based on genetic algorithm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150843A1 (en) * 2005-12-22 2007-06-28 Su Peisheng A Method for generating minimal leakage current input vector using heuristics
CN102087337A (en) * 2009-12-04 2011-06-08 哈尔滨理工大学 Annealing genetic optimization method for diagnosing excitation of nonlinear analog circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150843A1 (en) * 2005-12-22 2007-06-28 Su Peisheng A Method for generating minimal leakage current input vector using heuristics
CN102087337A (en) * 2009-12-04 2011-06-08 哈尔滨理工大学 Annealing genetic optimization method for diagnosing excitation of nonlinear analog circuit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《电网技术》 20050228 侯学勇,丁晓群 基于遗传-模拟退火算法的配电网电容器优化配置 第29卷, 第4期 *
侯学勇,丁晓群: "基于遗传–模拟退火算法的配电网电容器优化配置", 《电网技术》, vol. 29, no. 4, 28 February 2005 (2005-02-28) *
孙保华,等: "VHF/ UHF 天线宽带匹配网络的优化设计与实验研究", 《电子学报》, vol. 30, no. 6, 30 June 2002 (2002-06-30) *
陈爱新 等: "电小天线宽带匹配网络的优化设计", 《北京航空航天大学学报》, vol. 35, no. 11, 30 November 2009 (2009-11-30) *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930340A (en) * 2012-10-26 2013-02-13 上海电力学院 Adaptive genetic annealing calculation method for solving zero-one knapsack problem
CN103107963A (en) * 2013-01-09 2013-05-15 王少夫 Broadband matching network optimization method based on hybrid genetic algorithm
CN104504229A (en) * 2014-09-19 2015-04-08 杭州电子科技大学 Intelligent bus scheduling method based on hybrid heuristic algorithm
CN104504229B (en) * 2014-09-19 2018-02-16 杭州电子科技大学 A kind of intelligent public transportation dispatching method based on hybrid metaheuristics
CN105160184A (en) * 2015-09-08 2015-12-16 合肥工业大学 Analysis method of mutual diffusion coefficient of multicomponent melt
CN105160184B (en) * 2015-09-08 2017-11-28 合肥工业大学 A kind of analysis method of multicomponent melt interdiffusion coefficient
CN105933013A (en) * 2016-06-17 2016-09-07 上海大学 Communication antenna matching system based on Android platform
CN106934115A (en) * 2017-02-21 2017-07-07 中国电力科学研究院 A kind of method and system of the wideband model for setting up gas-insulated switchgear damping bus
CN108153955A (en) * 2017-12-20 2018-06-12 湖州师范学院 Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm
CN109446665A (en) * 2018-10-31 2019-03-08 中国科学院电子学研究所 A kind of NLFM signal optimization method and device, storage medium
CN109447369A (en) * 2018-11-09 2019-03-08 浙江大学 A kind of production capacity end power distribution method multifactor based on the considerations of simulated annealing
CN109447369B (en) * 2018-11-09 2022-05-17 浙江大学 A power distribution method at the production end considering multiple factors based on simulated annealing algorithm
CN110398219A (en) * 2019-08-05 2019-11-01 安徽工业大学 A Parameter Calibration Method for Articulated Arm Coordinate Measuring Machine Based on Hybrid Optimization Algorithm
CN110728021A (en) * 2019-09-05 2020-01-24 杭州电子科技大学 Microstrip filter antenna design method based on improved binary whale optimization algorithm
CN110728021B (en) * 2019-09-05 2024-03-01 杭州电子科技大学 Microstrip filter antenna design method based on improved binary whale optimization algorithm
CN110912534A (en) * 2019-12-12 2020-03-24 中国科学院地质与地球物理研究所 A modular design method and module of a broadband impedance matching transformer for acoustic logging
US11018648B1 (en) 2019-12-12 2021-05-25 Instituute Of Geology And Geophysics, Chinese Academy Of Sciences Sonic logging broadband impedance matching transformer modular design method and module
CN112486111A (en) * 2020-11-17 2021-03-12 湖南师范大学 Edible oil alkali refining process intelligent adjusting method based on data analysis
CN112486111B (en) * 2020-11-17 2021-12-14 湖南师范大学 Edible oil alkali refining process intelligent adjusting method based on data analysis
CN112978935A (en) * 2021-02-03 2021-06-18 齐鲁工业大学 Sewage treatment system and method for microbial fuel cell
CN115329710A (en) * 2022-08-26 2022-11-11 苏州大学 Layout optimization method of heat pipe constraint components based on genetic algorithm
CN115329710B (en) * 2022-08-26 2023-08-29 苏州大学 Heat pipe constraint assembly layout optimization method based on genetic algorithm

Also Published As

Publication number Publication date
CN102722613B (en) 2014-06-25

Similar Documents

Publication Publication Date Title
CN102722613B (en) Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination
CN108170950A (en) Multilayer Frequency-Selective Surfaces absorbing material modeling optimization method based on neural network
CN105787558B (en) Knowledge neural network microstrip filter design method based on ADS
CN108920841B (en) Antenna design method
Sivia et al. Design of sierpinski carpet fractal antenna using artificial neural networks
Gregory et al. Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy
CN104202007A (en) Active broadband matching method of short-wave frequency-band electrically small antenna and matching circuit thereof
CN108712154A (en) A kind of broadband F power-like amplifiers and design method
Chen et al. Optimization of low noise amplifier designs by genetic algorithms
CN104504424B (en) Radio frequency identification network topology optimization method based on Symbiotic evolution on multiple populations
CN108832907A (en) Data radio station wideband impedance match network and its design method
CN104410381B (en) Lumped parameter double frequency impedance matching network
CN112149360A (en) ALO-LMBP neural network-based double-notch characteristic ultra-wideband antenna reverse modeling research method
CN109871580A (en) A Design Method of Amplifier Matching Network Based on Simplified Real-Frequency Method
Nakagawa et al. Design of the rf-dc conversion circuit by ga adopting mutation based on fourier coefficients on unit structures
CN115859798A (en) Design method and device of N-frequency unequal power divider based on BP neural network
CN209692710U (en) A kind of broadband continuous type power amplifier based on multiple stage secondary harmonic controling
Chen Frequency-domain and time-domain performance enhancements of ultra-wideband antennas using multiobjective optimization techniques
Yildiz et al. Adaptive neuro‐fuzzy models for the quasi‐static analysis of microstrip line
Dib et al. Variable Z0 applied to the optimal design of multi-stub matching network and a meander monopole
CN114492253B (en) Microstrip circuit half-space mapping rapid optimization method combined with Gaussian process
Wang et al. Differential Evolution Optimization Algorithm for Electromagnetic Device Design with High-dimensional Mixed Discrete-Continuous Variables
Turkmen et al. Anfis models for the quasistatic analysis of coplanar strip line structures
CN117809773A (en) Metamaterial wave absorber optimal design method based on space mapping network and wave absorber
Contreras Objective functions for the optimization of an ultra wideband antenna

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant