CN102722613A - Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination - Google Patents
Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination Download PDFInfo
- Publication number
- CN102722613A CN102722613A CN2012101778209A CN201210177820A CN102722613A CN 102722613 A CN102722613 A CN 102722613A CN 2012101778209 A CN2012101778209 A CN 2012101778209A CN 201210177820 A CN201210177820 A CN 201210177820A CN 102722613 A CN102722613 A CN 102722613A
- Authority
- CN
- China
- Prior art keywords
- population
- value
- chromosome
- target
- hbest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,该方法在遗传算法的基础上,通过模拟退火算法进行二次寻优,克服了遗传算法微调能力差的缺点,同时将遗传算法优化得到的最优个体作为模拟退火算法待优化变量的初值,避免了模拟退火算法对初值的依赖。此外,针对天线匹配网络的优化问题,该组合方法采用了多目标并列选择法,用于兼顾天线驻波比和转换效率两个重要的技术指标的要求,引入交叉和变异算子的自适应调节,有利于提高算法的计算速度和效率。同时引入最优解保留策略,避免最优个体的流失。
The invention discloses a method for optimizing the parameters of electronic components in an antenna broadband matching network by using a genetic-simulated annealing combination. The method is based on a genetic algorithm and performs secondary optimization through a simulated annealing algorithm, which overcomes the fine-tuning ability of the genetic algorithm At the same time, the optimal individual obtained by genetic algorithm optimization is used as the initial value of the variable to be optimized by the simulated annealing algorithm, which avoids the dependence of the simulated annealing algorithm on the initial value. In addition, for the optimization of the antenna matching network, the combination method adopts the multi-objective parallel selection method to take into account the requirements of the two important technical indicators of the antenna standing wave ratio and conversion efficiency, and introduces the adaptive adjustment of the crossover and mutation operators , which is conducive to improving the calculation speed and efficiency of the algorithm. At the same time, the optimal solution retention strategy is introduced to avoid the loss of the optimal individual.
Description
技术领域 technical field
本发明涉及电磁领域的一种天线宽带匹配网络的参数优化方法,更特别地说,是指一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法。The invention relates to a method for optimizing parameters of an antenna broadband matching network in the field of electromagnetics, and more particularly refers to a method for optimizing parameters of electronic components in an antenna broadband matching network by using a genetic-simulated annealing combination.
背景技术 Background technique
在现代电子设备中,由于天线性能要求和安装条件等诸多方面的限制因素,单独的天线设计在很多情况下往往难以同时满足宽带化、小型化的设计要求。对于结构形式已定的天线,设计宽带匹配网络是进一步改善天线小型化和宽带化性能的一种有效技术手段。In modern electronic equipment, due to many limiting factors such as antenna performance requirements and installation conditions, it is often difficult for a single antenna design to meet the design requirements of broadband and miniaturization at the same time in many cases. For an antenna with a fixed structure, designing a broadband matching network is an effective technical means to further improve the antenna's miniaturization and broadband performance.
目前宽带匹配网络的设计方法主要有解析法、数值法和智能优化法三种。解析法以单匹配网络设计理论为基础,但解析法在增益函数最优形式的确定、源和负载的解析表达等方面存在明显不足,很难满足实际工程设计的要求。数值法以实频数据法和参量技术法为代表。数值法相比解析法具有明显的优势,但是也存在着一些固有的缺点,比如难以获得全局最优解、对初值的选择很敏感、实频数据法中的两次优化计算可靠性差等。随着全局搜索技术的发展,遗传算法(国防工业出版社,1999年6月出版,《遗传算法的原理及应用》,作者周明、孙树栋)、模拟退火算法(科学出版社,2003年5月,《非数值并行算法-模拟退火算法》,作者康立山、谢云、尤矢勇、罗祖华)等一些智能算法的出现,为宽带匹配网络的设计提供了新的技术手段。与解析法和数值法相比,智能优化方法无须对负载进行解析表示,而是依据负载频带内的一些离散阻抗值,通过最优化技术寻求网络元件值的最优解,在工程应用方面更具灵活性和实用性。但智能优化方法在收敛速度、微调能力、计算效率、算法稳定性等方面也并非尽善尽美,智能优化方法的选择和应用对于具体的设计问题需要具体分析。At present, there are mainly three design methods of broadband matching network: analytical method, numerical method and intelligent optimization method. The analytical method is based on the theory of single-matching network design, but the analytical method has obvious deficiencies in the determination of the optimal form of the gain function, the analytical expression of the source and load, etc., and it is difficult to meet the requirements of actual engineering design. Numerical methods are represented by real frequency data method and parametric technology method. Compared with the analytical method, the numerical method has obvious advantages, but there are also some inherent disadvantages, such as difficulty in obtaining the global optimal solution, sensitivity to the selection of initial values, and poor reliability of the two optimization calculations in the real-frequency data method. With the development of global search technology, genetic algorithm (National Defense Industry Press, published in June 1999, "Principle and Application of Genetic Algorithm", authors Zhou Ming, Sun Shudong), simulated annealing algorithm (Science Press, May 2003, "Non-Numerical Parallel Algorithm-Simulated Annealing Algorithm", authors Kang Lishan, Xie Yun, You Shiyong, Luo Zuhua) and other intelligent algorithms have provided new technical means for the design of broadband matching networks. Compared with the analytical method and numerical method, the intelligent optimization method does not need to analyze the load, but seeks the optimal solution of the network element value through optimization technology based on some discrete impedance values in the load frequency band, which is more flexible in engineering applications sex and practicality. However, intelligent optimization methods are not perfect in terms of convergence speed, fine-tuning ability, computational efficiency, algorithm stability, etc. The selection and application of intelligent optimization methods require specific analysis for specific design problems.
发明内容 Contents of the invention
本发明的目的是提出一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,该优化方法采用遗传-模拟退火组合方法设计出天线宽带匹配网络中各集总参数元件的参数值,以遗传算法得到遗传算法中的最优解,然后通过模拟退火算法进行二次寻优,克服了遗传算法微调能力差的缺点,同时将所述的遗传算法中的最优解作为模拟退火算法待优化变量的初值,避免了模拟退火算法对初值的依赖。此外,针对天线宽带匹配网络的优化问题,该组合方法采用了多目标并列选择法,用于兼顾天线驻波比和转换效率两个重要的技术指标的要求,引入交叉和变异算子的自适应调节,有利于提高遗传算法的计算速度和效率。引入最优解保留策略,避免了最优个体的流失。The purpose of the present invention is to propose a method for optimizing the parameters of electronic components in the antenna broadband matching network by using the genetic-simulated annealing combination method. Parameter value, the optimal solution in the genetic algorithm is obtained by the genetic algorithm, and then the secondary optimization is carried out through the simulated annealing algorithm, which overcomes the shortcoming of the poor fine-tuning ability of the genetic algorithm, and at the same time uses the optimal solution in the genetic algorithm as a simulation The initial value of the variable to be optimized by the annealing algorithm avoids the dependence of the simulated annealing algorithm on the initial value. In addition, for the optimization problem of antenna broadband matching network, the combination method adopts the multi-objective parallel selection method, which is used to take into account the requirements of the two important technical indicators of antenna standing wave ratio and conversion efficiency, and introduces the self-adaptive Adjustment is beneficial to improve the calculation speed and efficiency of genetic algorithm. The optimal solution retention strategy is introduced to avoid the loss of the optimal individual.
本发明的一种采用遗传-模拟退火组合对天线宽带匹配网络中电子元件参数的优化方法,其包括有下列步骤:A method for optimizing the parameters of the electronic components in the antenna broadband matching network using a combination of genetic-simulated annealing of the present invention comprises the following steps:
步骤一:基于遗传算法的种群初始化,获得待优化变量X={XCa,XLb,XRd,XTe};Step 1: Based on the population initialization of the genetic algorithm, obtain the variables to be optimized X={XC a , XL b , XR d , XT e };
在步骤一中,将宽带匹配网络等效电路中电容、电感和电阻采用基于遗传算法的的种群处理,得到待优化变量X={XCa,XLb,XRd,XTe};In step 1, the capacitance, inductance and resistance in the equivalent circuit of the broadband matching network are processed by the population based on the genetic algorithm, and the variables to be optimized X={XC a , XL b , XR d , XT e } are obtained;
所述待优化变量X={XCa,XLb,XRd,XTe}中XCa表示电容种群,a表示等效电路中电容的标识,如第一电容C1的第一电容种群记为XCC1;同理可得,第二电容种群记为XCC2,第三电容种群记为XCC3,第四电容种群记为XCC4,第五电容种群记为XCC5;等效电路中所有电容种群采用集合形式表示为XCa={XCC1,XCC2,XCC3,XCC4,XCC5};In the variable X to be optimized X={XC a , XL b , XR d , XT e }, XC a represents the capacitance population, and a represents the identity of the capacitance in the equivalent circuit, such as the first capacitance population of the first capacitance C1 is denoted as XC C1 ; in the same way, the second capacitor population is marked as XC C2 , the third capacitor population is marked as XC C3 , the fourth capacitor population is marked as XC C4 , and the fifth capacitor population is marked as XC C5 ; all capacitor populations in the equivalent circuit Expressed as XC a ={XC C1 , XC C2 , XC C3 , XC C4 , XC C5 } in a set form;
XLb表示电感种群,b表示等效电路中电感的标识,如第一电感L1的第一电感种群记为XLL1;同理可得,第二电感种群记为XLL2,第三电感种群记为XLL3,第四电感种群记为XLL4,第五电感种群记为XLL5;等效电路中所有电感种群采用集合形式表示为XLb={XLL1,XLL2,XLL3,XLL4,XLL5};XL b represents the inductance population, and b represents the identity of the inductance in the equivalent circuit. For example, the first inductance population of the first inductance L1 is denoted as XL L1 ; similarly, the second inductance population is denoted as XL L2 , and the third inductance population is denoted as XL L2 . is XL L3 , the fourth inductance population is denoted as XL L4 , the fifth inductance population is denoted as XL L5 ; all inductance populations in the equivalent circuit are represented as XL b = {XL L1 , XL L2 , XL L3 , XL L4 , XL L5 };
XRd表示电阻种群,d表示等效电路中电阻的标识,如第一电阻R1的第一电阻种群记为XRR1;同理可得,第二电阻种群记为XRR2,第三电阻种群记为XRR3;等效电路中所有电阻种群采用集合形式表示为XRd={XRR1,XRR2,XRR3};XR d represents the resistance population, and d represents the identification of the resistance in the equivalent circuit. For example, the first resistance population of the first resistance R1 is marked as XR R1 ; similarly, the second resistance population is marked as XR R2 , and the third resistance population is marked as XR R2 . is XR R3 ; all resistance populations in the equivalent circuit are expressed as XR d ={XR R1 , XR R2 , XR R3 } in a collective form;
XTe表示变压器种群,e表示等效电路中变压器的输入/输出电压比;XT e represents the transformer population, and e represents the input/output voltage ratio of the transformer in the equivalent circuit;
步骤二:基于遗传算法的染色体处理,获得总种群 Step 2: Chromosome processing based on genetic algorithm to obtain the total population
在步骤二中,基于遗传算法中的染色体,对电容种群XCa在变量取值DC中随机生成m个变量值0<DC≤800pF;表示标识a电容种群在第1个染色体中的变量值,表示标识a电容种群在第2个染色体中的变量值,……,表示标识a电容种群在第m个染色体中的变量值,也称标识a电容种群在任意一个染色体中的变量值;In step two, based on the chromosomes in the genetic algorithm, randomly generate m variable values in the variable value DC for the capacitance population XC a 0<DC≤800pF; Indicates the variable value that identifies the a capacitance population in the first chromosome, Indicates the variable value that identifies the a capacitance population in the second chromosome, ..., Indicates the variable value that identifies the a-capacitance population in the mth chromosome, also known as the variable value that identifies the a-capacitance population in any chromosome;
基于遗传算法中的染色体,对电感种群XLb在变量取值DL中随机生成w个变量值0<DL≤0.1μH;表示标识b电感种群在第1个染色体中的变量值,表示标识b电感种群在第2个染色体中的变量值,……,表示标识b电感种群在第w个染色体中的变量值,也称标识b电感种群在任意一个染色体中的变量值;Based on the chromosome in the genetic algorithm, randomly generate w variable values in the variable value DL for the inductance population XL b 0<DL≤0.1μH; Indicates the variable value identifying the b inductance population in the first chromosome, Indicates the variable value that identifies the b inductance population in the second chromosome, ..., Indicates the variable value that identifies the b inductance population in the wth chromosome, also known as the variable value that identifies the b inductance population in any chromosome;
基于遗传算法中的染色体,对电阻种群XRd在变量取值DR中随机生成v个变量值0<DR≤5kΩ;表示标识d电阻种群在第1个染色体中的变量值,表示标识d电阻种群在第2个染色体中的变量值,……,表示标识d电阻种群在第v个染色体中的变量值,也称标识d电阻种群在任意一个染色体中的变量值;Based on the chromosome in the genetic algorithm, randomly generate v variable values in the variable value DR for the resistance population XR d 0<DR≤5kΩ; Indicates the variable value identifying the d resistance population in the first chromosome, Indicates the variable value that identifies the d resistance population in the second chromosome, ..., Indicates the variable value that identifies the d resistance population in the vth chromosome, also known as the variable value that identifies the d resistance population in any chromosome;
基于遗传算法中的染色体,对变压器种群XTe在变量取值DT中随机生成n个变量值0.1≤DT≤10;表示标识e变压器种群在第1个染色体中的变量值,表示标识e变压器种群在第2个染色体中的变量值,……,表示标识e变压器种群在第n个染色体中的变量值,也称标识e变压器种群在任意一个染色体中的变量值;Based on the chromosome in the genetic algorithm, randomly generate n variable values in the variable value DT for the transformer population XT e 0.1≤DT≤10; Indicates the variable value identifying the e-transformer population in the first chromosome, Indicates the variable value identifying the e-transformer population in the second chromosome, ..., Indicates the variable value identifying the e-transformer population in the nth chromosome, also known as the variable value identifying the e-transformer population in any chromosome;
对于待优化变量X={XCa,XLb,XRd,XTe}经遗传算法中的染色体处理得到总种群 For the variable X={XC a , XL b , XR d , XT e } to be optimized, the total population is obtained by the chromosome processing in the genetic algorithm
步骤三:以多目标优化函数,按照并列选择法为目标函数中各个函数分配种群;Step 3: use the multi-objective optimization function to allocate populations for each function in the objective function according to the parallel selection method;
在步骤三中,将总种群中的染色体按目标函数M目标={f目标,l目标}的个数均等地划分为第一子群体Q1和第二子群体Q2,对每个子群体分配目标函数M目标={f目标,l目标}中的一个进行优化;In step three, the total population Chromosomes in are equally divided into the first subgroup Q 1 and the second subgroup Q 2 according to the number of the objective function Mobjective ={ fobjective , lobjective }, and each subgroup is assigned the objective function Mobjective ={ fobjective , one of lobjective } to optimize;
步骤四:以交叉变异获取子种群的优化量;Step 4: Obtain the optimized amount of the subpopulation by crossover mutation;
在步骤四中,对第一子群体Q1进行交叉变异,保留每一代优化量,即第一优化量DQ1;对第二子群体Q2进行交叉变异,保留每一代优化量,即第二优化量DQ2;交叉变异获取每一代优化量的具体步骤为:In
步骤401:获取第一子群体Q1中的任意2个染色体作为当前染色体也称为当前第一染色体 Step 401: Obtain any 2 chromosomes in the first subgroup Q 1 as the current chromosome also known as the current first chromosome
获取第二子群体Q2中的任意2个染色体作为当前染色体也称为当前第二染色体 Get any 2 chromosomes in the second subpopulation Q 2 as the current chromosome also known as the current second chromosome
步骤402:对当前第一染色体中的两个个体进行交叉处理,生成新第一染色体表示交叉后第一个染色体,表示交叉后第二个染色体;所述交叉处理依据第一适应性策略模型
对当前第二染色体中的两个个体进行交叉处理,生成新第二染色体表示交叉后第三个染色体,表示交叉后第四个染色体;所述交叉处理依据第二适应性策略模型
步骤403:比较f1与f3和f2与f4,若f1≥f3且f2≥f4时,用AQ交叉代替AQ当前;若f1<f3或f2<f4时,则AQ当前不变;f3表示交叉后第一个染色体对应的驻波比优化目标f目标的值,f4表示交叉后第二个染色体对应的驻波比优化目标f目标的值;Step 403: Compare f 1 and f 3 and f 2 and f 4 , if f 1 ≥ f 3 and f 2 ≥ f 4 , use AQ cross instead of AQ current ; if f 1 < f 3 or f 2 < f 4 , then AQ is currently unchanged; f 3 means the first chromosome after crossover The value of the corresponding VSWR optimization target f target , f 4 means the second chromosome after crossover The value of the corresponding SWR optimization target f target ;
比较l1与l3和l2与l4,若l1≤l3且l2≤l4时,用BQ交叉代替BQ当前;若l1>l3或l2>l4时,则BQ当前不变;l3表示交叉后第三个染色体对应的功率优化目标l目标的值,l4表示交叉后第四染色体对应的功率优化目标l目标的值;Compare l 1 and l 3 and l 2 and l 4 , if l 1 ≤ l 3 and l 2 ≤ l 4 , use BQ cross instead of BQ current ; if l 1 > l 3 or l 2 > l 4 , then BQ Currently unchanged; l 3 means the third chromosome after crossover The value of the corresponding power optimization target l target , l 4 means the fourth chromosome after crossover The value of the corresponding power optimization target l target ;
步骤404:对当前第一染色体中的两个个体分别进行变异处理,生成变异第一染色体表示变异后的染色体,表示变异后的染色体;所述的变异处理依据第三适应性策略模型
对当前第二染色体中的两个个体分别进行变异处理,生成变异第二染色体表示变异后的染色体,表示变异后的染色体;所述变异处理依据第四适应性策略模型
步骤405:比较f1与f5,若f1>f5时,用代替若f1≤f5时,则不变;f5表示变异后的染色体对应的驻波比优化目标f目标的值;Step 405: compare f 1 and f 5 , if f 1 > f 5 , use replace If f 1 ≤ f 5 , then No change; f 5 means mutated chromosome The value of the corresponding SWR optimization target f target ;
比较f2与f6,若f2>f6时,用代替若f2≤f6时,则不变;f6表示变异后的染色体对应的驻波比优化目标f目标的值;Compare f 2 and f 6 , if f 2 > f 6 , use replace If f 2 ≤ f 6 , then No change; f 6 means mutated chromosome The value of the corresponding SWR optimization target f target ;
比较l1与l5,若l1<l5时,用代替若l1≥l5时,则不变;l5表示变异后的染色体对应的功率优化目标l目标的值;Compare l 1 and l 5 , if l 1 < l 5 , use replace If l 1 ≥ l 5 , then unchanged; l 5 means mutated chromosome The value of the corresponding power optimization target l target ;
比较l2与l6,若l2<l6时,用代替若l2≥l6时,则不变;l6表示变异后的染色体对应的功率优化目标l目标的值;Compare l 2 and l 6 , if l 2 <l 6 , use replace If l 2 ≥ l 6 , then unchanged; l 6 means mutated chromosome The value of the corresponding power optimization target l target ;
重复步骤401至步骤405,直到第一子群体Q1和第二子群体Q2中染色体全部交叉变异完成,得到当前世代第一子群体Q1的最优优化量,即第一优化量DQ1,第二子群体Q2的最优优化量,即第二优化量DQ2;Repeat steps 401 to 405 until all the cross-mutation of chromosomes in the first subgroup Q1 and the second subgroup Q2 is completed, and the optimal optimization quantity of the first subgroup Q1 of the current generation is obtained, that is, the first optimization quantity DQ1 , the optimal optimization quantity of the second subgroup Q 2 , that is, the second optimization quantity DQ 2 ;
步骤五:依据目标函数M目标={f目标,l目标}遍历优化总种群Q总′中所有的染色体得到遗传算法中的当前代最优个体;Step 5: According to the objective function M objective = {f objective , l objective }, traverse all chromosomes in the optimized total population Q total ' to obtain the current generation optimal individual in the genetic algorithm;
在步骤五中,合并第一优化量DQ1和第二优化量DQ2组成新的种群,即优化总种群Q总′,依据目标函数M目标={f目标,l目标}遍历优化总种群Q总′中所有的染色体得到遗传算法中的当前代最优个体并把赋给Ihbest,以便下一代最优个体与当前代的最优个体进行比较,在两者中选择出较优个体,并且赋给Ihbest;In step 5, the first optimized quantity DQ 1 and the second optimized quantity DQ 2 are combined to form a new population, that is, the optimized total population Q total ', and the total optimized population Q is traversed according to the objective function M target = {f target , l target } All the chromosomes in the total ' get the optimal individual of the current generation in the genetic algorithm and put Assign to I hbest so that the best individual of the next generation can be compared with the best individual of the current generation, select a better individual from the two, and assign to I hbest ;
判断是否达到遗传算法的终止条件,若不满足遗传终止条件,则返回步骤四,若满足遗传终止条件,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;所述遗传算法的终止条件是指迭代步数K是否为0,若迭代步数K不为0,则返回步骤三,若迭代步数K为0,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;为了与待优化变量X={XCa,XLb,XRd,XTe}的表达形式相对应,所述的电子元件参数最优解Ihbest集合表达形式为
步骤六:对当前代最优个体Ihbest进行初始退火赋值,得到初始个体I初始;对
步骤七:对当前代最优个体Ihbest进行试探赋值,得到试探个体I试探;Step 7: Assign a trial value to the best individual I hbest of the current generation to obtain the trial individual I trial ;
对模拟退火算法的初始个体进行试探赋值,则有新试探值个体 The initial individual for the simulated annealing algorithm If tentative assignment is performed, there will be a new tentative value individual
步骤八:依据目标函数M目标={f目标,l目标}、初始个体I初始和试探个体I试探进行模拟退火优化,得到电子元件参数的优化解;Step 8: Perform simulated annealing optimization according to the objective function M target ={f target , l target }, the initial individual I initial and the trial individual I trial to obtain the optimized solution of the electronic component parameters;
步骤801:计算试探个体对应的目标函数M目标={f目标,l目标}的值分别为ff1和ll1,ff1表示试探个体I试探对应的驻波比优化目标f目标的值,ll1表示试探个体I试探对应的功率优化目标l目标的值;Step 801: Calculate the trial individual The values of the corresponding objective function M target = {f target , l target } are respectively ff 1 and ll 1 , ff 1 represents the value of the SWR optimization target f target corresponding to the trial individual I trial , and ll 1 represents the value of the trial individual I trial The value of the corresponding power optimization target l target ;
步骤802:计算初始个体对应的目标函数值M目标={f目标,l目标}的值分别为ff2和ll2,ff2表示初始个体I初始对应的驻波比优化目标f目标的值,ll2表示初始个体I初始对应的功率优化目标l目标的值;Step 802: Calculate the initial individual The values of the corresponding objective function value M target = {f target , l target } are ff 2 and ll 2 respectively, ff 2 represents the value of initial individual I corresponding to the SWR optimization target f target , ll 2 represents the initial individual I The value of the initial corresponding power optimization target l target ;
步骤803:判断试探个体I试探的目标函数值M目标={f目标,l目标}的值ff1和ll1是否优于初始个体I初始对应的目标函数值M目标={f目标,l目标}的值ff2和ll2,若ff1≤ff2且ll1≥ll2,则进入步骤804,否则返回步骤801;Step 803: Judging whether the values ff 1 and ll 1 of the objective function value Mtarget ={ ftarget , ltarget } of the trial individual I are better than the initial corresponding objective function value Mtarget ={ ftarget , ltarget } values ff 2 and ll 2 , if ff 1 ≤ ff 2 and ll 1 ≥ ll 2 , enter step 804, otherwise return to step 801;
步骤804:计算试探个体I试探是否满足接收函数关系
步骤805:在退火算法中以降温速度a进行温度降低,并判断当前温度Tnow是否小于截止温度Tend,若Tnow大于Tend,则返回步骤801;若Tnow小于等于Tend,则将优化后的初始个体I初始作为遗传-模拟退火处理后的电子元件参数优化解Ibest,
本发明天线宽带匹配网络中电子元件参数优化方法的优点在于:The advantages of the electronic component parameter optimization method in the antenna broadband matching network of the present invention are:
1.并列选择法1. Parallel selection method
天线宽带匹配网络的设计力求在满足驻波比要求的同时,使传输的转换功率增益最大。因此,这是一个典型的双目标优化问题。在标准遗传算法的基础上,引入多目标并列选择法,可以兼顾驻波比和转换功率增益两个性能指标的要求。并列选择法的基本思想是,先将总种群中的全部个体按目标函数的个数均等地划分为一些子群体,对每个子群体分配目标函数中的一个函数,目标函数中的各个函数在相应的子群体中独立地进行选择运算,各自选择出一些适应度高的个体组成一个新的子群体,然后再将所有这些新生成的子群体合并成新的种群,如此不断地进行“分割-并列选择-合并”操作,最终可求出多目标函数中优化问题的最优解。该方法与常规求解多目标优化问题的适应度函数线性求和不同之处在于,这种将所有个体混合起来的做法其权重不需人为选定,而是取决于当前世代。The design of antenna broadband matching network strives to maximize the conversion power gain of transmission while meeting the standing wave ratio requirements. Therefore, this is a typical bi-objective optimization problem. On the basis of the standard genetic algorithm, the multi-objective parallel selection method is introduced, which can take into account the requirements of the two performance indicators of standing wave ratio and conversion power gain. The basic idea of the parallel selection method is to first divide all individuals in the total population into some subgroups equally according to the number of objective functions, and assign a function in the objective function to each subgroup, and each function in the objective function is in the corresponding The selection operation is carried out independently in the subgroups, and some individuals with high fitness are selected to form a new subgroup, and then all these newly generated subgroups are merged into a new population, so that the "segmentation-parallelization" is continuously carried out. Select-merge operation can finally find the optimal solution of the optimization problem in the multi-objective function. The difference between this method and the linear summation of fitness functions for solving multi-objective optimization problems is that the weight of this method of mixing all individuals does not need to be selected artificially, but depends on the current generation.
2.进化准则2. Evolution criteria
在遗传算法的计算过程中,根据个体的具体情况,自适应地改变交叉概率和变异概率的大小,有利于提高算法的计算速度和效率。采用适应性遗传策略可以使遗传进化过程具有较好的全局搜索能力,以较大的概率避免陷于局部极值点。In the calculation process of the genetic algorithm, according to the specific situation of the individual, the size of the crossover probability and the mutation probability are adaptively changed, which is beneficial to improve the calculation speed and efficiency of the algorithm. The adaptive genetic strategy can make the genetic evolution process have a better global search ability, and avoid being trapped in local extreme points with a greater probability.
3.最优结果保留策略3. Optimal result retention strategy
本发明中的算法保存搜索过程中遇到过的所有最好结果,当算法过程结束时,将所得最终解与保留的过程最优解比较,并取较优者作为最后结果。这样在进化的过程中始终能够保持最优解不被遗失。The algorithm in the present invention saves all the best results encountered in the search process, and when the algorithm process ends, compares the obtained final solution with the reserved process optimal solution, and takes the better one as the final result. In this way, the optimal solution can always be kept from being lost during the evolution process.
4.模拟退火算法的二次寻优4. Secondary optimization of simulated annealing algorithm
采用遗传算法在计算较少的种群、迭代较少的次数的情况下得到遗传算法中的最优解后,将这个最优解作为模拟退火算法的初值,进行二次寻优。这有利于改善遗传算法微调能力差的缺点和早熟现象,并且将遗传算法的优化结果作为模拟退火算法的初值,也避免了模拟退火算法对初值的依赖。二者的结合从整体上提高了算法稳定性和对初值的依赖。After using the genetic algorithm to obtain the optimal solution in the genetic algorithm with fewer populations and fewer iterations, the optimal solution is used as the initial value of the simulated annealing algorithm for secondary optimization. This is conducive to improving the shortcomings of poor fine-tuning ability and premature phenomenon of genetic algorithm, and the optimization result of genetic algorithm is used as the initial value of simulated annealing algorithm, which also avoids the dependence of simulated annealing algorithm on the initial value. The combination of the two improves the stability of the algorithm and the dependence on the initial value as a whole.
附图说明 Description of drawings
图1是传统天线宽带匹配网络的结构示意图。Fig. 1 is a schematic structural diagram of a traditional antenna broadband matching network.
图2是待优化天线宽带匹配网络的电路原理图。Fig. 2 is a circuit schematic diagram of the antenna broadband matching network to be optimized.
图3是本发明混合遗传-模拟退火算法流程图。Fig. 3 is a flowchart of the hybrid genetic-simulated annealing algorithm of the present invention.
图4是优化后的天线宽带匹配网络的电路原理图。Fig. 4 is a circuit schematic diagram of the optimized antenna broadband matching network.
具体实施方式 Detailed ways
下面将结合附图和实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
在本发明中,天线宽带匹配网络设置在天线和同轴电缆之间(参见图1所示),而天线宽带匹配网络至少由电感、电容、电阻和阻抗变换器构成(参见图2所示)。In the present invention, the antenna broadband matching network is arranged between the antenna and the coaxial cable (see Figure 1), and the antenna broadband matching network is at least composed of inductance, capacitance, resistance and impedance converter (see Figure 2) .
在本发明中,天线是指能够服务于VHF/UHF频段,且与机载共形的小尺寸天线。所述VHF,Very high frequency。译文为:甚高频。所述VHF是指频率为30~3000MHz的无线电电波。所述UHF,Ultra High Frequency。译文为:特高频。所述UHF是指频率为300~3000MHz的特高频无线电电波。In the present invention, the antenna refers to a small-sized antenna that can serve the VHF/UHF frequency band and is conformal to the airborne. The VHF, Very high frequency. The translation is: very high frequency. The VHF refers to radio waves with a frequency of 30-3000 MHz. The UHF, Ultra High Frequency. The translation is: UHF. The UHF refers to ultra-high frequency radio waves with a frequency of 300-3000 MHz.
在本发明中,天线宽带匹配网络是由2阶T形L-C网络构成。此外,在天线宽带匹配网络的前端和后端分别引入了由阻抗变换器和电阻组成的附加网络。T形L-C网络有滤波和匹配的作用,附加网络旨在对天线的阻抗进行一定的修正,使其易于匹配。In the present invention, the antenna broadband matching network is composed of a 2-order T-shaped L-C network. In addition, additional networks consisting of impedance transformers and resistors are introduced at the front end and back end of the antenna broadband matching network, respectively. The T-shaped L-C network has the function of filtering and matching, and the additional network is designed to modify the impedance of the antenna to make it easy to match.
参见图2所示,本发明是一种具有实现阻抗变换特性的机载小型天线宽带匹配网络,该宽带匹配网络等效电路中包括有两个T形L-C网络、电阻和变压器T0组成的附加网络;T形网络由串联L-C网络和并联L-C网络构成;Referring to shown in Fig. 2, the present invention is a kind of airborne small-sized antenna broadband matching network that realizes impedance transformation characteristic, includes the additional network that two T-shaped L-C networks, resistance and transformer T0 are formed in this broadband matching network equivalent circuit ; The T-shaped network is composed of a series L-C network and a parallel L-C network;
第一个T形网络由第一电容C1与第一电感L1串联、第二电容C2与第二电感L2并联和第三电容C3与第三电感L3串联构成;The first T-shaped network is composed of the first capacitor C1 connected in series with the first inductor L1, the second capacitor C2 connected in parallel with the second inductor L2, and the third capacitor C3 connected in series with the third inductor L3;
第二个T形网络由第三电容C3与第三电感L3串联、第四电容C4与第四电感L4并联和第五电容C5与第五电感L5串联构成;两个T形网络形成多次滤波;附加网络中的电阻网络由第一电阻R1、第二电阻R2和第三电阻R3构成,附加网络是为了变换天线的阻抗;The second T-shaped network is composed of the third capacitor C3 connected in series with the third inductor L3, the fourth capacitor C4 connected in parallel with the fourth inductor L4, and the fifth capacitor C5 connected in series with the fifth inductor L5; two T-shaped networks form multiple filtering ; The resistor network in the additional network is composed of the first resistor R1, the second resistor R2 and the third resistor R3, and the additional network is to transform the impedance of the antenna;
天线的连接端与变压器T0的1端连接;变压器T0的2端接地;变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第五电容C5、第五电感L5、第一电阻R1后与同轴电缆的1端(即电缆的输入端)连接;变压器T0的4端与同轴电缆的2端(即电缆的接地端)连接;同轴电缆的2端(即电缆的接地端)接地;The connection terminal of the antenna is connected to the 1 terminal of the transformer T0; the 2 terminals of the transformer T0 are grounded; the 3 terminals of the transformer T0 pass through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, and the fifth capacitor in sequence C5, the fifth inductance L5, and the first resistor R1 are connected to the 1 end of the coaxial cable (ie, the input end of the cable); the 4 ends of the transformer T0 are connected to the 2 ends of the coaxial cable (ie, the grounding end of the cable); The 2 ends of the shaft cable (that is, the grounding end of the cable) are grounded;
变压器T0的3端顺次经第一电容C1、第一电感L1、第二电容C2后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductor L1, and the second capacitor C2 in sequence;
变压器T0的3端顺次经第一电容C1、第一电感L1、第二电感L2后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductance L1, and the second inductance L2 in sequence;
变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第四电容C4后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, and the fourth capacitor C4 in sequence;
变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第四电感L4后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductance L1, the third capacitor C3, the third inductance L3, and the fourth inductance L4 in sequence;
变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第五电容C5、第五电感L5、第二电阻R2后接入变压器T0的4端;The 3 terminals of the transformer T0 are connected to the 4 terminals of the transformer T0 through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, the fifth capacitor C5, the fifth inductor L5, and the second resistor R2 in sequence ;
变压器T0的3端顺次经第一电容C1、第一电感L1、第三电容C3、第三电感L3、第五电容C5、第五电感L5、第一电阻R1、第三电阻R3后接入变压器T0的4端。在本发明中,在变压器T0的副边与同轴电缆接入端之间运用多级滤波(由两个T形L-C网络构成)的处理方式对天线阻抗进行匹配,使得宽带匹配网络等效电路的结构合理。The three terminals of the transformer T0 are sequentially connected through the first capacitor C1, the first inductor L1, the third capacitor C3, the third inductor L3, the fifth capacitor C5, the fifth inductor L5, the first resistor R1, and the third
所述具有可实现阻抗变换特性的机载小型天线宽带匹配网络中变压器和电阻网络可以对天线和负载网络的阻抗进行变换;两个T形L-C网络起到滤波和匹配的作用,使得天线的阻抗值通过变压器、两个T形L-C网络、电阻网络后接近同轴线的特性阻抗值,最终达到预定的匹配。The transformer and the resistance network in the airborne small antenna broadband matching network with the characteristics of impedance transformation can transform the impedance of the antenna and the load network; two T-shaped L-C networks play the role of filtering and matching, so that the impedance of the antenna After the value passes through the transformer, two T-shaped L-C networks, and the resistor network, it is close to the characteristic impedance value of the coaxial line, and finally reaches the predetermined matching.
在本发明中,从天线匹配网络工作宽带的角度来定义天线匹配网络带宽内各频率点的驻波比。第1个频率点ω1的驻波比记为VSWR(ω1),第2个频率点ω2的驻波比记为VSWR(ω2),同理任意个(第i个)频率点ωi的驻波比记为VSWR(ωi),则带宽内各个频率点的驻波比之和记为VSWR(ω和)=VSWR(ω1)+VSWR(ω2)+…+VSWR(ωi)。为了进行天线匹配网络中电子元件参数的优化,将带宽内各个频率点的驻波比之和作为驻波比优化目标在本技术领域,驻波比优化目标取值越小则天线匹配网络性能越好。ω表示频率,ωi表示天线在工作带宽内的第i个频率点,VSWR(ωi)表示第i个频率点对应的驻波比,N表示天线在工作带宽内的频率点个数。In the present invention, the standing wave ratio of each frequency point within the bandwidth of the antenna matching network is defined from the perspective of the working bandwidth of the antenna matching network. The standing wave ratio of the first frequency point ω 1 is denoted as VSWR(ω 1 ), and the standing wave ratio of the second frequency point ω 2 is denoted as VSWR(ω 2 ). Similarly, any (i-th) frequency point ω The standing wave ratio of i is recorded as VSWR(ω i ), and the sum of the standing wave ratios of each frequency point within the bandwidth is recorded as VSWR(ω sum)=VSWR(ω 1 ) +VSWR(ω 2 )+…+VSWR(ω i ). In order to optimize the parameters of electronic components in the antenna matching network, the sum of the standing wave ratio of each frequency point within the bandwidth is used as the optimization target of the standing wave ratio In this technical field, the VSWR optimization objective The smaller the value, the better the performance of the antenna matching network. ω represents the frequency, ω i represents the i-th frequency point of the antenna within the working bandwidth, VSWR(ω i ) represents the standing wave ratio corresponding to the i-th frequency point, and N represents the number of frequency points of the antenna within the working bandwidth.
在本发明中,从天线转换效率最大的角度来定义天线匹配网络带宽,所述天线匹配网络带宽内的第1个频率点的转换功率增益记为G(ω1),第2个频率点的转换功率增益记为G(ω2),同理任意个(第i个)频率点的转换功率增益记为G(ωi),则带宽内各个频率点的转换功率增益之和记为G(ω和)=G(ω1)+G(ω2)+…+G(ωi)。为了进行天线匹配网络中电子元件参数的优化,将带宽内各个频率点的转换功率增益之和作为功率优化目标目在本技术领域,功率优化目标取值越大则天线匹配网络性能越好。ωi表示天线在工作带宽内的第i个频率点,G(ωi)表示第i个频率点对应的转换功率增益,Pout(ωi)表示从匹配网络供给同轴线缆的平均功率,Pin(ωi)表示从天线获得的最大平均功率。In the present invention, the antenna matching network bandwidth is defined from the perspective of the maximum antenna conversion efficiency, the conversion power gain of the first frequency point within the antenna matching network bandwidth is denoted as G(ω 1 ), and the conversion power gain of the second frequency point The conversion power gain is denoted as G(ω 2 ), similarly the conversion power gain of any (i-th) frequency point is denoted as G(ω i ), then the sum of the conversion power gains of each frequency point within the bandwidth is denoted as G( ω and )=G(ω 1 )+G(ω 2 )+...+G(ω i ). In order to optimize the parameters of electronic components in the antenna matching network, the sum of the conversion power gains of each frequency point within the bandwidth is used as the power optimization target head In the art, power optimization targets The larger the value, the better the performance of the antenna matching network. ω i represents the i-th frequency point of the antenna within the operating bandwidth, G(ω i ) represents the conversion power gain corresponding to the i-th frequency point, P out (ω i ) represents the average power supplied from the matching network to the coaxial cable , P in (ω i ) represents the maximum average power obtained from the antenna.
在本发明中,为了实现最好天线匹配网络性能,将驻波比优化目标和功率优化目标作为遗传算法与模拟退火算法相结合的目标函数,所述的目标函数采用数学集合表达形式为M目标={f目标,l目标}。In the present invention, in order to achieve the best antenna matching network performance, the VSWR optimization target and power optimization target As the objective function combining the genetic algorithm and the simulated annealing algorithm, the objective function adopts a mathematical set expression as M objective = {f objective , l objective }.
为了对天线宽带匹配网络等效电路中的各电子元件的参数值进行最优取值选取,本发明方法运行在安装有Matlab(Matlab 2008版本或者Matlab 2010版本)仿真软件的计算机上。所述计算机是一种能够按照事先存储的程序,自动、高速地进行大量数值计算和各种信息处理的现代化智能电子设备。最低配置为CPU 2GHz,内存2GB,硬盘180GB;操作系统为windows 2000/2003/XP。本发明采用了遗传算法与模拟退火算法相结合的优化方法,具体天线宽带匹配网络中的电子元件参数值优化匹配包括有下列步骤:In order to carry out optimum value selection to the parameter values of each electronic component in the antenna broadband matching network equivalent circuit, the inventive method operates on the computer that Matlab (Matlab 2008 version or Matlab 2010 version) emulation software is installed. The computer is a modern intelligent electronic device that can automatically and high-speed perform a large number of numerical calculations and various information processing according to pre-stored programs. The minimum configuration is CPU 2GHz, memory 2GB, hard disk 180GB; operating system is windows 2000/2003/XP. The present invention adopts the optimization method combining the genetic algorithm and the simulated annealing algorithm, and the optimal matching of the parameter values of the electronic components in the specific antenna broadband matching network includes the following steps:
步骤一:基于遗传算法的种群初始化,获得待优化变量X={XCa,XLb,XRd,XTe};Step 1: Based on the population initialization of the genetic algorithm, obtain the variables to be optimized X={XC a , XL b , XR d , XT e };
在步骤一中,将宽带匹配网络等效电路中电容、电感和电阻采用基于遗传算法的的种群处理,得到待优化变量X={XCa,XLb,XRd,XTe}。在本发明中,采用基于遗传算法的的种群处理是为了对等效电路中电子元件进行数字化的定义,以方便进行遗传算法中各参数的优化设置。宽带匹配网络等效电路由电容、电感、变压器和电阻形成等效电路结构,较好的等效电路结构是为了满足与机载共形的天线的使用要求。In step 1, the capacitance, inductance and resistance in the equivalent circuit of the broadband matching network are processed by a genetic algorithm-based population to obtain the variable X={XC a , XL b , XR d , XT e }. In the present invention, the population processing based on the genetic algorithm is used to digitally define the electronic components in the equivalent circuit, so as to facilitate the optimal setting of each parameter in the genetic algorithm. The equivalent circuit of the broadband matching network is composed of capacitors, inductors, transformers and resistors to form an equivalent circuit structure. A better equivalent circuit structure is to meet the requirements of the airborne conformal antenna.
所述待优化变量X={XCa,XLb,XRd,XTe}中XCa表示电容种群,a表示等效电路中电容的标识,如第一电容C1的第一电容种群记为XCC1;同理可得,第二电容种群记为XCC2,第三电容种群记为XCC3,第四电容种群记为XCC4,第五电容种群记为XCC5;等效电路中所有电容种群采用集合形式表示为XCa={XCC1,XCC2,XCC3,XCC4,XCC5};In the variable X to be optimized X={XC a , XL b , XR d , XT e }, XC a represents the capacitance population, and a represents the identity of the capacitance in the equivalent circuit, such as the first capacitance population of the first capacitance C1 is denoted as XC C1 ; in the same way, the second capacitor population is marked as XC C2 , the third capacitor population is marked as XC C3 , the fourth capacitor population is marked as XC C4 , and the fifth capacitor population is marked as XC C5 ; all capacitor populations in the equivalent circuit Expressed as XC a ={XC C1 , XC C2 , XC C3 , XC C4 , XC C5 } in a set form;
XLb表示电感种群,b表示等效电路中电感的标识,如第一电感L1的第一电感种群记为XLL1;同理可得,第二电感种群记为XLL2,第三电感种群记为XLL3,第四电感种群记为XLL4,第五电感种群记为XLL5;等效电路中所有电感种群采用集合形式表示为XLb={XLL1,XLL2,XLL3,XLL4,XLL5};XL b represents the inductance population, and b represents the identity of the inductance in the equivalent circuit. For example, the first inductance population of the first inductance L1 is denoted as XL L1 ; similarly, the second inductance population is denoted as XL L2 , and the third inductance population is denoted as XL L2 . is XL L3 , the fourth inductance population is denoted as XL L4 , the fifth inductance population is denoted as XL L5 ; all inductance populations in the equivalent circuit are represented as XL b = {XL L1 , XL L2 , XL L3 , XL L4 , XL L5 };
XRd表示电阻种群,d表示等效电路中电阻的标识,如第一电阻R1的第一电阻种群记为XRR1;同理可得,第二电阻种群记为XRR2,第三电阻种群记为XRR3;等效电路中所有电阻种群采用集合形式表示为XRd={XRR1,XRR2,XRR3};XR d represents the resistance population, and d represents the identification of the resistance in the equivalent circuit. For example, the first resistance population of the first resistance R1 is marked as XR R1 ; similarly, the second resistance population is marked as XR R2 , and the third resistance population is marked as XR R2 . is XR R3 ; all resistance populations in the equivalent circuit are expressed as XR d ={XR R1 , XR R2 , XR R3 } in a collective form;
XTe表示变压器种群,e表示等效电路中变压器的输入/输出电压比。而发明中采用的变压器T0的输入/输出电压比为DT∶1。XT e represents the transformer population, and e represents the input/output voltage ratio of the transformer in the equivalent circuit. The input/output voltage ratio of the transformer T0 used in the invention is DT:1.
在本发明中,待优化变量X={XCa,XLb,XRd,XTe}也可以展开表示为
步骤二:基于遗传算法的染色体处理,获得总种群 Step 2: Chromosome processing based on genetic algorithm to obtain the total population
在步骤二中,基于遗传算法中的染色体,对电容种群XCa在变量取值DC中随机生成m个变量值0<DC≤800pF。表示标识a电容种群在第1个染色体中的变量值,表示标识a电容种群在第2个染色体中的变量值,……,表示标识a电容种群在第m个染色体中的变量值,也称标识a电容种群在任意一个染色体中的变量值。In step two, based on the chromosomes in the genetic algorithm, randomly generate m variable values in the variable value DC for the capacitance population XC a 0<DC≤800pF. Indicates the variable value that identifies the a capacitance population in the first chromosome, Indicates the variable value that identifies the a capacitance population in the second chromosome, ..., Indicates the variable value that identifies the a-capacitance population in the mth chromosome, and is also called the variable value that identifies the a-capacitance population in any chromosome.
基于遗传算法中的染色体,对电感种群XLb在变量取值DL中随机生成w个变量值0<DL≤0.1μH。表示标识b电感种群在第1个染色体中的变量值,表示标识b电感种群在第2个染色体中的变量值,……,表示标识b电感种群在第w个染色体中的变量值,也称标识b电感种群在任意一个染色体中的变量值。Based on the chromosome in the genetic algorithm, randomly generate w variable values in the variable value DL for the inductance population XL b 0<DL≤0.1μH. Indicates the variable value identifying the b inductance population in the first chromosome, Indicates the variable value that identifies the b inductance population in the second chromosome, ..., Indicates the variable value that identifies the b-inductance population in the wth chromosome, and is also called the variable value that identifies the b-inductance population in any chromosome.
基于遗传算法中的染色体,对电阻种群XRd在变量取值DR中随机生成v个变量值0<DR≤5kΩ。表示标识d电阻种群在第1个染色体中的变量值,表示标识d电阻种群在第2个染色体中的变量值,……,表示标识d电阻种群在第v个染色体中的变量值,也称标识d电阻种群在任意一个染色体中的变量值。Based on the chromosome in the genetic algorithm, randomly generate v variable values in the variable value DR for the resistance population XR d 0<DR≤5kΩ. Indicates the variable value identifying the d resistance population in the first chromosome, Indicates the variable value that identifies the d resistance population in the second chromosome, ..., Indicates the variable value that identifies the d-resistance population in the vth chromosome, and is also called the variable value that identifies the d-resistance population in any chromosome.
基于遗传算法中的染色体,对变压器种群XTe在变量取值DT中随机生成n个变量值0.1≤DT≤10。表示标识e变压器种群在第1个染色体中的变量值,表示标识e变压器种群在第2个染色体中的变量值,……,表示标识e变压器种群在第n个染色体中的变量值,也称标识e变压器种群在任意一个染色体中的变量值。Based on the chromosome in the genetic algorithm, randomly generate n variable values in the variable value DT for the transformer population XT e 0.1≤DT≤10. Indicates the variable value identifying the e-transformer population in the first chromosome, Indicates the variable value identifying the e-transformer population in the second chromosome, ..., Indicates the variable value that identifies the e-transformer population in the nth chromosome, and is also called the variable value that identifies the e-transformer population in any chromosome.
在本发明中,染色体的变量m、w、v和n的取值为200个。对变量组中的所有数值分别进行编码,变量组转化为染色体,一个编码称为染色体中的一个个体。对于待优化变量X={XCa,XLb,XRd,XTe}经遗传算法中的染色体处理得到总种群 In the present invention, the variables m, w, v and n of the chromosome take 200 values. All values in the variable group are coded separately, and the variable group is transformed into a chromosome, and one code is called an individual in the chromosome. For the variable X={XC a , XL b , XR d , XT e } to be optimized, the total population is obtained by the chromosome processing in the genetic algorithm
步骤三:以多目标优化函数,按照并列选择法为目标函数中各个函数分配种群;Step 3: use the multi-objective optimization function to allocate populations for each function in the objective function according to the parallel selection method;
在步骤三中,将总种群中的全部个体(染色体)按目标函数M目标={f目标,l目标}的个数均等地划分为两个子群体Q1和Q2(子群体Q1也称为第一子群体,子群体Q2也称为第二子群体),对每个子群体分配目标函数M目标={f目标,l目标}中的一个进行优化。在本发明中,若第一子群体Q1采用了目标函数M目标={f目标,l目标}中的天线驻波比f目标进行优化,则第二子群体Q2应当采用目标函数M目标={f目标,l目标}中的转换功率增益l目标进行优化;反之,若第二子群体Q2采用了目标函数M目标={f目标,l目标}中的天线驻波比f目标标进行优化,则第一子群体Q1应当采用目标函数M目标={f目标,l目标}中的转换功率增益l目标进行优化。In step three, the total population All individuals (chromosomes) in the target function M target ={f target , l target } are equally divided into two subgroups Q1 and Q2 (subgroup Q1 is also called the first subgroup, subgroup Q 2 is also called the second subgroup), and each subgroup is assigned one of the objective functions Mobjective ={ fobjective , lobjective } for optimization. In the present invention, if the first subgroup Q1 adopts the antenna standing wave ratio f target in the objective function M target ={f target , l target } to optimize, then the second subgroup Q2 should adopt the objective function M target ={f target , l target in the conversion power gain l target is optimized; On the contrary, if the second subgroup Q2 has adopted the antenna standing wave ratio f target in the objective function M target ={f target , l target } For optimization, the first subgroup Q 1 should be optimized using the conversion power gain l objective in the objective function M objective = {f objective , l objective }.
步骤四:以交叉变异获取子种群的优化量;Step 4: Obtain the optimized amount of the subpopulation by crossover mutation;
在步骤四中,对第一子群体Q1进行交叉变异,保留每一代优化量DQ1(也称为第一优化量DQ1);对第二子群体Q2进行交叉变异,保留每一代优化量DQ2(也称为第二优化量DQ2);交叉变异获取每一代优化量的具体步骤为:In
步骤401:获取第一子群体Q1中的任意2个染色体作为当前染色体也称为当前第一染色体 Step 401: Obtain any 2 chromosomes in the first subgroup Q 1 as the current chromosome also known as the current first chromosome
获取第二子群体Q2中的任意2个染色体作为当前染色体也称为当前第二染色体 Get any 2 chromosomes in the second subpopulation Q 2 as the current chromosome also known as the current second chromosome
步骤402:对当前第一染色体中的两个个体进行交叉处理,生成新第一染色体表示交叉后第一个染色体,表示交叉后第二个染色体;所述交叉处理依据第一适应性策略模型
对当前第二染色体中的两个个体进行交叉处理,生成新第二染色体表示交叉后第三个染色体,表示交叉后第四个染色体;所述交叉处理依据第二适应性策略模型
步骤403:比较f1与f3和f2与f4,若f1≥f3且f2≥f4时,用AQ交叉代替AQ当前;若f1<f3或f2<f4时,则AQ当前不变;f3表示交叉后第一个染色体对应的驻波比优化目标f目标的值,f4表示交叉后第二个染色体对应的驻波比优化目标f目标的值;Step 403: Compare f 1 and f 3 and f 2 and f 4 , if f 1 ≥ f 3 and f 2 ≥ f 4 , use AQ cross instead of AQ current ; if f 1 < f 3 or f 2 < f 4 , then AQ is currently unchanged; f 3 means the first chromosome after crossover The value of the corresponding VSWR optimization target f target , f 4 means the second chromosome after crossover The value of the corresponding SWR optimization target f target ;
比较l1与l3和l2与l4,若l1≤l3且l2≤l4时,用BQ交叉代替BQ当前;若l1>l3或l2>l4时,则BQ当前不变;l3表示交叉后第三个染色体对应的功率优化目标l目标的值,l4表示交叉后第四染色体对应的功率优化目标l目标的值;Compare l 1 and l 3 and l 2 and l 4 , if l 1 ≤ l 3 and l 2 ≤ l 4 , use BQ cross instead of BQ current ; if l 1 > l 3 or l 2 > l 4 , then BQ Currently unchanged; l 3 means the third chromosome after crossover The value of the corresponding power optimization target l target , l 4 means the fourth chromosome after crossover The value of the corresponding power optimization target l target ;
步骤404:对当前第一染色体中的两个个体分别进行变异处理,生成变异第一染色体表示变异后的染色体,表示变异后的染色体;所述的变异处理依据第三适应性策略模型
对当前第二染色体中的两个个体分别进行变异处理,生成变异第二染色体表示变异后的染色体,表示变异后的染色体;所述变异处理依据第四适应性策略模型
步骤405:比较f1与f5,若f1>f5时,用代替若f1≤f5时,则不变;f5表示变异后的染色体对应的驻波比优化目标f目标的值;Step 405: compare f 1 and f 5 , if f 1 > f 5 , use replace If f 1 ≤ f 5 , then No change; f 5 means mutated chromosome The value of the corresponding SWR optimization target f target ;
比较f2与f6,若f2>f6时,用代替若f2≤f6时,则不变;f6表示变异后的染色体对应的驻波比优化目标f目标的值;Compare f 2 and f 6 , if f 2 > f 6 , use replace If f 2 ≤ f 6 , then No change; f 6 means mutated chromosome The value of the corresponding SWR optimization target f target ;
比较l1与l5,若l1<l5时,用代替若l1≥l5时,则不变;l5表示变异后的染色体对应的功率优化目标l目标的值;Compare l 1 and l 5 , if l 1 < l 5 , use replace If l 1 ≥ l 5 , then unchanged; l 5 means mutated chromosome The value of the corresponding power optimization target l target ;
比较l2与l6,若l2<l6时,用代替若l2≥l6时,则不变;l6表示变异后的染色体对应的功率优化目标l目标的值;Compare l 2 and l 6 , if l 2 <l 6 , use replace If l 2 ≥ l 6 , then unchanged; l 6 means mutated chromosome The value of the corresponding power optimization target l target ;
重复步骤401至步骤405,直到第一子群体Q1和第二子群体Q2中染色体全部交叉变异完成,得到当前世代第一子群体Q1的最优优化量,即第一优化量DQ1,第二子群体Q2的最优优化量,即第二优化量DQ2。Repeat steps 401 to 405 until all the cross-mutation of chromosomes in the first subgroup Q1 and the second subgroup Q2 is completed, and the optimal optimization quantity of the first subgroup Q1 of the current generation is obtained, that is, the first optimization quantity DQ1 , the optimal optimization quantity of the second subgroup Q 2 , that is, the second optimization quantity DQ 2 .
步骤五:依据目标函数M目标={f目标,l目标}遍历优化总种群Q总′中所有的染色体得到遗传算法中的当前代最优个体;Step 5: According to the objective function M objective = {f objective , l objective }, traverse all chromosomes in the optimized total population Q total ' to obtain the current generation optimal individual in the genetic algorithm;
在步骤五中,合并第一优化量DQ1和第二优化量DQ2组成新的种群,即优化总种群Q总′,依据目标函数M目标={f目标,l目标}遍历优化总种群Q总′中所有的染色体得到遗传算法中的当前代最优个体并把赋给Ihbest,以便下一代最优个体与当前代的最优个体进行比较,在两者中选择出较优个体,并且赋给Ihbest。In step 5, the first optimized quantity DQ 1 and the second optimized quantity DQ 2 are combined to form a new population, that is, the optimized total population Q total ', and the total optimized population Q is traversed according to the objective function M objective = {f objective , l objective } All the chromosomes in the total ' get the optimal individual of the current generation in the genetic algorithm and put It is assigned to I hbest , so that the optimal individual of the next generation can be compared with the optimal individual of the current generation, and a better individual is selected from the two, and assigned to I hbest .
判断是否达到遗传算法的终止条件,若不满足遗传终止条件,则返回步骤四,若满足遗传终止条件,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;所述遗传算法的终止条件是指迭代步数K是否为0,若迭代步数K不为0,则返回步骤三,若迭代步数K为0,则得出遗传算法中的最优个体Ihbest,并且保留下来,进入步骤六;为了与待优化变量X={XCa,XLb,XRd,XTe}的表达形式相对应,所述的电子元件参数最优解Ihbest集合表达形式为
表示第一电容种群XCC1经遗传算法后的最优电容值; Indicates the optimal capacitance value of the first capacitance population XC C1 after genetic algorithm;
表示第二电容种群XCC2经遗传算法后的最优电容值; Indicates the optimal capacitance value of the second capacitance population XC C2 after genetic algorithm;
表示第三电容种群XCC3经遗传算法后的最优电容值; Indicates the optimal capacitance value of the third capacitor population XC C3 after genetic algorithm;
表示第四电容种群XCC4经遗传算法后的最优电容值; Indicates the optimal capacitance value of the fourth capacitance population XC C4 after genetic algorithm;
表示第五电容种群XCC5经遗传算法后的最优电容值; Indicates the optimal capacitance value of the fifth capacitor population XC C5 after genetic algorithm;
表示第一电感种群XLL1经遗传算法后的最优电感值; Indicates the optimal inductance value of the first inductance population XL L1 after genetic algorithm;
表示第二电感种群XLL2经遗传算法后的最优电感值; Indicates the optimal inductance value of the second inductance population XL L2 after genetic algorithm;
表示第三电感种群XLL3经遗传算法后的最优电感值; Indicates the optimal inductance value of the third inductance population XL L3 after genetic algorithm;
表示第四电感种群XLL4经遗传算法后的最优电感值; Indicates the optimal inductance value of the fourth inductance population XL L4 after genetic algorithm;
表示第五电感种群XLL5经遗传算法后的最优电感值; Indicates the optimal inductance value of the fifth inductance population XL L5 after genetic algorithm;
表示第一电阻种群XRR1经遗传算法后的最优电组值; Indicates the optimal electrical group value of the first resistance population XR R1 after genetic algorithm;
表示第二电阻种群XRR2经遗传算法后的最优电组值; Indicates the optimal electrical group value of the second resistance population XR R2 after genetic algorithm;
表示第三电阻种群XRR3经遗传算法后的最优电组值; Indicates the optimal electrical group value of the third resistance population XR R3 after genetic algorithm;
表示变压器种群XTe经遗传算法后的最优变压器的输入/输出电压比值。 Indicates the input/output voltage ratio of the optimal transformer of the transformer population XT e after the genetic algorithm.
步骤六:对当前代最优个体Ihbest进行初始退火赋值,得到初始个体I初始;Step 6: Perform an initial annealing assignment on the best individual I hbest of the current generation to obtain the initial individual I;
在本发明中,对
表示第一电容种群XCC1在模拟退火算法中设置的初始值,且 Represents the initial value of the first capacitance population XC C1 set in the simulated annealing algorithm, and
表示第二电容种群XCC2在模拟退火算法中设置的初始值,且 Represents the initial value of the second capacitance population XC C2 set in the simulated annealing algorithm, and
表示第三电容种群XCC3在模拟退火算法中设置的初始值,且 Represents the initial value of the third capacitance population XC C3 set in the simulated annealing algorithm, and
表示第四电容种群XCC4在模拟退火算法中设置的初始值,且 Represents the initial value of the fourth capacitance population XC C4 set in the simulated annealing algorithm, and
表示第五电容种群XCC5在模拟退火算法中设置的初始值,且 Represents the initial value of the fifth capacitance population XC C5 set in the simulated annealing algorithm, and
表示第一电感种群XLL1在模拟退火算法中设置的初始值,且 Represents the initial value of the first inductance population XL L1 set in the simulated annealing algorithm, and
表示第二电感种群XLL2在模拟退火算法中设置的初始值,且 Represents the initial value of the second inductance population XL L2 set in the simulated annealing algorithm, and
表示第三电感种群XLL3在模拟退火算法中设置的初始值,且 Represents the initial value of the third inductance population XL L3 set in the simulated annealing algorithm, and
表示第四电感种群XLL4在模拟退火算法中设置的初始值,且 Represents the initial value of the fourth inductance population XL L4 set in the simulated annealing algorithm, and
表示第五电感种群XLL5在模拟退火算法中设置的初始值,且 Indicates the initial value of the fifth inductance population XL L5 set in the simulated annealing algorithm, and
表示第一电阻种群XRR1在模拟退火算法中设置的初始值,且 Represents the initial value of the first resistance population XR R1 set in the simulated annealing algorithm, and
表示第二电阻种群XRR2在模拟退火算法中设置的初始值,且 Represents the initial value of the second resistance population XR R2 set in the simulated annealing algorithm, and
表示第三电阻种群XRR3在模拟退火算法中设置的初始值,且 Represents the initial value of the third resistance population XR R3 set in the simulated annealing algorithm, and
表示变压器种群XTe在模拟退火算法中设置的初始值,且 Represents the initial value of the transformer population XT e set in the simulated annealing algorithm, and
步骤七:对当前代最优个体Ihbest进行试探赋值,得到试探个体I试探;Step 7: Assign a trial value to the best individual I hbest of the current generation to obtain the trial individual I trial ;
在本发明中,对模拟退火算法的初始个体进行试探赋值,则有新试探值个体 In the present invention, the initial individual of the simulated annealing algorithm If tentative assignment is performed, there will be a new tentative value individual
是第一电容种群XCC1在变量取值范围为ΔxC1内随机生成的, is randomly generated by the first capacitor population XC C1 within the variable value range of Δx C1 ,
是第二电容种群XCC2在变量取值范围为ΔxC2内随机生成的, is randomly generated by the second capacitor population XC C2 within the variable value range of Δx C2 ,
是第三电容种群XCC3在变量取值范围为ΔxC3内随机生成的, is randomly generated by the third capacitor population XC C3 within the variable value range of Δx C3 ,
是第四电容种群XCC4在变量取值范围为ΔxC4内随机生成的, is randomly generated by the fourth capacitor population XC C4 within the variable value range of Δx C4 ,
是第五电容种群XCC5在变量取值范围为ΔxC5内随机生成的, is randomly generated by the fifth capacitor population XC C5 within the variable value range of Δx C5 ,
是第一电感种群XLL1在变量取值范围为ΔxL1内随机生成的, is randomly generated by the first inductance population XL L1 within the variable value range of Δx L1 ,
是第二电感种群XLL2在变量取值范围为ΔxL2内随机生成的, is randomly generated by the second inductance population XL L2 within the variable value range of Δx L2 ,
是第三电感种群XLL3在变量取值范围为ΔxL3内随机生成的, is randomly generated by the third inductance population XL L3 within the variable value range of Δx L3 ,
是第四电感种群XLL4在变量取值范围为ΔxL4内随机生成的, is randomly generated by the fourth inductance population XL L4 within the variable value range of Δx L4 ,
是第五电感种群XLL5在变量取值范围为ΔxL5内随机生成的, is randomly generated by the fifth inductance population XL L5 within the variable value range of Δx L5 ,
是第一电阻种群XRR1在变量取值范围为ΔxR1内随机生成的, is randomly generated by the first resistance population XR R1 within the variable value range of Δx R1 ,
是第二电阻种群XRR2在变量取值范围为ΔxR2内随机生成的, is randomly generated by the second resistance population XR R2 within the variable value range of Δx R2 ,
是第三电阻种群XRR3在变量取值范围为ΔxR3内随机生成的, is randomly generated by the third resistance population XR R3 within the variable value range of Δx R3 ,
是变压器种群XTe在变量取值范围为ΔxTe内随机生成的, is randomly generated by the transformer population XT e within the variable value range Δx Te ,
步骤八:依据目标函数M目标={f目标,l目标}、初始个体I初始和试探个体I试探进行模拟退火优化,得到电子元件参数的优化解;Step 8: Perform simulated annealing optimization according to the objective function M target ={f target , l target }, the initial individual I initial and the trial individual I trial to obtain the optimized solution of the electronic component parameters;
步骤801:计算试探个体对应的目标函数M目标={f目标,l目标}的值分别为ff1和ll1,ff1表示试探个体I试探对应的驻波比优化目标f目标的值,ll1表示试探个体I试探对应的功率优化目标l目标的值;Step 801: Calculate the trial individual The values of the corresponding objective function M target = {f target , l target } are respectively ff 1 and ll 1 , ff 1 represents the value of the SWR optimization target f target corresponding to the trial individual I trial , and ll 1 represents the value of the trial individual I trial The value of the corresponding power optimization target l target ;
步骤802:计算初始个体对应的目标函数值M目标={f目标,l目标}的值分别为ff2和ll2,ff2表示初始个体I初始对应的驻波比优化目标f目标的值,ll2表示初始个体I初始对应的功率优化目标l目标的值;Step 802: Calculate the initial individual The values of the corresponding objective function value M target = {f target , l target } are ff 2 and ll 2 respectively, ff 2 represents the value of initial individual I corresponding to the SWR optimization target f target , ll 2 represents the initial individual I The value of the initial corresponding power optimization target l target ;
步骤803:判断试探个体I试探的目标函数值M目标={f目标,l目标}的值ff1和ll1是否优于初始个体I初始对应的目标函数值M目标={f目标,l目标}的值ff2和ll2,若ff1≤ff2且ll1≥ll2,则进入步骤804,否则返回步骤801;Step 803: Judging whether the values ff 1 and ll 1 of the objective function value Mtarget ={ ftarget , ltarget } of the trial individual I are better than the initial corresponding objective function value Mtarget ={ ftarget , ltarget } values ff 2 and ll 2 , if ff 1 ≤ ff 2 and ll 1 ≥ ll 2 , enter step 804, otherwise return to step 801;
步骤804:计算试探个体I试探是否满足接收函数关系
步骤805:在退火算法中以降温速度a进行温度降低,并判断当前温度Tnow是否小于截止温度Tend,若Tnow大于Tend,则返回步骤801;若Tnow小于等于Tend,则将优化后的初始个体I初始作为遗传-模拟退火处理后的电子元件参数优化解Ibest,
遗传算法和模拟退火算法的实现都需要合理选择多个控制参数。本发明的控制参数选择如下:The realization of both genetic algorithm and simulated annealing algorithm needs to select several control parameters reasonably. The control parameters of the present invention are selected as follows:
遗传算法部分:迭代步数K为250。Genetic algorithm part: the number of iteration steps K is 250.
模拟退火算法部分:初始温度T0为0.05度,截止温度Tend为0.00001度,降温速度a为0.9。Simulated annealing algorithm part: the initial temperature T 0 is 0.05 degrees, the cut-off temperature T end is 0.00001 degrees, and the cooling rate a is 0.9.
采用matlab软件对匹配网络中电子元件(如图2所示)参数进行遗传-模拟退火组合算法仿真处理,得到的各优化参数如表1所示。Matlab software is used to simulate the parameters of the electronic components in the matching network (as shown in Figure 2) by genetic-simulated annealing combination algorithm, and the optimized parameters are shown in Table 1.
表1遗传-模拟退火组合算法优化得到的匹配网络元件值Table 1 The matching network component values obtained by the optimization of genetic-simulated annealing combined algorithm
由于优化得到的匹配网络中L1、C4、L5的元件值很小,其对匹配网络的贡献不大,可将这部分元件去掉。简化后的天线宽带匹配网络的结构示意图如图4所示。在图4中,该宽带匹配网络等效电路中天线的连接端与变压器T0的1端连接;变压器T0的2端接地;同轴电缆的1端与第一电阻R1的一端连接,同轴电缆的2端接地,同轴电缆的1端和2端之间并联有第三电阻R3;Because the component values of L1, C4, and L5 in the optimized matching network are very small, and their contribution to the matching network is not large, these components can be removed. The structure diagram of the simplified antenna broadband matching network is shown in Fig. 4 . In Fig. 4, the connection end of the antenna in the equivalent circuit of the broadband matching network is connected to the 1 end of the transformer T0; the 2 ends of the transformer T0 are grounded; the 1 end of the coaxial cable is connected to the end of the first resistor R1, and the
变压器T0的3端经第一电容C1、第二电容C2后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to
变压器T0的3端经第一电容C1、第二电感L2后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to
变压器T0的3端经第一电容C1、第三电容C3、第三电感L3、第四电感L4后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to
变压器T0的3端经第一电容C1、第三电容C3、第三电感L3、第五电容C5、第二电阻R2后接入变压器T0的4端;Terminal 3 of the transformer T0 is connected to
变压器T0的3端经第一电容C1、第三电容C3、第三电感L3、第五电容C5、第一电阻R1、第三电阻R3后接入变压器T0的4端。Terminal 3 of the transformer T0 is connected to
在本发明中,在变压器T0的副边与同轴电缆接入端之间运用多级滤波(由两个T形L-C网络构成)的处理方式对天线阻抗进行匹配,使得宽带匹配网络等效电路的结构合理。In the present invention, between the secondary side of the transformer T0 and the coaxial cable access end, the antenna impedance is matched by using a multi-stage filter (consisting of two T-shaped L-C networks), so that the broadband matching network equivalent circuit The structure is reasonable.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210177820.9A CN102722613B (en) | 2012-05-31 | 2012-05-31 | Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210177820.9A CN102722613B (en) | 2012-05-31 | 2012-05-31 | Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102722613A true CN102722613A (en) | 2012-10-10 |
CN102722613B CN102722613B (en) | 2014-06-25 |
Family
ID=46948373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210177820.9A Active CN102722613B (en) | 2012-05-31 | 2012-05-31 | Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102722613B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930340A (en) * | 2012-10-26 | 2013-02-13 | 上海电力学院 | Adaptive genetic annealing calculation method for solving zero-one knapsack problem |
CN103107963A (en) * | 2013-01-09 | 2013-05-15 | 王少夫 | Broadband matching network optimization method based on hybrid genetic algorithm |
CN104504229A (en) * | 2014-09-19 | 2015-04-08 | 杭州电子科技大学 | Intelligent bus scheduling method based on hybrid heuristic algorithm |
CN105160184A (en) * | 2015-09-08 | 2015-12-16 | 合肥工业大学 | Analysis method of mutual diffusion coefficient of multicomponent melt |
CN105933013A (en) * | 2016-06-17 | 2016-09-07 | 上海大学 | Communication antenna matching system based on Android platform |
CN106934115A (en) * | 2017-02-21 | 2017-07-07 | 中国电力科学研究院 | A kind of method and system of the wideband model for setting up gas-insulated switchgear damping bus |
CN108153955A (en) * | 2017-12-20 | 2018-06-12 | 湖州师范学院 | Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm |
CN109446665A (en) * | 2018-10-31 | 2019-03-08 | 中国科学院电子学研究所 | A kind of NLFM signal optimization method and device, storage medium |
CN109447369A (en) * | 2018-11-09 | 2019-03-08 | 浙江大学 | A kind of production capacity end power distribution method multifactor based on the considerations of simulated annealing |
CN110398219A (en) * | 2019-08-05 | 2019-11-01 | 安徽工业大学 | A Parameter Calibration Method for Articulated Arm Coordinate Measuring Machine Based on Hybrid Optimization Algorithm |
CN110728021A (en) * | 2019-09-05 | 2020-01-24 | 杭州电子科技大学 | Microstrip filter antenna design method based on improved binary whale optimization algorithm |
CN110912534A (en) * | 2019-12-12 | 2020-03-24 | 中国科学院地质与地球物理研究所 | A modular design method and module of a broadband impedance matching transformer for acoustic logging |
CN112486111A (en) * | 2020-11-17 | 2021-03-12 | 湖南师范大学 | Edible oil alkali refining process intelligent adjusting method based on data analysis |
CN112978935A (en) * | 2021-02-03 | 2021-06-18 | 齐鲁工业大学 | Sewage treatment system and method for microbial fuel cell |
CN115329710A (en) * | 2022-08-26 | 2022-11-11 | 苏州大学 | Layout optimization method of heat pipe constraint components based on genetic algorithm |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070150843A1 (en) * | 2005-12-22 | 2007-06-28 | Su Peisheng A | Method for generating minimal leakage current input vector using heuristics |
CN102087337A (en) * | 2009-12-04 | 2011-06-08 | 哈尔滨理工大学 | Annealing genetic optimization method for diagnosing excitation of nonlinear analog circuit |
-
2012
- 2012-05-31 CN CN201210177820.9A patent/CN102722613B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070150843A1 (en) * | 2005-12-22 | 2007-06-28 | Su Peisheng A | Method for generating minimal leakage current input vector using heuristics |
CN102087337A (en) * | 2009-12-04 | 2011-06-08 | 哈尔滨理工大学 | Annealing genetic optimization method for diagnosing excitation of nonlinear analog circuit |
Non-Patent Citations (4)
Title |
---|
《电网技术》 20050228 侯学勇,丁晓群 基于遗传-模拟退火算法的配电网电容器优化配置 第29卷, 第4期 * |
侯学勇,丁晓群: "基于遗传–模拟退火算法的配电网电容器优化配置", 《电网技术》, vol. 29, no. 4, 28 February 2005 (2005-02-28) * |
孙保华,等: "VHF/ UHF 天线宽带匹配网络的优化设计与实验研究", 《电子学报》, vol. 30, no. 6, 30 June 2002 (2002-06-30) * |
陈爱新 等: "电小天线宽带匹配网络的优化设计", 《北京航空航天大学学报》, vol. 35, no. 11, 30 November 2009 (2009-11-30) * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930340A (en) * | 2012-10-26 | 2013-02-13 | 上海电力学院 | Adaptive genetic annealing calculation method for solving zero-one knapsack problem |
CN103107963A (en) * | 2013-01-09 | 2013-05-15 | 王少夫 | Broadband matching network optimization method based on hybrid genetic algorithm |
CN104504229A (en) * | 2014-09-19 | 2015-04-08 | 杭州电子科技大学 | Intelligent bus scheduling method based on hybrid heuristic algorithm |
CN104504229B (en) * | 2014-09-19 | 2018-02-16 | 杭州电子科技大学 | A kind of intelligent public transportation dispatching method based on hybrid metaheuristics |
CN105160184A (en) * | 2015-09-08 | 2015-12-16 | 合肥工业大学 | Analysis method of mutual diffusion coefficient of multicomponent melt |
CN105160184B (en) * | 2015-09-08 | 2017-11-28 | 合肥工业大学 | A kind of analysis method of multicomponent melt interdiffusion coefficient |
CN105933013A (en) * | 2016-06-17 | 2016-09-07 | 上海大学 | Communication antenna matching system based on Android platform |
CN106934115A (en) * | 2017-02-21 | 2017-07-07 | 中国电力科学研究院 | A kind of method and system of the wideband model for setting up gas-insulated switchgear damping bus |
CN108153955A (en) * | 2017-12-20 | 2018-06-12 | 湖州师范学院 | Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm |
CN109446665A (en) * | 2018-10-31 | 2019-03-08 | 中国科学院电子学研究所 | A kind of NLFM signal optimization method and device, storage medium |
CN109447369A (en) * | 2018-11-09 | 2019-03-08 | 浙江大学 | A kind of production capacity end power distribution method multifactor based on the considerations of simulated annealing |
CN109447369B (en) * | 2018-11-09 | 2022-05-17 | 浙江大学 | A power distribution method at the production end considering multiple factors based on simulated annealing algorithm |
CN110398219A (en) * | 2019-08-05 | 2019-11-01 | 安徽工业大学 | A Parameter Calibration Method for Articulated Arm Coordinate Measuring Machine Based on Hybrid Optimization Algorithm |
CN110728021A (en) * | 2019-09-05 | 2020-01-24 | 杭州电子科技大学 | Microstrip filter antenna design method based on improved binary whale optimization algorithm |
CN110728021B (en) * | 2019-09-05 | 2024-03-01 | 杭州电子科技大学 | Microstrip filter antenna design method based on improved binary whale optimization algorithm |
CN110912534A (en) * | 2019-12-12 | 2020-03-24 | 中国科学院地质与地球物理研究所 | A modular design method and module of a broadband impedance matching transformer for acoustic logging |
US11018648B1 (en) | 2019-12-12 | 2021-05-25 | Instituute Of Geology And Geophysics, Chinese Academy Of Sciences | Sonic logging broadband impedance matching transformer modular design method and module |
CN112486111A (en) * | 2020-11-17 | 2021-03-12 | 湖南师范大学 | Edible oil alkali refining process intelligent adjusting method based on data analysis |
CN112486111B (en) * | 2020-11-17 | 2021-12-14 | 湖南师范大学 | Edible oil alkali refining process intelligent adjusting method based on data analysis |
CN112978935A (en) * | 2021-02-03 | 2021-06-18 | 齐鲁工业大学 | Sewage treatment system and method for microbial fuel cell |
CN115329710A (en) * | 2022-08-26 | 2022-11-11 | 苏州大学 | Layout optimization method of heat pipe constraint components based on genetic algorithm |
CN115329710B (en) * | 2022-08-26 | 2023-08-29 | 苏州大学 | Heat pipe constraint assembly layout optimization method based on genetic algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN102722613B (en) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102722613B (en) | Method for optimizing electronic component parameters in antenna broadband matching network by adopting genetic-simulated annealing combination | |
CN108170950A (en) | Multilayer Frequency-Selective Surfaces absorbing material modeling optimization method based on neural network | |
CN105787558B (en) | Knowledge neural network microstrip filter design method based on ADS | |
CN108920841B (en) | Antenna design method | |
Sivia et al. | Design of sierpinski carpet fractal antenna using artificial neural networks | |
Gregory et al. | Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy | |
CN104202007A (en) | Active broadband matching method of short-wave frequency-band electrically small antenna and matching circuit thereof | |
CN108712154A (en) | A kind of broadband F power-like amplifiers and design method | |
Chen et al. | Optimization of low noise amplifier designs by genetic algorithms | |
CN104504424B (en) | Radio frequency identification network topology optimization method based on Symbiotic evolution on multiple populations | |
CN108832907A (en) | Data radio station wideband impedance match network and its design method | |
CN104410381B (en) | Lumped parameter double frequency impedance matching network | |
CN112149360A (en) | ALO-LMBP neural network-based double-notch characteristic ultra-wideband antenna reverse modeling research method | |
CN109871580A (en) | A Design Method of Amplifier Matching Network Based on Simplified Real-Frequency Method | |
Nakagawa et al. | Design of the rf-dc conversion circuit by ga adopting mutation based on fourier coefficients on unit structures | |
CN115859798A (en) | Design method and device of N-frequency unequal power divider based on BP neural network | |
CN209692710U (en) | A kind of broadband continuous type power amplifier based on multiple stage secondary harmonic controling | |
Chen | Frequency-domain and time-domain performance enhancements of ultra-wideband antennas using multiobjective optimization techniques | |
Yildiz et al. | Adaptive neuro‐fuzzy models for the quasi‐static analysis of microstrip line | |
Dib et al. | Variable Z0 applied to the optimal design of multi-stub matching network and a meander monopole | |
CN114492253B (en) | Microstrip circuit half-space mapping rapid optimization method combined with Gaussian process | |
Wang et al. | Differential Evolution Optimization Algorithm for Electromagnetic Device Design with High-dimensional Mixed Discrete-Continuous Variables | |
Turkmen et al. | Anfis models for the quasistatic analysis of coplanar strip line structures | |
CN117809773A (en) | Metamaterial wave absorber optimal design method based on space mapping network and wave absorber | |
Contreras | Objective functions for the optimization of an ultra wideband antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |