CN102722088A - Non-contact coarse-fine motion layer positioning system and motion control method thereof - Google Patents
Non-contact coarse-fine motion layer positioning system and motion control method thereof Download PDFInfo
- Publication number
- CN102722088A CN102722088A CN2012101801402A CN201210180140A CN102722088A CN 102722088 A CN102722088 A CN 102722088A CN 2012101801402 A CN2012101801402 A CN 2012101801402A CN 201210180140 A CN201210180140 A CN 201210180140A CN 102722088 A CN102722088 A CN 102722088A
- Authority
- CN
- China
- Prior art keywords
- voice coil
- motion table
- axis
- coil motor
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Position Or Direction (AREA)
- Control Of Linear Motors (AREA)
Abstract
一种无接触式粗精动叠层定位系统及其运动控制方法,该定位装置包括一个微动台和对称布置在微动台两侧的两个粗动台,微动台利用音圈电机悬浮在两个粗动台上方,各粗动台之间、各粗动台与微动台之间无机械连接。微动台能够实现六自由度运动,两个粗动台沿Y轴方向运动。沿Y轴方向运动的控制方法中,以激光尺信号为微动台沿Y轴方向位置反馈,利用音圈电机驱动实现微动台沿Y轴方向运动。以电涡流传感器信号为粗动台与微动台之间沿Y轴方向位置偏差,以该偏差为控制器反馈实现粗动台与微动台沿Y轴方向的同步运动。
A non-contact coarse-fine motion lamination positioning system and its motion control method, the positioning device includes a micro-motion stage and two coarse motion stages symmetrically arranged on both sides of the micro-motion stage, and the micro-motion stage is suspended by a voice coil motor Above the two coarse motion tables, there is no mechanical connection between each coarse motion table and between each coarse motion table and the fine motion table. The micro-motion table can realize six-degree-of-freedom movement, and the two coarse motion tables move along the Y-axis direction. In the control method of moving along the Y-axis direction, the laser encoder signal is used as the position feedback of the micro-motion table along the Y-axis direction, and the voice coil motor is used to drive the micro-motion table to move along the Y-axis direction. The signal of the eddy current sensor is used as the position deviation between the coarse motion table and the fine motion table along the Y-axis direction, and the deviation is used as the controller feedback to realize the synchronous movement of the coarse motion table and the micro-motion table along the Y-axis direction.
Description
技术领域 technical field
本发明涉及一种无接触式粗精动叠层定位装置运动控制系统,属于半导体光刻设备领域。The invention relates to a motion control system of a non-contact coarse and fine motion lamination positioning device, which belongs to the field of semiconductor photolithography equipment.
背景技术 Background technique
具有纳米级运动定位精度的超精密微动台是半导体装备关键部件之一,如光刻机中的硅片台、掩模台等。为实现超精密定位要求,以气浮和磁浮约束为支撑方式的执行单元作为一种超精密运动台被广泛应用。气浮约束作为支撑和导向作用时,减小了机械结构传动引起的摩擦力等作用,提高了系统运动定位精度。以直线电机为驱动单元时,由通电线圈在永磁阵列气隙磁场中产生的洛仑兹力提供驱动力,通过控制线圈中电流大小来改变执行单元的推力,具有结构简单等优点。The ultra-precise micro-motion stage with nanometer-level motion positioning accuracy is one of the key components of semiconductor equipment, such as silicon wafer stages and mask stages in lithography machines. In order to meet the requirements of ultra-precise positioning, the execution unit supported by air suspension and magnetic suspension is widely used as an ultra-precision motion table. When the air flotation constraint acts as a support and guide, it reduces the friction caused by the transmission of the mechanical structure and improves the positioning accuracy of the system. When the linear motor is used as the drive unit, the Lorentz force generated by the energized coil in the air-gap magnetic field of the permanent magnet array provides the drive force, and the thrust of the execution unit is changed by controlling the current in the coil, which has the advantages of simple structure.
目前光刻设备中通常采用粗精动叠层的结构,包括两个粗动台和一个微动台,两个粗动台之间通过一个横梁连接,微动台安装在横梁上,通过横梁实现两个粗动台与微动台的同步运动。一方面连接横梁增加了结构设计的复杂性,增加了系统结构质量,较大的质量将影响系统运动响应性能,另一方面,当结构运动时,如果两个粗动台沿Y轴方向存在位置偏差,由于连接梁的作用,使得两个粗动平台之间产生作用力与反作用力的耦合,使得两个粗动平台的性能相互影响,将影响系统的运动定位精度。因此设计出无机械连接的粗精动叠层定位装置并设计出针对该定位装置的控制方法具有重要意义。At present, lithography equipment usually adopts a coarse-fine motion lamination structure, including two coarse motion tables and a fine motion table. The two coarse motion tables are connected by a beam, and the micro motion table is installed on the beam. Synchronous movement of two coarse and fine motion stages. On the one hand, connecting the beam increases the complexity of the structural design and increases the structural quality of the system. The larger mass will affect the motion response performance of the system. On the other hand, when the structure is moving, if the two coarse motion tables have a position Due to the action of the connecting beam, the coupling of the action force and the reaction force between the two coarse motion platforms will cause the performance of the two coarse motion platforms to affect each other, which will affect the motion positioning accuracy of the system. Therefore, it is of great significance to design a rough and fine lamination positioning device without mechanical connection and to design a control method for the positioning device.
发明内容 Contents of the invention
本发明的目的是提供一种应用于半导体装备的定位装置以及位置测量与运动控制算法,不仅满足六自由度运动定位要求,同时解决目前掩模台粗精动叠层结构中由机械结构耦合作用引起的结构复杂、运动性能相互影响等问题。The purpose of the present invention is to provide a positioning device and a position measurement and motion control algorithm applied to semiconductor equipment, which not only meet the six-degree-of-freedom motion positioning requirements, but also solve the mechanical structure coupling effect in the current mask table rough and fine motion lamination structure. The problems caused by the complex structure and mutual influence of sports performance.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种无接触式粗精动叠层定位系统,该控制系统包括定位装置、位置测量装置、驱动装置和控制单元;A non-contact coarse and fine motion lamination positioning system, the control system includes a positioning device, a position measuring device, a driving device and a control unit;
定位装置包括基架、一个微动台和两个对称布置在微动台两侧的粗动台,两个粗动台之间、粗动台与微动台之间无机械连接;The positioning device includes a base frame, a micro-motion table and two coarse motion tables arranged symmetrically on both sides of the micro-motion table, and there is no mechanical connection between the two coarse motion tables or between the coarse motion table and the micro-motion table;
位置测量装置包括:Position measuring devices include:
1)一个激光尺,用于测量微动台质心沿Y轴的绝对位置;1) A laser ruler for measuring the absolute position of the center of mass of the micro-motion stage along the Y-axis;
2)两个光栅测量装置,每个光栅测量装置包括一个光栅尺和一个读数头,用于测量粗动台沿Y轴方向的位移;2) Two grating measuring devices, each grating measuring device includes a grating ruler and a reading head, used to measure the displacement of the coarse motion table along the Y-axis direction;
3)七个电涡流传感器,其中:3) Seven eddy current sensors, of which:
第一电涡流传感器和第二电涡流传感器安装在第一粗动台上,布置于一条沿Y轴的直线上,用于测量微动台沿X轴与粗动台的相对位置,第一和第二电涡流传感器测量值的差动作为微动台绕Z轴的转角;The first eddy current sensor and the second eddy current sensor are installed on the first coarse motion table, arranged on a straight line along the Y axis, and used to measure the relative position of the fine motion table and the coarse motion table along the X axis, the first and The differential action of the measured value of the second eddy current sensor is used as the rotation angle of the micro-motion table around the Z axis;
第三电涡流传感器安装在第一粗动台上,测量第一粗动台与微动台之间沿Y轴方向的相对位置;第四电涡流传感器安装在第二粗动台上,测量第二粗动台与微动台之间沿Y轴方向的相对位置;The third eddy current sensor is installed on the first coarse motion table to measure the relative position between the first coarse motion table and the fine motion table along the Y-axis direction; the fourth eddy current sensor is installed on the second coarse motion table to measure the first coarse motion table. 2. The relative position between the coarse motion table and the fine motion table along the Y-axis direction;
第五电涡流传感器和第六电涡流传感器安装在第一粗动台上,且位于一条沿Y轴的直线上,第七电涡流传感器安装在第二粗动台上,且与第五电涡流传感器位于一条沿X轴的直线上;该三个电涡流传感器用于测量微动台沿Z轴的绝对位置,第五电涡流传感器和第六电涡流传感器测量值的差动作为微动台绕X轴的转角,第五电涡流传感器和第七电涡流传感器测量值的差动作为微动台绕Y轴的转角;The fifth eddy current sensor and the sixth eddy current sensor are installed on the first coarse motion table and are located on a straight line along the Y axis, and the seventh eddy current sensor is installed on the second coarse motion table and connected to the fifth eddy current sensor The sensors are located on a straight line along the X-axis; the three eddy-current sensors are used to measure the absolute position of the micro-motion stage along the Z-axis, and the difference between the measured values of the fifth eddy-current sensor and the sixth eddy-current sensor is used as the The rotation angle of the X-axis, the difference between the measured values of the fifth eddy-current sensor and the seventh eddy-current sensor is taken as the rotation angle of the micro-motion table around the Y-axis;
驱动装置包括:Drives include:
1)十个音圈电机1) Ten voice coil motors
微动台包括四个沿Y轴方向驱动的音圈电机、两个沿X轴方向驱动的音圈电机和四个沿Z轴方向驱动的音圈电机;第一音圈电机、第二音圈电机、第五音圈电机的线圈组件固定在第一粗动台上,永磁体组件固定在微动台上,第三音圈电机、第四音圈电机、第六音圈电机的线圈组件固定在第二粗动台上,永磁体组件固定在微动台上;The micro-motion stage includes four voice coil motors driven along the Y axis, two voice coil motors driven along the X axis, and four voice coil motors driven along the Z axis; the first voice coil motor, the second voice coil The coil assembly of the motor and the fifth voice coil motor is fixed on the first coarse motion table, the permanent magnet assembly is fixed on the fine motion table, the coil assemblies of the third voice coil motor, the fourth voice coil motor, and the sixth voice coil motor are fixed On the second coarse motion stage, the permanent magnet assembly is fixed on the fine motion stage;
第七音圈电机、第八音圈电机、第九音圈电机、第十音圈电机结构相同,包括外磁环、内磁环、圆柱线圈组件、重力平衡磁柱;外磁环与内磁环的轴线沿Z轴方向,外磁环与内磁环充磁方向相同,沿径向方向且由圆环外表面指向圆心;圆柱线圈位于内磁环与外磁环之间,绕线轴线沿Z轴方向;磁柱的轴线沿Z轴方向,充磁方向沿Z轴正方向;第七音圈电机、第八音圈电机的圆柱线圈组件固定在第一粗动台上,第九音圈电机、第十音圈电机的圆柱线圈组件固定在第二粗动台上;The seventh voice coil motor, the eighth voice coil motor, the ninth voice coil motor, and the tenth voice coil motor have the same structure, including an outer magnetic ring, an inner magnetic ring, a cylindrical coil assembly, and a gravity balance magnetic column; the outer magnetic ring and the inner magnetic ring The axis of the ring is along the Z-axis direction, the outer magnetic ring and the inner magnetic ring are magnetized in the same direction, along the radial direction and pointing from the outer surface of the ring to the center of the circle; the cylindrical coil is located between the inner magnetic ring and the outer magnetic ring, and the winding axis is along the Z-axis direction; the axis of the magnetic column is along the Z-axis direction, and the magnetization direction is along the positive direction of the Z-axis; the cylindrical coil assemblies of the seventh voice coil motor and the eighth voice coil motor are fixed on the first coarse motion table, and the ninth voice coil The motor and the cylindrical coil assembly of the tenth voice coil motor are fixed on the second coarse motion table;
2)两个直线电机2) Two linear motors
两个直线电机分别用于驱动第一粗动台和第二粗动台;Two linear motors are respectively used to drive the first coarse motion table and the second coarse motion table;
所述控制单元包括含有控制程序的工控机、计数卡、A/D卡、D/A卡和驱动器,计数卡采集光栅尺和激光尺的增量信号,A/D卡采集电涡流传感器的信号,计数卡和A/D卡将采集到的信号输入至工控机,工控机以所述信号作为位置反馈信号对微动台以及粗动台进行控制,控制指令通过D/A卡输出至驱动器,驱动力输出电流给电机,实现微动台以及粗动台的运动。The control unit includes an industrial computer containing a control program, a counting card, an A/D card, a D/A card and a driver, the counting card collects the incremental signals of the grating ruler and the laser ruler, and the A/D card collects the signals of the eddy current sensor , the counting card and the A/D card input the collected signal to the industrial computer, and the industrial computer uses the signal as a position feedback signal to control the micro-motion table and the coarse motion table, and the control command is output to the driver through the D/A card. The driving force outputs current to the motor to realize the movement of the micro-motion table and the coarse motion table.
基于所述的粗精动叠层定位系统,采用了一种运动控制方法,该控制方法包括如下步骤:Based on the described coarse-fine motion lamination positioning system, a motion control method is adopted, and the control method includes the following steps:
1)在伺服周期开始,设定微动台的六自由度位移量,其中xd为沿X轴的位移量,yd为沿Y轴的位移量,zd为沿Z轴的位移量,θxd为绕X轴的转角位移量,θyd为绕Y轴的转角位移量,θzd为绕Z轴的转角位移量;然后将计数卡采集的激光尺信号和A/D卡采集的电涡流传感器信号作为微动台控制环路的反馈信号,将A/D卡采集的电涡流传感器信号作为粗动台控制环路的反馈信号;1) At the beginning of the servo cycle, set the six-degree-of-freedom displacement of the micro-motion table, where x d is the displacement along the X-axis, y d is the displacement along the Y-axis, z d is the displacement along the Z-axis, θ xd is the angular displacement around the X axis, θ yd is the angular displacement around the Y axis, and θ zd is the angular displacement around the Z axis; The signal of the eddy current sensor is used as the feedback signal of the control loop of the micro-motion stage, and the signal of the eddy current sensor collected by the A/D card is used as the feedback signal of the control loop of the coarse motion stage;
2)根据设定的微动台六自由度位移量以及反馈信号求解每个音圈电机相应出力,其中第一音圈电机、第二音圈电机、第三音圈电机和第四音圈电机控制微动台沿Y方向移动和绕Z轴旋转的自由度,第五音圈电机和第六音圈电机控制微动台沿X方向移动的自由度,第七音圈电机、第八音圈电机、第九音圈电机和第十音圈电机控制微动台沿Z方向移动、绕X轴旋转和绕Y轴旋转的自由度,电机输出力按以下公式计算:2) Solve the corresponding output of each voice coil motor according to the set six-degree-of-freedom displacement of the micro-motion table and the feedback signal, among which the first voice coil motor, the second voice coil motor, the third voice coil motor and the fourth voice coil motor Control the degree of freedom of the micro-motion table moving along the Y direction and rotating around the Z-axis, the fifth voice coil motor and the sixth voice coil motor control the degree of freedom of the micro-motion table moving along the X direction, the seventh voice coil motor, the eighth voice coil The motor, the ninth voice coil motor and the tenth voice coil motor control the degree of freedom of the micro-motion table moving in the Z direction, rotating around the X axis and rotating around the Y axis. The output force of the motor is calculated according to the following formula:
其中:F301为第一音圈电机输出力,F302为第二音圈电机输出,F303为第三音圈电机输出力,F304为第四音圈电机输出力,F305为第五音圈电机输出力,F306为第六音圈电机输出,F307为第七音圈电机输出力,F308为第八音圈电机输出力,F309为第九音圈电机输出力,F3010为第十音圈电机输出力;Among them: F 301 is the output force of the first voice coil motor, F 302 is the output force of the second voice coil motor, F 303 is the output force of the third voice coil motor, F 304 is the output force of the fourth voice coil motor, F 305 is the output force of the fifth voice coil motor The output force of the voice coil motor, F 306 is the output force of the sixth voice coil motor, F 307 is the output force of the seventh voice coil motor, F 308 is the output force of the eighth voice coil motor, F 309 is the output force of the ninth voice coil motor, F 3010 is the output force of the tenth voice coil motor;
kp301、kp303、kp305、kp307、kp308、kp309、kp3010、kd301、kd303、kd305、kd307、kd308、kd309、kd3010、c301、c303、c305、c307、c308、c309、c3010、a301、a303、a305、a307、a308、a309、a3010、b301、b303、b305、b307、b308、b309、b3010、k301、k303、k305、k307、k308、k309、k3010为控制器比例系数;k p301 , k p303 , k p305 , k p307 , k p308 , k p309 , k p3010 , k d301 , k d303 , k d305 , k d307 , k d308 , k d309 , k d3010 , c 301 , c 303 , c 305 , c 307 , c 308 , c 309 , c 3010 , a 301 , a 303 , a 305 , a 307 , a 308 , a 309 , a 3010 , b 301 , b 303 , b 305 , b 307 , b 308 , b 309 , b 3010 , k 301 , k 303 , k 305 , k 307 , k 308 , k 309 , k 3010 are controller proportional coefficients;
ey=yd-y,yd为微动台沿Y轴方向目标位置,y为激光尺反馈信号,为ey对时间的一阶导数;ex=xd-x,xd为微动台沿X轴的目标位置,x为反馈信号,为ex对时间的一阶倒数;ez=zd-z,zd为微动台沿Z轴的目标位置,z为反馈信号,为ez对时间的一阶倒数;θxd为微动台绕X轴的目标位置,θx为反馈信号,为对时间的一阶倒数;θyd为微动台绕Y轴的目标位置,θy为反馈信号,为对时间的一阶倒数;θzd为微动台绕Z轴的目标转角,θz为反馈信号,为对时间的一阶倒数;e y =y d -y, y d is the target position of the micro-motion table along the Y-axis direction, y is the feedback signal of the laser encoder, is the first derivative of e y to time; e x =x d -x, x d is the target position of the micro-motion stage along the X axis, x is the feedback signal, is the first-order reciprocal of e x to time; e z =z d -z, z d is the target position of the micro-motion stage along the Z axis, z is the feedback signal, is the first-order reciprocal of e z to time; θ xd is the target position of the micro-motion table around the X-axis, θ x is the feedback signal, for first-order reciprocal of time; θ yd is the target position of the micro-motion table around the Y axis, θ y is the feedback signal, for first-order reciprocal of time; θ zd is the target rotation angle of the micro-motion table around the Z axis, θ z is the feedback signal, for first-order reciprocal of time;
粗动台仅具有y方向的自由度,其控制系统要保持粗动台与微动台在y方向的相对位置不变,设第一粗动台与微动台相对位置保持ycd1不变,第二粗动台与微动台相对位置保持ycd2不变。在两个粗动台的运动控制方法中,第一粗动台以第一音圈电机和第二音圈电机的输出力作为前馈,第三电涡流传感器信号为微动台与第一粗动台之间的位置偏差,以该偏差为反馈实现第一粗动台沿Y轴的运动;第二粗动台以第三音圈电机和第四音圈电机的输出力作为前馈,第四电涡流传感器信号为微动台与第二粗动台之间的位置偏差,以该偏差为反馈实现第二粗动台沿Y轴的运动,粗动台直线电机输出力按照以下公式计算:The coarse motion table only has the degree of freedom in the y direction, and its control system should keep the relative position of the coarse motion table and the fine motion table in the y direction unchanged, assuming that the relative position of the first coarse motion table and the micro motion table remains unchanged in y cd1 , The relative position of the second coarse motion table and the fine motion table remains y cd2 unchanged. In the motion control method of two coarse motion tables, the first coarse motion table uses the output force of the first voice coil motor and the second voice coil motor as feedforward, and the signal of the third eddy current sensor is the output force of the fine motion table and the first coarse motion table. The position deviation between the moving stages is used as feedback to realize the movement of the first coarse moving stage along the Y axis; the second coarse moving stage uses the output force of the third voice coil motor and the fourth voice coil motor as feedforward, and the second coarse moving stage The signal of the four-current eddy-current sensor is the position deviation between the micro-motion table and the second coarse motion table. The deviation is used as feedback to realize the movement of the second coarse motion table along the Y-axis. The output force of the linear motor of the coarse motion table is calculated according to the following formula:
其中:F1001为第一粗动台直线电机输出力、F1002为第二粗动台直线电机输出力;Among them: F 1001 is the output force of the linear motor of the first coarse motion table, and F 1002 is the output force of the linear motor of the second coarse motion table;
kp1001、kp1002、kd1001、kd1002、c1001、c1002、a1001、a1002、b1001、b1002为控制器比例系数;k p1001 , k p1002 , k d1001 , k d1002 , c 1001 , c 1002 , a 1001 , a 1002 , b 1001 , b 1002 are controller proportional coefficients;
ey1001=ycd1-yc1,ycd1为第一粗动台与微动台目标相对位置,yc1第三电涡流传感器反馈信号;为ey1001第三电涡流传感器信号对时间的导数;e y1001 =y cd1 -y c1 , y cd1 is the relative position of the target of the first coarse motion table and the fine motion table, y c1 is the feedback signal of the third eddy current sensor; is the derivative of e y1001 third eddy current sensor signal to time;
ey1002=ycd2-yc2,ycd2为第二粗动台与微动台目标相对位置,yc2第四电涡流传感器反馈信号;为ey1002对时间的导数;e y1002 =y cd2 -y c2 , y cd2 is the target relative position between the second coarse motion stage and the micro motion stage, y c2 is the feedback signal of the fourth eddy current sensor; is the derivative of e y1002 with respect to time;
3)根据求解的每个驱动电机的输出力得到每个电机的控制指令,该控制指令由D/A卡进行数模转换后输入至驱动器,驱动器成比例地输出电流驱动相应电机,进而实现微动台以及粗动台的运动。3) According to the solved output force of each drive motor, the control command of each motor is obtained. The control command is input to the driver after digital-to-analog conversion by the D/A card, and the driver outputs the current in proportion to drive the corresponding motor, thereby realizing micro The movement of the moving table and the coarse moving table.
本发明具有以下优点及突出性的技术效果:本发明解决了目前粗精动叠层结构中有机械结构耦合作用引起的结构复杂、运动性能相互影响等问题,所设计的叠层定位装置结构简单,无接触消除了摩擦,同时本发明提供了六自由度结算方法,以及一种控制方法,具有较好的控制效果。The present invention has the following advantages and outstanding technical effects: the present invention solves the problems of complex structure and mutual influence of motion performance caused by mechanical structure coupling in the coarse and fine motion lamination structure, and the designed lamination positioning device has a simple structure , non-contact eliminates friction, and at the same time, the invention provides a six-degree-of-freedom settlement method and a control method, which have a better control effect.
附图说明 Description of drawings
图1为本发明定位装置结构原理示意图(轴测图)。Fig. 1 is a schematic diagram (axonometric view) of the structure and principle of the positioning device of the present invention.
图2为本发明粗动台轴测图。Fig. 2 is an axonometric view of the coarse motion table of the present invention.
图3为本发明粗动台侧视图。Fig. 3 is a side view of the coarse motion table of the present invention.
图4为本发明微动台结构示意图(轴测图)。Fig. 4 is a structural schematic diagram (axonometric view) of the micro-motion stage of the present invention.
图5为本发明第一音圈电机剖视图。Fig. 5 is a sectional view of the first voice coil motor of the present invention.
图6为本发明第五音圈电机结构示意图(轴测图)。Fig. 6 is a structural schematic diagram (axonometric view) of the fifth voice coil motor of the present invention.
图7为第五音圈电机剖视图。Fig. 7 is a sectional view of the fifth voice coil motor.
图8为本发明第七音圈电机结构示意图(轴测图)。Fig. 8 is a structural schematic diagram (axonometric view) of the seventh voice coil motor of the present invention.
图9为本发明第七音圈电机外磁环图。Fig. 9 is a diagram of the outer magnetic ring of the seventh voice coil motor of the present invention.
图10为本发明第七音圈电机内磁环图。Fig. 10 is a magnetic ring diagram of the seventh voice coil motor of the present invention.
图11为本发明第七音圈电机磁柱图。Fig. 11 is a magnetic column diagram of the seventh voice coil motor of the present invention.
图12为本发明音圈电机线圈位置示意图。Fig. 12 is a schematic diagram of the coil position of the voice coil motor according to the present invention.
图13为本发明光栅尺示意图(轴测图)。Fig. 13 is a schematic diagram (axonometric view) of the grating ruler of the present invention.
图14为本发明光栅尺主视图。Fig. 14 is a front view of the grating ruler of the present invention.
图15为本发明第一电涡流传感器-第四电涡流传感器位置示意图。Fig. 15 is a schematic diagram of the positions of the first eddy current sensor and the fourth eddy current sensor in the present invention.
图16为本发明第五电涡流传感器-第七电涡流传感器位置示意图。FIG. 16 is a schematic diagram of the positions of the fifth eddy current sensor and the seventh eddy current sensor according to the present invention.
图17为本发明激光尺位置示意图。Fig. 17 is a schematic diagram of the position of the laser encoder of the present invention.
图18为本发明激光尺测量示意图。Fig. 18 is a schematic diagram of the measurement of the laser ruler of the present invention.
图19为本发明激光尺测量示意图。Fig. 19 is a schematic diagram of the measurement of the laser ruler of the present invention.
图20为本发明控制原理流程图。Fig. 20 is a flowchart of the control principle of the present invention.
图中:In the picture:
001-基架;001-base frame;
1001-第一粗动台,1002-第二粗动台1001-the first coarse motion table, 1002-the second coarse motion table
101-直线电机,102-支撑元件,103-导向元件,104-连接元件101-linear motor, 102-supporting element, 103-guiding element, 104-connecting element
200-微动台200-Micro motion table
201-第一音圈电机,202-第二音圈电机,203-第三音圈电机,204-第四音圈电机201-first voice coil motor, 202-second voice coil motor, 203-third voice coil motor, 204-fourth voice coil motor
211-第一线圈组件,212-第一永磁体组件,213-第二永磁体组件211-the first coil assembly, 212-the first permanent magnet assembly, 213-the second permanent magnet assembly
2121-第一主永磁体,2142-第二主永磁体,2125第三主永磁体,2131-第四主永磁体,2133-第五主永磁体,2135-第六主永磁体,2122-第一附永磁体,2124-第二附永磁体,2132-第三附永磁体,2134-第四附永磁体,2142-第一铁轭2121-the first main permanent magnet, 2142-the second main permanent magnet, 2125 the third main permanent magnet, 2131-the fourth main permanent magnet, 2133-the fifth main permanent magnet, 2135-the sixth main permanent magnet, 2122-the first A permanent magnet, 2124-the second permanent magnet, 2132-the third permanent magnet, 2134-the fourth permanent magnet, 2142-the first iron yoke
205-第五音圈电机,206-第六音圈电机205-fifth voice coil motor, 206-sixth voice coil motor
221-第二线圈组件,222-第三永磁体组件,223第四永磁体组件,2221-第七主永磁体,2222-第八主永磁体,2231-第九主永磁体,2232-第十主永磁体,2241-第三铁轭,2242-第四铁轭221-the second coil assembly, 222-the third permanent magnet assembly, 223 the fourth permanent magnet assembly, 2221-the seventh main permanent magnet, 2222-the eighth main permanent magnet, 2231-the ninth main permanent magnet, 2232-the tenth Main permanent magnet, 2241-third iron yoke, 2242-fourth iron yoke
207-第七音圈电机,208-第八音圈电机,209-第九音圈电机,2010第十音圈电机207-7th voice coil motor, 208-8th voice coil motor, 209-9th voice coil motor, 2010 10th voice coil motor
231-第三线圈组件,232-外磁环,233-内磁环,234磁柱231-the third coil assembly, 232-outer magnetic ring, 233-inner magnetic ring, 234 magnetic column
401-第一电涡流传感器,402-第二电涡流传感器,403-第三电涡流传感器,404-第四电涡流传感器,405-第五电涡流传感器,406-第六电涡流传感器,407-第七电涡流传感器401-first eddy current sensor, 402-second eddy current sensor, 403-third eddy current sensor, 404-fourth eddy current sensor, 405-fifth eddy current sensor, 406-sixth eddy current sensor, 407- Seventh eddy current sensor
300-光栅尺测量系统300- grating ruler measuring system
301-光栅尺,301-光栅尺安装架,302-光栅尺调整装置,303-光栅尺,304-读数头,305-光栅尺零点标记301- grating ruler, 301- grating ruler mounting frame, 302- grating ruler adjusting device, 303- grating ruler, 304-reading head, 305- grating ruler zero mark
900-激光尺,901-反射镜900-Laser ruler, 901-Reflector
具体实施方式 Detailed ways
下面结合附图对本发明的原理、结构和工作过程来进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings to the principle, structure and working process of the present invention.
图1为本发明定位装置的结构示意图(轴测图)。本发明定位装置包括基架001、一个微动平台200、第一粗动台1001、第二粗动台1002,该两个粗动台对称布置在微动平台200两侧。Fig. 1 is a structural schematic diagram (axonometric view) of the positioning device of the present invention. The positioning device of the present invention includes a
第一粗动台1001与第二粗动台1002结构相同,图2为第二粗动台1002结构轴测图,图3为第二粗动台1002侧视图。第二粗动1002包括一个直线电机101、一个连接元件104、一个气浮支撑元件102和一个气浮导向元件103。连接元件104与直线电机固接,气浮支撑元件102与直线电机固连,气浮导向元件103与气浮支撑元件102固连。The structure of the first coarse motion table 1001 is the same as that of the second coarse motion table 1002 , FIG. 2 is an isometric view of the structure of the second coarse motion table 1002 , and FIG. 3 is a side view of the second coarse motion table 1002 . The second
气浮支撑元件102的下表面与基架001的上表面正面相对,支撑元件102下表面有气孔,气孔轴线沿Z轴方向,气浮支撑元件102与基架001之间形成沿Z轴方向的气浮支撑,气浮支撑方式采用真空预载的方式;气浮导向元件103的侧面与基架001的侧面正面相对,气浮导向元件103的侧面有气孔,气孔的轴线沿X轴方向,气浮导向元件103与基架001之间形成气浮导向,导向方向沿Y轴方向,气浮方式为真空预载的方式。The lower surface of the air
图4为微动台200结构轴测图,微动台200由沿Y轴方向驱动的第一音圈电机201、第二音圈电机202、第三音圈电机203、第四音圈电机204实现沿Y轴方向的运动及绕Z轴的转动。由沿X轴方向驱动的第五音圈电机205、第六音圈电机206实现沿X轴的运动。由沿Z轴驱动的第七音圈电机207、第八音圈电机208、第九音圈电机209、第十音圈电机2010实现微动台200沿Z轴的运动和绕X轴、Y轴的转动。因此通过这十个音圈电机实现微动平台200的六自由度运动。Fig. 4 is a structural axonometric view of the
第一音圈电机201、第二音圈电机202、第三音圈电机203、第四音圈电机204结构相同,图5为第一音圈电机201结构剖视图。第一音圈电机201包括第一永磁体组件212、第二永磁体组件213、第一线圈组件211。第一线圈组件211位于第一永磁体组件212与第二永磁体组件213之间,并保留间隙。The first
如图12所示,第一音圈电机201与第二音圈电机202的线圈组件固定在第一粗动台1001上,第一音圈电机201与第二音圈电机202的永磁体组件固定在微动平台200上。第三音圈电机203与第四音圈电机204的线圈组件固定在第二粗动台1002上,第三音圈电机203与第四音圈电机204的永磁体组件固定在微动平台200上。当第一音圈电机201、第二音圈电机202、第三音圈电机203、第四音圈电机204沿Y轴方向驱动力相同时,实现微动平台200沿Y轴运动,当该四个音圈电机沿Y轴方向驱动力不相同时,实现微动平台200绕Z轴的转动。As shown in Figure 12, the coil assembly of the first
如图4所示,第五音圈电机205与第六音圈电机206结构相同,且位于沿X轴的同一条直线上。图6为第五音圈电机220轴测图,图7为第五音圈电机220剖视图。如图12所示,第五音圈电机205的线圈组件固定在第一粗动台1001上,其永磁体组件固定在微动台200上,第六音圈电机206的线圈组件固定在第二粗动台1002上,其永磁体组件固定在微动台200上。线圈通电时,第五音圈电机205与第六音圈电机206驱动微动台200沿X轴方向运动。As shown in FIG. 4 , the fifth
第七音圈电机207、第八音圈电机208、第九音圈电机209、第十音圈电机2010的结构相同。图8为第七音圈电机207结构轴测图。第七音圈电机207包括外磁环232、内磁环233、圆柱线圈组件231、重力平衡磁柱234。The structures of the seventh
图9为第七音圈电机207中外磁环232主视图。图10为第七音圈电机207中内磁环233主视图。图11为第七音圈电机207中磁柱234主视图。外磁环232与内磁环233的轴线沿Z轴方向,外磁环232与内磁环233充磁方向相同,沿径向方向且由圆环外表面指向圆心。圆柱线圈231位于内磁环233与外磁环232之间,绕线轴线沿Z轴方向。磁柱234的轴线沿Z轴方向,充磁方向沿Z轴正方向。如图4所示,第七音圈电机207与第八音圈电机208的线圈组件固定于第一粗动台1001上,且位于同一条沿Y轴的直线上,第九音圈电机209与第十音圈电机2010的线圈组件固定于第二粗动台1002上,且位于同一条沿Y轴的直线上。该四个音圈电机的外磁环232、内磁环233和磁柱234固定在微动平台200上。圆柱线圈231通电时,通电线圈231与内磁环233、外磁环232之间产生洛仑兹力,当该四个音圈电机产生的沿Z轴洛仑兹力大小相同时,实现微动平台200沿Z轴方向运动,当该四个音圈电机产生的洛仑兹力大小不同时,实现微动平台200绕X轴转动与绕Y轴转动。线圈通电时,通电线圈231与磁柱234之间产生洛仑兹力,改变电流的大小使得产生的洛仑兹力与微动台200的重力相等,达到微动台200重力平衡的目的。FIG. 9 is a front view of the outer
第一粗动台1001、第二粗动台1002、微动台200的位置测量方案如下:The position measurement schemes of the first coarse motion table 1001, the second coarse motion table 1002, and the micro motion table 200 are as follows:
光栅尺测量装置包括结构相同的第一光栅尺3001测量装置和第二光栅尺测量装置3002,图13为第一光栅尺测量装置3001轴测图,图14为第一光栅尺测量装置3001主视图。该两个光栅测量装置沿X轴方向对称布置在两个粗动台的两侧。每个光栅测量装置包括一个光栅尺303、一个光栅尺安装架301、一个读数头304和光栅尺调整装置302。光栅尺调整装置302固定于基架001上,光栅尺安装架301与光栅尺调整装置302固定连接,通过调整光栅尺调整架302使光栅尺安装架301的长边方向沿Y轴方向。光栅尺303粘贴固定于光栅尺安装架301表面上,光栅条纹沿Y轴方向。光栅读数头304与直线电机101连接,当直线电机101沿Y轴运动时,光栅尺测量装置用来检测第一粗动台1001与第二粗动台1002沿Y轴方向的位置。The grating ruler measuring device includes a first grating
如图15、图16所示,微动台200与第一粗动台1001、第二粗动台1002的相对位置测量系统中包括七个电涡流传感器,每个电涡流传感器安装在第一粗动台1001、第二粗动台1002上,测量金属导体安装在微动台200上。第一电涡流传感器401、第二电涡流传感器402安装在第一粗动台1001上,并位于沿Y轴的一条直线上,测量微动台200与粗动台100之间沿x轴方向相对距离,第一电涡流传感器401与第二电涡流传感器402信号的差动可测量微动台200与两个粗动台之间绕Z轴的相对转角。第三电涡流传感器403、第四电涡流传感器404分别安装在第一粗动台1001与第二粗动台1002上,并位于一条沿X轴方向的直线上,分别测量微动台200相对于第一粗动台1001、第二粗动台1002沿Y轴方向的距离。第五电涡流传感器405、第六电涡流传感器406安装在第一粗动台1001上,并位于一条沿Y轴方向的直线上,第七电涡流传感器407安装在第二粗动台1002上,且与第五电涡流传感器405位于一条沿X轴的直线上。第五电涡流传感器405、第六电涡流传感器406、第七电涡流传感器407用于测量微动台200与第一粗动台1001、第二粗动台1002之间沿Z轴方向距离,第五电涡流传感器405与第六电涡流传感器406的差动测量微动台200绕X轴转角,第五电涡流传感器405、第七电涡流传感器407的差动测量微动台200绕Y轴的转角。As shown in Fig. 15 and Fig. 16, the relative position measurement system of the micro-motion table 200 and the first coarse motion table 1001 and the second coarse motion table 1002 includes seven eddy current sensors, and each eddy current sensor is installed on the first coarse motion table. On the moving
图17为激光测量装置示意图,激光尺900测量微动台200沿Y轴方向绝对位置。FIG. 17 is a schematic diagram of a laser measuring device. The
两个粗动台以光栅尺测量装置为测量传感器,将整体定位装置移动到光栅尺零点标记305处,如图18所示,以此时微动台200的质心为坐标系并记录激光尺读数A。The two coarse motion tables use the grating ruler measuring device as the measurement sensor, and move the overall positioning device to the zero
微动台200六自由度位置计算如下:The six-degree-of-freedom position of the
Y轴方向位置:微动台200沿Y轴位置采用激光尺测量,如图19所示,当微动台由初始点运动到某一位置时,激光尺读数为B,则微动台200在全局坐标系下的沿Y轴方向位置为Position in the Y-axis direction: the position of the
y=B-Ay=B-A
X轴方向位置:微动台200沿X轴方向位置由第一电涡流传感器401、第二电涡流传感器402测得,第一电涡流传感器401信号为x401,第二电涡流传感器402信号为x402,微动台200沿X轴方向位置为:X-axis direction position: the position of the micro-motion table 200 along the X-axis direction is measured by the first
X=(x401+x402)/2X=(x 401 +x 402 )/2
Z轴方向位置:微动台200沿Z轴方向位置由第五电涡流传感器405、第六电涡流传感器406与第七电涡流传感器407测得,第五电涡流传感器405信号为x405,第六电涡流传感器406信号为x406,第七电涡流传感器407信号为x407,即微动台200沿Z轴方向位置为:Z-axis direction position: the position of the micro-motion table 200 along the Z-axis direction is measured by the fifth
Z=(x405+x406+x407)/3Z=(x 405 +x 406 +x 407 )/3
绕X轴转角:以逆时针为正,微动台200绕X轴转角由第五电涡流传感器405、第六电涡流传感器406测得,即:Rotation angle around the X-axis: positive counterclockwise, the rotation angle of the
θX=(x406-x405)/L2 θ X =(x 406 -x 405 )/L 2
绕Y轴转角:以逆时针为正,微动台200绕Y轴转角由第五电涡流传感器405、第七电涡流传感器407测得,即:Rotation angle around the Y axis: positive counterclockwise, the rotation angle of the micro-motion table 200 around the Y axis is measured by the fifth
θY=(x407-x405)/L3 θ Y =(x 407 -x 405 )/L 3
绕Z轴转角:以逆时针为正,微动台200绕Z轴转角由第一电涡流传感器401、第二电涡流传感器402测得,即:Rotation angle around the Z axis: positive counterclockwise, the rotation angle of the micro-motion table 200 around the Z axis is measured by the first
θZ=(x402-x401)/L1 θ Z =(x 402 -x 401 )/L 1
第一粗动台1001与微动台200之间沿Y轴相对位置由第三电涡流传感器403测得,即:The relative position between the first coarse motion table 1001 and the fine motion table 200 along the Y axis is measured by the third
x相1=x403 x phase 1 = x 403
第二粗动台1002与微动台200之间沿Y轴相对位置由第四电涡流传感器404测得,即:The relative position between the second coarse motion table 1002 and the fine motion table 200 along the Y axis is measured by the fourth
x相2=x404 x phase 2 = x 404
各粗动台与微动台200的控制框图如图所示。测量装置测量得到的信号通过A/D转化将数字量输入到计算机中,利用设计的控制方法处理这些数字信号,并将计算得到的数字量输出给D/A卡,经过D/A转化后的模拟量输入到各音圈电机和直线电机的驱动器中,驱动器根据这些模拟量值给各音圈电机的线圈输入电流,根据洛仑兹力法则各音圈电机和直线电机驱动微动台和各粗动台运动,微动台与各粗动台的位置由测量装置测量得到。The control block diagrams of each coarse motion stage and the
在微动台以及粗动台的运动控制中,采用了一种运动控制方法,该控制方法包括如下步骤:In the motion control of the fine motion table and the coarse motion table, a motion control method is adopted, and the control method includes the following steps:
1)在伺服周期开始,设定微动台的六自由度位移量,其中xd为沿X轴的位移量,yd为沿Y轴的位移量,zd为沿Z轴的位移量,θxd为绕X轴的转角位移量,θyd为绕Y轴的转角位移量,θzd为绕Z轴的转角位移量;然后将计数卡采集的激光尺信号和A/D卡采集的电涡流传感器信号作为微动台控制环路的反馈信号,将A/D卡采集的电涡流传感器信号作为粗动台控制环路的反馈信号;1) At the beginning of the servo cycle, set the six-degree-of-freedom displacement of the micro-motion table, where x d is the displacement along the X-axis, y d is the displacement along the Y-axis, z d is the displacement along the Z-axis, θ xd is the angular displacement around the X axis, θ yd is the angular displacement around the Y axis, and θ zd is the angular displacement around the Z axis; The signal of the eddy current sensor is used as the feedback signal of the control loop of the micro-motion stage, and the signal of the eddy current sensor collected by the A/D card is used as the feedback signal of the control loop of the coarse motion stage;
2)根据设定的微动台六自由度位移量以及反馈信号求解每个音圈电机相应出力,其中第一音圈电机、第二音圈电机、第三音圈电机和第四音圈电机控制微动台沿Y方向移动和绕Z轴旋转的自由度,第五音圈电机和第六音圈电机控制微动台沿X方向移动的自由度,第七音圈电机、第八音圈电机、第九音圈电机和第十音圈电机控制微动台沿Z方向移动、绕X轴旋转和绕Y轴旋转的自由度,电机输出力按以下公式计算:2) Solve the corresponding output of each voice coil motor according to the set six-degree-of-freedom displacement of the micro-motion table and the feedback signal, among which the first voice coil motor, the second voice coil motor, the third voice coil motor and the fourth voice coil motor Control the degree of freedom of the micro-motion table moving along the Y direction and rotating around the Z-axis, the fifth voice coil motor and the sixth voice coil motor control the degree of freedom of the micro-motion table moving along the X direction, the seventh voice coil motor, the eighth voice coil The motor, the ninth voice coil motor and the tenth voice coil motor control the degree of freedom of the micro-motion table moving in the Z direction, rotating around the X axis and rotating around the Y axis. The output force of the motor is calculated according to the following formula:
其中:F301为第一音圈电机输出力,F302为第二音圈电机输出,F303为第三音圈电机输出力,F304为第四音圈电机输出力,F305为第五音圈电机输出力,F306为第六音圈电机输出,F307为第七音圈电机输出力,F308为第八音圈电机输出力,F309为第九音圈电机输出力,F3010为第十音圈电机输出力;Among them: F 301 is the output force of the first voice coil motor, F 302 is the output force of the second voice coil motor, F 303 is the output force of the third voice coil motor, F 304 is the output force of the fourth voice coil motor, F 305 is the output force of the fifth voice coil motor The output force of the voice coil motor, F 306 is the output force of the sixth voice coil motor, F 307 is the output force of the seventh voice coil motor, F 308 is the output force of the eighth voice coil motor, F 309 is the output force of the ninth voice coil motor, F 3010 is the output force of the tenth voice coil motor;
kp301、kp303、kp305、kp307、kp308、kp309、kp3010、kd301、kd303、kd305、kd307、kd308、kd309、kd3010、c301、c303、c305、c307、c308、c309、c3010、a301、a303、a305、a307、a308、a309、a3010、b301、b303、b305、b307、b308、b309、b3010、k301、k303、k305、k307、k308、k309、k3010为控制器比例系数;k p301 , k p303 , k p305 , k p307 , k p308 , k p309 , k p3010 , k d301 , k d303 , k d305 , k d307 , k d308 , k d309 , k d3010 , c 301 , c 303 , c 305 , c 307 , c 308 , c 309 , c 3010 , a 301 , a 303 , a 305 , a 307 , a 308 , a 309 , a 3010 , b 301 , b 303 , b 305 , b 307 , b 308 , b 309 , b 3010 , k 301 , k 303 , k 305 , k 307 , k 308 , k 309 , k 3010 are controller proportional coefficients;
ey=yd-y,yd为微动台沿Y轴方向目标位置,y为激光尺反馈信号,为ey对时间的一阶导数;ex=xd-x,xd为微动台沿X轴的目标位置,x为反馈信号,为ex对时间的一阶倒数;ez=zd-z,zd为微动台沿Z轴的目标位置,z为反馈信号,为ez对时间的一阶倒数;θxd为微动台绕X轴的目标位置,θx为反馈信号,为对时间的一阶倒数;θyd为微动台绕Y轴的目标位置,θy为反馈信号,为对时间的一阶倒数;θzd为微动台绕Z轴的目标转角,θz为反馈信号,为对时间的一阶倒数;e y =y d -y, y d is the target position of the micro-motion table along the Y-axis direction, y is the feedback signal of the laser encoder, is the first derivative of e y to time; e x =x d -x, x d is the target position of the micro-motion stage along the X axis, x is the feedback signal, is the first-order reciprocal of e x to time; e z =z d -z, z d is the target position of the micro-motion stage along the Z axis, z is the feedback signal, is the first-order reciprocal of e z to time; θ xd is the target position of the micro-motion table around the X-axis, θ x is the feedback signal, for first-order reciprocal of time; θ yd is the target position of the micro-motion table around the Y axis, θ y is the feedback signal, for first-order reciprocal of time; θ zd is the target rotation angle of the micro-motion table around the Z axis, θ z is the feedback signal, for first-order reciprocal of time;
粗动台仅具有y方向的自由度,其控制系统要保持粗动台与微动台在y方向的相对位置不变,设第一粗动台与微动台相对位置保持ycd1不变,第二粗动台与微动台相对位置保持ycd2不变。在两个粗动台的运动控制方法中,第一粗动台以第一音圈电机和第二音圈电机的输出力作为前馈,第三电涡流传感器信号为微动台与第一粗动台之间的位置偏差,以该偏差为反馈实现第一粗动台沿Y轴的运动;第二粗动台以第三音圈电机和第四音圈电机的输出力作为前馈,第四电涡流传感器信号为微动台与第二粗动台之间的位置偏差,以该偏差为反馈实现第二粗动台沿Y轴的运动,粗动台直线电机输出力按照以下公式计算:The coarse motion table only has the degree of freedom in the y direction, and its control system should keep the relative position of the coarse motion table and the fine motion table in the y direction unchanged, assuming that the relative position of the first coarse motion table and the micro motion table remains unchanged in y cd1 , The relative position of the second coarse motion table and the fine motion table remains y cd2 unchanged. In the motion control method of two coarse motion tables, the first coarse motion table uses the output force of the first voice coil motor and the second voice coil motor as feedforward, and the signal of the third eddy current sensor is the output force of the fine motion table and the first coarse motion table. The position deviation between the moving stages is used as feedback to realize the movement of the first coarse moving stage along the Y axis; the second coarse moving stage uses the output force of the third voice coil motor and the fourth voice coil motor as feedforward, and the first coarse moving stage The signal of the four-current eddy current sensor is the position deviation between the micro-motion table and the second coarse motion table, and the deviation is used as feedback to realize the movement of the second coarse motion table along the Y-axis. The output force of the linear motor of the coarse motion table is calculated according to the following formula:
其中:F1001为第一粗动台直线电机输出力、F1002为第二粗动台直线电机输出力;Among them: F 1001 is the output force of the linear motor of the first coarse motion table, and F 1002 is the output force of the linear motor of the second coarse motion table;
kp1001、kp1002、kd1001、kd1002、c1001、c1002、a1001、a1002、b1001、b1002为控制器比例系数;k p1001 , k p1002 , k d1001 , k d1002 , c 1001 , c 1002 , a 1001 , a 1002 , b 1001 , b 1002 are controller proportional coefficients;
ey1001=ycd1-yc1,ycd1为第一粗动台与微动台目标相对位置,yc1第三电涡流传感器反馈信号;为ey1001第三电涡流传感器信号对时间的导数;e y1001 =y cd1 -y c1 , y cd1 is the relative position of the target of the first coarse motion table and the fine motion table, y c1 is the feedback signal of the third eddy current sensor; is the derivative of e y1001 third eddy current sensor signal to time;
ey1002=ycd2-yc2,ycd2为第二粗动台与微动台目标相对位置,yc2第四电涡流传感器反馈信号;为ey1002对时间的导数;e y1002 =y cd2 -y c2 , y cd2 is the target relative position between the second coarse motion stage and the micro motion stage, y c2 is the feedback signal of the fourth eddy current sensor; is the derivative of e y1002 with respect to time;
3)根据求解的每个驱动电机的输出力得到每个电机的控制指令,该控制指令由D/A卡进行数模转换后输入至驱动器,驱动器成比例地输出电流驱动相应电机,进而实现微动台以及粗动台的运动。3) According to the solved output force of each drive motor, the control command of each motor is obtained. The control command is input to the driver after digital-to-analog conversion by the D/A card, and the driver outputs the current in proportion to drive the corresponding motor, thereby realizing micro The movement of the moving table and the coarse moving table.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210180140.2A CN102722088B (en) | 2011-06-28 | 2012-06-01 | Non-contact coarse-fine motion layer positioning system and motion control method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110177084.2 | 2011-06-28 | ||
CN201110177084 | 2011-06-28 | ||
CN201210180140.2A CN102722088B (en) | 2011-06-28 | 2012-06-01 | Non-contact coarse-fine motion layer positioning system and motion control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102722088A true CN102722088A (en) | 2012-10-10 |
CN102722088B CN102722088B (en) | 2014-06-18 |
Family
ID=46947892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210180140.2A Active CN102722088B (en) | 2011-06-28 | 2012-06-01 | Non-contact coarse-fine motion layer positioning system and motion control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102722088B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103105743A (en) * | 2013-02-06 | 2013-05-15 | 清华大学 | Mask table system with plane diffraction grating measurement and having six freedom degrees macro platform |
CN103523744A (en) * | 2013-09-22 | 2014-01-22 | 广东工业大学 | Two-stage grating positioning method of high-speed precise motion platform |
WO2016134652A1 (en) * | 2015-02-28 | 2016-09-01 | 上海微电子装备有限公司 | Adjustable magnetic buoyancy gravity compensator |
CN106989660A (en) * | 2017-05-24 | 2017-07-28 | 大连理工大学 | A kind of space three-dimensional information acquisition method of complicated position metal flat |
CN108279551A (en) * | 2017-01-05 | 2018-07-13 | 复旦大学 | Photoetching machine motion platform and its micromotion platform and control method |
CN110132141A (en) * | 2019-06-13 | 2019-08-16 | 上海电气集团股份有限公司 | A kind of locating platform and method of silicon steel sheet measurement |
CN113917644A (en) * | 2021-10-29 | 2022-01-11 | 中国科学院光电技术研究所 | Lens six-degree-of-freedom micro-motion platform |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030007140A1 (en) * | 2001-07-09 | 2003-01-09 | Canon Kabushiki Kaisha | Stage apparatus and method of driving the same |
CN1760760A (en) * | 2004-10-14 | 2006-04-19 | 中国科学院电工研究所 | Extreme ultraviolet lithography precision magnetic levitation workpiece table |
CN101078889A (en) * | 2007-06-29 | 2007-11-28 | 清华大学 | 6 freedom degree micromotion operating platform |
CN101900952A (en) * | 2010-08-02 | 2010-12-01 | 中南大学 | A photolithography machine mask table using magnetic levitation technology |
CN102012638A (en) * | 2009-09-04 | 2011-04-13 | 上海微电子装备有限公司 | Photoetching machine worktable with driving device capable of balancing torque |
JP2011091298A (en) * | 2009-10-26 | 2011-05-06 | Canon Inc | Stage device |
CN102073219A (en) * | 2009-11-20 | 2011-05-25 | 上海微电子装备有限公司 | Balancing mass system and workbench |
-
2012
- 2012-06-01 CN CN201210180140.2A patent/CN102722088B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030007140A1 (en) * | 2001-07-09 | 2003-01-09 | Canon Kabushiki Kaisha | Stage apparatus and method of driving the same |
CN1760760A (en) * | 2004-10-14 | 2006-04-19 | 中国科学院电工研究所 | Extreme ultraviolet lithography precision magnetic levitation workpiece table |
CN101078889A (en) * | 2007-06-29 | 2007-11-28 | 清华大学 | 6 freedom degree micromotion operating platform |
CN102012638A (en) * | 2009-09-04 | 2011-04-13 | 上海微电子装备有限公司 | Photoetching machine worktable with driving device capable of balancing torque |
JP2011091298A (en) * | 2009-10-26 | 2011-05-06 | Canon Inc | Stage device |
CN102073219A (en) * | 2009-11-20 | 2011-05-25 | 上海微电子装备有限公司 | Balancing mass system and workbench |
CN101900952A (en) * | 2010-08-02 | 2010-12-01 | 中南大学 | A photolithography machine mask table using magnetic levitation technology |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103105743A (en) * | 2013-02-06 | 2013-05-15 | 清华大学 | Mask table system with plane diffraction grating measurement and having six freedom degrees macro platform |
CN103105743B (en) * | 2013-02-06 | 2015-01-07 | 清华大学 | Mask table system with plane diffraction grating measurement and having six freedom degrees macro platform |
CN103523744A (en) * | 2013-09-22 | 2014-01-22 | 广东工业大学 | Two-stage grating positioning method of high-speed precise motion platform |
CN103523744B (en) * | 2013-09-22 | 2016-05-11 | 广东工业大学 | The two-stage grating positioning method of high speed and precision motion platform |
WO2016134652A1 (en) * | 2015-02-28 | 2016-09-01 | 上海微电子装备有限公司 | Adjustable magnetic buoyancy gravity compensator |
CN108279551A (en) * | 2017-01-05 | 2018-07-13 | 复旦大学 | Photoetching machine motion platform and its micromotion platform and control method |
CN106989660A (en) * | 2017-05-24 | 2017-07-28 | 大连理工大学 | A kind of space three-dimensional information acquisition method of complicated position metal flat |
CN110132141A (en) * | 2019-06-13 | 2019-08-16 | 上海电气集团股份有限公司 | A kind of locating platform and method of silicon steel sheet measurement |
CN113917644A (en) * | 2021-10-29 | 2022-01-11 | 中国科学院光电技术研究所 | Lens six-degree-of-freedom micro-motion platform |
CN113917644B (en) * | 2021-10-29 | 2023-05-30 | 中国科学院光电技术研究所 | A lens six-degree-of-freedom micro-motion platform |
Also Published As
Publication number | Publication date |
---|---|
CN102722088B (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102722088A (en) | Non-contact coarse-fine motion layer positioning system and motion control method thereof | |
CN102722089B (en) | Non-contact coarse-motion and fine-motion cascading SDOF (six-degree of freedom) positioning device | |
CN101807010B (en) | Nano-precision six-freedom-degree magnetic suspension jiggle station and application | |
CN103196436B (en) | Five-freedom active magnetic bearing type dual-axis angular rate gyroscope | |
WO2005090902A1 (en) | Stage device | |
CN102880013B (en) | Reticle stage worktable | |
CN101290476B (en) | Six freedom degree jiggle station | |
US20150326150A1 (en) | Maglev workpiece table with six degrees of freedom | |
KR101796535B1 (en) | Magnetic alignment method | |
Nguyen et al. | Design and control of a compact lightweight planar positioner moving over a concentrated-field magnet matrix | |
CN101769981B (en) | Phase searching detection method for permanent-magnet planar motor by adopting linear Hall array | |
Hu et al. | Extended range six-DOF high-precision positioner for wafer processing | |
CN107393599A (en) | Integrate the quick deflection platform of two dimension and method of sensing unit and confinement element | |
US9435642B2 (en) | Position measuring apparatus, pattern transfer apparatus, and method for manufacturing a device | |
JP2008098409A (en) | Alignment stage | |
JP4900838B2 (en) | Position detection device and linear drive device | |
JP5201493B2 (en) | Position detection device and linear drive device | |
CN102722086B (en) | Non-contact single-degree-of-freedom positioning device and synchronous movement control method thereof | |
CN102800368B (en) | Positioning method of initial zero position of air floatation planar motor | |
JP2001069746A (en) | Non-contacting type table | |
CN102951607B (en) | Magnetic suspension type positioning platform structure | |
CN102270908B (en) | Planar motor in double-shaft decoupling structure | |
CN103633884B (en) | A kind of magnetic suspension permanent magnet planar motor based on pressure sensor group plays float method | |
JP3849596B2 (en) | Positioning device | |
Rudolf et al. | 6D Magnetic levitation positioning system with compact integrated 6D sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20151102 Address after: 100084 Haidian District, Beijing,,, Tsinghua University, the 100084 letter box office Patentee after: Tsinghua University Patentee after: U-PRECISION TECH CO., LTD. Address before: 100084 Haidian District, Beijing,,, Tsinghua University, the 100084 letter box office Patentee before: Tsinghua University |