A kind of 4-methylol furancarboxylic acid and 2, the preparation method of 4-furans dioctyl phthalate
Technical field
The present invention relates to prepare 4-methylol furancarboxylic acid and 2 method of 4-furans dioctyl phthalate by the 4-hydroxymethylfurfural.
Background technology
4-methylol furancarboxylic acid can be used for preparing prostaglandin(PG) receptoroid EP
4Antagonist, EP
4Antagonist can be widely used in treatment pain and other a large amount of diseases (WO2004067524A1).And 2,4-furans dioctyl phthalate can be used to synthetic many useful compounds and novel high polymer material especially liquid crystal material (Michael J.S.Dewar, Robert M.Riddle, J.Am.Chem.Soc., (1975), 97,6658-6662).
At present, the compound method that 4-methylol furancarboxylic acid has been reported be with under furans-3-low-temperature methanol through the secondary lithiumation, form dianion after, through the carboxylated preparation of carbonic acid gas (WO2004067524A1).Not only raw materials cost is expensive for this compound method, operational requirement is strict, and molar yield only 17%, is difficult to large-scale production.
In addition, 2, the compound method that 4-furans dioctyl phthalate has been reported has:
Vanillin (CAS.No.:121-33-5) through Youxiaolin oxidation step preparation (Irwin A.Pearl, John S.Barton, J.Am.Chem.Soc., (1952), 74,1357-1357).Though this method raw materials cost is lower, and route is very short, and reaction product is very complicated, and product separation is difficulty very, and the molar yield of having reported only 1.3% almost can't large-scale production.
Coumalic acid (CAS.No.:500-05-0) behind esterification, bromo, under the potassium hydroxide aqueous solution effect, reset preparation (H.Gilman, Robert R.Burtner, J.Am.Chem.Soc., (1933), 55,2903-2909).This method route is long, complex operation, and molar yield only 20%.
Reported before us the 4-hydroxymethylfurfural synthetic (CN101619051, WO2011003300).
Summary of the invention
The technical scheme that the present invention will solve provides a kind of yield height, process method simple 4-methylol furancarboxylic acid and 2, the preparation method of 4-furans dioctyl phthalate.We can directly obtain corresponding compounds 4-methylol furancarboxylic acid and/or 2 through the oxidation of 4-hydroxymethylfurfural, 4-furans dioctyl phthalate.
The logical following technical scheme of the object of the invention realizes:
A kind of 4-methylol furancarboxylic acid and 2; The preparation method of 4-furans dioctyl phthalate; It is characterized in that: raw material 4-hydroxymethylfurfural is dissolved in the normal basic soln of 0-8 mole (0,1,2,3,4,5,6,7 or 8 mole); Under the metal catalyst effect; Normal pressure feeds oxygenant down; The flow velocity of oxygenant is 10-100ml/min (for example 10,20,30,40,50,60,70,80,90 and 100ml/min), and in 1-24 hour (for example 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 and 24 hour) of 0-80 ℃ (for example 0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75 and 80 ℃) reaction, reaction back solution is adjusted to about pH<3 through concentrated acid.
The raw material of described reaction is 4-hydroxymethylfurfural (4-HMF).
When using the I B-group metal oxide compound as catalyzer; Raw material 4-hydroxymethylfurfural is dissolved in the basic soln of 0-8 molar equivalent; Normal pressure fed oxygenant down, and the flow velocity of oxygenant is 10-100ml/min, 0-80 ℃ of reaction 1-24 hour; Reaction back solution is regulated pH<3 through concentrated acid, obtains 4-methylol furancarboxylic acid.
When using I B-group metal oxide compound and Pt/C or Pd/C as catalyzer; Raw material 4-hydroxymethylfurfural is dissolved in the basic soln of 0-8 molar equivalent, and normal pressure feeds oxygenant down, and the flow velocity of oxygenant is 10-100ml/min; 0-80 ℃ of reaction 1-24 hour; Reaction back solution is regulated pH<3 through concentrated acid, obtains 2,4-furans dioctyl phthalate.
The I B-group metal oxide compound is mainly CuO-Ag
2O.
Described basic soln is lithium hydroxide solution, sodium hydroxide solution, potassium hydroxide solution or their combination, and the molar weight of alkali is 0-8 a times of substrate, more preferably 1,2,3,4,5,6,7 or 8 times.
Described concentrated acid is concentrated hydrochloric acid, the vitriol oil or other inorganic acid.
Described oxygenant is an air or oxygen.
The flow velocity of described oxygenant is 10-100ml/min.
Described preparation method was 0-80 ℃ of reaction 1-24 hour.
Described pressure is normal pressure.
The invention provides and a kind ofly prepare 4-methylol furancarboxylic acid and 2 by the 4-hydroxymethylfurfural, the method for 4-furans dioctyl phthalate, this method is simple to operate, and can obtain the 4-methylol furancarboxylic acid and/or 2 of higher yields, 4-furans dioctyl phthalate.
The accompanying drawing summary
The HPLC spectrogram of Fig. 1 .4-hydroxymethylfurfural (4-HMF) standard substance;
The HPLC spectrogram of Fig. 2 .4-methylol furancarboxylic acid (4-HMFA) standard substance;
Fig. 3 .2, and 4-furans dioctyl phthalate (2,4-FDCA) the HPLC spectrogram of standard substance;
Fig. 4. the HPLC spectrogram of 4-methylol furancarboxylic acid (4-HMFA) in the reaction solution;
Fig. 5. in the reaction solution 2,4-furans dioctyl phthalate (2, HPLC spectrogram 4-FDCA);
Fig. 6 .4-HMFA's
1H-NMR;
Fig. 7 .4-HMFA's
13C-NMR;
Fig. 8 .2,4-FDCA's
1H-NMR;
Fig. 9 .2,4-FDCA's
13C-NMR.
Embodiment
Below in conjunction with specific embodiment the present invention is described further; The following stated is merely the preferable embodiment of the present invention; But protection scope of the present invention is not limited thereto, and also not because of the succession between each embodiment causes any restriction to the present invention, any technician who is familiar with the present technique field is in the technical scope that the present invention discloses; The variation that can expect easily or replacement all should be encompassed within protection scope of the present invention.Therefore, protection scope of the present invention should be as the criterion with the protection domain of claim.
Raw material 4-hydroxymethylfurfural (4-HMF) is commercially available in the case of below implementing; And can (preparation of 4-hydroxymethylfurfural (4-HMF) can be according to CN101619051 in the patent of report before us by prepared in laboratory; The method preparation of WO2011003300 perhaps can prepare through other any method well known in the prior art), and 4-methylol furancarboxylic acid (4-HMFA) (CAS No.736182-84-6) standard substance are purchased the co. from Suzhou rovathin pharmatech; Ltd; 2, (2,4-FDCA) (CAS No.4282-28-4) standard substance are purchased Zhu's key chemical industry ltd from Shanghai to 4-furans dioctyl phthalate.Metal catalyst 5%Pt/C, 5%Pd/C buy the brilliant pure Industrial Co., Ltd. Aladdin reagent in Shanghai, CuO-Ag
2O is by prepared in laboratory.Only if point out in addition, other used chemical reagent all is commercially available analytical pure in following examples.
In following case study on implementation, reaction yield detects through the HPLC external standard method, liquid chromatographic detection condition: HITACHI L-2000HPLC
Detector: Diode Array Detector
Chromatographic column: Prevail Organic Acid 5u post
Moving phase: 0.2% trifluoroacetic acid+5%CH
3CN+95%H
2O
Column oven temperature: 30 ℃
Flow velocity: 1ml/min
4-hydroxymethylfurfural (4-HM), 4-methylol furancarboxylic acid (4-HMFA) and 2, (2,4-FDCA) the HPLC spectrogram of standard substance is respectively shown in accompanying drawing 1-3 for 4-furans dioctyl phthalate.
Embodiment 1:
CuO-Ag
2The O Preparation of catalysts
Get 200g CuSO
45H
2O is dissolved in the 1L water, stirs at 70 ℃ of following constant temperature then.Get 40gAgNO
3Be dissolved in the 250ml water, and add above-mentioned CuSO
4Solution obtains mixing solutions.Other gets 100g NaOH and is dissolved in the 100ml water, under the stirring that continues, splashes in the mixing solutions.Continue then to stir half a hour, be cooled to room temperature, suction filtration is used distilled water wash, is neutral until filtrating, dries, and can obtain the CuO-Ag of black
2The O catalyzer.
The preparation of 4-methylol furancarboxylic acid
Embodiment 2:
Take by weighing 0.4g NaOH and be dissolved in 4ml water, under the normal pressure in solution bubbling air, the flow velocity of air is 60ml/min, adds the 1g CuO-Ag available from embodiment 1
2The O catalyzer.In above-mentioned reaction system, drip the aqueous solution (1.15g 4-HMF is dissolved in the 2.7g water) of 4-HMF, temperature of reaction is a room temperature.Dropwise the back room temperature and continue reaction 1 hour.Remove by filter catalyzer, add the concentrated hydrochloric acid acidifying and make system pH less than 1, separate out solid, 0 ℃ freezing.Dilute reaction solution carries out liquid chromatographic detection 4-methylol furancarboxylic acid (4-HMFA) (referring to accompanying drawing 4) wherein.The suction filtration drying obtains 0.4320g white solid (solid is the 4-HMFA of purity 99%, confirms through nuclear magnetic spectrogram) and (identifies 4-HMFA's
1H with
13The C nuclear magnetic spectrogram is respectively shown in accompanying drawing 6 and 7).The transformation efficiency of 4-HMF is 99%, and the productive rate of 4-HMFA is 50%, separation yield 33%, product purity 99%.
Embodiment 3:
Take by weighing 2g NaOH and be dissolved in 15ml water, under the normal pressure in solution bubbling air, the flow velocity of air is 20ml/min, adds 5g CuO-Ag
2O.In above-mentioned reaction system, drip the aqueous solution (5g 4-HMF is dissolved in 12g water) of 4-HMF, temperature of reaction is a room temperature.Dropwise the back room temperature and continue reaction 45min.Remove by filter catalyzer, add the concentrated hydrochloric acid acidifying and make system pH, separate out white solid less than 1.Dilute reaction solution carries out Liquid Detection and nuclear magnetic spectrogram checking.The transformation efficiency of 4-HMF is 99%, and the productive rate of 4-HMFA is 70%, solid 2.7g, separation yield 48%, product purity 99%.
2, the preparation of 4-furans dioctyl phthalate
Embodiment 4:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C, 0.063g CuO-Ag
2O adds 2ml H
2O, 530 μ l 30%NaOH solution.Temperature of reaction is 70 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 4 hours adds 1.2ml 2M H
2SO
4Liquid Detection 4-hydroxymethylfurfural is wherein carried out in acidifying, dilute reaction solution, and the reaction solution suction filtration obtains product 2,4-furans dioctyl phthalate.Dilute reaction solution carries out Liquid Detection (referring to accompanying drawing 5).Confirm through nuclear magnetic spectrogram, identify 2,4-furans dioctyl phthalate (2,4-FDCA)
1H with
13The C nuclear magnetic spectrogram is respectively shown in accompanying drawing 8 and 9).The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 30%.
Embodiment 5:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C, 0.063g CuO-Ag
2O adds 2ml H
2O, 530 μ l 30%NaOH solution.Temperature of reaction is 25 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 24 hours adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 75%.
Embodiment 6:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C, 0.063g CuO-Ag
2O adds 2ml H
2O, 530 μ l 30%NaOH solution.Temperature of reaction is 10 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 24 hours adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 77%.
Embodiment 7:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C, 0.063g CuO-Ag
2O adds 2ml H
2O, 530 μ l 30%NaOH solution.Temperature of reaction is 0 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 24 hours adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 82%.
Embodiment 8:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C adds 2ml H
2O, 530 μ l30%NaOH solution.Temperature of reaction is 0 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 24 hours adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 32%.
Embodiment 9:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C, 0.063g CuO-Ag
2O adds 2mlH
2O.Temperature of reaction is 0 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 24 hours adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HM is 59%, 2, and the productive rate of 4-FDCA is 1%.
Embodiment 10:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pd/C, 0.063g CuO-Ag
2O adds 2ml H
2O, 530 μ l 30%NaOH solution.Temperature of reaction is 0 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction after 24 hours adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 77%.
Embodiment 11:
Take by weighing 0.126g 4-HMF (1mmol), 0.063g 5%Pt/C, 0.063g CuO-Ag
2O adds 2ml H
2O, 530 μ l 30%NaOH solution.Temperature of reaction is 0 ℃, in solution, feeds O under the normal pressure
2, O
2Flow velocity be 60ml/min.Stopped reaction behind the 12h adds 1.2ml 2M H
2SO
4Liquid Detection and nuclear magnetic spectrogram checking are carried out in acidifying, dilute reaction solution.The transformation efficiency of 4-HMF is 99%, 2, and the productive rate of 4-FDCA is 70%.
More than the response situation of each embodiment be summarised in the following table 1:
Table 1
Only preparation method of the present invention is described in the embodiment of the invention with above several examples; Those skilled in the art; According to record in the specification sheets and the thinking that provides; Can estimate that satisfactory condition all can implement in the method for the embodiment of the invention, therefore, no longer repeat to enumerate other embodiment.