CN102718495B - Magnesium silicon ceramic fiber and preparation method thereof - Google Patents
Magnesium silicon ceramic fiber and preparation method thereof Download PDFInfo
- Publication number
- CN102718495B CN102718495B CN2012102087068A CN201210208706A CN102718495B CN 102718495 B CN102718495 B CN 102718495B CN 2012102087068 A CN2012102087068 A CN 2012102087068A CN 201210208706 A CN201210208706 A CN 201210208706A CN 102718495 B CN102718495 B CN 102718495B
- Authority
- CN
- China
- Prior art keywords
- magnesium
- ceramic fiber
- powder
- preparation
- silicon ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 87
- 239000000919 ceramic Substances 0.000 title claims abstract description 68
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 56
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims abstract description 24
- 239000002994 raw material Substances 0.000 claims abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 239000002699 waste material Substances 0.000 claims abstract description 16
- 239000004579 marble Substances 0.000 claims abstract description 13
- 239000006004 Quartz sand Substances 0.000 claims abstract description 12
- 229910052839 forsterite Inorganic materials 0.000 claims abstract description 12
- 229910001629 magnesium chloride Inorganic materials 0.000 claims abstract description 12
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 235000019832 sodium triphosphate Nutrition 0.000 claims abstract description 11
- 229910052656 albite Inorganic materials 0.000 claims abstract description 9
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 13
- 239000004575 stone Substances 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- 235000010216 calcium carbonate Nutrition 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims 2
- 229910052906 cristobalite Inorganic materials 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 229910052682 stishovite Inorganic materials 0.000 claims 2
- 229910052905 tridymite Inorganic materials 0.000 claims 2
- 238000006065 biodegradation reaction Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 229920002472 Starch Polymers 0.000 abstract description 6
- 239000008107 starch Substances 0.000 abstract description 6
- 235000019698 starch Nutrition 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 231100000766 Possible carcinogen Toxicity 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 235000021190 leftovers Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种镁硅陶瓷纤维及其制备方法。其技术方案是:先以1~10wt%的废弃大理石石粉、15~40wt%的镁橄榄石粉、2~8wt%的钠长石粉或钾长石粉、40~70wt%的石英砂粉和1~3wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1000~1300℃条件下热处理60~90min;再破碎,粉磨至120目,外加原料1~5wt%的工业氯化镁和0.5~3wt%的工业淀粉,混合均匀;然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维;最后将陶瓷纤维在600~900℃条件下热处理1~4小时,即得镁硅陶瓷纤维。本发明具有熔化温度低、成纤过程易于操作和生产成本低的特点;所制备产品的表面光滑、机械强度高、使用温度较高和生物降解速率较大。The invention relates to a magnesium-silicon ceramic fiber and a preparation method thereof. The technical scheme is: first use 1~10wt% waste marble powder, 15~40wt% forsterite powder, 2~8wt% albite powder or potassium feldspar powder, 40~70wt% quartz sand powder and 1~3wt% % industrial sodium tripolyphosphate as raw materials, pressed into green bodies, heat treated at 1000~1300°C for 60~90min; then crushed, ground to 120 mesh, plus 1~5wt% industrial magnesium chloride and 0.5~3wt% raw materials % industrial starch, mixed evenly; then put the evenly mixed material in a resistance furnace, heat up to 1500~1700°C, and spin the silk directly after melting to obtain ceramic fibers; finally, heat treat the ceramic fibers at 600~900°C for 1 ~ 4 hours, the magnesium-silicon ceramic fiber is obtained. The invention has the characteristics of low melting temperature, easy operation of fiber forming process and low production cost; the prepared product has smooth surface, high mechanical strength, high service temperature and high biodegradation rate.
Description
技术领域 technical field
本发明属于陶瓷纤维技术领域。具体涉及一种镁硅陶瓷纤维及其制备方法。 The invention belongs to the technical field of ceramic fibers. It specifically relates to a magnesium-silicon ceramic fiber and a preparation method thereof.
背景技术 Background technique
传统硅酸铝陶瓷纤维在生产、使用及用后拆卸过程中产生的细小粉尘颗粒,被人体吸入呼吸系统后,很难被人体体液所降解,将诱发呼吸系统炎症,甚至癌变。对失去使用性能的废硅酸铝纤维,通常采用填埋等方法处理,由于其化学性能稳定,很难被降解,同样会对环境造成污染。因此,国际癌症研究协会将硅酸铝陶瓷纤维划为可能致癌物分类。国内外研究者相继研究开发了可溶陶瓷纤维的系列产品,如镁硅陶瓷纤维。镁硅陶瓷纤维通常是原料经过高温熔融后,采用喷吹或甩丝的方式制备纤维;纤维组成中较高含量氧化镁的存在,使得其在人体体液中具有较高的生物降解速率;该类纤维组成中较高含量二氧化硅和氧化镁的存在,使得纤维具有较高的使用温度。但是,当前镁硅陶瓷纤维的制备和性能仍存在一些不足。比如,受组成特性限制,原料的熔化温度范围较高、高温熔体粘度大,而且成纤过程中粘度变化速率不易控制,因而成纤操作过程的难度较大;纤维在高温使用过程中,易发生析晶、粉化,进而导致纤维使用寿命降低等。 The fine dust particles produced during the production, use and post-use disassembly of traditional aluminum silicate ceramic fibers are difficult to be degraded by human body fluids after being inhaled into the respiratory system by the human body, which will induce inflammation of the respiratory system and even canceration. Waste aluminum silicate fibers that have lost their usability are usually disposed of by landfill or other methods. Due to their stable chemical properties, they are difficult to be degraded and will also pollute the environment. Therefore, the International Association for Research on Cancer classifies aluminum silicate ceramic fibers as possible carcinogens. Researchers at home and abroad have successively researched and developed a series of products of soluble ceramic fibers, such as magnesium-silicon ceramic fibers. Magnesium-silicon ceramic fibers are usually prepared by blowing or spinning after the raw materials are melted at high temperature; the existence of a high content of magnesium oxide in the fiber composition makes it have a high biodegradation rate in human body fluids; The presence of higher content of silica and magnesium oxide in the fiber composition makes the fiber have a higher service temperature. However, there are still some deficiencies in the preparation and performance of the current magnesium-silicon ceramic fibers. For example, limited by the composition characteristics, the melting temperature range of the raw materials is relatively high, the high-temperature melt viscosity is high, and the viscosity change rate during the fiber forming process is not easy to control, so the fiber forming operation process is more difficult; Crystallization and pulverization occur, which in turn leads to a reduction in the service life of the fiber.
另外,天然大理石在加工过程中产生了大量的废料:石材边角料和石粉。目前,石材边角料已得到充分的再利用,但对于石粉还没有较好的处理方法,只能将其堆积起来。简单的堆积处理,不但造成土地和资源的浪费,而且会污染水源和当地的空气质量。因此,正确处理和利用这些石粉废料,进行资源化合理开发,具有非常重要的意义。 In addition, natural marble produces a lot of waste during the processing process: stone scraps and stone powder. At present, stone leftovers have been fully reused, but there is no better treatment method for stone powder, and it can only be piled up. Simple stacking treatment not only wastes land and resources, but also pollutes water sources and local air quality. Therefore, it is of great significance to properly handle and utilize these stone powder wastes for rational development of resources.
目前生产中为了解决镁硅陶瓷纤维成纤操作难度大的问题,通常在组成中引入氧化锆、氧化钛或稀土金属氧化物,但随之带来的是纤维其他性能的降低,如纤维直径过大或过小、机械强度降低、高温线收缩增大、生物降解速率降低等。 At present, in order to solve the problem of difficult fiber formation of magnesia-silicon ceramic fibers in production, zirconia, titanium oxide or rare earth metal oxides are usually introduced into the composition, but this brings about the reduction of other properties of the fiber, such as the fiber diameter is too large. Large or too small, reduced mechanical strength, increased high-temperature line shrinkage, reduced biodegradation rate, etc.
总之,目前在镁硅陶瓷纤维的制备技术中仍存在一定的不足:生产成本较高、原料熔化温度较高、成纤过程操作难度较大和纤维使用性能有待提高等。 In short, there are still some deficiencies in the preparation technology of magnesium-silicon ceramic fibers: high production cost, high melting temperature of raw materials, difficult operation of fiber-forming process and fiber performance need to be improved.
发明内容 Contents of the invention
本发明旨在克服现有技术的不足,目的是提供一种生产成本低、熔化温度较低和成纤过程易于操作的镁硅陶瓷纤维的制备方法。用该方法制备的镁硅陶瓷纤维的使用温度较高和生物降解速率大。 The invention aims to overcome the disadvantages of the prior art, and aims to provide a preparation method of magnesium-silicon ceramic fiber with low production cost, low melting temperature and easy operation of the fiber-forming process. The magnesia-silicon ceramic fiber prepared by the method has relatively high service temperature and high biodegradation rate.
为实现上述目的,本发明采用的技术方案是: In order to achieve the above object, the technical scheme adopted in the present invention is:
先以1~10wt%的废弃大理石石粉、15~40wt%的镁橄榄石粉、2~8wt%的钠长石粉或钾长石粉、40~70wt%的石英砂粉和1~3wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1000~1300℃条件下热处理60~90min; First use 1~10wt% waste marble powder, 15~40wt% forsterite powder, 2~8wt% albite or potassium feldspar powder, 40~70wt% quartz sand powder and 1~3wt% industrial tripolymer Sodium phosphate is mixed as raw material, pressed into green body, heat treated at 1000~1300℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料1~5wt%的工业氯化镁和0.5~3wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed, ground to 120 mesh, and the industrial magnesium chloride of 1-5wt% and 0.5-3wt% of the raw material are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在600~900℃条件下热处理1~4小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 600-900°C for 1-4 hours to obtain the magnesium-silicon ceramic fiber.
在上述技术方案中: In the above technical scheme:
废弃大理石石粉的粒度为80~120目,其中CaCO3含量大于50wt%; The particle size of the waste marble powder is 80-120 mesh, and the CaCO3 content is greater than 50wt%;
镁橄榄石粉的粒度为40~120目;其主要化学成分是:SiO2为25~35wt%,MgO为50~65wt%,CaO为0.5~2wt%,Fe2O3小于8wt%; The particle size of forsterite powder is 40~120 mesh; its main chemical composition is: SiO 2 is 25~35wt%, MgO is 50~65wt%, CaO is 0.5~2wt%, Fe 2 O 3 is less than 8wt%;
石英砂粉的粒度为40~120目;其主要化学成分是:SiO2为90~99wt%,Fe2O3小于0.05wt%; The particle size of quartz sand powder is 40~120 mesh; its main chemical composition is: SiO 2 is 90~99wt%, Fe 2 O 3 is less than 0.05wt%;
钠长石粉的粒度为40~120目;其主要化学成分是:SiO2为63~70wt%,Al2O3为16~25wt%,Na2O为9~15wt%; The particle size of albite powder is 40~120 mesh; its main chemical composition is: SiO 2 is 63~70wt%, Al 2 O 3 is 16~25wt%, Na 2 O is 9~15wt%;
钾长石粉的粒度为40~120目;其主要化学成分是:SiO2为64~69wt%,Al2O3为16~23wt%,K2O为9~18wt%; The particle size of potassium feldspar powder is 40~120 mesh; its main chemical composition is: SiO 2 is 64~69wt%, Al 2 O 3 is 16~23wt%, K 2 O is 9~18wt%;
工业三聚磷酸钠的粒度为80~120目;其中Na5P3O10含量大于90wt%; The particle size of industrial sodium tripolyphosphate is 80~120 mesh; the content of Na 5 P 3 O 10 is greater than 90wt%;
工业氯化镁的粒度为80~120目;其中MgCl2含量大于40wt%; The particle size of industrial magnesium chloride is 80 ~ 120 mesh; wherein MgCl 2 content is greater than 40wt%;
压制的压力为35~45MPa。 The pressing pressure is 35~45MPa.
由于采用上述技术方案,本发明与现有技术相比具有以下积极效果: Owing to adopting above-mentioned technical scheme, the present invention has following positive effect compared with prior art:
1、本发明的熔化温度低,成纤范围内熔体粘度变化平缓,成纤过程易于控制; 1. The melting temperature of the present invention is low, the viscosity of the melt in the fiber-forming range changes smoothly, and the fiber-forming process is easy to control;
2、本发明采用的原料价格低廉,生产成本低,具有很大的产业化前景; 2, the raw material price that the present invention adopts is cheap, and production cost is low, has very big industrialization prospect;
3、本发明制备的镁硅陶瓷纤纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于150ng/(cm2·h)。 3. The magnesium-silicon ceramic fiber prepared by the present invention has smooth surface, high mechanical strength, service temperature greater than 1200°C, and biodegradation rate greater than 150ng/(cm 2 ·h).
因此,本发明具有熔化温度低、成纤过程易于操作和生产成本低的特点;所制备的镁硅陶瓷纤维的表面光滑、机械强度高、使用温度较高和生物降解速率较大。 Therefore, the invention has the characteristics of low melting temperature, easy operation of the fiber forming process and low production cost; the prepared magnesium-silicon ceramic fiber has smooth surface, high mechanical strength, high service temperature and high biodegradation rate.
具体实施方式 Detailed ways
下面结合具体实施方式对本发明做进一步的描述,并非对其保护范围的限制。 The present invention will be further described below in combination with specific embodiments, which are not intended to limit the protection scope thereof.
为避免重复,先将本具体实施方式的原料统一描述如下,各实施例中不再赘述: In order to avoid duplication, first the raw materials of this specific embodiment are described as follows, and will not be repeated in each embodiment:
废弃大理石石粉的粒度为80~120目,其中CaCO3含量大于50wt%; The particle size of the waste marble powder is 80-120 mesh, and the CaCO3 content is greater than 50wt%;
镁橄榄石粉的粒度为40~120目;其主要化学成分是:SiO2为25~35wt%,MgO为50~65wt%,CaO为0.5~2wt%,Fe2O3小于8wt%; The particle size of forsterite powder is 40~120 mesh; its main chemical composition is: SiO 2 is 25~35wt%, MgO is 50~65wt%, CaO is 0.5~2wt%, Fe 2 O 3 is less than 8wt%;
石英砂粉的粒度为40~120目;其主要化学成分是:SiO2为90~99wt%,Fe2O3小于0.05wt%; The particle size of quartz sand powder is 40~120 mesh; its main chemical composition is: SiO 2 is 90~99wt%, Fe 2 O 3 is less than 0.05wt%;
钠长石粉的粒度为40~120目;其主要化学成分是:SiO2为63~70wt%,Al2O3为16~25wt%,Na2O为9~15wt%; The particle size of albite powder is 40~120 mesh; its main chemical composition is: SiO 2 is 63~70wt%, Al 2 O 3 is 16~25wt%, Na 2 O is 9~15wt%;
钾长石粉的粒度为40~120目;其主要化学成分是:SiO2为64~69wt%,Al2O3为16~23wt%,K2O为9~18wt%; The particle size of potassium feldspar powder is 40~120 mesh; its main chemical composition is: SiO 2 is 64~69wt%, Al 2 O 3 is 16~23wt%, K 2 O is 9~18wt%;
工业三聚磷酸钠的粒度为80~120目;其中Na5P3O10含量大于90wt%; The particle size of industrial sodium tripolyphosphate is 80~120 mesh; the content of Na 5 P 3 O 10 is greater than 90wt%;
工业氯化镁的粒度为80~120目;其中MgCl2含量大于40wt%; The particle size of industrial magnesium chloride is 80 ~ 120 mesh; wherein MgCl 2 content is greater than 40wt%;
压制的压力为35~45MPa。 The pressing pressure is 35~45MPa.
实施例1Example 1
一种镁硅陶瓷纤维及其制备方法。先以6~10wt%的废弃大理石石粉、30~40wt%的镁橄榄石粉、50~60wt%的石英砂粉、2~5wt%的钾长石粉、1~2wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1000~1150℃条件下热处理60~90min; A magnesium-silicon ceramic fiber and a preparation method thereof. First use 6~10wt% waste marble stone powder, 30~40wt% forsterite powder, 50~60wt% quartz sand powder, 2~5wt% potassium feldspar powder, 1~2wt% industrial sodium tripolyphosphate as raw materials Mix and press into green body, heat treatment at 1000~1150℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料1~3wt%的工业氯化镁和0.5~1.5wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed, ground to 120 mesh, and the industrial magnesium chloride of 1-3wt% and 0.5-1.5wt% of the raw material are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在800~900℃条件下热处理2~3小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 800-900°C for 2-3 hours to obtain the magnesium-silicon ceramic fiber.
本实施例所制备的镁硅陶瓷纤维:纤维表面光滑,机械强度高,使用温度大于1200℃,生物降解速率大于150ng/(cm2·h)。 The magnesium-silicon ceramic fiber prepared in this example: the surface of the fiber is smooth, the mechanical strength is high, the service temperature is greater than 1200° C., and the biodegradation rate is greater than 150 ng/(cm 2 ·h).
实施例2Example 2
一种镁硅陶瓷纤维及其制备方法。先以1~4wt%的废弃大理石石粉、15~25wt%的镁橄榄石粉、60~70wt%的石英砂粉、4~8wt%的钠长石粉、2~3wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1100~1200℃条件下热处理60~90min; A magnesium-silicon ceramic fiber and a preparation method thereof. First use 1~4wt% waste marble stone powder, 15~25wt% forsterite powder, 60~70wt% quartz sand powder, 4~8wt% albite powder, 2~3wt% industrial sodium tripolyphosphate as raw materials Mix and press into green body, heat treatment at 1100~1200℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料2~4wt%的工业氯化镁和1~2wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed and ground to 120 mesh, and the industrial magnesium chloride of 2 to 4wt% and the industrial starch of 1 to 2wt% of the raw materials are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在600~700℃条件下热处理3~4小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 600-700°C for 3-4 hours to obtain the magnesium-silicon ceramic fiber.
本实施例所制备的镁硅陶瓷纤维:纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于180ng/(cm2·h)。 The magnesium-silicon ceramic fiber prepared in this example: the surface of the fiber is smooth, the mechanical strength is high, the service temperature is greater than 1200° C., and the biodegradation rate is greater than 180 ng/(cm 2 ·h).
实施例3Example 3
一种镁硅陶瓷纤维及其制备方法。先以3~7wt%的废弃大理石石粉、22~30wt%的镁橄榄石粉、56~65wt%的石英砂粉、2~5wt%的钠长石粉、1~2wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1200~1300℃条件下热处理60~90min; A magnesium-silicon ceramic fiber and a preparation method thereof. First use 3~7wt% waste marble powder, 22~30wt% forsterite powder, 56~65wt% quartz sand powder, 2~5wt% albite powder, 1~2wt% industrial sodium tripolyphosphate as raw materials Mix and press into green body, heat treatment at 1200~1300℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料3~5wt%的工业氯化镁和2~3wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed and ground to 120 orders, and the industrial magnesium chloride of 3 to 5wt% and the industrial starch of 2 to 3wt% of the raw materials are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在700~800℃条件下热处理1~2小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 700-800°C for 1-2 hours to obtain the magnesium-silicon ceramic fiber.
本实施例所制备的镁硅陶瓷纤维,纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于180ng/(cm2·h)。 The magnesium-silicon ceramic fiber prepared in this example has smooth fiber surface, high mechanical strength, a service temperature greater than 1200°C, and a biodegradation rate greater than 180ng/(cm 2 ·h).
实施例4Example 4
一种镁硅陶瓷纤维及其制备方法。先以8~10wt%的废弃大理石石粉、35~40wt%的镁橄榄石粉、40~50wt%的石英砂粉、4~8wt%的钾长石粉、2~3wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1000~1100℃条件下热处理60~90min; A magnesium-silicon ceramic fiber and a preparation method thereof. First use 8~10wt% waste marble stone powder, 35~40wt% forsterite powder, 40~50wt% quartz sand powder, 4~8wt% potassium feldspar powder, 2~3wt% industrial sodium tripolyphosphate as raw materials Mix and press into green body, heat treatment at 1000~1100℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料1~2wt%的工业氯化镁和0.5~1wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed and ground to 120 mesh, and the industrial magnesium chloride of 1-2wt% and the industrial starch of 0.5-1wt% of the raw materials are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在600~700℃条件下热处理2~3小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 600-700°C for 2-3 hours to obtain the magnesium-silicon ceramic fiber.
本实施例所制备的镁硅陶瓷纤维,纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于200ng/(cm2·h)。 The magnesium-silicon ceramic fiber prepared in this example has smooth fiber surface, high mechanical strength, service temperature greater than 1200° C., and biodegradation rate greater than 200 ng/(cm 2 ·h).
实施例5Example 5
一种镁硅陶瓷纤维及其制备方法。先以2~5wt%的废弃大理石石粉、28~35wt%的镁橄榄石粉、55~65wt%的石英砂粉、3~6wt%的钾长石粉、1~2wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1150~1250℃条件下热处理60~90min; A magnesium-silicon ceramic fiber and a preparation method thereof. First use 2~5wt% waste marble stone powder, 28~35wt% forsterite powder, 55~65wt% quartz sand powder, 3~6wt% potassium feldspar powder, 1~2wt% industrial sodium tripolyphosphate as raw materials Mix and press into green body, heat treatment at 1150~1250℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料2~4wt%的工业氯化镁和2~3wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed and ground to 120 orders, and the industrial magnesium chloride of 2 to 4wt% and the industrial starch of 2 to 3wt% of the raw materials are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在800~900℃条件下热处理2~3小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 800-900°C for 2-3 hours to obtain the magnesium-silicon ceramic fiber.
本实施例所制备的镁硅陶瓷纤维,纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于150ng/(cm2·h)。 The magnesium-silicon ceramic fiber prepared in this example has smooth fiber surface, high mechanical strength, service temperature greater than 1200° C., and biodegradation rate greater than 150 ng/(cm 2 ·h).
实施例6Example 6
一种镁硅陶瓷纤维及其制备方法。先以7~9wt%的废弃大理石石粉、30~40wt%的镁橄榄石粉、45~55wt%的石英砂粉、3~7wt%的钠长石粉、1~2wt%的工业三聚磷酸钠为原料混合,压制成坯体,在1200~1300℃条件下热处理60~90min; A magnesium-silicon ceramic fiber and a preparation method thereof. First use 7~9wt% waste marble powder, 30~40wt% forsterite powder, 45~55wt% quartz sand powder, 3~7wt% albite powder, 1~2wt% industrial sodium tripolyphosphate as raw materials Mix and press into green body, heat treatment at 1200~1300℃ for 60~90min;
再将热处理后的物料破碎,粉磨至120目,外加所述原料4~5wt%的工业氯化镁和1~2wt%的工业淀粉,混合均匀; Then the heat-treated material is crushed and ground to 120 mesh, and the industrial magnesium chloride of 4-5wt% and the industrial starch of 1-2wt% of the raw materials are added, and mixed uniformly;
然后将混合均匀的物料置于电阻炉中,升温至1500~1700℃,熔融后直接甩丝,得到陶瓷纤维; Then place the uniformly mixed material in a resistance furnace, raise the temperature to 1500~1700°C, spin the filaments directly after melting, and obtain ceramic fibers;
最后将陶瓷纤维在700~800℃条件下热处理3~4小时,即得镁硅陶瓷纤维。 Finally, the ceramic fiber is heat-treated at 700-800°C for 3-4 hours to obtain the magnesium-silicon ceramic fiber.
本实施例所制备的镁硅陶瓷纤维,纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于200ng/(cm2·h)。 The magnesium-silicon ceramic fiber prepared in this example has smooth fiber surface, high mechanical strength, service temperature greater than 1200° C., and biodegradation rate greater than 200 ng/(cm 2 ·h).
本具体实施方式与现有技术相比具有以下积极效果: Compared with the prior art, this specific embodiment has the following positive effects:
1、本具体实施方式的熔化温度低,成纤范围内熔体粘度变化平缓,成纤过程易于控制; 1. The melting temperature of this specific embodiment is low, the melt viscosity changes gently within the fiber-forming range, and the fiber-forming process is easy to control;
2、本具体实施方式采用的原料价格低廉,生产成本低,具有很大的产业化前景; 2. The raw materials used in this specific embodiment are cheap, the production cost is low, and there is great industrialization prospect;
3、本具体实施方式制备的镁硅陶瓷纤纤维表面光滑、机械强度高,使用温度大于1200℃,生物降解速率大于150ng/(cm2·h)。 3. The magnesium-silicon ceramic fiber prepared in this specific embodiment has a smooth surface and high mechanical strength. The use temperature is higher than 1200° C., and the biodegradation rate is higher than 150 ng/(cm 2 ·h).
因此,本具体实施方式具有熔化温度低、成纤过程易于操作和生产成本低的特点;所制备的镁硅陶瓷纤维的表面光滑、机械强度高、使用温度较高和生物降解速率较大。 Therefore, this specific embodiment has the characteristics of low melting temperature, easy operation of fiber-forming process and low production cost; the prepared magnesium-silicon ceramic fiber has smooth surface, high mechanical strength, high service temperature and high biodegradation rate.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102087068A CN102718495B (en) | 2012-06-25 | 2012-06-25 | Magnesium silicon ceramic fiber and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102087068A CN102718495B (en) | 2012-06-25 | 2012-06-25 | Magnesium silicon ceramic fiber and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102718495A CN102718495A (en) | 2012-10-10 |
CN102718495B true CN102718495B (en) | 2013-12-04 |
Family
ID=46944402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102087068A Expired - Fee Related CN102718495B (en) | 2012-06-25 | 2012-06-25 | Magnesium silicon ceramic fiber and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102718495B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820881B (en) * | 2014-02-08 | 2015-12-02 | 北京大学 | A kind of method utilizing aluminous fly-ash to prepare ceramic fibre |
CN104649692B (en) * | 2015-01-16 | 2016-08-17 | 长兴正发热电耐火材料有限公司 | A kind of high chromium ceramic fibre and preparation method thereof |
CN105198226B (en) * | 2015-09-10 | 2017-11-10 | 武汉科技大学 | A kind of forsterite fiber and preparation method thereof |
CN106350901A (en) * | 2016-08-26 | 2017-01-25 | 宜兴润德纺织品制造有限公司 | Compound waterproof fiber for weaving textile fabric and preparation method thereof |
CN108677272B (en) * | 2018-05-15 | 2020-09-22 | 华南理工大学 | Micron-sized inorganic antibacterial fiber and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102491737A (en) * | 2011-12-08 | 2012-06-13 | 武汉科技大学 | High-temperature-resistant biologically-soluble ceramic fiber and preparation method thereof |
-
2012
- 2012-06-25 CN CN2012102087068A patent/CN102718495B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102491737A (en) * | 2011-12-08 | 2012-06-13 | 武汉科技大学 | High-temperature-resistant biologically-soluble ceramic fiber and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
姜广坤等.氯化物对钙镁硅可溶耐火纤维析晶和溶解行为的影响.《武汉科技大学学报》.2011,第34卷(第4期), |
氯化物对钙镁硅可溶耐火纤维析晶和溶解行为的影响;姜广坤等;《武汉科技大学学报》;20110831;第34卷(第4期);第262-264、308页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102718495A (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102718495B (en) | Magnesium silicon ceramic fiber and preparation method thereof | |
CN101857355B (en) | Method for producing glass beads used for curing high-level nuclear wastes | |
CN107892479A (en) | A kind of matt sand streak vitreous enamel core glaze and production method | |
CN105565667A (en) | Easy-to-clean and antibacterial sanitary ceramic and preparation method thereof | |
CN102701784B (en) | A kind of lightweight ceramic foam material and preparation method thereof | |
CN101979359B (en) | Ultra-low temperature sintered ceramic tiles and preparation method thereof | |
CN105924184A (en) | High-temperature infrared radiant coating used for industrial furnace and preparation method thereof | |
CN102491737B (en) | A kind of high temperature resistant biosoluble ceramic fiber and preparation method thereof | |
CN102515731B (en) | Magnesium silicate ceramic fibre and preparation method therof | |
CN103030415A (en) | High-performance forsterite refractory raw material and preparation method thereof | |
CA2806289C (en) | Method for manufacturing plate inorganic nonmetal material using molten slag | |
CN102992332A (en) | Method for preparing white carbon blacks by using waste silica bricks | |
CN108892478B (en) | Low-temperature porcelain and preparation method thereof | |
CN104278155A (en) | Method for smelting lead from waste CRT lead-containing glass | |
CN107162621A (en) | Extra large porcelain of the easy clean antibacterial functions shellfish porcelain of one kind reinforcing/biology and preparation method thereof | |
CN101298384A (en) | Biodegradable refractory ceramic fibre and preparation thereof | |
CN103304270B (en) | Method for preparing ceramic glaze by using gold-tailings | |
CN101973787A (en) | Method for preparing split-phase coloring iron black glaze | |
CN104099468B (en) | A kind of bauxite base iron ore pellet binder and preparation method thereof | |
CN102674695A (en) | Method for preparing calcium-aluminum-silicon (CAS) glass ceramics by quickly sintering waste lamp tube glass | |
CN103787341A (en) | Method for producing white carbon black from obsidian | |
CN105198226B (en) | A kind of forsterite fiber and preparation method thereof | |
CN112250305A (en) | Antibacterial ceramic glaze based on boric sludge and preparation method and application thereof | |
CN103819174A (en) | Sintered ceramsite adopting tailings generated during germanium extraction of lignite as main raw material and preparation method of sintered ceramsite | |
CN105314851B (en) | Long acting antibiotic devitrified glass of blast furnace slag containing transition metal oxide and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131204 Termination date: 20150625 |
|
EXPY | Termination of patent right or utility model |