CN102709466A - Room-temperature tunneling anisotropic magnetoresistance device and preparation method thereof - Google Patents
Room-temperature tunneling anisotropic magnetoresistance device and preparation method thereof Download PDFInfo
- Publication number
- CN102709466A CN102709466A CN2012101810030A CN201210181003A CN102709466A CN 102709466 A CN102709466 A CN 102709466A CN 2012101810030 A CN2012101810030 A CN 2012101810030A CN 201210181003 A CN201210181003 A CN 201210181003A CN 102709466 A CN102709466 A CN 102709466A
- Authority
- CN
- China
- Prior art keywords
- layer
- thickness
- room temperature
- anisotropic magnetoresistance
- magnetoresistance device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hall/Mr Elements (AREA)
Abstract
本发明公开了一种室温隧道各向异性磁电阻器件及其制备方法。该器件结构依次包括:基片、底电极、铁磁层(FM)、反铁磁层、隧穿层和顶电极;其中,铁磁层为由垂直磁化膜构成,包括垂直磁化的[Co/Pt]n、[Co/Pd]n、[Co/Ni]n多层膜(n=1~10),铁磁层中Co的厚度为0.3nm~0.8nm,Pt、Pd、Ni的厚度为0.8nm~1.5nm;反铁磁层由Mn系合金构成,厚度为2nm~6nm;隧穿层为MgO或Al2O3,厚度为1.5nm~2.5nm。本发明利用隧穿层一侧的垂直磁化的铁磁层与反铁磁层的交换耦合作用制备磁电阻器件,实现室温TAMR效应。The invention discloses a room temperature tunnel anisotropic magnetoresistance device and a preparation method thereof. The device structure includes: substrate, bottom electrode, ferromagnetic layer (FM), antiferromagnetic layer, tunneling layer and top electrode; wherein, the ferromagnetic layer is composed of perpendicular magnetization film, including vertical magnetization [Co/ Pt] n , [Co/Pd] n , [Co/Ni] n multilayer film (n=1~10), the thickness of Co in the ferromagnetic layer is 0.3nm~0.8nm, and the thickness of Pt, Pd, Ni is 0.8nm~1.5nm; the antiferromagnetic layer is made of Mn alloy with a thickness of 2nm~6nm; the tunneling layer is MgO or Al 2 O 3 with a thickness of 1.5nm~2.5nm. The invention utilizes the exchange coupling effect of the perpendicularly magnetized ferromagnetic layer on one side of the tunneling layer and the antiferromagnetic layer to prepare a magnetoresistance device and realize the room temperature TAMR effect.
Description
技术领域 technical field
本发明涉及一种室温隧道各向异性磁电阻器件及其制备方法。The invention relates to a room temperature tunnel anisotropic magnetoresistance device and a preparation method thereof.
背景技术 Background technique
隧道各向异性磁电阻(TAMR)效应是自旋电子学中一种非常重要的物理现象,主要是描述在单一铁磁层的隧穿结构中产生的各向异性磁电阻。与传统的由两层铁磁半导体中插入隧穿势垒层构成的隧道结不同,这种依靠单铁磁层中强的轨道耦合作用实现自旋极化电流的注入和探测的器件更有利于后处理工艺,同时其所展现的丰富的物理学现象及潜在的应用价值,开辟了自旋电子学研究的一个新分支。自从2004年该现象在(Ga,Mn)As/alumina/Au体系中发现以来,激起了人们广泛的研究兴趣。最近,Park等人首次报道了基于反铁磁材料的TAMR效应,使反铁磁材料的应用从传统的钉扎层转向物理内涵丰富的功能层,对于开拓反铁磁自旋电子学领域具有重大的意义,然而到目前为止,所有的TAMR信号都是在低温下(<100K)测量得到,并且主要集中在面内磁化的铁磁材料中,限制了实用化进程。Tunneling anisotropic magnetoresistance (TAMR) effect is a very important physical phenomenon in spintronics, which mainly describes the anisotropic magnetoresistance generated in the tunneling structure of a single ferromagnetic layer. Different from the traditional tunnel junction composed of two layers of ferromagnetic semiconductors inserted into the tunneling barrier layer, this kind of device that relies on the strong orbital coupling in the single ferromagnetic layer to realize the injection and detection of spin-polarized current is more conducive to The post-processing technology, as well as the rich physical phenomena and potential application value it exhibits, have opened up a new branch of spintronics research. Since this phenomenon was discovered in the (Ga,Mn)As/alumina/Au system in 2004, it has aroused extensive research interest. Recently, Park et al. reported for the first time the TAMR effect based on antiferromagnetic materials, making the application of antiferromagnetic materials shift from traditional pinning layers to functional layers with rich physical connotations, which is of great significance for the development of antiferromagnetic spintronics. However, so far, all TAMR signals are measured at low temperature (<100K), and are mainly concentrated in in-plane magnetized ferromagnetic materials, which limits the practical application process.
发明内容 Contents of the invention
本发明的目的是提供一种室温隧道各向异性磁电阻器件及其制备方法。The object of the present invention is to provide a room temperature tunnel anisotropic magnetoresistance device and a preparation method thereof.
本发明所提供的室温隧道各向异性磁电阻器件,其结构依次包括:基片、底电极、铁磁层(FM)、反铁磁层、隧穿层和顶电极;所述铁磁层由垂直磁化膜构成,所述反铁磁层由Mn系合金构成。The structure of the room-temperature tunnel anisotropic magnetoresistance device provided by the present invention sequentially includes: a substrate, a bottom electrode, a ferromagnetic layer (FM), an antiferromagnetic layer, a tunneling layer, and a top electrode; the ferromagnetic layer consists of A perpendicular magnetization film is formed, and the antiferromagnetic layer is formed of a Mn-based alloy.
其中,构成所述铁磁层的垂直磁化膜包括垂直磁化的[Co/Pt]n、[Co/Pd]n、[Co/Ni]n多层膜(n=1~10)。Wherein, the perpendicular magnetization film constituting the ferromagnetic layer includes perpendicular magnetization [Co/Pt] n , [Co/Pd] n , [Co/Ni] n multilayer films (n=1-10).
所述[Co/Pt]n多层膜中,各Co层的厚度均为0.3nm~0.8nm,各Pt层的厚度均为0.8nm~1.5nm。In the [Co/Pt] n multilayer film, the thickness of each Co layer is 0.3nm-0.8nm, and the thickness of each Pt layer is 0.8nm-1.5nm.
所述[Co/Pd]n多层膜中,各Co层的厚度均为0.3nm~0.8nm,各Pd层的厚度均为0.8nm~1.5nm。In the [Co/Pd] n multilayer film, the thickness of each Co layer is 0.3nm~0.8nm, and the thickness of each Pd layer is 0.8nm~1.5nm.
所述[Co/Ni]n多层膜中,各Co层的厚度为0.3nm~0.8nm,各Ni层的厚度均为0.8nm~1.5nm。In the [Co/Ni] n multilayer film, the thickness of each Co layer is 0.3nm~0.8nm, and the thickness of each Ni layer is 0.8nm~1.5nm.
所述Mn合金包括IrMn、FeMn等。The Mn alloy includes IrMn, FeMn and the like.
所述反铁磁层的厚度可为2nm~6nm。The thickness of the antiferromagnetic layer may be 2 nm to 6 nm.
所述隧穿层由MgO或Al2O3构成,其厚度可为1.5nm~2.5nm。其中,Al2O3采用磁控溅射、电子束蒸镀、Al的等离子体氧化和自然氧化的方法制备;MgO采用磁控溅射、电子束蒸镀的方法制备。The tunneling layer is made of MgO or Al 2 O 3 , and its thickness may be 1.5nm-2.5nm. Among them, Al 2 O 3 is prepared by magnetron sputtering, electron beam evaporation, plasma oxidation and natural oxidation of Al; MgO is prepared by magnetron sputtering and electron beam evaporation.
所述底电极和顶电极为Pt电极。The bottom electrode and the top electrode are Pt electrodes.
所述基片为Si(100)/SiO2,其中SiO2厚度为300-500nm。The substrate is Si(100)/SiO 2 , wherein the thickness of SiO 2 is 300-500nm.
制备上述室温隧道各向异性磁电阻器件的方法包括下述步骤:在基片上依次沉积底电极、铁磁层(FM)、反铁磁层、隧穿层和顶电极。The method for preparing the room-temperature tunnel anisotropic magnetoresistance device includes the following steps: sequentially depositing a bottom electrode, a ferromagnetic layer (FM), an antiferromagnetic layer, a tunneling layer and a top electrode on a substrate.
随后通过紫外曝光、氩离子刻蚀结合金属剥离法的工艺将多层膜加工成尺寸为5×3μm2~100×60μm2的隧道结,从底电极和顶电极各引出两根导线进行磁阻的测试。Subsequently, the multilayer film is processed into a tunnel junction with a size of 5×3 μm 2 ~100×60 μm 2 through ultraviolet exposure, argon ion etching and metal lift-off method, and two wires are drawn from the bottom electrode and the top electrode to perform magnetoresistance. test.
本发明利用隧穿层一侧的垂直磁化的铁磁层FM与反铁磁层IrMn的交换耦合作用制备磁电阻器件,通过利用垂直交换耦合作用较高的热稳定性以及反铁磁层厚度的调控,使其在室温下实现具有自旋阀信号的TAMR效应。其中可通过反铁磁层厚度的变化来调控器件磁阻值的大小。The present invention utilizes the exchange coupling effect of the vertically magnetized ferromagnetic layer FM on one side of the tunneling layer and the antiferromagnetic layer IrMn to prepare a magnetoresistive device, and utilizes the higher thermal stability of the vertical exchange coupling effect and the thickness of the antiferromagnetic layer It is regulated to realize the TAMR effect with spin valve signal at room temperature. The magnetoresistance value of the device can be regulated by changing the thickness of the antiferromagnetic layer.
具体实施方式 Detailed ways
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。The present invention will be described below through specific examples, but the present invention is not limited thereto.
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。The experimental methods described in the following examples, unless otherwise specified, are conventional methods; the reagents and materials, unless otherwise specified, can be obtained from commercial sources.
实施例1:制备Si/SiO2/Pt/[Co/Pt]4/Co/IrMn/Al2O3/Pt结构的磁隧道结Example 1: Preparation of magnetic tunnel junction with Si/SiO 2 /Pt/[Co/Pt] 4 /Co/IrMn/Al 2 O 3 /Pt structure
在Si/SiO2基片上采用磁控溅射的方式沉积Pt/[Co/Pt]4/Co/IrMn/Al2O3/Pt多层膜结构,该结构中[Co/Pt]4/Co为铁磁层,Co的厚度是0.5nm,Pt的厚度为1nm,反铁磁层IrMn的厚度为2~6nm,隧穿层Al2O3的厚度为2nm。所制备的多层膜界面清晰平整,附着力较好,具有良好的垂直易磁化特性。随后通过紫外曝光、氩离子刻蚀结合金属剥离法的工艺将多层膜加工成尺寸为5×3μm2~100×60μm2的隧道结,从底电极(Pt)和顶电极(Pt)各引出两根导线进行磁阻的测试。The Pt/[Co/Pt] 4 /Co/IrMn/Al 2 O 3 /Pt multilayer film structure is deposited on the Si/SiO 2 substrate by magnetron sputtering. In this structure, [Co/Pt] 4 /Co It is a ferromagnetic layer, the thickness of Co is 0.5nm, the thickness of Pt is 1nm, the thickness of antiferromagnetic layer IrMn is 2~6nm, and the thickness of tunneling layer Al 2 O 3 is 2nm. The prepared multilayer film has a clear and smooth interface, good adhesion and good vertical easy magnetization characteristics. Subsequently, the multilayer film is processed into a tunnel junction with a size of 5×3 μm 2 ~100×60 μm 2 through ultraviolet exposure, argon ion etching and metal lift-off method, and the bottom electrode (Pt) and the top electrode (Pt) are respectively drawn out. Two wires are tested for magnetoresistance.
室温下PPMS(综合物理性能测试系统)磁阻测试结果表明,当磁场方向垂直于薄膜表面时,随着磁场从+1T到-1T再到+1T,测试得到的电阻变化为高阻态(+1T)→低阻态(-1T)→高阻态(+1T);当磁场方向平行于薄膜表面时,测试得到类自旋阀信号的磁阻变化,即磁场从+1T到-1T,测试得到的电阻变化为高阻态(+1T)→低阻态(~0T)→高阻态(-1T)。该现象的出现主要是由于铁磁层[Co/Pt]4/Co和反铁磁层IrMn的交换弹簧效应,使垂直磁化铁磁层磁矩的翻转带动反铁磁层磁矩的部分旋转。当反铁磁IrMn的厚度为6nm时,采用多功能物性测量系统(PPMS)测得的室温下垂直方向的TAMR值(隧道各向异性磁电阻值)为0.236%,面内的TAMR值为0.070%;IrMn的厚度为4nm时,室温下垂直方向的TAMR值为0.051%;IrMn的厚度为2nm时,150K下垂直方向的TAMR值为0.027%,室温下无明显TAMR信号。The magnetoresistance test results of PPMS (Comprehensive Physical Properties Testing System) at room temperature show that when the direction of the magnetic field is perpendicular to the surface of the film, as the magnetic field changes from +1T to -1T and then to +1T, the measured resistance changes to a high resistance state (+ 1T) → low resistance state (-1T) → high resistance state (+1T); when the magnetic field direction is parallel to the surface of the film, the magnetoresistance change of the spin valve-like signal is obtained by testing, that is, the magnetic field is from +1T to -1T, and the test The resulting resistance change is high resistance state (+1T) → low resistance state (~0T) → high resistance state (-1T). The occurrence of this phenomenon is mainly due to the exchange spring effect of the ferromagnetic layer [Co/Pt] 4 /Co and the antiferromagnetic layer IrMn, so that the reversal of the magnetic moment of the perpendicularly magnetized ferromagnetic layer drives the partial rotation of the magnetic moment of the antiferromagnetic layer. When the thickness of antiferromagnetic IrMn is 6nm, the TAMR value (tunnel anisotropic magnetoresistance value) in the vertical direction at room temperature measured by the multifunctional physical property measurement system (PPMS) is 0.236%, and the in-plane TAMR value is 0.070 %; when the thickness of IrMn is 4nm, the TAMR value in the vertical direction at room temperature is 0.051%; when the thickness of IrMn is 2nm, the TAMR value in the vertical direction at 150K is 0.027%, and there is no obvious TAMR signal at room temperature.
实施例2:制备Si/SiO2/Pt/[Co/Pd]8/Co/IrMn/MgO/Pt结构的磁隧道结Example 2: Preparation of magnetic tunnel junction with Si/SiO 2 /Pt/[Co/Pd] 8 /Co/IrMn/MgO/Pt structure
在Si/SiO2基片上采用电子束蒸镀的方式沉积Pt/[Co/Pd]8/Co/IrMn/MgO/Pt多层膜结构,该结构中[Co/Pd]8/Co为铁磁层,Co的厚度是0.3nm,Pd的厚度为1.2nm,反铁磁层IrMn的厚度为2~6nm,隧穿层MgO的厚度为2nm。所制备的多层膜界面清晰平整,附着力较好,具有良好的垂直易磁化特性。随后通过紫外曝光、氩离子刻蚀结合金属剥离法的工艺将多层膜加工成尺寸为5×3μm2~100×60μm2的隧道结,从底电极和顶电极各引出两根导线进行磁阻的测试。The Pt/[Co/Pd] 8 /Co/IrMn/MgO/Pt multilayer film structure is deposited on the Si/SiO 2 substrate by electron beam evaporation, in which [Co/Pd] 8 /Co is ferromagnetic layer, the thickness of Co is 0.3nm, the thickness of Pd is 1.2nm, the thickness of antiferromagnetic layer IrMn is 2~6nm, and the thickness of tunneling layer MgO is 2nm. The prepared multilayer film has a clear and smooth interface, good adhesion and good vertical easy magnetization characteristics. Subsequently, the multilayer film is processed into a tunnel junction with a size of 5×3 μm 2 ~100×60 μm 2 through ultraviolet exposure, argon ion etching and metal lift-off method, and two wires are drawn from the bottom electrode and the top electrode to perform magnetoresistance. test.
室温下PPMS磁阻测试结果表明,当磁场方向垂直于薄膜表面时,随着磁场从+1T到-1T再到+1T,测试得到的电阻变化为高阻态(+1T)→低阻态(-1T)→高阻态(+1T);当磁场方向平行于薄膜表面时,测试得到类自旋阀信号的磁阻变化,即磁场从+1T到-1T,测试得到的电阻变化为高阻态(+1T)→低阻态(~0T)→高阻态(-1T)。当反铁磁IrMn的厚度为6nm时,室温下垂直方向的TAMR值为5.32%,面内的TAMR值为1.89%;IrMn的厚度为4nm时,室温下垂直方向的TAMR值为4.05%;IrMn的厚度为2nm时,室温下垂直方向的TAMR值为2.48%。The test results of PPMS magnetoresistance at room temperature show that when the magnetic field is perpendicular to the surface of the film, as the magnetic field changes from +1T to -1T to +1T, the measured resistance changes from a high resistance state (+1T) to a low resistance state ( -1T) → high resistance state (+1T); when the magnetic field direction is parallel to the surface of the film, the magnetoresistance change of the spin valve-like signal is obtained in the test, that is, the magnetic field is from +1T to -1T, and the resistance change obtained by the test is high resistance state (+1T) → low resistance state (~0T) → high resistance state (-1T). When the thickness of antiferromagnetic IrMn is 6nm, the TAMR value in the vertical direction at room temperature is 5.32%, and the TAMR value in the plane is 1.89%; when the thickness of IrMn is 4nm, the TAMR value in the vertical direction at room temperature is 4.05%; When the thickness is 2nm, the TAMR value in the vertical direction at room temperature is 2.48%.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101810030A CN102709466A (en) | 2012-06-04 | 2012-06-04 | Room-temperature tunneling anisotropic magnetoresistance device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101810030A CN102709466A (en) | 2012-06-04 | 2012-06-04 | Room-temperature tunneling anisotropic magnetoresistance device and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102709466A true CN102709466A (en) | 2012-10-03 |
Family
ID=46902105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101810030A Pending CN102709466A (en) | 2012-06-04 | 2012-06-04 | Room-temperature tunneling anisotropic magnetoresistance device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102709466A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107591478A (en) * | 2017-08-25 | 2018-01-16 | 清华大学 | A kind of tunnel magneto resistance device driven by magnetic phase in version |
CN110246656A (en) * | 2019-07-02 | 2019-09-17 | 西华大学 | A kind of multi-layer-coupled patterned magnetic film and preparation and test method |
CN114015983A (en) * | 2021-11-04 | 2022-02-08 | 之江实验室 | Bulk-perpendicular-anisotropy ferrimagnetic alloy film and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1345091A (en) * | 2000-09-28 | 2002-04-17 | 株式会社东芝 | Semiconductor storage using tunnel magneto-resistance effect and manufacture thereof |
US20020076940A1 (en) * | 2000-12-20 | 2002-06-20 | Yamaha Corporation | Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film |
US20090146232A1 (en) * | 2007-11-27 | 2009-06-11 | Joerg Wunderlich | Magnetoresistive device |
-
2012
- 2012-06-04 CN CN2012101810030A patent/CN102709466A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1345091A (en) * | 2000-09-28 | 2002-04-17 | 株式会社东芝 | Semiconductor storage using tunnel magneto-resistance effect and manufacture thereof |
US20020076940A1 (en) * | 2000-12-20 | 2002-06-20 | Yamaha Corporation | Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film |
US20090146232A1 (en) * | 2007-11-27 | 2009-06-11 | Joerg Wunderlich | Magnetoresistive device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107591478A (en) * | 2017-08-25 | 2018-01-16 | 清华大学 | A kind of tunnel magneto resistance device driven by magnetic phase in version |
CN110246656A (en) * | 2019-07-02 | 2019-09-17 | 西华大学 | A kind of multi-layer-coupled patterned magnetic film and preparation and test method |
CN114015983A (en) * | 2021-11-04 | 2022-02-08 | 之江实验室 | Bulk-perpendicular-anisotropy ferrimagnetic alloy film and preparation method thereof |
CN114015983B (en) * | 2021-11-04 | 2022-06-07 | 之江实验室 | A kind of bulk perpendicular anisotropy ferrimagnetic alloy thin film and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210234092A1 (en) | Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications | |
CN102270736B (en) | Magnetic nano-multilayer film used for magnetic sensor and manufacturing method for magnetic nano-multilayer film | |
CN105866715B (en) | A kind of preparation method of linear anisotropic magnetoresistive sensor | |
CN103956249B (en) | A kind of artificial antiferromagnetic coupling multi-layer film material of perpendicular magnetic anisotropy | |
US9520175B2 (en) | Magnetization controlling element using magnetoelectric effect | |
KR101105069B1 (en) | Magnetoresistive element | |
CN102637939B (en) | Spinning microwave oscillator based on vertical magnetizing free layer and manufacturing method thereof | |
WO2008050790A1 (en) | Tunnel-type magnetic detecting element and method for manufacturing the same | |
US20170301855A1 (en) | Novel Composite Seed Layer | |
CN105449096B (en) | Magnetic film structure and its manufacture, application method and magnetosensitive sensing unit, array | |
CN101672903A (en) | Preparation method of Wheatstone bridge type spin valve magnetic sensor | |
JP6098214B2 (en) | Magnetic thin film oscillator | |
CN105283974A (en) | Seed layer for perpendicular magnetic anisotropy (PMA) thin film | |
CN102364618B (en) | Multilayer film material with vertical magnetic anisotropy | |
CN104775049B (en) | Au Cu alloy materials, include its pure spin current device and its application | |
CN102709466A (en) | Room-temperature tunneling anisotropic magnetoresistance device and preparation method thereof | |
CN100545938C (en) | A magnetic sandwich material based on nanocrystalline soft magnetic film and its preparation method | |
US7602590B2 (en) | Tunneling magneto-resistive spin valve sensor with novel composite free layer | |
CN102290193B (en) | NiFe film material with high magnetoresistance and preparation method thereof | |
CN103424131B (en) | A kind of preparation method of vertical off setting magnetic sensing unit | |
US7288281B2 (en) | CPP spin valve with ultra-thin CoFe(50%) laminations | |
CN107591478B (en) | A Tunneling Magnetoresistance Device Driven by Magnetic Phase Transition | |
CN110165045A (en) | W-B alloy material and spin electric device based on spin-orbit torque | |
CN109860385A (en) | Design and fabrication of magnetic tunnel junction based on Fe3N/GaN heterostructure | |
CN103605088B (en) | A kind of 90 degree automatic biasing spin-valve sensor unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121003 |