CN102707437A - Light pulse shaper based on double-array fiber grating and working method thereof - Google Patents
Light pulse shaper based on double-array fiber grating and working method thereof Download PDFInfo
- Publication number
- CN102707437A CN102707437A CN2012101893739A CN201210189373A CN102707437A CN 102707437 A CN102707437 A CN 102707437A CN 2012101893739 A CN2012101893739 A CN 2012101893739A CN 201210189373 A CN201210189373 A CN 201210189373A CN 102707437 A CN102707437 A CN 102707437A
- Authority
- CN
- China
- Prior art keywords
- amplitude
- fiber bragg
- bragg grating
- spectral line
- light pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 241
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 243
- 230000003595 spectral effect Effects 0.000 claims abstract description 226
- 238000007493 shaping process Methods 0.000 claims abstract description 34
- 239000013307 optical fiber Substances 0.000 claims abstract description 6
- 238000003491 array Methods 0.000 claims description 72
- 230000000737 periodic effect Effects 0.000 claims description 64
- 238000001228 spectrum Methods 0.000 claims description 61
- 230000010363 phase shift Effects 0.000 claims description 52
- 238000002310 reflectometry Methods 0.000 claims description 24
- 230000008878 coupling Effects 0.000 claims description 22
- 238000010168 coupling process Methods 0.000 claims description 22
- 238000005859 coupling reaction Methods 0.000 claims description 22
- 230000002146 bilateral effect Effects 0.000 claims description 5
- 230000011514 reflex Effects 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000010287 polarization Effects 0.000 description 7
- 230000003245 working effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000215 ultra-fast laser spectroscopy Methods 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
一种基于双阵列光纤光栅的光脉冲整形器,由光学频率梳源、光隔离器和幅度控制器组成,光学频率梳源的输出端连接光隔离器的输入端,光隔离器的输出端连接幅度控制器的输入端,幅度控制器的输出端输出偶函数波形光脉冲;一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法:(1)输入,(2)幅度控制:包括分光、相位调节、干涉,(3)输出。本发明的优越性:1、只使用光纤拉伸器就可以连续精确地改变光谱幅度的大小,实现对光谱幅度的动态调节;2、结构简单,损耗小,易于与其它光器件耦合;3、能够输出偶函数波形的任意波形光脉冲;4、可以通过增加相邻光栅的波长间隔或增加光栅的数目来增加整形的带宽,使得本装置的带宽易升级。
An optical pulse shaper based on a double-array fiber grating, which consists of an optical frequency comb source, an optical isolator and an amplitude controller. The output end of the optical frequency comb source is connected to the input end of the optical isolator, and the output end of the optical isolator is connected to the The input end of the amplitude controller, and the output end of the amplitude controller output even-function waveform optical pulses; a working method of the above-mentioned optical pulse shaper based on the dual-array fiber grating: (1) input, (2) amplitude control: including light splitting , Phase adjustment, interference, (3) output. The advantages of the present invention: 1. The spectral amplitude can be continuously and precisely changed by only using the optical fiber stretcher to realize the dynamic adjustment of the spectral amplitude; 2. The structure is simple, the loss is small, and it is easy to couple with other optical devices; 3. It can output arbitrary waveform light pulses with even function waveforms; 4. The shaping bandwidth can be increased by increasing the wavelength interval between adjacent gratings or increasing the number of gratings, so that the bandwidth of the device can be easily upgraded.
Description
(一)技术领域:(1) Technical field:
本发明涉及超短光脉冲整形器及其工作方法,特别是一种利用双阵列光纤布拉格光栅的相位控制及干涉效应在频域上对输入光脉冲实施逐行整形,控制每一谱线的幅度,实现任意偶函数波形的光脉冲整形器及其工作方法。The invention relates to an ultra-short optical pulse shaper and its working method, in particular to a line-by-line shaping of an input light pulse in the frequency domain by using the phase control and interference effect of a double-array fiber Bragg grating to control the amplitude of each spectral line , an optical pulse shaper for realizing arbitrary even function waveform and its working method.
(二)背景技术:(two) background technology:
在过去的二十年里,由于超短光脉冲技术的发展及飞秒激光系统的广泛使用,而且许多应用还要求超快的光脉冲,任意形状的光脉冲,使得脉冲整形系统获得了很快的发展,并对超快激光光谱学、非线性光纤光学、高能物理等领域产生了重大的影响。任意波形光脉冲产生(O-AWG)技术在光纤通信领域有着许多的应用,如(1)产生超高重复频率的超短脉冲作为脉冲源,光时钟等;(2)对光通信中码形进行变换,产生适合于光通信的码形,提高通信性能;(3)在超高速通信系统的接收端对光信号进行整形,提高信号质量,改善误码率。In the past two decades, due to the development of ultrashort optical pulse technology and the widespread use of femtosecond laser systems, and many applications require ultrafast optical pulses, optical pulses of arbitrary shape, pulse shaping systems have achieved rapid It has a great impact on ultrafast laser spectroscopy, nonlinear fiber optics, high energy physics and other fields. Arbitrary waveform optical pulse generation (O-AWG) technology has many applications in the field of optical fiber communication, such as (1) generating ultra-short pulses with ultra-high repetition rates as pulse sources, optical clocks, etc.; Perform transformation to generate a code pattern suitable for optical communication and improve communication performance; (3) Reshape the optical signal at the receiving end of the ultra-high-speed communication system to improve signal quality and bit error rate.
光脉冲整形方法可以分为直接时域整形和直接频域整形两类,对于超短光脉冲的整形,如果采用时域整形,要求有很高的采样率,因此一般采用频域整形,其中得到广泛运用和发展的频域整形方法是基于傅里叶变换的原理,通过在频域上改变滤波函数的各个频谱成分的幅度和相位,使得输出信号的频谱改变,从而得到想要的波形。过去的频谱整形,是对一组谱线而不是每条谱线进行操作,得到的时域波形占空比很低。由于光无源器件的发展,如光纤光栅,阵列波导光栅,衍射光栅等,可以方便地用于频谱的分离,使得独立操纵每条谱线的幅度和相位成为可能。传统的任意波形光脉冲产生系统,结构上使用液晶空间光调制器结合作为色散器件的衍射光栅,存在复杂的准直控制,体型笨重,较高的耦合损耗等缺点。阵列波导光栅的通道数多,可以同时对多个波长进行滤波,但高分辨率使得其所占的物理面积也增大,不易控制器件内部的统一性。而使用光纤光栅用于分离频谱的整形系统,具有体积小,低损耗,稳定性好,易于集成等一系列优点。1983年,由Froehly最先提出具有一对衍射光栅和棱镜以及固定掩模的4f零色散系统对皮秒脉冲进行整形,但由于空间掩模板无论是振幅还是相位调制都是二元的,不能适应输入脉冲的变化,属于静态的逐行整形,还不能产生真正意义上的任意波形光脉冲。1995年A.W.Weiner等人提出利用液晶空间光调制器(LCSLM)对飞秒脉冲进行整形,克服了上述的缺点,实现了振幅和相位的连续调制,目前已经利用液晶空间光调制器和衍射光栅的结构对谱线间隔为5GHZ的108条谱线进行了整形,输出了形状复杂的波形;利用64通道的阵列波导光栅和集成的相位调制器和幅度调制器阵列对谱线间隔为10GHz的15条谱线进行了整形,获得了频谱幅度为超高斯形而频谱相位为0的变换极限脉冲并实施不同的相位控制得到时域上脉宽和形状都改变的脉冲;利用128通道的阵列波导光栅对谱线间隔为40GHz的频谱整形,整形带宽可达到5.1THz。同时,人们在动态的脉冲整形方面做了一系列努力,动态的频谱整形要求整形器的频谱响应可以适应输入波形和目标波形的变化,要求谱线间隔和带宽同时可调。如2008年Yu Yeung(Kenny)Ho利用级联的光纤光栅及用来控制相位的光纤拉伸器,用来控制幅度的偏振控制器和偏振片,对少数几根谱线整形,获得了近似锯齿脉冲和矩形脉冲的波形。Optical pulse shaping methods can be divided into direct time-domain shaping and direct frequency-domain shaping. For ultra-short optical pulse shaping, if time-domain shaping is used, a high sampling rate is required, so frequency-domain shaping is generally used, where The widely used and developed frequency domain shaping method is based on the principle of Fourier transform. By changing the amplitude and phase of each spectral component of the filter function in the frequency domain, the spectrum of the output signal is changed to obtain the desired waveform. In the past, spectrum shaping operated on a set of spectral lines instead of each spectral line, and the resulting time-domain waveform had a very low duty cycle. Due to the development of optical passive devices, such as fiber gratings, arrayed waveguide gratings, and diffraction gratings, they can be conveniently used for spectrum separation, making it possible to independently manipulate the amplitude and phase of each spectral line. The traditional arbitrary waveform optical pulse generation system uses a liquid crystal spatial light modulator combined with a diffraction grating as a dispersion device in structure, which has disadvantages such as complex collimation control, bulky size, and high coupling loss. Arrayed waveguide gratings have a large number of channels and can filter multiple wavelengths at the same time, but the high resolution increases the physical area occupied by it, making it difficult to control the uniformity inside the device. The shaping system using fiber gratings to separate the spectrum has a series of advantages such as small size, low loss, good stability, and easy integration. In 1983, Froehly first proposed a 4f zero-dispersion system with a pair of diffraction gratings and prisms and a fixed mask to shape picosecond pulses. However, since the spatial mask is binary in both amplitude and phase modulation, it cannot adapt to The change of the input pulse belongs to the static progressive shaping, and it cannot produce a real arbitrary waveform optical pulse. In 1995, A.W. Weiner and others proposed to use liquid crystal spatial light modulator (LCSLM) to shape femtosecond pulses, which overcomes the above-mentioned shortcomings and realizes continuous modulation of amplitude and phase. At present, liquid crystal spatial light modulators and diffraction gratings have been used. The structure has shaped the 108 spectral lines with a spectral line interval of 5GHZ, and output a waveform with complex shapes; the 15 spectral lines with a spectral line interval of 10GHz have been adjusted by using a 64-channel arrayed waveguide The spectral line is shaped to obtain a transformation-limited pulse with a super-Gaussian spectral amplitude and a spectral phase of 0, and implement different phase controls to obtain a pulse with a changed pulse width and shape in the time domain; a 128-channel arrayed waveguide grating is used to pair Spectrum shaping with a spectral line spacing of 40GHz, and a shaping bandwidth of up to 5.1THz. At the same time, people have made a series of efforts in dynamic pulse shaping. Dynamic spectrum shaping requires that the spectral response of the shaper can adapt to the changes of the input waveform and the target waveform, and the spectral line spacing and bandwidth must be adjustable at the same time. For example, in 2008, Yu Yeung (Kenny) Ho used cascaded fiber gratings and fiber stretchers to control the phase, polarization controllers and polarizers to control the amplitude, and shaped a few spectral lines to obtain approximate sawtooth Pulse and rectangular pulse waveforms.
目前用于幅度整形的器件主要有:(1)电光强度调制器,电光调制基于晶体的线性电光效应,即电光材料的折射率n随施加的外电场E而变化。电光调制器是一种集成光学器件,最常用的结构是在LiNbO3晶体表面用钛扩散波导构成的马赫-曾德干涉型调制器。由于加在调制器上的电压大小与输出光强有严格的对应关系,因此通过适当选择加在调制器上的工作电压,能够使得当加在调制器上的是一个一定形状的电脉冲时,输出的是一个相应形状的光脉冲。(2)可调衰减器,目前的主要技术分为:分立微光元件技术,MEMS技术,光波导技术。其中分立微光元件技术主要利用了机械方法,磁光效应,热光效应,电光效应,声光效应等来改变光功率的大小。(3)偏振控制器与偏振片结合,利用偏振控制器将输入的任意偏振态转化成指定的偏振态输出,而不同的偏振态透过偏振片后的光强变化不同,将偏振片旋转一周,圆偏振光的透射光强不变,而椭圆偏振光的透射光强出现极大值-极小值极大值-极小值的连续变化,但没有消光现象,线偏振光的透射光强出现极大值-消光-极大值-消光的连续变化。由此可以将对偏振态的控制转化为强度控制。At present, the devices used for amplitude shaping mainly include: (1) Electro-optic intensity modulators. Electro-optic modulation is based on the linear electro-optic effect of crystals, that is, the refractive index n of electro-optic materials changes with the applied external electric field E. The electro-optic modulator is an integrated optical device, and the most commonly used structure is a Mach-Zehnder interferometric modulator composed of a titanium diffusion waveguide on the surface of a LiNbO 3 crystal. Since there is a strict correspondence between the voltage applied to the modulator and the output light intensity, by properly selecting the working voltage applied to the modulator, it can be made that when an electric pulse of a certain shape is applied to the modulator, The output is a correspondingly shaped light pulse. (2) Adjustable attenuator, the current main technology is divided into: discrete micro-optical component technology, MEMS technology, optical waveguide technology. Among them, the discrete micro-optical component technology mainly uses mechanical methods, magneto-optic effects, thermo-optic effects, electro-optic effects, acousto-optic effects, etc. to change the size of the optical power. (3) The polarization controller is combined with the polarizer, and the polarization controller is used to convert the input arbitrary polarization state into a specified polarization state output, and the light intensity changes after different polarization states pass through the polarizer, and the polarizer is rotated once , the transmitted light intensity of circularly polarized light remains unchanged, while the transmitted light intensity of elliptically polarized light shows a continuous change from maximum value to minimum value maximum value to minimum value, but there is no extinction phenomenon, and the transmitted light intensity of linearly polarized light A continuous variation of maximum-extinction-maximum-extinction occurs. Control of the polarization state can thus be converted into intensity control.
以上的强度调制方法结构较为复杂,用做频谱逐行控制,会增加系统的损耗和降低整形的质量,而连续的全光纤的整形系统可以在结构简单的基础上获得高质量的整形光脉冲。它可以利用光纤光栅的反射率调制光的强度。通过控制均匀或非均匀光纤布拉格光栅的反射率轮廓,如线性啁啾布拉格光纤光栅,取样光纤光栅,超结构光纤光栅等,来改变不同频率成分的光强,此时的光纤光栅既作为色散器件又作为整形器件,可以输出频谱强度受到调制的光脉冲。而复杂的光纤光栅的反射率轮廓需要精度更高的制作工艺,且制作出后的整形器不是动态的,不能随输入波形和目标波形动态变化,因此,我们提出了一种利用双阵列光纤布拉格光栅的相位控制及干涉效应的结构实现动态的光脉冲整形。The structure of the above intensity modulation method is relatively complicated, and it will increase the loss of the system and reduce the quality of shaping when used for spectrum progressive control, while the continuous all-fiber shaping system can obtain high-quality shaped light pulses on the basis of a simple structure. It can use the reflectivity of fiber grating to modulate the intensity of light. By controlling the reflectivity profile of uniform or inhomogeneous fiber Bragg gratings, such as linear chirped fiber Bragg gratings, sampling fiber Bragg gratings, superstructure fiber gratings, etc., to change the light intensity of different frequency components, at this time the fiber Bragg grating is used as a dispersion device Also as a shaping device, it can output light pulses whose spectral intensity is modulated. However, the reflectivity profile of the complex fiber grating requires a higher precision manufacturing process, and the manufactured shaper is not dynamic, and cannot change dynamically with the input waveform and the target waveform. Therefore, we propose a dual-array fiber Bragg The phase control of the grating and the structure of the interference effect realize dynamic optical pulse shaping.
(三)发明内容:(3) Contents of the invention:
本发明的目的在于提供一种基于双阵列光纤光栅的光脉冲整形器及其工作方法,它利用光纤拉伸器的相位调节及光纤光栅双阵列的干涉效应实现对每一谱线幅度的控制,实现偶函数波形光脉冲输出。The object of the present invention is to provide a kind of optical pulse shaper and working method thereof based on double-array fiber gratings, which utilizes the phase adjustment of the fiber stretcher and the interference effect of the double-array fiber grating to realize the control of the amplitude of each spectral line, Realize even function waveform optical pulse output.
本发明的技术方案:一种基于双阵列光纤光栅的光脉冲整形器,其特征在于它由光学频率梳源、光隔离器和幅度控制器组成,光学频率梳源的输出端连接光隔离器的输入端,光隔离器的输出端连接幅度控制器的输入端,幅度控制器的输出端输出偶函数波形光脉冲;所说的幅度控制器由两个光纤布拉格光栅阵列和耦合器组成,耦合器的端口A连接光隔离器的输出端,耦合器的端口B和端口C分别连接两个光纤布拉格光栅阵列,耦合器的端口D即幅度控制器的输出端输出偶函数波形光脉冲;所说的光纤布拉格光栅阵列由至少两个光纤布拉格光栅和至少一个光纤拉伸器间隔排列构成。The technical scheme of the present invention: an optical pulse shaper based on a dual-array fiber grating, characterized in that it consists of an optical frequency comb source, an optical isolator and an amplitude controller, and the output end of the optical frequency comb source is connected to the optical isolator The input terminal, the output terminal of the optical isolator is connected to the input terminal of the amplitude controller, and the output terminal of the amplitude controller outputs an even function waveform optical pulse; the said amplitude controller is composed of two fiber Bragg grating arrays and a coupler, and the coupler The port A of the coupler is connected to the output end of the optical isolator, the port B and port C of the coupler are respectively connected to two fiber Bragg grating arrays, and the port D of the coupler is the output end of the amplitude controller to output even function waveform light pulses; The fiber Bragg grating array is composed of at least two fiber Bragg gratings and at least one fiber stretcher arranged at intervals.
上述所说的两个光纤布拉格光栅阵列中相对应的光纤布拉格光栅的中心反射波长λn相同,每个光纤布拉格光栅阵列中相邻两个光纤布拉格光栅的中心反射波长λn之差相同。The central reflection wavelengths λ n of the corresponding FBGs in the above-mentioned two FBG arrays are the same, and the difference between the central reflection wavelengths λ n of two adjacent FBGs in each FBG array is the same.
上述所说的光纤布拉格光栅阵列中光纤布拉格光栅的中心反射波长λn与光学频率梳源的对应光谱分量的波长相等,每个光纤布拉格光栅阵列中光纤布拉格光栅的数目与所选择的光学频率梳源中的谱线的条数相等。The central reflection wavelength λ n of the fiber Bragg grating in the above-mentioned fiber Bragg grating array is equal to the wavelength of the corresponding spectral component of the optical frequency comb source, and the number of fiber Bragg gratings in each fiber Bragg grating array is the same as the selected optical frequency comb The number of spectral lines in the source is equal.
一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法,其特征在于具体步骤如下:A kind of working method of the above-mentioned optical pulse shaper based on double array fiber grating, it is characterized in that concrete steps are as follows:
(1)输入:光学频率梳源发出光学频率梳,光学频率梳经过光隔离器从耦合器的端口A输入;(1) Input: The optical frequency comb source emits an optical frequency comb, and the optical frequency comb is input from port A of the coupler through an optical isolator;
(2)幅度控制:(2) Amplitude control:
(2-1)分光:由耦合器将输入的光学频率梳分成两路信号,分别从端口B和端口C输入到两个光纤布拉格光栅阵列中;(2-1) Light splitting: the input optical frequency comb is divided into two signals by the coupler, and are input to two fiber Bragg grating arrays from port B and port C respectively;
(2-2)相位调节:由两个光纤布拉格光栅阵列中的各个光纤布拉格光栅的反射特性选择与其中心反射波长λn相等的谱线,同时分别调节两个光纤布拉格光栅阵列中的各个光纤拉伸器,实现对由光纤布拉格光栅阵列反射的两路信号各条谱线的相位调节,使得光纤布拉格光栅阵列对两路信号各条谱线产生的相移分别为和θn,此时两路信号幅度谱的轮廓保持不变,与输入的光学频率梳相同。(2-2) Phase adjustment: select the spectral line equal to the central reflection wavelength λ n by the reflection characteristics of each fiber Bragg grating in the two fiber Bragg grating arrays, and adjust each fiber in the two fiber Bragg grating arrays at the same time. extender to realize the phase adjustment of each spectral line of the two signals reflected by the fiber Bragg grating array, so that the phase shifts produced by the fiber Bragg grating array to each spectral line of the two signals are respectively and θ n , the profile of the magnitude spectrum of the two signals remains unchanged at this time, which is the same as that of the input optical frequency comb.
(2-3)干涉:由光纤布拉格光栅阵列反射的两路信号在耦合器发生干涉,使得幅度控制器输出的各个谱线成分的幅度满足偶函数波形光脉冲的傅里叶系数的幅度|Fn|,同时使得幅度控制器输出的各个谱线成分的相位Pn为2π的整数倍。(2-3) Interference: The two signals reflected by the fiber Bragg grating array interfere in the coupler, so that the amplitude of each spectral line component output by the amplitude controller satisfies the amplitude of the Fourier coefficient of the even-function waveform optical pulse |F n |, while making the phase P n of each spectral line component output by the amplitude controller be an integer multiple of 2π.
(3)输出:根据傅里叶变换的原理,干涉后的信号时域上为偶函数波形光脉冲,从耦合器的端口D输出。(3) Output: According to the principle of Fourier transform, the signal after interference is an even function waveform optical pulse in the time domain, and is output from the port D of the coupler.
上述所说的步骤(1)中的光学频率梳的波长间隔相同,各条谱线幅度相等或不等,相位关系固定,至少有两个波长成分,时域上为周期性光脉冲。The wavelength interval of the optical frequency comb in the above-mentioned step (1) is the same, the amplitude of each spectral line is equal or different, the phase relationship is fixed, there are at least two wavelength components, and the time domain is a periodic optical pulse.
上述所说的步骤(2-2)中的光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn由偶函数波形光脉冲各条谱线的幅度|Fn|、耦合器的分光比α:1-α、光纤布拉格光栅的反射率R、输入的光学频率梳的各条谱线复振幅的幅度|Sn|及谱线复振幅的相位ψn共同决定:The phase shift produced by the fiber Bragg grating array in the above-mentioned step (2-2) to each spectral line of the two-way signal and θ n are determined by the amplitude |F n | of each spectral line of the even function waveform optical pulse, the splitting ratio of the coupler α:1-α, the reflectivity R of the fiber Bragg grating, and the complexities of each spectral line of the input optical frequency comb. The magnitude |S n | of the amplitude and the phase ψ n of the complex amplitude of the spectral line are jointly determined:
(n=0,±1,±2,±3…)(n=0, ±1, ±2, ±3...)
上述所说的步骤(2-3)中的幅度控制器输出的各个谱线成分的幅度|Fn|是由输入光学频率梳各条谱线的振幅|Sn|、初始相位ψn、耦合器的分光比α:1-α、光纤布拉格光栅的反射率R、两路信号各条谱线的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位Pn是由输入光学频率梳各条谱线的初始相位ψn及光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位等于2π的整数倍,如下所示:The amplitude |F n | of each spectral line component output by the amplitude controller in the above-mentioned step (2-3) is determined by the amplitude |S n | of each spectral line of the input optical frequency comb, the initial phase ψ n , the coupling The splitting ratio α:1-α of the device, the reflectivity R of the fiber Bragg grating, and the phase shift of each spectral line of the two signals and θ n , the phase P n of each spectral line component output by the amplitude controller is generated by the initial phase ψ n of each spectral line of the input optical frequency comb and the fiber Bragg grating array for each spectral line of the two signals phase shift Determined jointly with θ n , the phase of each spectral line component output by the amplitude controller is equal to an integer multiple of 2π, as shown below:
(n=0,±1,±2,±3…),m为整数。(n=0, ±1, ±2, ±3...), m is an integer.
上述所说的偶函数波形光脉冲为周期性高斯光脉冲、周期性三角光脉冲、周期性双边指数光脉冲、周期性全波余弦光脉冲、周期性半波余弦光脉冲、重复频率倍增的偶函数波形光脉冲或相邻脉冲幅度可独立控制的偶函数波形光脉冲。The above-mentioned even function waveform optical pulses are periodic Gaussian optical pulses, periodic triangular optical pulses, periodic bilateral exponential optical pulses, periodic full-wave cosine optical pulses, periodic half-wave cosine optical pulses, even A function waveform light pulse or an even function waveform light pulse whose amplitudes of adjacent pulses can be independently controlled.
上述所说的步骤(2-3)中的两路信号在耦合器中的干涉使得输出频谱的谱线间隔为输入光学频率梳的谱线间隔的两倍,则耦合器的端口D输出重复频率倍增的偶函数波形光脉冲。The interference of the two-way signals in the above-mentioned steps (2-3) in the coupler makes the spectral line spacing of the output spectrum twice the spectral line spacing of the input optical frequency comb, and the port D of the coupler outputs the repetition frequency Multiplied even function waveform light pulse.
上述所说的步骤(2-3)中的两路信号在耦合器中的干涉使得输出频谱中有两组间隔的谱线分别满足峰值不同的偶函数波形光脉冲的傅里叶系数的幅度,则耦合器的端口D输出相邻脉冲幅度可独立控制的偶函数波形光脉冲。The interference of the two-way signals in the above-mentioned steps (2-3) in the coupler makes the output spectrum have two groups of spaced spectral lines respectively satisfying the amplitude of the Fourier coefficient of the even function waveform light pulse with different peak values, Then the port D of the coupler outputs even-function waveform optical pulses whose amplitudes of adjacent pulses can be independently controlled.
本发明的工作原理为:采用双阵列光纤布拉格光栅的结构,利用窄带的光纤布拉格光栅作为窄带滤波器把每条谱线分别进行滤波后进行独立控制,利用光纤拉伸器引入相移来调节每条谱线的相位,使得反射回耦合器的两路信号发生干涉后,频谱幅度发生预期的改变,能输出偶函数波形的任意波形光脉冲。如果令输入信号初始相位为ψn,耦合器分光比为α:1-α,光纤布拉格光栅的反射率为R,令反射回耦合器后的干涉信号的相位Pn为2π的整数倍,幅度谱为偶函数波形光脉冲的幅度谱|Fn|,可以计算出两路信号各条谱线的相移,调节两个阵列的各个光纤拉伸器使两路信号获得相应的相移和θn,则反射回耦合器的两路信号发生干涉后,输出信号的频谱相位Pn为2π的整数倍,频谱幅度为偶函数波形光脉冲的傅里叶系数的幅度|Fn|,根据傅里叶变换的原理,时域输出为偶函数波形的任意波形光脉冲。The working principle of the present invention is as follows: adopt the structure of double-array fiber Bragg grating, use the narrow-band fiber Bragg grating as a narrow-band filter to filter each spectral line separately and control it independently, and use the fiber stretcher to introduce phase shift to adjust each spectral line. The phase of the spectral lines makes the spectrum amplitude change as expected after the two signals reflected back to the coupler interfere, and an arbitrary waveform optical pulse with an even function waveform can be output. If the initial phase of the input signal is ψ n , the splitting ratio of the coupler is α:1-α, the reflectivity of the fiber Bragg grating is R, and the phase P n of the interference signal reflected back to the coupler is an integer multiple of 2π, the amplitude The spectrum is the amplitude spectrum |F n | of the even function waveform optical pulse, and the phase shift of each spectral line of the two signals can be calculated, and each fiber stretcher of the two arrays can be adjusted to obtain the corresponding phase shift of the two signals and θ n , after the two signals reflected back to the coupler interfere, the spectral phase P n of the output signal is an integer multiple of 2π, and the spectral amplitude is the amplitude |F n | of the Fourier coefficient of the even function waveform optical pulse, According to the principle of Fourier transform, the output in the time domain is an arbitrary waveform optical pulse with an even function waveform.
本发明的优越性和有益效果为:1、由于光纤布拉格光栅的反射率很难实时调节,已有的利用光纤布拉格光栅的任意波形产生器需要使用光衰减器对光谱的幅度进行动态改变,而本发明的双阵列光纤布拉格光栅的整形结构可以不使用光衰减器只使用光纤拉伸器就可以连续精确地改变光谱幅度的大小,实现对光谱幅度的动态调节;2、已有的幅度调制器其结构较为复杂且不是全光纤的结构,而双阵列光纤布拉格光栅的结构是全光纤的,结构简单,损耗小,易于与其它光器件耦合;3、由于实施的是逐行的频谱控制,能够输出偶函数波形的任意波形光脉冲;4、可以通过增加相邻光栅的波长间隔或增加光栅的数目来增加整形的带宽,使得本装置的带宽易升级。The advantages and beneficial effects of the present invention are: 1. Since the reflectivity of the fiber Bragg grating is difficult to adjust in real time, the existing arbitrary waveform generator utilizing the fiber Bragg grating needs to use an optical attenuator to dynamically change the amplitude of the spectrum, while The double-array fiber Bragg grating shaping structure of the present invention can continuously and accurately change the size of the spectral amplitude without using an optical attenuator and only using a fiber stretcher, so as to realize dynamic adjustment of the spectral amplitude; 2. Existing amplitude modulators Its structure is more complex and not all-fiber, but the structure of dual-array fiber Bragg grating is all-fiber, with simple structure, low loss, and easy coupling with other optical devices; 3. Since it implements progressive spectrum control, it can Output arbitrary waveform optical pulses with even function waveforms; 4. The bandwidth of shaping can be increased by increasing the wavelength interval between adjacent gratings or increasing the number of gratings, so that the bandwidth of the device can be easily upgraded.
(四)附图说明:(4) Description of drawings:
图1为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器的整体装置框图。FIG. 1 is a block diagram of an overall device of an optical pulse shaper based on a dual-array fiber grating according to the present invention.
图2为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器中的幅度控制器的结构示意图。FIG. 2 is a schematic structural diagram of an amplitude controller in an optical pulse shaper based on a dual-array fiber grating according to the present invention.
图3为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器中的实施例1的工作效果示意图(其中图3-1为输入的光学频率梳的时域波形图,图3-2为输入的光学频率梳的幅度谱和相位谱,图3-3为两个光纤布拉格光栅阵列反射的两路信号的幅度谱以及输出的周期性高斯脉冲的幅度谱,图3-4为两个光纤布拉格光栅阵列对反射的两路信号产生的相移谱以及输出的周期性高斯脉冲的相位谱,图3-5为输出的周期性高斯脉冲)。Fig. 3 is the working effect schematic diagram of
图4为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器中的实施例2的工作效果示意图(其中图4-1为输入的光学频率梳的时域波形图,图4-2为输入的光学频率梳的幅度谱和相位谱,图4-3为两个光纤布拉格光栅阵列反射的两路信号的幅度谱以及输出的周期性三角脉冲的幅度谱,图4-4为两个光纤布拉格光栅阵列对反射的两路信号产生的相移谱以及输出的周期性三角脉冲的相位谱,图4-5为输出的周期性三角脉冲)。Fig. 4 is the schematic diagram of the working effect of
图5为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器中的实施例3的工作效果示意图(其中图5-1为输入的光学频率梳的时域波形图,图5-2为输入的光学频率梳的幅度谱和相位谱,图5-3为两个光纤布拉格光栅阵列反射的两路信号的幅度谱以及输出的周期性双边指数脉冲的幅度谱,图5-4为两个光纤布拉格光栅阵列对反射的两路信号产生的相移谱以及输出的周期性双边指数脉冲的相位谱,图5-5为输出的周期性双边指数脉冲)。Fig. 5 is a schematic diagram of the working effect of
图6为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器中的实施例4的工作效果示意图(其中图6-1为输入的光学频率梳的时域波形图,图6-2为输入的光学频率梳的幅度谱和相位谱,图6-3为两个光纤布拉格光栅阵列反射的两路信号的幅度谱以及输出的重复频率倍增为25GHz的周期性高斯脉冲的幅度谱,图6-4为两个光纤布拉格光栅阵列对反射的两路信号产生的相移谱以及输出的重复频率倍增为25GHz的周期性高斯脉冲的相位谱,图6-5为输出的重复频率倍增为25GHz的周期性高斯脉冲)。Fig. 6 is a schematic diagram of the working effect of Embodiment 4 in an optical pulse shaper based on a dual-array fiber grating according to the present invention (wherein Fig. 6-1 is a time-domain waveform diagram of an input optical frequency comb, and Fig. 6-2 is the amplitude spectrum and phase spectrum of the input optical frequency comb, and Figure 6-3 is the amplitude spectrum of the two signals reflected by two fiber Bragg grating arrays and the output amplitude spectrum of the periodic Gaussian pulse whose repetition frequency is multiplied to 25GHz, Fig. 6-4 is the phase shift spectrum generated by two fiber Bragg grating arrays for the reflected two signals and the phase spectrum of the periodic Gaussian pulse whose output repetition frequency is multiplied to 25GHz. Figure 6-5 is the output repetition frequency multiplied to 25GHz periodic Gaussian pulse).
图7为本发明所涉一种基于双阵列光纤光栅的光脉冲整形器中的实施例5的工作效果示意图(图7-1为输入的光学频率梳的时域波形图,图7-2为输入的光学频率梳的幅度谱和相位谱,图7-3为两个光纤布拉格光栅阵列反射的两路信号的幅度谱以及输出的相邻脉冲的归一化幅度分别为0.5和1的周期性高斯脉冲的幅度谱,图7-4为两个光纤布拉格光栅阵列对反射的两路信号产生的相移谱以及输出的相邻脉冲的归一化幅度分别为0.5和1的周期性高斯脉冲的相位谱,图7-5为输出的相邻脉冲的归一化幅度分别为0.5和1的周期性高斯脉冲)。Fig. 7 is a schematic diagram of the working effect of
其中:1为光学频率梳源,2为光隔离器,3为耦合器,4-1为第一个光纤布拉格光栅阵列,4-2为第二个光纤布拉格光栅阵列。Among them: 1 is an optical frequency comb source, 2 is an optical isolator, 3 is a coupler, 4-1 is the first fiber Bragg grating array, and 4-2 is the second fiber Bragg grating array.
(五)具体实施方式:(5) Specific implementation methods:
实施例中所述耦合器为3dB耦合器,即分光比为1∶1的耦合器。The coupler described in the embodiment is a 3dB coupler, that is, a coupler with a splitting ratio of 1:1.
实施例1:一种基于双阵列光纤光栅的光脉冲整形器,其特征在于它由光学频率梳源1、光隔离器2和幅度控制器组成,光学频率梳源1的输出端连接光隔离器2的输入端,光隔离器2的输出端连接幅度控制器的输入端,幅度控制器的输出端输出周期性高斯光脉冲;所说的幅度控制器由两个光纤布拉格光栅阵列4-1和4-2及耦合器3组成,耦合器3的端口A连接光隔离器2的输出端,耦合器3的端口B和端口C分别连接两个光纤布拉格光栅阵列4-1和4-2,耦合器3的端口D即幅度控制器的输出端输出周期性高斯光脉冲;所说的光纤布拉格光栅阵列由21个光纤布拉格光栅和21个光纤拉伸器间隔排列构成。Embodiment 1: a kind of optical pulse shaper based on double array fiber grating, it is characterized in that it is made up of optical frequency comb
上述所说的两个光纤布拉格光栅阵列4-1和4-2中相对应的光纤布拉格光栅的中心反射波长λn相同,每个光纤布拉格光栅阵列中相邻两个光纤布拉格光栅的中心反射波长λn之差相同,均为0.1nm,所有光纤布拉格光栅的反射率R相同,均为99%。The central reflection wavelengths λ n of the corresponding Fiber Bragg Gratings in the above-mentioned two Fiber Bragg Grating arrays 4-1 and 4-2 are the same, and the central reflection wavelengths of two adjacent Fiber Bragg Gratings in each Fiber Bragg Grating array The difference of λ n is the same, both are 0.1nm, and the reflectivity R of all fiber Bragg gratings is the same, both are 99%.
上述所说的光纤布拉格光栅阵列中光纤布拉格光栅的中心反射波长λn与光学频率梳源的对应光谱分量的波长相等,每个光纤布拉格光栅阵列中光纤布拉格光栅的数目与所选择的光学频率梳源1中的谱线的条数相等。The central reflection wavelength λ n of the fiber Bragg grating in the above-mentioned fiber Bragg grating array is equal to the wavelength of the corresponding spectral component of the optical frequency comb source, and the number of fiber Bragg gratings in each fiber Bragg grating array is the same as the selected optical frequency comb The number of spectral lines in
一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法,其特征在于具体步骤如下:A kind of working method of the above-mentioned optical pulse shaper based on double array fiber grating, it is characterized in that concrete steps are as follows:
(1)输入:光学频率梳源1发出光学频率梳,光学频率梳经过光隔离器2从耦合器3的端口A输入;(1) Input: the optical frequency comb
(2)幅度控制:(2) Amplitude control:
(2-1)分光:由耦合器3将输入的光学频率梳分成两路信号,分别从端口B和端口C输入到两个光纤布拉格光栅阵列4-1和4-2中;(2-1) Light splitting: the input optical frequency comb is divided into two signals by the
(2-2)相位调节:由两个光纤布拉格光栅阵列4-1和4-2中的各个光纤布拉格光栅的反射特性选择与其中心反射波长λn相等的谱线,同时分别调节两个光纤布拉格光栅阵列中的各个光纤拉伸器,实现对由光纤布拉格光栅阵列4-1和4-2反射的两路信号各条谱线的相位调节,使得光纤布拉格光栅阵列4-1和4-2对两路信号各条谱线产生的相移分别为和θn(见图3-4中前两个图形),和θn的取值见表1,此时两路信号幅度谱的轮廓保持不变,与输入的光学频率梳相同,两路信号的各条谱线的幅度下降为F1n和F2n(见图3-3中前两个图形),F1n和F2n的取值见表1;(2-2) Phase adjustment: the reflection characteristics of each fiber Bragg grating in the two fiber Bragg grating arrays 4-1 and 4-2 select the spectral line equal to its central reflection wavelength λ n , and adjust the two fiber Bragg gratings respectively at the same time Each fiber stretcher in the grating array realizes the phase adjustment of each spectral line of the two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2, so that the fiber Bragg grating arrays 4-1 and 4-2 pair The phase shifts generated by each spectral line of the two signals are respectively and θ n (see the first two graphs in Figure 3-4), The values of and θ n are shown in Table 1. At this time, the profiles of the amplitude spectra of the two signals remain unchanged, which are the same as the input optical frequency comb, and the amplitudes of each spectral line of the two signals decrease to F 1n and F 2n (see The first two graphs in Figure 3-3), the values of F 1n and F 2n are shown in Table 1;
(2-3)干涉:由光纤布拉格光栅阵列4-1和4-2反射的两路信号在耦合器3发生干涉,使得幅度控制器输出的各个谱线成分的幅度满足周期性高斯光脉冲的傅里叶系数的幅度|Fn|(见图3-3中第三个图形),|Fn|的取值见表1,同时使得幅度控制器输出的各个谱线成分的相位Pn为2π的整数倍(见图3-4中第三个图形),Pn的取值见表1;(2-3) Interference: The two-way signals reflected by the fiber Bragg grating arrays 4-1 and 4-2 interfere at the
(3)输出:根据傅里叶变换的原理,干涉后的信号时域上为周期性高斯光脉冲(见图3-5),从耦合器3的端口D输出。(3) Output: According to the principle of Fourier transform, the signal after interference is a periodic Gaussian light pulse in the time domain (see Figure 3-5), which is output from port D of the
上述所说步骤(1)中的光学频率梳(见图3-2)的波长间隔Δλ=0.1nm,幅度谱的轮廓为各条谱线等幅度,相位关系为各条谱线之间的相位差为0,有101个波长成分,时域上为重复频率为的光脉冲(见图3-1),其中c为真空中的光速,λ0为光学频率梳源1的中心波长,为1550nm,T为时域上光脉冲的周期,为80ps。The wavelength interval of the optical frequency comb (see Figure 3-2) in the above-mentioned step (1) is Δλ=0.1nm, the profile of the amplitude spectrum is the equal amplitude of each spectral line, and the phase relationship is the phase between each spectral line The difference is 0, there are 101 wavelength components, and the repetition frequency in the time domain is (see Figure 3-1), where c is the speed of light in vacuum, λ 0 is the center wavelength of the optical frequency comb
上述所说的步骤(2-2)中的光纤布拉格光栅阵列4-1和4-2对两路信号各条谱线产生的相移和θn由周期性高斯光脉冲各条谱线的幅度|Fn|、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、输入的光学频率梳的各条谱线复振幅的幅度|Sn|及谱线复振幅的相位ψn(|Sn|和ψn取值如表1所示)共同决定:The phase shift produced by the fiber Bragg grating arrays 4-1 and 4-2 in the above-mentioned step (2-2) to each spectral line of the two signals and θ n are determined by the amplitude |F n | of each spectral line of the periodic Gaussian optical pulse, the splitting ratio α:1-α of the
(n=0,±1,±2,±3…)(n=0, ±1, ±2, ±3...)
上述所说的步骤(2-3)中的幅度控制器输出的各个谱线成分的幅度|Fn|是由输入光学频率梳各条谱线的振幅|Sn|、初始相位ψn、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、两路信号各条谱线的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位Pn是由输入光学频率梳各条谱线的初始相位ψn及光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位为2π的整数倍,如下所示:The amplitude |F n | of each spectral line component output by the amplitude controller in the above-mentioned step (2-3) is determined by the amplitude |S n | of each spectral line of the input optical frequency comb, the initial phase ψ n , the coupling The splitting ratio α:1-α of the
(n=0,±1,±2,±3…),m为整数。(n=0, ±1, ±2, ±3...), m is an integer.
表1为实施例1中输入的光学频率梳的各条谱线的波长、幅度和相位的值,两个光纤布拉格光栅阵列4-1和4-2反射的两路信号的各条谱线的幅度及两个光纤布拉格光栅阵列4-1和4-2对反射的两路信号的各条谱线产生的相移的值,从幅度控制器输出的周期性高斯光脉冲的幅度和相位的值。其中n为傅里叶系数的阶数,λn为输入的光学频率梳的各条谱线的波长值,也为各个光纤布拉格光栅对应的中心反射波长,|Sn|和ψn分别为输入的光学频率梳的各条谱线的幅度和相位的值,F1n为第一个光纤布拉格光栅阵列4-1反射的信号的各条谱线的幅度值,F2n为第二个光纤布拉格光栅阵列4-2反射的信号的各条谱线的幅度值,为第一个光纤布拉格光栅阵列4-1对反射的信号的各条谱线产生的相移,θn为第二个光纤布拉格光栅阵列4-1对反射的信号各条谱线产生的相移,|Fn|为从幅度控制器输出的周期性高斯光脉冲的傅里叶系数的幅度值,Pn为从幅度控制器输出的周期性高斯光脉冲的傅里叶系数的相位值。Table 1 shows the values of the wavelength, amplitude and phase of each spectral line of the optical frequency comb input in
表1Table 1
实施例2:一种基于双阵列光纤光栅的光脉冲整形器,其特征在于它由光学频率梳源1、光隔离器2和幅度控制器组成,光学频率梳源1的输出端连接光隔离器2的输入端,光隔离器2的输出端连接幅度控制器的输入端,幅度控制器的输出端输出周期性三角光脉冲;所说的幅度控制器由两个光纤布拉格光栅阵列4-1和4-2及耦合器3组成,耦合器3的端口A连接光隔离器2的输出端,耦合器3的端口B和端口C分别连接两个光纤布拉格光栅阵列4-1和4-2,耦合器3的端口D即幅度控制器的输出端输出周期性三角光脉冲;所说的光纤布拉格光栅阵列由21个光纤布拉格光栅和21个光纤拉伸器间隔排列构成。Embodiment 2: a kind of optical pulse shaper based on double-array fiber grating, it is characterized in that it is made up of optical frequency comb
上述所说的两个光纤布拉格光栅阵列4-1和4-2中相对应的光纤布拉格光栅的中心反射波长λn相同,每个光纤布拉格光栅阵列中相邻两个光纤布拉格光栅的中心反射波长λn之差相同,均为0.36nm,所有光纤布拉格光栅的反射率R相同,均为90%。The central reflection wavelengths λ n of the corresponding Fiber Bragg Gratings in the above-mentioned two Fiber Bragg Grating arrays 4-1 and 4-2 are the same, and the central reflection wavelengths of two adjacent Fiber Bragg Gratings in each Fiber Bragg Grating array The difference of λ n is the same, both are 0.36nm, and the reflectivity R of all fiber Bragg gratings is the same, both are 90%.
上述所说的光纤布拉格光栅阵列中光纤布拉格光栅的中心反射波长λn与光学频率梳源的对应光谱分量的波长相等,每个光纤布拉格光栅阵列中光纤布拉格光栅的数目与所选择的光学频率梳源1中的谱线的条数相等。The central reflection wavelength λ n of the fiber Bragg grating in the above-mentioned fiber Bragg grating array is equal to the wavelength of the corresponding spectral component of the optical frequency comb source, and the number of fiber Bragg gratings in each fiber Bragg grating array is the same as the selected optical frequency comb The number of spectral lines in
一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法,其特征在于具体步骤如下:A kind of working method of the above-mentioned optical pulse shaper based on double array fiber grating, it is characterized in that concrete steps are as follows:
(1)输入:光学频率梳源1发出光学频率梳,光学频率梳经过光隔离器2从耦合器3的端口A输入;(1) Input: the optical frequency comb
(2)幅度控制:(2) Amplitude control:
(2-1)分光:由耦合器3将输入的光学频率梳分成两路信号,分别从端口B和端口C输入到两个光纤布拉格光栅阵列4-1和4-2中;(2-1) Light splitting: the input optical frequency comb is divided into two signals by the
(2-2)相位调节:由两个光纤布拉格光栅阵列4-1和4-2中的各个光纤布拉格光栅的反射特性选择与其中心反射波长λn相等的谱线,同时分别调节两个光纤布拉格光栅阵列中的各个光纤拉伸器,实现对由光纤布拉格光栅阵列4-1和4-2反射的两路信号各条谱线的相位调节,使得光纤布拉格光栅阵列4-1和4-2对两路信号各条谱线产生的相移分别为和θn(见图4-4中前两个图形),和θn的取值见表2,此时两路信号幅度谱的轮廓保持不变,与输入的光学频率梳相同,两路信号的各条谱线的幅度下降为F1n和F2n(见图4-3中前两个图形),F1n和F2n的取值见表2;(2-2) Phase adjustment: the reflection characteristics of each fiber Bragg grating in the two fiber Bragg grating arrays 4-1 and 4-2 select the spectral line equal to its central reflection wavelength λ n , and adjust the two fiber Bragg gratings respectively at the same time Each fiber stretcher in the grating array realizes the phase adjustment of each spectral line of the two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2, so that the fiber Bragg grating arrays 4-1 and 4-2 pair The phase shifts generated by each spectral line of the two signals are respectively and θ n (see the first two graphs in Figure 4-4), and the values of θ n are shown in Table 2. At this time, the profiles of the amplitude spectra of the two signals remain unchanged, which are the same as the input optical frequency comb, and the amplitudes of each spectral line of the two signals decrease to F 1n and F 2n (see The first two graphs in Figure 4-3), the values of F 1n and F 2n are shown in Table 2;
(2-3)干涉:由光纤布拉格光栅阵列4-1和4-2反射的两路信号在耦合器3发生干涉,使得幅度控制器输出的各个谱线成分的幅度满足周期性三角光脉冲的傅里叶系数的幅度|Fn|(见图4-3中第三个图形),|Fn|的取值见表2,同时使得幅度控制器输出的各个谱线成分的相位Pn为2π的整数倍(见图4-4中第三个图形),Pn的取值见表2;(2-3) Interference: The two-way signals reflected by the fiber Bragg grating arrays 4-1 and 4-2 interfere in the
(3)输出:根据傅里叶变换的原理,干涉后的信号时域上为周期性三角光脉冲(见图4-5),从耦合器3的端口D输出。(3) Output: According to the principle of Fourier transform, the signal after interference is a periodic triangular light pulse in the time domain (see Figure 4-5), and is output from port D of the
上述所说步骤(1)中的光学频率梳(见图4-2)的波长间隔Δλ=0.36nm,幅度谱的轮廓为相邻谱线幅度的比值为1∶0.7,相位关系为相位轮廓为抛物线型、有85个波长成分,时域上为重复频率为的光脉冲(见图4-1),其中c为真空中的光速,λ0为光学频率梳源1的中心波长,为1310nm,T为时域上光脉冲的周期,为16ps。The wavelength interval of the optical frequency comb (see Figure 4-2) in the above-mentioned step (1) is Δλ=0.36nm, the profile of the amplitude spectrum is that the ratio of the amplitude of adjacent spectral lines is 1:0.7, and the phase relationship is that the phase profile is Parabolic, with 85 wavelength components, the repetition frequency in the time domain is (see Figure 4-1), where c is the speed of light in vacuum, λ 0 is the center wavelength of the optical frequency comb
上述所说的步骤(2-2)中的光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn由周期性三角光脉冲各条谱线的幅度|Fn|、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率、输入的光学频率梳的各条谱线复振幅的幅度|Sn|及谱线复振幅的相位ψn共同决定:The phase shift produced by the fiber Bragg grating array in the above-mentioned step (2-2) to each spectral line of the two-way signal and θ n are composed of the amplitude |F n | of each spectral line of the periodic triangular optical pulse, the splitting ratio α:1-α of the
(n=0,±1,±2,±3…)(n=0, ±1, ±2, ±3...)
上述所说的步骤(2-3)中的幅度控制器输出的各个谱线成分的幅度|Fn|是由输入光学频率梳各条谱线的振幅|Sn|、初始相位ψn、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R和两路信号各条谱线的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位Pn是由输入光学频率梳各条谱线的初始相位ψn及光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn(|Sn|和ψn取值如表2所示)共同决定的,幅度控制器输出的各个谱线成分的相位为2π的整数倍,如下所示:The amplitude |F n | of each spectral line component output by the amplitude controller in the above-mentioned step (2-3) is determined by the amplitude |S n | of each spectral line of the input optical frequency comb, the initial phase ψ n , the coupling The splitting ratio α:1-α of the
(n=0,±1,±2,±3…),m为整数。(n=0, ±1, ±2, ±3...), m is an integer.
表2为实施例2中输入的光学频率梳的各条谱线的波长、幅度和相位的值,两个光纤布拉格光栅阵列4-1和4-2反射的两路信号的各条谱线的幅度及两个光纤布拉格光栅阵列4-1和4-2对反射的两路信号的各条谱线产生的相移的值,从幅度控制器输出的周期性三角光脉冲的幅度和相位的值。其中n为傅里叶系数的阶数,λn为输入的光学频率梳的各条谱线的波长值,也为各个光纤布拉格光栅对应的中心反射波长,|Sn|和ψn分别为输入的光学频率梳的各条谱线的幅度和相位的值,F1n为第一个光纤布拉格光栅阵列4-1反射的信号的各条谱线的幅度值,F2n为第二个光纤布拉格光栅阵列4-2反射的信号的各条谱线的幅度值,为第一个光纤布拉格光栅阵列4-1对反射的信号的各条谱线产生的相移,θn为第二个光纤布拉格光栅阵列4-2对反射的信号的各条谱线产生的相移,|Fn|为从幅度控制器输出的周期性三角光脉冲的傅里叶系数的幅度值,Pn为从幅度控制器输出的周期性三角光脉冲的傅里叶系数的相位值。Table 2 shows the values of the wavelength, amplitude and phase of each spectral line of the optical frequency comb input in
表2Table 2
实施例3:一种基于双阵列光纤光栅的光脉冲整形器,其特征在于它由光学频率梳源1、光隔离器2和幅度控制器组成,光学频率梳源1的输出端连接光隔离器2的输入端,光隔离器2的输出端连接幅度控制器的输入端,幅度控制器的输出端输出周期性双边指数光脉冲;所说的幅度控制器由两个光纤布拉格光栅阵列4-1和4-2及耦合器3组成,耦合器3的端口A连接光隔离器2的输出端,耦合器3的端口B和端口C分别连接两个光纤布拉格光栅阵列4-1和4-2,耦合器3的端口D即幅度控制器的输出端输出周期性双边指数光脉冲;所说的光纤布拉格光栅阵列由41个光纤布拉格光栅和41个光纤拉伸器间隔排列构成。Embodiment 3: A kind of optical pulse shaper based on double array fiber grating, it is characterized in that it is made up of optical frequency comb
上述所说的两个光纤布拉格光栅阵列4-1和4-2中相对应的光纤布拉格光栅的中心反射波长λn相同,每个光纤布拉格光栅阵列中相邻两个光纤布拉格光栅的中心反射波长λn之差相同,均为1nm,所有光纤布拉格光栅的反射率R相同,均为80%。The central reflection wavelengths λ n of the corresponding Fiber Bragg Gratings in the above-mentioned two Fiber Bragg Grating arrays 4-1 and 4-2 are the same, and the central reflection wavelengths of two adjacent Fiber Bragg Gratings in each Fiber Bragg Grating array The difference of λ n is the same, both are 1nm, and the reflectivity R of all fiber Bragg gratings is the same, both are 80%.
上述所说的光纤布拉格光栅阵列中光纤布拉格光栅的中心反射波长λn与光学频率梳源的对应光谱分量的波长相等,每个光纤布拉格光栅阵列中光纤布拉格光栅的数目与所选择的光学频率梳源1中的谱线的条数相等。The central reflection wavelength λ n of the fiber Bragg grating in the above-mentioned fiber Bragg grating array is equal to the wavelength of the corresponding spectral component of the optical frequency comb source, and the number of fiber Bragg gratings in each fiber Bragg grating array is the same as the selected optical frequency comb The number of spectral lines in
一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法,其特征在于具体步骤如下:A kind of working method of the above-mentioned optical pulse shaper based on double array fiber grating, it is characterized in that concrete steps are as follows:
(1)输入:光学频率梳源1发出光学频率梳,光学频率梳经过光隔离器2从耦合器3的端口A输入;(1) Input: the optical frequency comb
(2)幅度控制:(2) Amplitude control:
(2-1)分光:由耦合器3将输入的光学频率梳分成两路信号,分别从端口B和端口C输入到两个光纤布拉格光栅阵列4-1和4-2中;(2-1) Light splitting: the input optical frequency comb is divided into two signals by the
(2-2)相位调节:由两个光纤布拉格光栅阵列4-1和4-2中的各个光纤布拉格光栅的反射特性选择与其中心反射波长λn相等的谱线,同时分别调节两个光纤布拉格光栅阵列中的各个光纤拉伸器,实现对由光纤布拉格光栅阵列4-1和4-2反射的两路信号各条谱线的相位调节,使得光纤布拉格光栅阵列4-1和4-2对两路信号各条谱线产生的相移分别为和θn(见图5-4中前两个图形),和θn的取值见表3,此时两路信号幅度谱的轮廓保持不变,与输入的光学频率梳相同,两路信号的各条谱线的幅度下降为F1n和F2n(见图5-3中前两个图形),F1n和F2n的取值见表3;(2-2) Phase adjustment: the reflection characteristics of each fiber Bragg grating in the two fiber Bragg grating arrays 4-1 and 4-2 select the spectral line equal to its central reflection wavelength λ n , and adjust the two fiber Bragg gratings respectively at the same time Each fiber stretcher in the grating array realizes the phase adjustment of each spectral line of the two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2, so that the fiber Bragg grating arrays 4-1 and 4-2 pair The phase shifts generated by each spectral line of the two signals are respectively and θ n (see the first two graphs in Figure 5-4), and the values of θ n are shown in Table 3. At this time, the profiles of the amplitude spectra of the two signals remain unchanged, which are the same as the input optical frequency comb, and the amplitudes of each spectral line of the two signals decrease to F 1n and F 2n (see The first two graphs in Figure 5-3), the values of F 1n and F 2n are shown in Table 3;
(2-3)干涉:由光纤布拉格光栅阵列4-1和4-2反射的两路信号在耦合器3发生干涉,使得幅度控制器输出的各个谱线成分的幅度满足周期性双边指数光脉冲的傅里叶系数的幅度|Fn|(见图5-3中第三个图形),|Fn|的取值见表3,同时使得幅度控制器输出的各个谱线成分的相位Pn为2π的整数倍(见图5-4中第三个图形),Pn的取值见表3;(2-3) Interference: The two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2 interfere in the
(3)输出:根据傅里叶变换的原理,干涉后的信号时域上为周期性双边指数光脉冲(见图5-5),从耦合器3的端口D输出。(3) Output: According to the principle of Fourier transform, the signal after interference is a periodic double-sided exponential light pulse in the time domain (see Figure 5-5), which is output from port D of the
上述所说的步骤(1)中的光学频率梳(见图5-2)的波长间隔Δλ=1nm,幅度谱的轮廓为高斯型,相位关系为相邻谱线之间的相位差为0,有81个波长成分,时域上为重复频率为的光脉冲(见图5-1),其中c为真空中的光速,λ0为光学频率梳源1的中心波长,为1510nm,T为时域上的光脉冲的周期,为8ps。The wavelength interval of the optical frequency comb in the above-mentioned step (1) (see Figure 5-2) is Δλ=1nm, the profile of the amplitude spectrum is Gaussian, and the phase relationship is that the phase difference between adjacent spectral lines is 0, There are 81 wavelength components, and the repetition frequency in the time domain is (see Figure 5-1), where c is the speed of light in vacuum, λ 0 is the center wavelength of the optical frequency comb
上述所说的步骤(2-2)中的光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn由周期性双边指数脉冲各条谱线的幅度|Fn|、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、输入的光学频率梳的各条谱线复振幅的幅度|Sn|及谱线复振幅的相位ψn共同决定,|Sn|和ψn取值见表3:The phase shift produced by the fiber Bragg grating array in the above-mentioned step (2-2) to each spectral line of the two-way signal and θ n are determined by the amplitude |F n | of each spectral line of the periodic double-sided exponential pulse, the splitting ratio α:1-α of the
(n=0,±1,±2,±3…)(n=0, ±1, ±2, ±3...)
上述所说的步骤(2-3)中的幅度控制器输出的各个谱线成分的幅度|Fn|是由输入光学频率梳各条谱线的振幅|Sn|、初始相位ψn、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、两路信号各条谱线的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位Pn是由输入光学频率梳各条谱线的初始相位ψn及光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn(|Sn|和ψn取值如表3所示)共同决定的,幅度控制器输出的各个谱线成分的相位为2π的整数倍,如下所示:The amplitude |F n | of each spectral line component output by the amplitude controller in the above-mentioned step (2-3) is determined by the amplitude |S n | of each spectral line of the input optical frequency comb, the initial phase ψ n , the coupling The splitting ratio α:1-α of the
(n=0,±1,±2,±3…),m为整数。(n=0, ±1, ±2, ±3...), m is an integer.
表3为实施例3中输入的光学频率梳的各条谱线的波长、幅度和相位的值,两个光纤布拉格光栅阵列41和4-2反射的两路信号的各条谱线的幅度及两个光纤布拉格光栅阵列4-1和4-2对反射的两路信号的各条谱线产生的相移的值,从幅度控制器输出的周期性双边指数光脉冲的幅度和相位的值。其中n为傅里叶系数的阶数,λn为输入的光学频率梳的各条谱线的波长值,也为各个光纤布拉格光栅对应的中心反射波长,|Sn|和ψn分别为输入的光学频率梳的各条谱线的幅度和相位的值,F1n为第一个光纤布拉格光栅阵列4-1反射的信号的各条谱线的幅度值,F2n为第二个光纤布拉格光栅阵列4-2反射的信号的各条谱线的幅度值,为第一个光纤布拉格光栅阵列4-1对反射的信号各条谱线的产生的相移,θn为第二个光纤布拉格光栅阵列4-2对反射的信号的各条谱线产生的相移,|Fn|为从幅度控制器输出的周期性双边指数光脉冲的傅里叶系数的幅度值,Pn为从幅度控制器输出的周期性双边指数光脉冲的傅里叶系数的相位值。Table 3 is the wavelength, amplitude and phase value of each spectral line of the optical frequency comb input in
表3table 3
实施例4:一种基于双阵列光纤光栅的光脉冲整形器,其特征在于它由光学频率梳源1、光隔离器2和幅度控制器组成,光学频率梳源1的输出端连接光隔离器2的输入端,光隔离器2的输出端连接幅度控制器的输入端,幅度控制器的输出端输出重复频率倍增为25GHz的周期性高斯光脉冲;所说的幅度控制器由两个光纤布拉格光栅阵列4-1和4-2及耦合器3组成,耦合器3的端口A连接光隔离器2的输出端,耦合器3的端口B和端口C分别连接两个光纤布拉格光栅阵列4-1和4-2,耦合器3的端口D即幅度控制器的输出端输出重复频率倍增为25GHz的周期性高斯光脉冲;所说的光纤布拉格光栅阵列由45个光纤布拉格光栅和45个光纤拉伸器间隔排列构成。Embodiment 4: A kind of optical pulse shaper based on double array fiber grating, it is characterized in that it is made up of optical frequency comb
上述所说的两个光纤布拉格光栅阵列4-1和4-2中相对应的光纤布拉格光栅的中心反射波长λn相同,每个光纤布拉格光栅阵列中相邻两个光纤布拉格光栅的中心反射波长λn之差相同,均为0.04nm,所有光纤布拉格光栅的反射率R相同,均为75%。The central reflection wavelengths λ n of the corresponding Fiber Bragg Gratings in the above-mentioned two Fiber Bragg Grating arrays 4-1 and 4-2 are the same, and the central reflection wavelengths of two adjacent Fiber Bragg Gratings in each Fiber Bragg Grating array The difference of λ n is the same, both are 0.04nm, and the reflectivity R of all fiber Bragg gratings is the same, both are 75%.
上述所说的光纤布拉格光栅阵列中光纤布拉格光栅的中心反射波长λn与光学频率梳源的对应光谱分量的波长相等,每个光纤布拉格光栅阵列中光纤布拉格光栅的数目与所选择的光学频率梳源1中的谱线的条数相等。The central reflection wavelength λ n of the fiber Bragg grating in the above-mentioned fiber Bragg grating array is equal to the wavelength of the corresponding spectral component of the optical frequency comb source, and the number of fiber Bragg gratings in each fiber Bragg grating array is the same as the selected optical frequency comb The number of spectral lines in
一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法,其特征在于具体步骤如下:A kind of working method of the above-mentioned optical pulse shaper based on double array fiber grating, it is characterized in that concrete steps are as follows:
(1)输入:光学频率梳源1发出光学频率梳,光学频率梳经过光隔离器2从耦合器3的端口A输入;(1) Input: the optical frequency comb
(2)幅度控制:(2) Amplitude control:
(2-1)分光:由耦合器3将输入的光学频率梳分成两路信号,分别从端口B和端口C输入到两个光纤布拉格光栅阵列4-1和4-2中;(2-1) Light splitting: the input optical frequency comb is divided into two signals by the
(2-2)相位调节:由两个光纤布拉格光栅阵列4-1和4-2中的各个光纤布拉格光栅的反射特性选择与其中心反射波长λn相等的谱线,同时分别调节两个光纤布拉格光栅阵列中的各个光纤拉伸器,实现对由光纤布拉格光栅阵列4-1和4-2反射的两路信号各条谱线的相位调节,使得光纤布拉格光栅阵列4-1和4-2对两路信号各条谱线产生的相移分别为和θn(见图6-4中前两个图形),和θn的取值见表4,此时两路信号幅度谱的轮廓保持不变,与输入的光学频率梳相同,两路信号的各条谱线的幅度下降为F1n和F2n(见图6-3中前两个图形),F1n和F2n的取值见表4;(2-2) Phase adjustment: the reflection characteristics of each fiber Bragg grating in the two fiber Bragg grating arrays 4-1 and 4-2 select the spectral line equal to its central reflection wavelength λ n , and adjust the two fiber Bragg gratings respectively at the same time Each fiber stretcher in the grating array realizes the phase adjustment of each spectral line of the two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2, so that the fiber Bragg grating arrays 4-1 and 4-2 pair The phase shifts generated by each spectral line of the two signals are respectively and θ n (see the first two graphs in Figure 6-4), and the values of θ n are shown in Table 4. At this time, the profiles of the amplitude spectra of the two signals remain unchanged, which are the same as the input optical frequency comb, and the amplitudes of each spectral line of the two signals decrease to F 1n and F 2n (see The first two graphs in Figure 6-3), the values of F 1n and F 2n are shown in Table 4;
(2-3)干涉:由光纤布拉格光栅阵列4-1和4-2反射的两路信号在耦合器3发生干涉,使得幅度控制器输出的各个谱线成分的幅度满足重复频率倍增为25GHz的周期性高斯光脉冲的傅里叶系数的幅度|Fn|(见图6-3中第三个图形),|Fn|的取值见表4,同时使得幅度控制器输出的各个谱线成分的相位Pn为2π的整数倍(见图6-4中第三个图形),Pn的取值见表4;(2-3) Interference: The two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2 interfere in the
(3)输出:根据傅里叶变换的原理,干涉后的信号时域上为重复频率倍增为25GHz的周期性高斯脉冲(见图6-5),从耦合器3的端口D输出。(3) Output: According to the principle of Fourier transform, the signal time domain after interference is a periodic Gaussian pulse whose repetition frequency is multiplied to 25 GHz (see Figure 6-5), and is output from port D of
上述所说的步骤(1)中的光学频率梳(见图6-2)的波长间隔Δλ=0.04nm,幅度谱的轮廓为各个谱线等幅度,相位关系为各条谱线之间的相位差为0,有51个波长成分,时域上为重复频率为的光脉冲(见图6-1),其中c为真空中的光速,λ0为光学频率梳源1的中心波长,为980nm,T为时域上的光脉冲的周期,为80ps。The wavelength interval of the optical frequency comb (see Figure 6-2) in the above-mentioned step (1) is Δλ=0.04nm, the profile of the amplitude spectrum is the equal amplitude of each spectral line, and the phase relationship is the phase between each spectral line The difference is 0, there are 51 wavelength components, and the repetition frequency in the time domain is (see Figure 6-1), where c is the speed of light in vacuum, λ 0 is the center wavelength of the optical frequency comb
上述所说的步骤(2-2)中的光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn由重复频率倍增为25GHz的周期性高斯光脉冲各条谱线的幅度|Fn|、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、输入的光学频率梳的各条谱线复振幅的幅度|Sn|及谱线复振幅的相位ψn(|Sn|和ψn取值如表4所示)共同决定:The phase shift produced by the fiber Bragg grating array in the above-mentioned step (2-2) to each spectral line of the two-way signal and θ n are multiplied by the repetition frequency to the amplitude |F n | of each spectral line of the periodic Gaussian optical pulse of 25 GHz, the splitting ratio α:1-α of the
(n=0,±1,±2,±3…)(n=0, ±1, ±2, ±3...)
上述所说的步骤(2-3)中的幅度控制器输出的各个谱线成分的幅度|Fn|是由输入光学频率梳各条谱线的振幅|Sn|、初始相位ψn、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、两路信号各条谱线的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位Pn是由输入光学频率梳各条谱线的初始相位ψn及光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位为2π的整数倍,如下所示:The amplitude |F n | of each spectral line component output by the amplitude controller in the above-mentioned step (2-3) is determined by the amplitude |S n | of each spectral line of the input optical frequency comb, the initial phase ψ n , the coupling The splitting ratio α:1-α of the
(n=0,±1,±2,±3…),m为整数。(n=0, ±1, ±2, ±3...), m is an integer.
表4为实施例4中输入的光学频率梳的各条谱线的波长、幅度和相位的值,两个光纤布拉格光栅阵列4-1和4-2反射的两路信号的各条谱线的幅度及两个光纤布拉格光栅阵列4-1和4-2对反射的两路信号的各条谱线产生的相移的值,从幅度控制器输出的重复频率倍增为25GHz的周期性高斯光脉冲的幅度和相位的值。其中n为傅里叶系数的阶数,λn为输入的光学频率梳的各条谱线的波长值,也为各个光纤布拉格光栅对应的中心反射波长,|Sn|和ψn分别为输入的光学频率梳的各条谱线的幅度和相位的值,F1n为第一个光纤布拉格光栅阵列4-1反射的信号的各条谱线的幅度值,F2n为第二个光纤布拉格光栅阵列4-2反射的信号的各条谱线的幅度值,为第一个光纤布拉格光栅阵列4-1对反射的信号的各条谱线产生的相移,θn为第二个光纤布拉格光栅阵列4-2对反射的信号的各条谱线产生的相移,|Fn|为从幅度控制器输出的重复频率倍增为25GHz的周期性高斯光脉冲的傅里叶系数的幅度值,Pn为从幅度控制器输出的重复频率倍增为25GHz的周期性高斯光脉冲的傅里叶系数的相位值。Table 4 shows the values of the wavelength, amplitude and phase of each spectral line of the optical frequency comb input in embodiment 4, and the values of each spectral line of the two signals reflected by the two fiber Bragg grating arrays 4-1 and 4-2. Amplitude and the value of the phase shift produced by the two fiber Bragg grating arrays 4-1 and 4-2 on the spectral lines of the reflected two signals, the repetition frequency output from the amplitude controller is multiplied into a periodic Gaussian optical pulse of 25GHz The magnitude and phase values of . where n is the order of the Fourier coefficient, λ n is the wavelength value of each spectral line of the input optical frequency comb, and is also the central reflection wavelength corresponding to each fiber Bragg grating, |S n | and ψ n are the input The amplitude and phase value of each spectral line of the optical frequency comb, F 1n is the amplitude value of each spectral line of the signal reflected by the first fiber Bragg grating array 4-1, F 2n is the second fiber Bragg grating The amplitude value of each spectral line of the signal reflected by the array 4-2, is the phase shift produced by the first fiber Bragg grating array 4-1 to each spectral line of the reflected signal, θ n is the phase shift produced by the second fiber Bragg grating array 4-2 to each spectral line of the reflected signal |F n | is the amplitude value of the Fourier coefficient of the periodic Gaussian light pulse output from the amplitude controller whose repetition frequency is doubled to 25GHz, and P n is the periodicity of the repetition frequency output from the amplitude controller doubled to 25GHz Phase values of the Fourier coefficients of a Gaussian light pulse.
表4Table 4
实施例5:一种基于双阵列光纤光栅的光脉冲整形器,其特征在于它由光学频率梳源1、光隔离器2和幅度控制器组成,光学频率梳源1的输出端连接光隔离器2的输入端,光隔离器2的输出端连接幅度控制器的输入端,幅度控制器的输出端输出相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲;所说的幅度控制器由两个光纤布拉格光栅阵列4-1和4-2及耦合器3组成,耦合器3的端口A连接光隔离器2的输出端,耦合器3的端口B和端口C分别连接两个光纤布拉格光栅阵列4-1和4-2,耦合器3的端口D即幅度控制器的输出端输出相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲;所说的光纤布拉格光栅阵列由33个光纤布拉格光栅和33个光纤拉伸器间隔排列构成。Embodiment 5: A kind of optical pulse shaper based on double array fiber grating, it is characterized in that it is made up of optical frequency comb
上述所说的两个光纤布拉格光栅阵列4-1和4-2中相对应的光纤布拉格光栅的中心反射波长λn相同,每个光纤布拉格光栅阵列中相邻两个光纤布拉格光栅的中心反射波长λn之差相同,均为0.1nm,所有光纤布拉格光栅的反射率R相同,均为99%。The central reflection wavelengths λ n of the corresponding Fiber Bragg Gratings in the above-mentioned two Fiber Bragg Grating arrays 4-1 and 4-2 are the same, and the central reflection wavelengths of two adjacent Fiber Bragg Gratings in each Fiber Bragg Grating array The difference of λ n is the same, both are 0.1nm, and the reflectivity R of all fiber Bragg gratings is the same, both are 99%.
上述所说的光纤布拉格光栅阵列中光纤布拉格光栅的中心反射波长λn与光学频率梳源的对应光谱分量的波长相等,每个光纤布拉格光栅阵列中光纤布拉格光栅的数目与所选择的光学频率梳源1中的谱线的条数相等。The central reflection wavelength λ n of the fiber Bragg grating in the above-mentioned fiber Bragg grating array is equal to the wavelength of the corresponding spectral component of the optical frequency comb source, and the number of fiber Bragg gratings in each fiber Bragg grating array is the same as the selected optical frequency comb The number of spectral lines in
一种上述基于双阵列光纤光栅的光脉冲整形器的工作方法,其特征在于具体步骤如下:A kind of working method of the above-mentioned optical pulse shaper based on double array fiber grating, it is characterized in that concrete steps are as follows:
(1)输入:光学频率梳源1发出光学频率梳,光学频率梳经过光隔离器2从耦合器3的端口A输入;(1) Input: the optical frequency comb
(2)幅度控制:(2) Amplitude control:
(2-1)分光:由耦合器3将输入的光学频率梳分成两路信号,分别从端口B和端口C输入到两个光纤布拉格光栅阵列4-1和4-2中;(2-1) Optical splitting: the input optical frequency comb is divided into two signals by the
(2-2)相位调节:由两个光纤布拉格光栅阵列4-1和4-2中的各个光纤布拉格光栅的反射特性选择与其中心反射波长λn相等的谱线,同时分别调节两个光纤布拉格光栅阵列中的各个光纤拉伸器,实现对由光纤布拉格光栅阵列4-1和4-2反射的两路信号各条谱线的相位调节,使得光纤布拉格光栅阵列4-1和4-2对两路信号各条谱线产生的相移分别为和θn(见图7-4中前两个图形),和θn的取值见表5,此时两路信号幅度谱的轮廓保持不变,与输入的光学频率梳相同,两路信号的各条谱线的幅度下降为F1n和F2n(见图7-3中前两个图形),F1n和F2n的取值见表5;(2-2) Phase adjustment: the reflection characteristics of each fiber Bragg grating in the two fiber Bragg grating arrays 4-1 and 4-2 select the spectral line equal to its central reflection wavelength λ n , and adjust the two fiber Bragg gratings respectively at the same time Each fiber stretcher in the grating array realizes the phase adjustment of each spectral line of the two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2, so that the fiber Bragg grating arrays 4-1 and 4-2 pair The phase shifts generated by each spectral line of the two signals are respectively and θ n (see the first two graphs in Figure 7-4), and the values of θ n are shown in Table 5. At this time, the profiles of the amplitude spectra of the two signals remain unchanged, which are the same as the input optical frequency comb, and the amplitudes of each spectral line of the two signals decrease to F 1n and F 2n (see The first two graphs in Figure 7-3), the values of F 1n and F 2n are shown in Table 5;
(2-3)干涉:由光纤布拉格光栅阵列4-1和4-2反射的两路信号在耦合器3发生干涉,使得幅度控制器输出的各个谱线成分的幅度满足相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲的傅里叶系数的幅度|Fn|(见图7-3中第三个图形),|Fn|的取值见表5,同时使得幅度控制器输出的各个谱线成分的相位Pn为2π的整数倍(见图7-4中第三个图形),Pn的取值见表5;(2-3) Interference: The two signals reflected by the fiber Bragg grating arrays 4-1 and 4-2 interfere in the
(3)输出:根据傅里叶变换的原理,干涉后的信号时域上为相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲(见图7-5),从耦合器3的端口D输出。(3) Output: According to the principle of Fourier transform, the signal after interference in the time domain is a periodic Gaussian optical pulse with the normalized amplitudes of adjacent pulses being 0.5 and 1 respectively (see Figure 7-5), from the
上述所说的步骤(1)中的光学频率梳(见图7-2)的波长间隔Δλ=0.1nm,幅度谱的轮廓为各个谱线等幅度,相位关系为各条谱线之间的相位差为π,有81个波长成分,时域上为重复频率为的光脉冲(见图7-1),其中c为真空中的光速,λ0为光学频率梳源1的中心波长,为1550nm,T为时域上的光脉冲的周期,为80ps。The wavelength interval of the optical frequency comb (see Figure 7-2) in the above-mentioned step (1) is Δλ=0.1nm, the profile of the amplitude spectrum is the equal amplitude of each spectral line, and the phase relationship is the phase between each spectral line The difference is π, there are 81 wavelength components, and the repetition frequency in the time domain is (see Figure 7-1), where c is the speed of light in vacuum, λ 0 is the center wavelength of the optical frequency comb
上述所说的步骤(2-2)中的光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn由相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲的各条谱线的幅度|Fn|、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、输入的光学频率梳的各条谱线复振幅的幅度|Sn|及谱线复振幅的相位ψn(|Sn|和ψn取值如表5所示)共同决定:The phase shift produced by the fiber Bragg grating array in the above-mentioned step (2-2) to each spectral line of the two-way signal and θ n are determined by the amplitude |F n | of each spectral line of the periodic Gaussian optical pulse with the normalized amplitudes of adjacent pulses being 0.5 and 1 respectively, the splitting ratio α:1-α of the
(n=0,±1,±2,±3…)(n=0, ±1, ±2, ±3...)
上述所说的步骤(2-2)中的幅度控制器输出的各个谱线成分的幅度|Fn|是由输入光学频率梳各条谱线的振幅|Sn|、初始相位ψn、耦合器3的分光比α:1-α、光纤布拉格光栅的反射率R、两路信号各条谱线的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位Pn是由输入光学频率梳各条谱线的初始相位ψn及光纤布拉格光栅阵列对两路信号各条谱线产生的相移和θn共同决定的,幅度控制器输出的各个谱线成分的相位为2π的整数倍,如下所示:The amplitude |F n | of each spectral line component output by the amplitude controller in the above-mentioned step (2-2) is determined by the amplitude |S n | of each spectral line of the input optical frequency comb, the initial phase ψ n , the coupling The splitting ratio α:1-α of the
(n=0,±1,±2,±3…),m为整数。(n=0, ±1, ±2, ±3...), m is an integer.
表5为实施例5中输入的光学频率梳的各条谱线的波长、幅度和相位的值,两个光纤布拉格光栅阵列4-1和4-2反射的两路信号的各条谱线的幅度及两个光纤布拉格光栅阵列4-1和4-2对反射的两路信号的各条谱线产生的相移的值,从幅度控制器输出的相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲的幅度和相位的值。其中n为傅里叶系数的阶数,λn为输入的光学频率梳的各条谱线的波长值,也为各个光纤布拉格光栅5对应的中心反射波长,|Sn|和ψn分别为输入的光学频率梳的各条谱线的幅度和相位的值,F1n为第一个光纤布拉格光栅阵列4-1反射的信号的各条谱线的幅度值,F2n为第二个光纤布拉格光栅阵列4-2反射的信号的各条谱线的幅度值,为第一个光纤布拉格光栅阵列4-1对反射的信号各条谱线的产生的相移,θn为第二个光纤布拉格光栅阵列4-2对反射的信号各条谱线产生的相移,|Fn|为从幅度控制器输出的相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲的傅里叶系数的幅度值,Pn为从幅度控制器输出的相邻脉冲归一化幅度分别为0.5和1的周期性高斯光脉冲的傅里叶系数的相位值。Table 5 shows the values of the wavelength, amplitude and phase of each spectral line of the optical frequency comb input in
表5table 5
综合上述五个实施例,如实施例1,实施例2和实施例3相比,实施不同的相位控制,实施例1输出周期性高斯光脉冲,实施例2输出周期性三角光脉冲,实施例3输出周期性双边指数光脉冲,三者波形是不同的;实施例4通过相位控制,间隔地抑制一条谱线,使得谱线间隔倍增,则输出的高斯脉冲序列重复频率倍增为25GHz;实施例5中通过相位控制,每间隔一条地控制输出频谱的谱线,使得输出频谱中有两组间隔的谱线分别满足峰值比值为0.5∶1的周期性高斯光脉冲的傅里叶系数的幅度,则时域上输出的波形的一个周期内的相邻两个脉冲幅度不同。Combining the above five embodiments, as in
总结,本方案利用了双阵列光纤布拉格光栅的相位控制和干涉效应,通过两个光纤布拉格光栅阵列中的光纤拉伸器引入相移,使得两路信号干涉后各个谱线的幅度发生任意的改变,最终输出偶函数波形的任意波形光脉冲,可以动态连续地逐行改变光谱幅度大小,带宽易升级,结构简单,损耗小,易于与其它光器件耦合。To sum up, this scheme utilizes the phase control and interference effect of the dual-array fiber Bragg grating, and introduces phase shift through the fiber stretcher in the two fiber Bragg grating arrays, so that the amplitude of each spectral line after the interference of the two signals changes arbitrarily , and finally output an arbitrary waveform optical pulse with an even function waveform, which can dynamically and continuously change the spectral amplitude line by line, the bandwidth is easy to upgrade, the structure is simple, the loss is small, and it is easy to couple with other optical devices.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210189373.9A CN102707437B (en) | 2012-06-11 | 2012-06-11 | Light pulse shaper based on double-array fiber grating and working method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210189373.9A CN102707437B (en) | 2012-06-11 | 2012-06-11 | Light pulse shaper based on double-array fiber grating and working method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102707437A true CN102707437A (en) | 2012-10-03 |
CN102707437B CN102707437B (en) | 2014-06-04 |
Family
ID=46900351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210189373.9A Expired - Fee Related CN102707437B (en) | 2012-06-11 | 2012-06-11 | Light pulse shaper based on double-array fiber grating and working method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102707437B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904533A (en) * | 2014-03-06 | 2014-07-02 | 哈尔滨工程大学 | Arbitrary waveform optical pulse shaper based on Er-doped fibers |
CN106249504A (en) * | 2016-09-22 | 2016-12-21 | 深圳大学 | A kind of laser pulse repetition frequency expander with filter action |
CN107085319A (en) * | 2017-06-02 | 2017-08-22 | 天津理工大学 | Optical arbitrary pulse generator based on Bragg waveguide grating and its working method |
CN107462986A (en) * | 2017-08-09 | 2017-12-12 | 哈尔滨师范大学 | The light pulse dispenser of wavelength self-tuning |
CN112902866A (en) * | 2021-01-18 | 2021-06-04 | 武汉大学 | Spatial framing device, all-optical ultrafast imaging system and method |
CN113049544A (en) * | 2021-03-11 | 2021-06-29 | 中国科学院上海光学精密机械研究所 | Computing optical imaging device and method based on white light illumination |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1661416A (en) * | 2004-02-27 | 2005-08-31 | 华东师范大学 | A pulse shaping device |
JP2007194541A (en) * | 2006-01-23 | 2007-08-02 | Univ Of Yamanashi | Method and apparatus for generating optical pulse signal or electric pulse signal having required waveform |
CN101349854A (en) * | 2008-09-05 | 2009-01-21 | 北京交通大学 | An Arbitrary Optical Pulse Generator Based on Optical Fourier Transform |
CN101976016A (en) * | 2010-09-03 | 2011-02-16 | 深圳大学 | Ultra-short pulse dispersion reshaping and amplitude division technology-based ultrahigh-speed optical imaging system and method |
CN102223183A (en) * | 2011-08-05 | 2011-10-19 | 中国电子科技集团公司第三十四研究所 | Non-relay optical fiber transmission system and method |
-
2012
- 2012-06-11 CN CN201210189373.9A patent/CN102707437B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1661416A (en) * | 2004-02-27 | 2005-08-31 | 华东师范大学 | A pulse shaping device |
JP2007194541A (en) * | 2006-01-23 | 2007-08-02 | Univ Of Yamanashi | Method and apparatus for generating optical pulse signal or electric pulse signal having required waveform |
CN101349854A (en) * | 2008-09-05 | 2009-01-21 | 北京交通大学 | An Arbitrary Optical Pulse Generator Based on Optical Fourier Transform |
CN101976016A (en) * | 2010-09-03 | 2011-02-16 | 深圳大学 | Ultra-short pulse dispersion reshaping and amplitude division technology-based ultrahigh-speed optical imaging system and method |
CN102223183A (en) * | 2011-08-05 | 2011-10-19 | 中国电子科技集团公司第三十四研究所 | Non-relay optical fiber transmission system and method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904533A (en) * | 2014-03-06 | 2014-07-02 | 哈尔滨工程大学 | Arbitrary waveform optical pulse shaper based on Er-doped fibers |
CN103904533B (en) * | 2014-03-06 | 2016-11-23 | 哈尔滨工程大学 | A kind of random waveform optical pulse shaper based on Er-doped fiber |
CN106249504A (en) * | 2016-09-22 | 2016-12-21 | 深圳大学 | A kind of laser pulse repetition frequency expander with filter action |
CN107085319A (en) * | 2017-06-02 | 2017-08-22 | 天津理工大学 | Optical arbitrary pulse generator based on Bragg waveguide grating and its working method |
CN107462986A (en) * | 2017-08-09 | 2017-12-12 | 哈尔滨师范大学 | The light pulse dispenser of wavelength self-tuning |
CN107462986B (en) * | 2017-08-09 | 2019-08-02 | 哈尔滨师范大学 | The light pulse divider of wavelength self-tuning |
CN112902866A (en) * | 2021-01-18 | 2021-06-04 | 武汉大学 | Spatial framing device, all-optical ultrafast imaging system and method |
CN112902866B (en) * | 2021-01-18 | 2021-12-03 | 武汉大学 | Spatial framing device, all-optical ultrafast imaging system and method |
CN113049544A (en) * | 2021-03-11 | 2021-06-29 | 中国科学院上海光学精密机械研究所 | Computing optical imaging device and method based on white light illumination |
Also Published As
Publication number | Publication date |
---|---|
CN102707437B (en) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Howe et al. | Ultrafast optical signal processing based upon space-time dualities | |
Zhao et al. | On-chip programmable pulse processor employing cascaded MZI-MRR structure | |
CN102707437A (en) | Light pulse shaper based on double-array fiber grating and working method thereof | |
AU2002251164B2 (en) | Apparatus for providing timing jitter tolerant optical modulation of a first signal by a second signal | |
Chen | Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics | |
AU2002251164A1 (en) | Apparatus for providing timing jitter tolerant optical modulation of a first signal by a second signal | |
CN106125451B (en) | A kind of optical differential device based on Temporal pulse shaping system | |
CN101902278B (en) | Microwave signal generation scheme capable of adjusting frequency and pulse width | |
CN102116992B (en) | Device and method for generating all-optical arbitrary waveform based on optical fiber Bragg grating | |
CN106301586A (en) | A kind of optical triangulation shape pulse generator with tunable repetition rate | |
Babashah et al. | Temporal analog optical computing using an on-chip fully reconfigurable photonic signal processor | |
CN101349854A (en) | An Arbitrary Optical Pulse Generator Based on Optical Fourier Transform | |
Samadi et al. | RF arbitrary waveform generation using tunable planar lightwave circuits | |
Asghari et al. | Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators | |
CN109787689A (en) | A kind of optional waveform generator and method based on frequency comb and frequency spectrum shaping | |
CN102053239B (en) | Triangular pulse generation method based on spectral structure | |
CN103346854B (en) | A kind of light time decomposition multiplex device based on aperture restricted time lens | |
CN102707541B (en) | Optical pulse shaper based on three array fiber bragg gratings and operation method thereof | |
CN118033928A (en) | Integrated ultrashort pulse generator based on thin film lithium niobate | |
Zhang et al. | Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays | |
Li et al. | Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach–Zehnder interferometers | |
Slavík et al. | Stable all-fiber photonic temporal differentiator using a long-period fiber grating interferometer | |
CN115185136B (en) | Double-optical-frequency comb generating device and method with adjustable repetition frequency | |
Li et al. | Novel temporal zone plate designs with improved energy efficiency and noise performance | |
CN100388059C (en) | Ultrashort pulse laser beam volume holographic grating shaping device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140604 |
|
CF01 | Termination of patent right due to non-payment of annual fee |