[go: up one dir, main page]

CN102706541A - System for detecting comprehensive performance of laser radiator based on virtual instrument - Google Patents

System for detecting comprehensive performance of laser radiator based on virtual instrument Download PDF

Info

Publication number
CN102706541A
CN102706541A CN2012102014298A CN201210201429A CN102706541A CN 102706541 A CN102706541 A CN 102706541A CN 2012102014298 A CN2012102014298 A CN 2012102014298A CN 201210201429 A CN201210201429 A CN 201210201429A CN 102706541 A CN102706541 A CN 102706541A
Authority
CN
China
Prior art keywords
unit
laser
test unit
optical axis
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102014298A
Other languages
Chinese (zh)
Other versions
CN102706541B (en
Inventor
邢冀川
武兆斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201210201429.8A priority Critical patent/CN102706541B/en
Publication of CN102706541A publication Critical patent/CN102706541A/en
Application granted granted Critical
Publication of CN102706541B publication Critical patent/CN102706541B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供一种基于虚拟仪器的激光辐射器综合性能检测系统,能测量出反映激光器辐射器优劣的主要性能指标。包括同步单元、衰减单元、光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、电源单元、光束性能测试单元、激光辐射器组件以及测控计算机;其中同步单元提供整个测试系统的时间基准,衰减单元完成输入光能和探测器动态范围的匹配,光轴稳定性和偏角测试单元通过CCD测量辐射器的多次激光发射的光轴稳定性和光轴偏差,时间量测试单元完成编码精度及脉冲波形的测试,能量测试单元完成激光辐射能量的测量,光束性能测试单元完成激光光束性能的各项测试,电源单元提供激光辐射器和测试计算机的供电。

Figure 201210201429

The invention provides a comprehensive performance detection system of a laser radiator based on a virtual instrument, which can measure main performance indexes reflecting the quality of the laser radiator. Including synchronization unit, attenuation unit, optical axis stability and deflection angle test unit, time amount test unit, energy test unit, power supply unit, beam performance test unit, laser radiator components and measurement and control computer; the synchronization unit provides the control of the entire test system The time reference, the attenuation unit completes the matching of the input light energy and the dynamic range of the detector, the optical axis stability and deflection angle test unit measures the optical axis stability and optical axis deviation of the multiple laser emissions of the radiator through the CCD, and the time measurement unit completes The coding accuracy and pulse waveform test, the energy test unit completes the measurement of laser radiation energy, the beam performance test unit completes various tests of the laser beam performance, and the power supply unit provides power for the laser radiator and the test computer.

Figure 201210201429

Description

基于虚拟仪器的激光辐射器综合性能检测系统Comprehensive Performance Testing System of Laser Radiator Based on Virtual Instrument

技术领域 technical field

本发明属于激光辐射器检测技术领域,涉及一种基于虚拟仪器的激光辐射器综合性能检测系统。The invention belongs to the technical field of laser radiator detection, and relates to a comprehensive performance detection system of a laser radiator based on a virtual instrument.

背景技术 Background technique

由于激光辐射器独特的光学性能在国防军事领域有重要的应用价值,如激光测距、照射,激光制导,激光雷达等。激光的应用离不开产生激光的装置——激光辐射器。衡量激光器优劣的主要性能指标,例如能量、功率和光束质量等,对其应用是至关重要的。因此,需要对激光器的主要性能指标进行精确的测量和分析。Due to the unique optical properties of the laser radiator, it has important application value in the field of national defense and military, such as laser ranging, irradiation, laser guidance, laser radar, etc. The application of laser is inseparable from the device that produces laser - laser radiator. The main performance indicators that measure the pros and cons of lasers, such as energy, power, and beam quality, are critical to their applications. Therefore, it is necessary to accurately measure and analyze the main performance indicators of the laser.

在实际应用中关心的是有多少能量聚焦到焦平面一定范围内,或者有多少能量能够传输到一定距离处或空间范围内。比如激光测距机的最大测距能力丰要取决于传输到靶目标上的激光功率密度,目标上功率密度不仅与激光器输出的功率有关,而且在很大程度上取决于激光束的光束质量。激光发射功率相同的条件下,光束质量越好,目标处光束越集中,激光功率密度越大,测距机的测距能力越强;反之则越差。所以,在实际激光产品生产中,需要快速、准确测量激光辐射器的主要性能指标,以检测激光器件是否达到设计和应用要求。In practical applications, what is concerned is how much energy is focused to a certain range of the focal plane, or how much energy can be transmitted to a certain distance or within a spatial range. For example, the maximum ranging capability of a laser range finder depends on the laser power density transmitted to the target. The power density on the target is not only related to the output power of the laser, but also depends to a large extent on the beam quality of the laser beam. Under the condition of the same laser emission power, the better the beam quality, the more concentrated the beam at the target, the greater the laser power density, and the stronger the ranging capability of the rangefinder; otherwise, the worse it is. Therefore, in the actual production of laser products, it is necessary to quickly and accurately measure the main performance indicators of the laser radiator to detect whether the laser device meets the design and application requirements.

发明内容 Contents of the invention

本发明的目的是提供一种基于虚拟仪器的激光辐射器综合性能检测系统,能测量出反映激光器辐射器优劣的主要性能指标,例如能量、功率、光束质量、光轴稳定性和偏差等。The purpose of the present invention is to provide a comprehensive performance detection system for laser radiators based on virtual instruments, which can measure the main performance indicators reflecting the quality of laser radiators, such as energy, power, beam quality, optical axis stability and deviation, etc.

该基于虚拟仪器的激光辐射器综合性能检测系统,包括同步单元、衰减单元、光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、电源单元、光束性能测试单元、激光辐射器组件以及测控计算机;其中电源单元分别与测控计算机、激光辐射器组件连接,激光辐射器组件的输出与同步单元的输入连接,同步单元的输出与衰减单元的输入连接,衰减单元的输出分别与光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、光束性能测试单元的输入连接,光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、光束性能测试单元的输出与测控计算机连接;同步单元提供整个测试系统的时间基准,衰减单元完成输入光能和探测器动态范围的匹配,光轴稳定性和偏角测试单元通过CCD测量辐射器的多次激光发射的光轴稳定性和光轴偏差,时间量测试单元完成编码精度及脉冲波形的测试,能量测试单元完成激光辐射能量的测量,光束性能测试单元完成激光光束性能的各项测试,电源单元提供激光辐射器和测试计算机的供电。The comprehensive performance detection system of laser radiator based on virtual instrument includes synchronization unit, attenuation unit, optical axis stability and deflection angle test unit, time measurement unit, energy test unit, power supply unit, beam performance test unit, laser radiator Components and a measurement and control computer; wherein the power supply unit is connected to the measurement and control computer and the laser radiator component respectively, the output of the laser radiator component is connected to the input of the synchronization unit, the output of the synchronization unit is connected to the input of the attenuation unit, and the output of the attenuation unit is respectively connected to the optical Input connections for the axis stability and deflection test unit, the amount of time test unit, the energy test unit, the beam performance test unit, the optical axis stability and deflection test unit, the amount of time test unit, the energy test unit, the beam performance test unit The output is connected to the measurement and control computer; the synchronization unit provides the time reference of the entire test system, the attenuation unit completes the matching of the input light energy and the dynamic range of the detector, and the optical axis stability and deflection angle test unit measures the multiple laser emissions of the radiator through the CCD The optical axis stability and optical axis deviation, the time measurement unit completes the test of coding accuracy and pulse waveform, the energy test unit completes the measurement of laser radiation energy, the beam performance test unit completes various tests of laser beam performance, and the power supply unit provides laser radiator and test computer power.

上述单元排布在防震基准平台上。The above units are arranged on the shockproof reference platform.

本发明的有益效果:Beneficial effects of the present invention:

1、标准接口平台:提供统一的测试软件标准接口和连接平台,采用专用于测控领域的LabVIEW软件进行开发。1. Standard interface platform: Provide a unified test software standard interface and connection platform, and use LabVIEW software dedicated to the field of measurement and control for development.

2、高度灵活性:可以容纳任何ATE系统配置,可快速的更换夹具或被测对象。2. High flexibility: It can accommodate any ATE system configuration, and can quickly replace fixtures or measured objects.

3、高度可靠性:测试系统可以插拔上千次。3. High reliability: the test system can be plugged and unplugged thousands of times.

4、高度集成性:可在同一测试系统中集成几套甚至是上百套测试设备。4. High integration: several or even hundreds of test equipment can be integrated in the same test system.

5、高度同步性:利用PXI机箱背板的同步触发时钟可测试系统中严格进行同步、同时以及实时在线测试。5. High degree of synchronization: use the synchronous trigger clock of the PXI chassis backplane to strictly carry out synchronous, simultaneous and real-time online testing in the test system.

6、最低的整体使用费用:在测试系统的使用寿命内,提供最低的连接费用。6. The lowest overall cost of use: within the service life of the test system, the lowest connection cost is provided.

附图说明 Description of drawings

图1为本发明基于虚拟仪器的激光辐射器综合性能检测系统硬件组成框图;Fig. 1 is a block diagram of the hardware composition of the laser radiator comprehensive performance detection system based on the virtual instrument of the present invention;

图2为本发明基于虚拟仪器的激光辐射器综合性能检测系统模块组成示意图;2 is a schematic diagram of the module composition of the laser radiator comprehensive performance detection system based on virtual instruments in the present invention;

图3为激光辐射器光轴稳定性和偏角测量光路图;Fig. 3 is the optical path diagram of laser radiator optical axis stability and deflection angle measurement;

图4为基于虚拟仪器的硬件结构层次图。Figure 4 is a hierarchical diagram of the hardware structure based on virtual instruments.

具体实施方式 Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的实施例作详细说明:本实施例在以本发明的技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。In order to make the purpose, technical solution and advantages of the present invention clearer, the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings: this embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods are provided And specific operation process, but protection scope of the present invention is not limited to following embodiment.

本发明的系统整体按模块化设计,各自具有独立的功能,以方便系统的安装、调试、维护、扩展等。The whole system of the present invention is designed according to modularization, and each has independent functions, so as to facilitate the installation, debugging, maintenance and expansion of the system.

光轴稳定性和偏角测试单元中辐射器光轴稳定性测量光路图如3所示,测量由CCD成像系统完成。该单元由准直物镜、CCD接收系统等组成,安装在精密调整基座上。分别测量激光辐射器多次发射激光的光斑中心在CCD靶面的位置,求出多个位置的偏差量Δx、Δy,根据透镜的焦距f′可求出光轴稳定性的角度偏差Δθx、ΔθyThe optical path diagram for the measurement of the optical axis stability of the radiator in the optical axis stability and deflection angle test unit is shown in Figure 3, and the measurement is completed by the CCD imaging system. The unit consists of a collimating objective lens, a CCD receiving system, etc., and is installed on a precision adjustment base. Measure the position of the spot center of the laser emitter multiple times on the CCD target surface, and calculate the deviations Δx and Δy of multiple positions. According to the focal length f' of the lens, the angular deviation Δθ x and Δθ x of the optical axis stability can be calculated. Δθy :

ΔθΔθ xx == ΔxΔx ff ′′ ΔθΔθ ythe y == ΔyΔy ff ′′ ΔθΔθ == ΔxΔx 22 ++ ΔyΔy 22 ff ′′ -- -- -- (( 11 ))

按照国标的定义,光轴应该是光斑最密集的中心。因此利用质心法测量一段时间内的激光光斑质心Δxi、Δyi。然后将Δxi、Δyi由小到大排序并代入上式可求解激光发射光轴的稳定性。According to the definition of the national standard, the optical axis should be the center of the densest spot. Therefore, the center of mass Δxi and Δy i of the laser spot within a period of time are measured by using the centroid method. Then sort Δxi and Δy i from small to large and substitute them into the above formula to solve the stability of the laser emission optical axis.

对于激光辐射器发射光轴和安装基准面的偏角测量,首先测量并记录安装基准面在CCD焦面的成像位置,然后记录发射激光时CCD焦面上激光光斑的位置,可以计算出发射光轴和安装基准面的偏角。CCD采用德国AVT公司数字摄像机,它所形成的视频数字信号通过IEEE1394数据卡进行采集。For the declination measurement of the emission optical axis of the laser radiator and the installation reference plane, first measure and record the imaging position of the installation reference plane on the CCD focal plane, and then record the position of the laser spot on the CCD focal plane when the laser is emitted, and the emission optical axis can be calculated and the declination angle of the mounting reference plane. The CCD adopts the digital camera of AVT Company of Germany, and the video digital signal formed by it is collected through the IEEE1394 data card.

能量测试单元利用带电控光阑能量计测量激光能量,衰减器选取合适的衰减比,使最大能量密度及最大功率密度在探头允许范围。调整合适的量程正确测出激光能量。能量计放置于高速响应探头和电控光阑后,通过分光系统的透射光测量能量,这里测量的相对值,通过标定得出激光器输出能量的绝对值。GB/T15175-94-6.1中规定能量测量是多次测量的平均值:The energy test unit uses an energy meter with an electrically controlled aperture to measure the laser energy, and the attenuator selects a suitable attenuation ratio to make the maximum energy density and maximum power density within the allowable range of the probe. Adjust the appropriate range to correctly measure the laser energy. The energy meter is placed behind the high-speed response probe and the electronically controlled diaphragm, and measures the energy through the transmitted light of the spectroscopic system. The relative value measured here can be calibrated to obtain the absolute value of the laser output energy. GB/T15175-94-6.1 stipulates that the energy measurement is the average value of multiple measurements:

QQ outout == 11 ττ nno ×× 11 nno ΣΣ ii == 11 nno QQ outout ,, ii -- -- -- (( 22 ))

式中,Qout激光器输出能量:Qout,i第i次测量能量;τn衰减片的透射比;n同一输入能量的测量总次数。在系统中能量计作为一个独立的单元模块,具备独立的测试功能,能够直接和计算机通过RS232通信,读取测量结果。In the formula, Q out laser output energy: Q out, i measured energy for the ith time; τ n the transmittance of the attenuation sheet; n the total number of measurements of the same input energy. As an independent unit module in the system, the energy meter has an independent test function, and can directly communicate with the computer through RS232 to read the measurement results.

时间量测试单元包括脉冲波形和编码精度,时间测量采用快速响应探头+示波器+频率计,通过分光系统反射镜漏光取样进行测量。采用快速探测器(光电二极管),将光脉冲信号转换成电脉冲:用宽带传输线(快速电缆)无失真地将电脉冲信号输送到高带宽示波器和频率计上,进行数据处理,实时显示并计算出脉冲波形、宽度、重复频率等时间量,数字示波器和频率计能够和计算机直接通信接口,便于测量数据的获取。The time measurement unit includes pulse waveform and encoding accuracy. The time measurement adopts fast response probe + oscilloscope + frequency meter, and is measured through the light leakage sampling of the reflector of the spectroscopic system. Use fast detectors (photodiodes) to convert optical pulse signals into electrical pulses: use broadband transmission lines (fast cables) to transmit electrical pulse signals to high-bandwidth oscilloscopes and frequency counters for data processing, real-time display and calculation The digital oscilloscope and frequency meter can directly communicate with the computer interface to facilitate the acquisition of measurement data.

光束性能测试单元利用激光光束分析测试系统完成光束质量的测量,如:二维光强图像、能量分布均匀性等。该系统的摄像头非常适合于光斑质量分析仪系统,并可用于高质量影像记录。The beam performance test unit uses the laser beam analysis test system to complete the measurement of the beam quality, such as: two-dimensional light intensity image, energy distribution uniformity, etc. The system's camera is well suited for spot mass analyzer systems and can be used for high-quality image recording.

如图4所示,虚拟仪器的硬件平台由计算机和接口模块两部分组成。按照接口总线的不同,根据本系统的实际配置情况,虚拟仪器的接口模块可分为RS232接口模块和IEEE1394接口模块。接口模块的主要完成被测信号的采集、调理和模数转换。从虚拟仪器的硬件结构上,可以看出它以计算机为核心,在其基础上支持多种接口设备,数字CCD(AVT Guppy摄像机)、数字CCD(用于光束质量分析测量的摄像头)、波形分析仪、能量计,从而构成了激光性能和脉冲编码精度综合测量系统。从另一个角度来说,这种基于虚拟仪器的方式已冲破了单个仪器的概念,完全可以实现多种不同仪器的协同工作。As shown in Figure 4, the hardware platform of the virtual instrument consists of two parts, the computer and the interface module. According to the difference of the interface bus, according to the actual configuration of the system, the interface module of the virtual instrument can be divided into RS232 interface module and IEEE1394 interface module. The interface module mainly completes the acquisition, conditioning and analog-to-digital conversion of the measured signal. From the hardware structure of the virtual instrument, it can be seen that it takes the computer as the core, and supports a variety of interface devices on the basis of it, digital CCD (AVT Guppy camera), digital CCD (camera for beam quality analysis and measurement), waveform analysis instrument, energy meter, thus forming a comprehensive measurement system for laser performance and pulse encoding accuracy. From another point of view, this method based on virtual instruments has broken through the concept of a single instrument, and can fully realize the collaborative work of many different instruments.

Claims (4)

1.基于虚拟仪器的激光辐射器综合性能检测系统,其特征在于:包括同步单元、衰减单元、光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、电源单元、光束性能测试单元、激光辐射器组件以及测控计算机;其中电源单元分别与测控计算机、激光辐射器组件连接,激光辐射器组件的输出与同步单元的输入连接,同步单元的输出与衰减单元的输入连接,衰减单元的输出分别与光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、光束性能测试单元的输入连接,光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、光束性能测试单元的输出与测控计算机连接;同步单元提供整个测试系统的时间基准,衰减单元完成输入光能和探测器动态范围的匹配,光轴稳定性和偏角测试单元通过CCD测量辐射器的多次激光发射的光轴稳定性和光轴偏差,时间量测试单元完成编码精度及脉冲波形的测试,能量测试单元完成激光辐射能量的测量,光束性能测试单元完成激光光束性能的各项测试,电源单元提供激光辐射器和测试计算机的供电。1. The comprehensive performance detection system of laser radiator based on virtual instrument is characterized in that: comprise synchronization unit, attenuation unit, optical axis stability and deflection angle test unit, time amount test unit, energy test unit, power supply unit, light beam performance test Unit, laser radiator assembly, and measurement and control computer; wherein the power supply unit is connected to the measurement and control computer and the laser radiator assembly, the output of the laser radiator assembly is connected to the input of the synchronization unit, the output of the synchronization unit is connected to the input of the attenuation unit, and the attenuation unit The output of the optical axis stability and deflection angle test unit, the time amount test unit, the energy test unit, the input of the beam performance test unit are connected respectively, the optical axis stability and deflection angle test unit, the time amount test unit, the energy test unit, The output of the beam performance test unit is connected to the measurement and control computer; the synchronization unit provides the time reference of the entire test system, the attenuation unit completes the matching of the input light energy and the dynamic range of the detector, and the optical axis stability and deflection angle test unit measures the radiation of the radiator through the CCD The optical axis stability and optical axis deviation of multiple laser emissions, the time measurement unit completes the test of coding accuracy and pulse waveform, the energy test unit completes the measurement of laser radiation energy, the beam performance test unit completes various tests of laser beam performance, and the power supply The unit provides power for the laser radiator and test computer. 2.如权利要求1所述的基于虚拟仪器的激光辐射器综合性能检测系统,其特征在于:光轴稳定性和偏角测试单元中辐射器光轴稳定性测量由准直物镜、CCD接收系统组成,安装在调整基座上;分别测量激光辐射器多次发射激光的光斑中心在CCD靶面的位置,求出多个位置的偏差量Δx、Δy,根据透镜的焦距f′可求出光轴稳定性的角度偏差Δθx、Δθy2. the laser radiator comprehensive performance detection system based on virtual instrument as claimed in claim 1, is characterized in that: in optical axis stability and deflection angle test unit, radiator optical axis stability measurement is by collimating objective lens, CCD receiving system Composition, installed on the adjustment base; respectively measure the position of the spot center of the laser emitter multiple times on the CCD target surface, and calculate the deviation Δx and Δy of multiple positions, and calculate the light according to the focal length f' of the lens Angular deviation Δθ x , Δθ y for axial stability: ΔθΔθ xx == ΔxΔx ff ′′ ΔθΔθ ythe y == ΔyΔy ff ′′ ΔθΔθ == ΔxΔx 22 ++ ΔyΔy 22 ff ′′ -- -- -- (( 11 )) 光轴为光斑最密集的中心,利用质心法测量一段时间内的激光光斑质心Δxi、Δyi,然后将Δyi、Δyi由小到大排序并代入上式求解激光发射光轴的稳定性。The optical axis is the center of the densest spot. Use the centroid method to measure the centroids Δxi and Δy i of the laser spot within a period of time, and then sort Δy i and Δy i from small to large and substitute them into the above formula to solve the stability of the laser emission optical axis . 3.如权利要求1或2所述的基于虚拟仪器的激光辐射器综合性能检测系统,其特征在于:时间量测试单元包括脉冲波形和编码精度测试,采用快速响应探头+示波器+频率计的形式,通过分光系统反射镜漏光取样进行测量,采用光电二极管将光脉冲信号转换成电脉冲:用宽带传输线将电脉冲信号输送到高带宽示波器和频率计上,进行数据处理,实时显示并计算出脉冲波形、宽度、重复频率时间量,数字示波器和频率计和测控计算机连接,用于测量数据的获取。3. the laser radiator comprehensive performance detection system based on virtual instrument as claimed in claim 1 or 2, it is characterized in that: the amount of time test unit comprises pulse waveform and coding accuracy test, adopts the form of fast response probe+oscilloscope+frequency meter , through the light leakage sampling of the mirror of the spectroscopic system for measurement, and the photodiode is used to convert the optical pulse signal into an electrical pulse: the electrical pulse signal is transmitted to a high-bandwidth oscilloscope and a frequency counter with a broadband transmission line, and the data is processed, and the pulse is displayed and calculated in real time Waveform, width, repetition frequency time amount, digital oscilloscope, frequency meter and measurement and control computer are connected for acquisition of measurement data. 4.如权利要求1或2所述的基于虚拟仪器的激光辐射器综合性能检测系统,其特征在于:上述各单元排布在防震基准平台上。4. The comprehensive performance detection system of laser radiator based on virtual instrument according to claim 1 or 2, characterized in that: the above-mentioned units are arranged on an anti-vibration reference platform.
CN201210201429.8A 2012-06-15 2012-06-15 System for detecting comprehensive performance of laser radiator based on virtual instrument Expired - Fee Related CN102706541B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210201429.8A CN102706541B (en) 2012-06-15 2012-06-15 System for detecting comprehensive performance of laser radiator based on virtual instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210201429.8A CN102706541B (en) 2012-06-15 2012-06-15 System for detecting comprehensive performance of laser radiator based on virtual instrument

Publications (2)

Publication Number Publication Date
CN102706541A true CN102706541A (en) 2012-10-03
CN102706541B CN102706541B (en) 2015-04-29

Family

ID=46899484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210201429.8A Expired - Fee Related CN102706541B (en) 2012-06-15 2012-06-15 System for detecting comprehensive performance of laser radiator based on virtual instrument

Country Status (1)

Country Link
CN (1) CN102706541B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656206A (en) * 2013-11-15 2015-05-27 日本奥兰若株式会社 Optical Receiver Module And Optical Transmitter Module
CN105067226A (en) * 2015-07-31 2015-11-18 南京理工大学 Pulse laser far field optical axis stability detection method
CN106772552A (en) * 2017-03-02 2017-05-31 中国工程物理研究院核物理与化学研究所 Combined type gamma-ray radiation device
CN108149278A (en) * 2017-12-27 2018-06-12 云南卓烁科技有限公司 A kind of aluminum electrolyzing cell used voltage to frequency convert device
CN108414261A (en) * 2018-05-25 2018-08-17 中国人民解放军陆军工程大学 Laser irradiator plateau environment performance test system and test method thereof
CN109060317A (en) * 2018-09-07 2018-12-21 西安工业大学 The characterisitic parameter pilot system and its course of work of long-distance propagation of laser beam
CN110057548A (en) * 2019-03-28 2019-07-26 苏州创鑫激光科技有限公司 A kind of measuring system and method
CN110940494A (en) * 2018-09-21 2020-03-31 北京振兴计量测试研究所 Laser target simulator field calibration device
CN111123246A (en) * 2019-12-20 2020-05-08 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Method for testing maximum range finding capability and angle measurement precision of airborne laser radar based on circular scanning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390736A (en) * 1986-10-03 1988-04-21 Nec Corp Inspection instrument for characteristics of photosemiconductor
CN2444223Y (en) * 2000-11-06 2001-08-22 中国科学院物理研究所 Laser measuring device
CN101825517A (en) * 2010-05-17 2010-09-08 西安炬光科技有限公司 Biaxial rotary scanning mechanism for testing laser and laser far-field test device
CN102384836A (en) * 2010-09-01 2012-03-21 中国科学院光电研究院 Laser multi-parameter real-time measuring device
CN102393291A (en) * 2011-08-29 2012-03-28 深圳市大族激光科技股份有限公司 Laser detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390736A (en) * 1986-10-03 1988-04-21 Nec Corp Inspection instrument for characteristics of photosemiconductor
CN2444223Y (en) * 2000-11-06 2001-08-22 中国科学院物理研究所 Laser measuring device
CN101825517A (en) * 2010-05-17 2010-09-08 西安炬光科技有限公司 Biaxial rotary scanning mechanism for testing laser and laser far-field test device
CN102384836A (en) * 2010-09-01 2012-03-21 中国科学院光电研究院 Laser multi-parameter real-time measuring device
CN102393291A (en) * 2011-08-29 2012-03-28 深圳市大族激光科技股份有限公司 Laser detection method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
宋艳 等: ""激光辐射器的性能测试系统"", 《红外与激光工程》 *
梁雪驰 等: ""激光器性能综合测试设备研制"", 《航空制造技术》 *
骆新新 等: ""基于CCD的激光测距机光轴平行性检测"", 《半导体光电》 *
黄明 等: ""基于PXI的通用数据采集系统"", 《计算机测量与控制》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656206B (en) * 2013-11-15 2016-09-14 日本奥兰若株式会社 Optical receiving module and optical transmitting module
CN104656206A (en) * 2013-11-15 2015-05-27 日本奥兰若株式会社 Optical Receiver Module And Optical Transmitter Module
CN105067226A (en) * 2015-07-31 2015-11-18 南京理工大学 Pulse laser far field optical axis stability detection method
CN105067226B (en) * 2015-07-31 2017-11-14 南京理工大学 A kind of pulse laser far field optical axis stable detection method
CN106772552B (en) * 2017-03-02 2023-08-04 中国工程物理研究院核物理与化学研究所 Combined gamma ray radiator
CN106772552A (en) * 2017-03-02 2017-05-31 中国工程物理研究院核物理与化学研究所 Combined type gamma-ray radiation device
CN108149278A (en) * 2017-12-27 2018-06-12 云南卓烁科技有限公司 A kind of aluminum electrolyzing cell used voltage to frequency convert device
CN108414261A (en) * 2018-05-25 2018-08-17 中国人民解放军陆军工程大学 Laser irradiator plateau environment performance test system and test method thereof
CN108414261B (en) * 2018-05-25 2023-05-19 中国人民解放军陆军工程大学 A laser irradiator plateau environmental performance test system and its test method
CN109060317A (en) * 2018-09-07 2018-12-21 西安工业大学 The characterisitic parameter pilot system and its course of work of long-distance propagation of laser beam
CN110940494A (en) * 2018-09-21 2020-03-31 北京振兴计量测试研究所 Laser target simulator field calibration device
CN110057548A (en) * 2019-03-28 2019-07-26 苏州创鑫激光科技有限公司 A kind of measuring system and method
CN111123246A (en) * 2019-12-20 2020-05-08 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Method for testing maximum range finding capability and angle measurement precision of airborne laser radar based on circular scanning
CN111123246B (en) * 2019-12-20 2021-09-28 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Method for testing maximum range finding capability and angle measurement precision of airborne laser radar based on circular scanning

Also Published As

Publication number Publication date
CN102706541B (en) 2015-04-29

Similar Documents

Publication Publication Date Title
CN102706541B (en) System for detecting comprehensive performance of laser radiator based on virtual instrument
CN105044704B (en) The spaceborne laser transmitter integrated test system for performance of high accuracy
CN101059564B (en) A test device and method for measuring the registration degree of the transceiver axis of the laser ranging system
CN105784334B (en) Optical-fiber laser beam quality measurement method based on photodetector and CCD camera
CN107121095B (en) A method and device for accurately measuring a super large radius of curvature
CN102608613B (en) Device and method for accurately calibrating point object detectivity of laser radar
CN103105284B (en) Device and method for measuring transmittance of optical components of illumination system in photoetching machine
CN101231343B (en) Apparatus for measuring parallelism of laser rangefinder sighting and receiving axes based on liquid crystal modulation
CN104567738A (en) System and method for precisely measuring optical axis parallelism
CN102243301A (en) Detection device for laser rangefinder
CN203216702U (en) Focal length measuring device for long focal length optical system
CN101319884A (en) Multi-optical axis consistency test device based on multi-band target plate and rotating mirror
CN101922974A (en) An automatic calibration device and method for laser parameter performance testing
CN102819014A (en) Optical system for testing laser distance measurer performance based on off-axis parabolic mirror
CN202522516U (en) Optical transmissivity test device
CN102589428B (en) Method and device for tracking and correcting sample axial position based on asymmetric incidence
CN103542813B (en) A Laser Calibration Instrument Based on Boundary Differential and Ambient Light Self-calibration
CN102706447B (en) Method for testing quality of converged spot of laser detection system
CN108828537A (en) A kind of laser ceilometer integrated test system and its integrated test facility
CN103234734A (en) large-caliber stray light testing device and testing method
CN109520425A (en) A kind of essence tracking error test device and test method
CN108592825A (en) A kind of photoelectric auto-collimation device and method based on differential compensation
CN105938041A (en) Infrared thermal imager performance evaluation apparatus
CN208239052U (en) A kind of spuious optical measurement instrument of laser
CN103105283B (en) Focal length measuring device of single-spectrum large-caliber long-focus lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150429

Termination date: 20160615