CN102706541A - System for detecting comprehensive performance of laser radiator based on virtual instrument - Google Patents
System for detecting comprehensive performance of laser radiator based on virtual instrument Download PDFInfo
- Publication number
- CN102706541A CN102706541A CN2012102014298A CN201210201429A CN102706541A CN 102706541 A CN102706541 A CN 102706541A CN 2012102014298 A CN2012102014298 A CN 2012102014298A CN 201210201429 A CN201210201429 A CN 201210201429A CN 102706541 A CN102706541 A CN 102706541A
- Authority
- CN
- China
- Prior art keywords
- unit
- laser
- test unit
- optical axis
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 238000005259 measurement Methods 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 238000011056 performance test Methods 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明提供一种基于虚拟仪器的激光辐射器综合性能检测系统,能测量出反映激光器辐射器优劣的主要性能指标。包括同步单元、衰减单元、光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、电源单元、光束性能测试单元、激光辐射器组件以及测控计算机;其中同步单元提供整个测试系统的时间基准,衰减单元完成输入光能和探测器动态范围的匹配,光轴稳定性和偏角测试单元通过CCD测量辐射器的多次激光发射的光轴稳定性和光轴偏差,时间量测试单元完成编码精度及脉冲波形的测试,能量测试单元完成激光辐射能量的测量,光束性能测试单元完成激光光束性能的各项测试,电源单元提供激光辐射器和测试计算机的供电。
The invention provides a comprehensive performance detection system of a laser radiator based on a virtual instrument, which can measure main performance indexes reflecting the quality of the laser radiator. Including synchronization unit, attenuation unit, optical axis stability and deflection angle test unit, time amount test unit, energy test unit, power supply unit, beam performance test unit, laser radiator components and measurement and control computer; the synchronization unit provides the control of the entire test system The time reference, the attenuation unit completes the matching of the input light energy and the dynamic range of the detector, the optical axis stability and deflection angle test unit measures the optical axis stability and optical axis deviation of the multiple laser emissions of the radiator through the CCD, and the time measurement unit completes The coding accuracy and pulse waveform test, the energy test unit completes the measurement of laser radiation energy, the beam performance test unit completes various tests of the laser beam performance, and the power supply unit provides power for the laser radiator and the test computer.
Description
技术领域 technical field
本发明属于激光辐射器检测技术领域,涉及一种基于虚拟仪器的激光辐射器综合性能检测系统。The invention belongs to the technical field of laser radiator detection, and relates to a comprehensive performance detection system of a laser radiator based on a virtual instrument.
背景技术 Background technique
由于激光辐射器独特的光学性能在国防军事领域有重要的应用价值,如激光测距、照射,激光制导,激光雷达等。激光的应用离不开产生激光的装置——激光辐射器。衡量激光器优劣的主要性能指标,例如能量、功率和光束质量等,对其应用是至关重要的。因此,需要对激光器的主要性能指标进行精确的测量和分析。Due to the unique optical properties of the laser radiator, it has important application value in the field of national defense and military, such as laser ranging, irradiation, laser guidance, laser radar, etc. The application of laser is inseparable from the device that produces laser - laser radiator. The main performance indicators that measure the pros and cons of lasers, such as energy, power, and beam quality, are critical to their applications. Therefore, it is necessary to accurately measure and analyze the main performance indicators of the laser.
在实际应用中关心的是有多少能量聚焦到焦平面一定范围内,或者有多少能量能够传输到一定距离处或空间范围内。比如激光测距机的最大测距能力丰要取决于传输到靶目标上的激光功率密度,目标上功率密度不仅与激光器输出的功率有关,而且在很大程度上取决于激光束的光束质量。激光发射功率相同的条件下,光束质量越好,目标处光束越集中,激光功率密度越大,测距机的测距能力越强;反之则越差。所以,在实际激光产品生产中,需要快速、准确测量激光辐射器的主要性能指标,以检测激光器件是否达到设计和应用要求。In practical applications, what is concerned is how much energy is focused to a certain range of the focal plane, or how much energy can be transmitted to a certain distance or within a spatial range. For example, the maximum ranging capability of a laser range finder depends on the laser power density transmitted to the target. The power density on the target is not only related to the output power of the laser, but also depends to a large extent on the beam quality of the laser beam. Under the condition of the same laser emission power, the better the beam quality, the more concentrated the beam at the target, the greater the laser power density, and the stronger the ranging capability of the rangefinder; otherwise, the worse it is. Therefore, in the actual production of laser products, it is necessary to quickly and accurately measure the main performance indicators of the laser radiator to detect whether the laser device meets the design and application requirements.
发明内容 Contents of the invention
本发明的目的是提供一种基于虚拟仪器的激光辐射器综合性能检测系统,能测量出反映激光器辐射器优劣的主要性能指标,例如能量、功率、光束质量、光轴稳定性和偏差等。The purpose of the present invention is to provide a comprehensive performance detection system for laser radiators based on virtual instruments, which can measure the main performance indicators reflecting the quality of laser radiators, such as energy, power, beam quality, optical axis stability and deviation, etc.
该基于虚拟仪器的激光辐射器综合性能检测系统,包括同步单元、衰减单元、光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、电源单元、光束性能测试单元、激光辐射器组件以及测控计算机;其中电源单元分别与测控计算机、激光辐射器组件连接,激光辐射器组件的输出与同步单元的输入连接,同步单元的输出与衰减单元的输入连接,衰减单元的输出分别与光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、光束性能测试单元的输入连接,光轴稳定性和偏角测试单元、时间量测试单元、能量测试单元、光束性能测试单元的输出与测控计算机连接;同步单元提供整个测试系统的时间基准,衰减单元完成输入光能和探测器动态范围的匹配,光轴稳定性和偏角测试单元通过CCD测量辐射器的多次激光发射的光轴稳定性和光轴偏差,时间量测试单元完成编码精度及脉冲波形的测试,能量测试单元完成激光辐射能量的测量,光束性能测试单元完成激光光束性能的各项测试,电源单元提供激光辐射器和测试计算机的供电。The comprehensive performance detection system of laser radiator based on virtual instrument includes synchronization unit, attenuation unit, optical axis stability and deflection angle test unit, time measurement unit, energy test unit, power supply unit, beam performance test unit, laser radiator Components and a measurement and control computer; wherein the power supply unit is connected to the measurement and control computer and the laser radiator component respectively, the output of the laser radiator component is connected to the input of the synchronization unit, the output of the synchronization unit is connected to the input of the attenuation unit, and the output of the attenuation unit is respectively connected to the optical Input connections for the axis stability and deflection test unit, the amount of time test unit, the energy test unit, the beam performance test unit, the optical axis stability and deflection test unit, the amount of time test unit, the energy test unit, the beam performance test unit The output is connected to the measurement and control computer; the synchronization unit provides the time reference of the entire test system, the attenuation unit completes the matching of the input light energy and the dynamic range of the detector, and the optical axis stability and deflection angle test unit measures the multiple laser emissions of the radiator through the CCD The optical axis stability and optical axis deviation, the time measurement unit completes the test of coding accuracy and pulse waveform, the energy test unit completes the measurement of laser radiation energy, the beam performance test unit completes various tests of laser beam performance, and the power supply unit provides laser radiator and test computer power.
上述单元排布在防震基准平台上。The above units are arranged on the shockproof reference platform.
本发明的有益效果:Beneficial effects of the present invention:
1、标准接口平台:提供统一的测试软件标准接口和连接平台,采用专用于测控领域的LabVIEW软件进行开发。1. Standard interface platform: Provide a unified test software standard interface and connection platform, and use LabVIEW software dedicated to the field of measurement and control for development.
2、高度灵活性:可以容纳任何ATE系统配置,可快速的更换夹具或被测对象。2. High flexibility: It can accommodate any ATE system configuration, and can quickly replace fixtures or measured objects.
3、高度可靠性:测试系统可以插拔上千次。3. High reliability: the test system can be plugged and unplugged thousands of times.
4、高度集成性:可在同一测试系统中集成几套甚至是上百套测试设备。4. High integration: several or even hundreds of test equipment can be integrated in the same test system.
5、高度同步性:利用PXI机箱背板的同步触发时钟可测试系统中严格进行同步、同时以及实时在线测试。5. High degree of synchronization: use the synchronous trigger clock of the PXI chassis backplane to strictly carry out synchronous, simultaneous and real-time online testing in the test system.
6、最低的整体使用费用:在测试系统的使用寿命内,提供最低的连接费用。6. The lowest overall cost of use: within the service life of the test system, the lowest connection cost is provided.
附图说明 Description of drawings
图1为本发明基于虚拟仪器的激光辐射器综合性能检测系统硬件组成框图;Fig. 1 is a block diagram of the hardware composition of the laser radiator comprehensive performance detection system based on the virtual instrument of the present invention;
图2为本发明基于虚拟仪器的激光辐射器综合性能检测系统模块组成示意图;2 is a schematic diagram of the module composition of the laser radiator comprehensive performance detection system based on virtual instruments in the present invention;
图3为激光辐射器光轴稳定性和偏角测量光路图;Fig. 3 is the optical path diagram of laser radiator optical axis stability and deflection angle measurement;
图4为基于虚拟仪器的硬件结构层次图。Figure 4 is a hierarchical diagram of the hardware structure based on virtual instruments.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的实施例作详细说明:本实施例在以本发明的技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。In order to make the purpose, technical solution and advantages of the present invention clearer, the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings: this embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods are provided And specific operation process, but protection scope of the present invention is not limited to following embodiment.
本发明的系统整体按模块化设计,各自具有独立的功能,以方便系统的安装、调试、维护、扩展等。The whole system of the present invention is designed according to modularization, and each has independent functions, so as to facilitate the installation, debugging, maintenance and expansion of the system.
光轴稳定性和偏角测试单元中辐射器光轴稳定性测量光路图如3所示,测量由CCD成像系统完成。该单元由准直物镜、CCD接收系统等组成,安装在精密调整基座上。分别测量激光辐射器多次发射激光的光斑中心在CCD靶面的位置,求出多个位置的偏差量Δx、Δy,根据透镜的焦距f′可求出光轴稳定性的角度偏差Δθx、Δθy:The optical path diagram for the measurement of the optical axis stability of the radiator in the optical axis stability and deflection angle test unit is shown in Figure 3, and the measurement is completed by the CCD imaging system. The unit consists of a collimating objective lens, a CCD receiving system, etc., and is installed on a precision adjustment base. Measure the position of the spot center of the laser emitter multiple times on the CCD target surface, and calculate the deviations Δx and Δy of multiple positions. According to the focal length f' of the lens, the angular deviation Δθ x and Δθ x of the optical axis stability can be calculated. Δθy :
按照国标的定义,光轴应该是光斑最密集的中心。因此利用质心法测量一段时间内的激光光斑质心Δxi、Δyi。然后将Δxi、Δyi由小到大排序并代入上式可求解激光发射光轴的稳定性。According to the definition of the national standard, the optical axis should be the center of the densest spot. Therefore, the center of mass Δxi and Δy i of the laser spot within a period of time are measured by using the centroid method. Then sort Δxi and Δy i from small to large and substitute them into the above formula to solve the stability of the laser emission optical axis.
对于激光辐射器发射光轴和安装基准面的偏角测量,首先测量并记录安装基准面在CCD焦面的成像位置,然后记录发射激光时CCD焦面上激光光斑的位置,可以计算出发射光轴和安装基准面的偏角。CCD采用德国AVT公司数字摄像机,它所形成的视频数字信号通过IEEE1394数据卡进行采集。For the declination measurement of the emission optical axis of the laser radiator and the installation reference plane, first measure and record the imaging position of the installation reference plane on the CCD focal plane, and then record the position of the laser spot on the CCD focal plane when the laser is emitted, and the emission optical axis can be calculated and the declination angle of the mounting reference plane. The CCD adopts the digital camera of AVT Company of Germany, and the video digital signal formed by it is collected through the IEEE1394 data card.
能量测试单元利用带电控光阑能量计测量激光能量,衰减器选取合适的衰减比,使最大能量密度及最大功率密度在探头允许范围。调整合适的量程正确测出激光能量。能量计放置于高速响应探头和电控光阑后,通过分光系统的透射光测量能量,这里测量的相对值,通过标定得出激光器输出能量的绝对值。GB/T15175-94-6.1中规定能量测量是多次测量的平均值:The energy test unit uses an energy meter with an electrically controlled aperture to measure the laser energy, and the attenuator selects a suitable attenuation ratio to make the maximum energy density and maximum power density within the allowable range of the probe. Adjust the appropriate range to correctly measure the laser energy. The energy meter is placed behind the high-speed response probe and the electronically controlled diaphragm, and measures the energy through the transmitted light of the spectroscopic system. The relative value measured here can be calibrated to obtain the absolute value of the laser output energy. GB/T15175-94-6.1 stipulates that the energy measurement is the average value of multiple measurements:
式中,Qout激光器输出能量:Qout,i第i次测量能量;τn衰减片的透射比;n同一输入能量的测量总次数。在系统中能量计作为一个独立的单元模块,具备独立的测试功能,能够直接和计算机通过RS232通信,读取测量结果。In the formula, Q out laser output energy: Q out, i measured energy for the ith time; τ n the transmittance of the attenuation sheet; n the total number of measurements of the same input energy. As an independent unit module in the system, the energy meter has an independent test function, and can directly communicate with the computer through RS232 to read the measurement results.
时间量测试单元包括脉冲波形和编码精度,时间测量采用快速响应探头+示波器+频率计,通过分光系统反射镜漏光取样进行测量。采用快速探测器(光电二极管),将光脉冲信号转换成电脉冲:用宽带传输线(快速电缆)无失真地将电脉冲信号输送到高带宽示波器和频率计上,进行数据处理,实时显示并计算出脉冲波形、宽度、重复频率等时间量,数字示波器和频率计能够和计算机直接通信接口,便于测量数据的获取。The time measurement unit includes pulse waveform and encoding accuracy. The time measurement adopts fast response probe + oscilloscope + frequency meter, and is measured through the light leakage sampling of the reflector of the spectroscopic system. Use fast detectors (photodiodes) to convert optical pulse signals into electrical pulses: use broadband transmission lines (fast cables) to transmit electrical pulse signals to high-bandwidth oscilloscopes and frequency counters for data processing, real-time display and calculation The digital oscilloscope and frequency meter can directly communicate with the computer interface to facilitate the acquisition of measurement data.
光束性能测试单元利用激光光束分析测试系统完成光束质量的测量,如:二维光强图像、能量分布均匀性等。该系统的摄像头非常适合于光斑质量分析仪系统,并可用于高质量影像记录。The beam performance test unit uses the laser beam analysis test system to complete the measurement of the beam quality, such as: two-dimensional light intensity image, energy distribution uniformity, etc. The system's camera is well suited for spot mass analyzer systems and can be used for high-quality image recording.
如图4所示,虚拟仪器的硬件平台由计算机和接口模块两部分组成。按照接口总线的不同,根据本系统的实际配置情况,虚拟仪器的接口模块可分为RS232接口模块和IEEE1394接口模块。接口模块的主要完成被测信号的采集、调理和模数转换。从虚拟仪器的硬件结构上,可以看出它以计算机为核心,在其基础上支持多种接口设备,数字CCD(AVT Guppy摄像机)、数字CCD(用于光束质量分析测量的摄像头)、波形分析仪、能量计,从而构成了激光性能和脉冲编码精度综合测量系统。从另一个角度来说,这种基于虚拟仪器的方式已冲破了单个仪器的概念,完全可以实现多种不同仪器的协同工作。As shown in Figure 4, the hardware platform of the virtual instrument consists of two parts, the computer and the interface module. According to the difference of the interface bus, according to the actual configuration of the system, the interface module of the virtual instrument can be divided into RS232 interface module and IEEE1394 interface module. The interface module mainly completes the acquisition, conditioning and analog-to-digital conversion of the measured signal. From the hardware structure of the virtual instrument, it can be seen that it takes the computer as the core, and supports a variety of interface devices on the basis of it, digital CCD (AVT Guppy camera), digital CCD (camera for beam quality analysis and measurement), waveform analysis instrument, energy meter, thus forming a comprehensive measurement system for laser performance and pulse encoding accuracy. From another point of view, this method based on virtual instruments has broken through the concept of a single instrument, and can fully realize the collaborative work of many different instruments.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210201429.8A CN102706541B (en) | 2012-06-15 | 2012-06-15 | System for detecting comprehensive performance of laser radiator based on virtual instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210201429.8A CN102706541B (en) | 2012-06-15 | 2012-06-15 | System for detecting comprehensive performance of laser radiator based on virtual instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102706541A true CN102706541A (en) | 2012-10-03 |
CN102706541B CN102706541B (en) | 2015-04-29 |
Family
ID=46899484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210201429.8A Expired - Fee Related CN102706541B (en) | 2012-06-15 | 2012-06-15 | System for detecting comprehensive performance of laser radiator based on virtual instrument |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102706541B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104656206A (en) * | 2013-11-15 | 2015-05-27 | 日本奥兰若株式会社 | Optical Receiver Module And Optical Transmitter Module |
CN105067226A (en) * | 2015-07-31 | 2015-11-18 | 南京理工大学 | Pulse laser far field optical axis stability detection method |
CN106772552A (en) * | 2017-03-02 | 2017-05-31 | 中国工程物理研究院核物理与化学研究所 | Combined type gamma-ray radiation device |
CN108149278A (en) * | 2017-12-27 | 2018-06-12 | 云南卓烁科技有限公司 | A kind of aluminum electrolyzing cell used voltage to frequency convert device |
CN108414261A (en) * | 2018-05-25 | 2018-08-17 | 中国人民解放军陆军工程大学 | Laser irradiator plateau environment performance test system and test method thereof |
CN109060317A (en) * | 2018-09-07 | 2018-12-21 | 西安工业大学 | The characterisitic parameter pilot system and its course of work of long-distance propagation of laser beam |
CN110057548A (en) * | 2019-03-28 | 2019-07-26 | 苏州创鑫激光科技有限公司 | A kind of measuring system and method |
CN110940494A (en) * | 2018-09-21 | 2020-03-31 | 北京振兴计量测试研究所 | Laser target simulator field calibration device |
CN111123246A (en) * | 2019-12-20 | 2020-05-08 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Method for testing maximum range finding capability and angle measurement precision of airborne laser radar based on circular scanning |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6390736A (en) * | 1986-10-03 | 1988-04-21 | Nec Corp | Inspection instrument for characteristics of photosemiconductor |
CN2444223Y (en) * | 2000-11-06 | 2001-08-22 | 中国科学院物理研究所 | Laser measuring device |
CN101825517A (en) * | 2010-05-17 | 2010-09-08 | 西安炬光科技有限公司 | Biaxial rotary scanning mechanism for testing laser and laser far-field test device |
CN102384836A (en) * | 2010-09-01 | 2012-03-21 | 中国科学院光电研究院 | Laser multi-parameter real-time measuring device |
CN102393291A (en) * | 2011-08-29 | 2012-03-28 | 深圳市大族激光科技股份有限公司 | Laser detection method |
-
2012
- 2012-06-15 CN CN201210201429.8A patent/CN102706541B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6390736A (en) * | 1986-10-03 | 1988-04-21 | Nec Corp | Inspection instrument for characteristics of photosemiconductor |
CN2444223Y (en) * | 2000-11-06 | 2001-08-22 | 中国科学院物理研究所 | Laser measuring device |
CN101825517A (en) * | 2010-05-17 | 2010-09-08 | 西安炬光科技有限公司 | Biaxial rotary scanning mechanism for testing laser and laser far-field test device |
CN102384836A (en) * | 2010-09-01 | 2012-03-21 | 中国科学院光电研究院 | Laser multi-parameter real-time measuring device |
CN102393291A (en) * | 2011-08-29 | 2012-03-28 | 深圳市大族激光科技股份有限公司 | Laser detection method |
Non-Patent Citations (4)
Title |
---|
宋艳 等: ""激光辐射器的性能测试系统"", 《红外与激光工程》 * |
梁雪驰 等: ""激光器性能综合测试设备研制"", 《航空制造技术》 * |
骆新新 等: ""基于CCD的激光测距机光轴平行性检测"", 《半导体光电》 * |
黄明 等: ""基于PXI的通用数据采集系统"", 《计算机测量与控制》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104656206B (en) * | 2013-11-15 | 2016-09-14 | 日本奥兰若株式会社 | Optical receiving module and optical transmitting module |
CN104656206A (en) * | 2013-11-15 | 2015-05-27 | 日本奥兰若株式会社 | Optical Receiver Module And Optical Transmitter Module |
CN105067226A (en) * | 2015-07-31 | 2015-11-18 | 南京理工大学 | Pulse laser far field optical axis stability detection method |
CN105067226B (en) * | 2015-07-31 | 2017-11-14 | 南京理工大学 | A kind of pulse laser far field optical axis stable detection method |
CN106772552B (en) * | 2017-03-02 | 2023-08-04 | 中国工程物理研究院核物理与化学研究所 | Combined gamma ray radiator |
CN106772552A (en) * | 2017-03-02 | 2017-05-31 | 中国工程物理研究院核物理与化学研究所 | Combined type gamma-ray radiation device |
CN108149278A (en) * | 2017-12-27 | 2018-06-12 | 云南卓烁科技有限公司 | A kind of aluminum electrolyzing cell used voltage to frequency convert device |
CN108414261A (en) * | 2018-05-25 | 2018-08-17 | 中国人民解放军陆军工程大学 | Laser irradiator plateau environment performance test system and test method thereof |
CN108414261B (en) * | 2018-05-25 | 2023-05-19 | 中国人民解放军陆军工程大学 | A laser irradiator plateau environmental performance test system and its test method |
CN109060317A (en) * | 2018-09-07 | 2018-12-21 | 西安工业大学 | The characterisitic parameter pilot system and its course of work of long-distance propagation of laser beam |
CN110940494A (en) * | 2018-09-21 | 2020-03-31 | 北京振兴计量测试研究所 | Laser target simulator field calibration device |
CN110057548A (en) * | 2019-03-28 | 2019-07-26 | 苏州创鑫激光科技有限公司 | A kind of measuring system and method |
CN111123246A (en) * | 2019-12-20 | 2020-05-08 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Method for testing maximum range finding capability and angle measurement precision of airborne laser radar based on circular scanning |
CN111123246B (en) * | 2019-12-20 | 2021-09-28 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Method for testing maximum range finding capability and angle measurement precision of airborne laser radar based on circular scanning |
Also Published As
Publication number | Publication date |
---|---|
CN102706541B (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102706541B (en) | System for detecting comprehensive performance of laser radiator based on virtual instrument | |
CN105044704B (en) | The spaceborne laser transmitter integrated test system for performance of high accuracy | |
CN101059564B (en) | A test device and method for measuring the registration degree of the transceiver axis of the laser ranging system | |
CN105784334B (en) | Optical-fiber laser beam quality measurement method based on photodetector and CCD camera | |
CN107121095B (en) | A method and device for accurately measuring a super large radius of curvature | |
CN102608613B (en) | Device and method for accurately calibrating point object detectivity of laser radar | |
CN103105284B (en) | Device and method for measuring transmittance of optical components of illumination system in photoetching machine | |
CN101231343B (en) | Apparatus for measuring parallelism of laser rangefinder sighting and receiving axes based on liquid crystal modulation | |
CN104567738A (en) | System and method for precisely measuring optical axis parallelism | |
CN102243301A (en) | Detection device for laser rangefinder | |
CN203216702U (en) | Focal length measuring device for long focal length optical system | |
CN101319884A (en) | Multi-optical axis consistency test device based on multi-band target plate and rotating mirror | |
CN101922974A (en) | An automatic calibration device and method for laser parameter performance testing | |
CN102819014A (en) | Optical system for testing laser distance measurer performance based on off-axis parabolic mirror | |
CN202522516U (en) | Optical transmissivity test device | |
CN102589428B (en) | Method and device for tracking and correcting sample axial position based on asymmetric incidence | |
CN103542813B (en) | A Laser Calibration Instrument Based on Boundary Differential and Ambient Light Self-calibration | |
CN102706447B (en) | Method for testing quality of converged spot of laser detection system | |
CN108828537A (en) | A kind of laser ceilometer integrated test system and its integrated test facility | |
CN103234734A (en) | large-caliber stray light testing device and testing method | |
CN109520425A (en) | A kind of essence tracking error test device and test method | |
CN108592825A (en) | A kind of photoelectric auto-collimation device and method based on differential compensation | |
CN105938041A (en) | Infrared thermal imager performance evaluation apparatus | |
CN208239052U (en) | A kind of spuious optical measurement instrument of laser | |
CN103105283B (en) | Focal length measuring device of single-spectrum large-caliber long-focus lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150429 Termination date: 20160615 |