[go: up one dir, main page]

CN102692445B - Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer - Google Patents

Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer Download PDF

Info

Publication number
CN102692445B
CN102692445B CN201110073330.XA CN201110073330A CN102692445B CN 102692445 B CN102692445 B CN 102692445B CN 201110073330 A CN201110073330 A CN 201110073330A CN 102692445 B CN102692445 B CN 102692445B
Authority
CN
China
Prior art keywords
phthalocyanine
organic semiconductor
layer
organic
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110073330.XA
Other languages
Chinese (zh)
Other versions
CN102692445A (en
Inventor
闫东航
王秀锦
纪世良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Rare Earth Research Institute Chinese Academy Of Sciences
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201110073330.XA priority Critical patent/CN102692445B/en
Publication of CN102692445A publication Critical patent/CN102692445A/en
Application granted granted Critical
Publication of CN102692445B publication Critical patent/CN102692445B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供的气敏层含有机异质结的有机半导体气体传感器,其是利用两种有机半导体材料间发生电荷转移形成异质结,改变薄膜表面的氧化还原电势,从而提高传感器对敏感气体的响应,本发明提供的气敏层含有机异质结的有机半导体气体传感器室温条件下敏感性高,气敏层厚度小,有效的缩短了器件的响应/回复时间,并且利用真空沉积方法一次性完成器件的制备,不需要退火等后续工艺,简化了器件的制备过程;本发明提供的气敏层含有机异质结的有机半导体气体传感器可以检测体积分数为百万分之五的NO2气体,并且响应/回复均可以在10分钟内完成。

The invention provides an organic semiconductor gas sensor with a gas-sensing layer containing an organic heterojunction, which utilizes charge transfer between two organic semiconductor materials to form a heterojunction to change the oxidation-reduction potential of the film surface, thereby improving the sensitivity of the sensor to sensitive gases. Response, the organic semiconductor gas sensor with a gas-sensing layer containing an organic heterojunction provided by the present invention has high sensitivity at room temperature, and the thickness of the gas-sensing layer is small, which effectively shortens the response/recovery time of the device, and is disposable by using a vacuum deposition method. The preparation of the device is completed without subsequent processes such as annealing, which simplifies the preparation process of the device; the organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer provided by the present invention can detect NO gas with a volume fraction of 5ppm , and the response/reply can be completed within 10 minutes.

Description

气敏层含有机异质结的有机半导体气体传感器Organic semiconductor gas sensor with gas sensing layer containing organic heterojunction

技术领域 technical field

本发明涉及气敏层含有机异质结的有机半导体气体传感器。The invention relates to an organic semiconductor gas sensor whose gas sensitive layer contains an organic heterojunction.

技术背景 technical background

伴随着有机半导体科学与技术的发展,科学家发现,很多有机半导体材料对一些有毒有害气体,如NO2等具有极为敏感的响应,采用此类材料制备的传感器具有极高的灵敏度。B.Bott等人(B.Bott andT.A.Jones Sensors and Actuators 1984,5,43)报道了有机半导体材料酞菁铅在100℃以上时,在体积分数为十亿分之一的NO2环境中薄膜电导会明显增加。此类传感器通常在高温环境下工作,限制了其应用范围。因此发展可在室温环境下检测的传感器势在必行。M.Passard等人(M.Passard,A.Pauly,J.P.Blanc,S.Dogo,J.P.Germain,C.Maleysson,Thin Solid Films,1994,237,272-276)研究发现,不同的气体分子由于氧化还原特性不同,被酞菁薄膜吸附后可发生氧化或还原反应,薄膜内产生自由空穴载流子或电子载流子,因此薄膜电导被改变。T.Someya等人(T.Someya,H.E.Katz,A.Gelperin,A.J.Lovingerand A.Dodabalapur,Applied.Physics.Letter.2002,81,3079-3081)研究并提出,有机气敏膜与气体的吸附位置主要在晶界处,因此具有相对较大比表面积的多晶薄膜一直被广泛研究。但多晶膜表面各向异性严重,薄膜表面活性点的气体吸附-解吸附过程需要的激活能分布较宽,解吸附速率受慢速活性点影响严重。这些比表面积较大的多晶膜往往通过厚膜(0.5-1微米)实现,室温下气体在薄膜体内的扩散会显著延长传感器响应时间和回复时间。超薄膜可以实现室温快速响应,VOPc超薄膜可以室温下检测十万分之一NO2并且在高浓度气体灵敏度明显增大。超薄膜表面电势分布相对均匀集中,晶界数目较少,室温下,百万分之五以下低浓度气体灵敏度不高。因此,调节有机半导体薄膜表面的氧化还原电势使之更容易与敏感气体之间发生电荷转移是提高有机半导体气体传感器性能的有效手段。2005年,王军等人(J.Wang,H.B.Wang,X.J.Yan,H.C.Hang,D.H.Yan,AppliedPhysics Letters,2005,87,093507)报道了两种有机半导体界面累积自由载流子,形成异质结。自由载流子的累积导致异质结界面处存在较高的电导,同时引起异质结界面处两种有机半导体的导带和价带的位置发生改变。即通过有机半导体之间的异质结效应可以改变材料的氧化还原电势,从而提高材料对气体的敏感性。朱峰等人(F.Zhu,J.B.Yang,D.Song,C.H.Li,D.H.Yan.Appl.Phys.Lett.2009,94,143305)发现,采用弱外延生长方法制备的有机异质结中,这种由异质结效应导致的氧化还原电势的改变可以深入异质结界面附近40纳米的区域。With the development of organic semiconductor science and technology, scientists have discovered that many organic semiconductor materials have extremely sensitive responses to some toxic and harmful gases, such as NO2 , and sensors made of such materials have extremely high sensitivity. B.Bott et al. (B.Bott andT.A.Jones Sensors and Actuators 1984, 5, 43) reported that when the organic semiconductor material lead phthalocyanine is above 100°C, the volume fraction is one part per billion in the NO2 environment The conductance of the medium film will increase significantly. Such sensors usually work in high-temperature environments, which limits their application range. Therefore, it is imperative to develop sensors that can detect at room temperature. M.Passard et al. (M.Passard, A.Pauly, JPBlanc, S.Dogo, JPGermain, C.Maleysson, Thin Solid Films, 1994, 237, 272-276) found that different gas molecules have different redox properties After being adsorbed by the phthalocyanine film, an oxidation or reduction reaction can occur, and free hole carriers or electron carriers are generated in the film, so the conductance of the film is changed. T.Someya et al. (T.Someya, HEKatz, A.Gelperin, AJLovingerand A.Dodabalapur, Applied.Physics.Letter.2002, 81, 3079-3081) researched and proposed that the adsorption position of organic gas-sensitive film and gas is mainly in At the grain boundaries, polycrystalline thin films with relatively large specific surface areas have been extensively studied. However, the surface anisotropy of the polycrystalline film is serious, and the activation energy distribution required for the gas adsorption-desorption process of the active sites on the film surface is wide, and the desorption rate is seriously affected by the slow active sites. These polycrystalline films with large specific surface areas are often realized by thick films (0.5-1 micron), and the diffusion of gas in the film body at room temperature will significantly prolong the response time and recovery time of the sensor. The ultra-thin film can realize fast response at room temperature, and the VOPc ultra-thin film can detect NO 2 in one hundred thousandth at room temperature, and the sensitivity is obviously increased in high-concentration gases. The surface potential distribution of the ultra-thin film is relatively uniform and concentrated, and the number of grain boundaries is small. At room temperature, the sensitivity of low-concentration gases below 5 parts per million is not high. Therefore, adjusting the redox potential of the surface of organic semiconductor thin films to make it easier to transfer charges between sensitive gases is an effective means to improve the performance of organic semiconductor gas sensors. In 2005, Wang Jun et al. (J.Wang, HBWang, XJYan, HCHang, DHYan, Applied Physics Letters, 2005, 87, 093507) reported the accumulation of free carriers at the interface of two organic semiconductors to form a heterojunction. The accumulation of free carriers leads to higher conductance at the heterojunction interface, and at the same time causes changes in the positions of the conduction and valence bands of the two organic semiconductors at the heterojunction interface. That is, the redox potential of the material can be changed through the heterojunction effect between organic semiconductors, thereby improving the sensitivity of the material to gases. Zhu Feng et al. (F.Zhu, JBYang, D.Song, CHLi, DHYan.Appl.Phys.Lett.2009, 94, 143305) found that in the organic heterojunction prepared by the weak epitaxial growth method, this heterogeneous The change in redox potential caused by the junction effect can penetrate deep into the region of 40 nm near the heterojunction interface.

发明内容 Contents of the invention

本发明的目的是提供气敏层含有机异质结的有机半导体气体传感器。The object of the present invention is to provide an organic semiconductor gas sensor whose gas sensitive layer contains an organic heterojunction.

本发明的原理是利用两种有机半导体材料间发生电荷转移形成异质结,改变薄膜表面的氧化还原电势,从而提高传感器对敏感气体的响应。The principle of the invention is to use charge transfer between two organic semiconductor materials to form a heterojunction, change the redox potential of the film surface, and improve the sensor's response to sensitive gases.

本发明提供的气敏层含有机异质结的有机半导体气体传感器包括第一种气敏层含有机异质结的有机半导体气体传感器和第二种气敏层含有机异质结的有机半导体气体传感器。The organic semiconductor gas sensor with an organic heterojunction in the gas-sensing layer provided by the present invention comprises a first organic semiconductor gas sensor with an organic heterojunction in the gas-sensing layer and an organic semiconductor gas sensor with an organic heterojunction in the second gas-sensing layer sensor.

图1是本发明涉及的第一种气敏层含有机异质结的有机半导体气体传感器的结构示意图。FIG. 1 is a schematic structural view of the first organic semiconductor gas sensor with a gas-sensing layer containing an organic heterojunction according to the present invention.

(A)本发明的第一种气敏层含有机异质结的有机半导体气体传感器的构成如下:基板1、诱导层2、第一有机半导体层3、第二有机半导体层4顺次连接,第二有机半导体层4的薄膜为非连续薄膜,金属电极5部分覆盖第二有机半导体层4后与第一有机半导体层3对应的有部分连接;所述诱导层2和第一有机半导体层3之间存在弱外延关系,所述的弱外延关系是诱导层2的材料分子和第一有机半导体层3的材料分子之间的作用力是范德华力,并且两种分子晶体晶格之间存在外延关系;所述的第一有机半导体层3和第二有机半导体层4材料之间由于电荷转移而形成异质结;(A) The composition of the organic semiconductor gas sensor of the first gas-sensing layer of the present invention containing an organic heterojunction is as follows: the substrate 1, the induction layer 2, the first organic semiconductor layer 3, and the second organic semiconductor layer 4 are connected in sequence, The film of the second organic semiconductor layer 4 is a discontinuous film, and the metal electrode 5 partially covers the second organic semiconductor layer 4 and is partially connected to the first organic semiconductor layer 3; the induction layer 2 and the first organic semiconductor layer 3 There is a weak epitaxial relationship between them. The weak epitaxial relationship is that the force between the material molecules of the induction layer 2 and the material molecules of the first organic semiconductor layer 3 is van der Waals force, and there is an epitaxial relationship between the two molecular crystal lattices. Relationship; a heterojunction is formed between the materials of the first organic semiconductor layer 3 and the second organic semiconductor layer 4 due to charge transfer;

所述的基板1是绝缘材料,其为玻璃或陶瓷,或者是在导电材料表面覆盖一层绝缘材料形成的复合材料,其为在表面热生长形成一层二氧化硅的重掺杂的硅片;如果基板表面的均方根粗糙度(RMS)大于1纳米,需要用绝缘的聚合物涂层如聚甲基丙烯酸甲酯(PMMA)或聚乙烯醇(PVA)进行平滑;The substrate 1 is an insulating material, which is glass or ceramics, or a composite material formed by covering a layer of insulating material on the surface of a conductive material, which is a heavily doped silicon wafer that is thermally grown to form a layer of silicon dioxide on the surface ; If the root mean square roughness (RMS) of the substrate surface is greater than 1 nm, it needs to be smoothed with an insulating polymer coating such as polymethyl methacrylate (PMMA) or polyvinyl alcohol (PVA);

所述诱导层2是六联苯(p-6P)、2,7-二(4-联苯基)-菲(BPPh)、2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT)和2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh)中的一种,厚度不小于2纳米,不大于10纳米;The induction layer 2 is hexabiphenyl (p-6P), 2,7-bis(4-biphenyl)-phenanthrene (BPPh), 2,5-bis(4-1,1':4',1 One of "-terphenyl)-thiophene (3PT) and 2,7-bis(4-4'-fluorobiphenyl)-phenanthrene (F2-BPPh), with a thickness not less than 2 nanometers and not more than 10 Nano;

所述第一有机半导体层3是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;其厚度不小于1.5纳米,不大于20纳米;The first organic semiconductor layer 3 is metal-free phthalocyanine (H 2 Pc) or metal-containing phthalocyanine and its functionalized variants; the metal-containing phthalocyanine is copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), One of cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); functionalized variants of metal-containing phthalocyanines Vanadyl phthalocyanine (VOPc), titanyl phthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxide phthalocyanine (SnOPc), perfluorocopper phthalocyanine (F 16 CuPc), perfluorozinc phthalocyanine (F 16 ZnPc) and cobalt perfluorophthalocyanine (F 16 CoPc); its thickness is not less than 1.5 nanometers and not more than 20 nanometers;

所述的第二有机半导体层4是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中一种;其厚度不小于0.2纳米,不大于1.5纳米;The second organic semiconductor layer 4 is metal-free phthalocyanine (H 2 Pc) or metal-containing phthalocyanine and its functionalized variants; the metal-containing phthalocyanine is copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc) , cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc) and tin phthalocyanine (SnPc); functionalization of metal-containing phthalocyanines The body is vanadyl phthalocyanine (VOPc), titanyl phthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxytin phthalocyanine (SnOPc), perfluorophthalocyanine One of copper (F 16 CuPc), perfluorozinc phthalocyanine (F 16 ZnPc) and cobalt perfluorophthalocyanine (F 16 CoPc); its thickness is not less than 0.2 nanometers and not more than 1.5 nanometers;

金属电极5的材料为金。The material of the metal electrode 5 is gold.

图2是本发明涉及的第二种气敏层含有机异质结的有机半导体气体传感器的结构示意图。Fig. 2 is a schematic structural view of the second organic semiconductor gas sensor with an organic heterojunction in the gas sensing layer according to the present invention.

(B)本发明的第二种气敏层含有机异质结的有机半导体气体传感器的构成如下:基板1、诱导层2、第一有机半导体层3顺次连接,第一有机半导体层3与第二有机半导体层4、金属电极5均连接,金属电极5与第一有机半导体层3还有部分直接接触;所述的诱导层2和第一有机半导体层3之间存在弱外延关系;所述的有机半导体层3和有机半导体层4之间因为电荷转移而形成异质结;第二有机半导体层4的薄膜为非连续薄膜;(B) The composition of the second organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer of the present invention is as follows: the substrate 1, the inductive layer 2, and the first organic semiconductor layer 3 are connected in sequence, and the first organic semiconductor layer 3 is connected with the first organic semiconductor layer. The second organic semiconductor layer 4 and the metal electrode 5 are all connected, and the metal electrode 5 is partially in direct contact with the first organic semiconductor layer 3; there is a weak epitaxial relationship between the induction layer 2 and the first organic semiconductor layer 3; A heterojunction is formed between the organic semiconductor layer 3 and the organic semiconductor layer 4 because of charge transfer; the film of the second organic semiconductor layer 4 is a discontinuous film;

所述的基板1的材料和处理方法同(A);金属电极5的材料同(A);The material and processing method of the substrate 1 are the same as (A); the material of the metal electrode 5 is the same as (A);

所述的诱导层2、第一有机半导体层3、第二有机半导体层4的材料和厚度同(A)。The materials and thicknesses of the induction layer 2, the first organic semiconductor layer 3 and the second organic semiconductor layer 4 are the same as (A).

本发明所涉及的气敏层含有机异质结的有机半导体气体传感器可采用平面二极管的方式测量,即将金属电极5分别作为二极管的正负电极进行测量。对于基板是在导电材料表面覆盖一层绝缘材料形成的复合材料,还可以采用晶体管的方式测量,即将导电材料作为晶体管的栅电极,将电极5分别作为晶体管的源/漏电极进行测量。The organic semiconductor gas sensor whose gas-sensing layer contains an organic heterojunction involved in the present invention can be measured by means of a planar diode, that is, the metal electrode 5 is respectively used as the positive and negative electrodes of the diode for measurement. For a composite material in which the substrate is formed by covering a layer of insulating material on the surface of a conductive material, it can also be measured in the form of a transistor, that is, the conductive material is used as the gate electrode of the transistor, and the electrodes 5 are respectively used as the source/drain electrodes of the transistor for measurement.

本发明的气敏层含有机异质结的有机半导体气体传感器的制备方法如下:The preparation method of the organic semiconductor gas sensor with organic heterojunction in the gas sensitive layer of the present invention is as follows:

(I)本发明涉及的第一种气敏层含有机异质结的有机半导体气体传感器制法如下:(1) the first kind of gas sensitive layer that the present invention relates to contains the organic semiconductor gas sensor method of organic heterojunction as follows:

(1)基板1是绝缘材料,其为玻璃或陶瓷,或者是在导电材料表面覆盖一层绝缘材料形成的复合材料,其为在表面热生长形成一层二氧化硅的重掺杂的硅片;如果基板表面的均方根粗糙度(RMS)大于1纳米,需要用绝缘的聚合物涂层如聚甲基丙烯酸甲酯(PMMA)或聚乙烯醇(PVA)进行平滑;(1) Substrate 1 is an insulating material, which is glass or ceramics, or a composite material formed by covering a layer of insulating material on the surface of a conductive material, which is a heavily doped silicon wafer that forms a layer of silicon dioxide thermally grown on the surface ; If the root mean square roughness (RMS) of the substrate surface is greater than 1 nm, it needs to be smoothed with an insulating polymer coating such as polymethyl methacrylate (PMMA) or polyvinyl alcohol (PVA);

(2)在基板1表面真空沉积诱导层2,厚度不小于2纳米,不超过10纳米,材料是六联苯(p-6P)、2,7-二(4-联苯基)-菲(BPPh)、2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT)和2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh)中的一种;(2) vacuum-deposit induction layer 2 on the surface of substrate 1, the thickness is not less than 2 nanometers, not more than 10 nanometers, the material is hexabiphenyl (p-6P), 2,7-bis(4-biphenyl)-phenanthrene ( BPPh), 2,5-bis(4-1,1′:4′,1″-terphenyl)-thiophene (3PT) and 2,7-bis(4-4′-fluorobiphenyl)- One of phenanthrene (F2-BPPh);

(3)在诱导层2表面真空沉积第一有机半导层3,厚度不小于1.5纳米,不大于20纳米;所述的诱导层2和第一有机半导体层3之间存在弱外延关系,所述弱外延关系是诱导层2的材料分子和有机半导体层3的材料分子之间的作用力是范德华力,并且两种分子晶体晶格之间存在外延关系;第一有机半导层3的材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;(3) Vacuum-deposit the first organic semiconducting layer 3 on the surface of the inducing layer 2, with a thickness not less than 1.5 nanometers and not greater than 20 nanometers; there is a weak epitaxial relationship between the inducing layer 2 and the first organic semiconducting layer 3, so The weak epitaxial relationship is that the force between the material molecules of the induction layer 2 and the material molecules of the organic semiconductor layer 3 is van der Waals force, and there is an epitaxial relationship between the two kinds of molecular crystal lattices; the material of the first organic semiconductive layer 3 are metal-free phthalocyanines (H 2 Pc) or metal-containing phthalocyanines and their functionalized variants; metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), phthalocyanine One of ferrous cyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); the functionalized variant of the metal-containing phthalocyanine is vanadyl phthalocyanine (VOPc) , titanium oxyphthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxytin phthalocyanine (SnOPc), perfluorocopper phthalocyanine (F 16 CuPc), perfluoro One of zinc phthalocyanine (F 16 ZnPc) and cobalt phthalocyanine (F 16 CoPc);

(4)在第一有机半导体层3表面真空沉积第二有机半导体层4,第二有机半导体层4的薄膜为非连续薄膜;所述的第二有机半导体层4和第一有机半导体层3材料之间因为电荷转移形成异质结;所述的第二有机半导体层4的厚度不小于0.2纳米,不大于1.5纳米,材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;(4) Vacuum deposit the second organic semiconductor layer 4 on the surface of the first organic semiconductor layer 3, the film of the second organic semiconductor layer 4 is a discontinuous film; the second organic semiconductor layer 4 and the first organic semiconductor layer 3 materials A heterojunction is formed between them due to charge transfer; the thickness of the second organic semiconductor layer 4 is not less than 0.2 nanometers and not greater than 1.5 nanometers, and the material is metal-free phthalocyanine (H 2 Pc) or metal-containing phthalocyanine and its functional Metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine ( PbPc) and tin phthalocyanine (SnPc); functionalized variants of metal-containing phthalocyanines are vanadyl phthalocyanine (VOPc), titanyl phthalocyanine (TiOPc), aluminum chlorophthalocyanine (AlClPc), phthalocyanine Tin dichlorocyanine (SnCl 2 Pc), tin oxytin phthalocyanine (SnOPc), copper perfluorophthalocyanine (F 16 CuPc), zinc perfluorophthalocyanine (F 16 ZnPc) and cobalt perfluorophthalocyanine (F 16 CoPc);

(5)在第二有机半导体层4部分表面利用漏板真空沉积金属电极5;(5) using a drain plate to vacuum-deposit a metal electrode 5 on the surface of the second organic semiconductor layer 4;

其中,本底真空度不低于8.0×10-4Pa,金属电极沉积速率为20纳米/分钟,其他材料的沉积速率为1纳米/分钟。Among them, the background vacuum degree is not lower than 8.0×10 -4 Pa, the deposition rate of the metal electrode is 20 nm/min, and the deposition rate of other materials is 1 nm/min.

有机半导体层的厚度是由沉积速率和沉积时间的乘积决定,当二者乘积小于单分子层薄膜厚度时,所得薄膜为非连续薄膜;所述的第二有机半导体层4所使用的材料形成的单分子层薄膜的厚度均大于1.5纳米,因此按上述方法制备的第二有机半导体层4的薄膜为非连续薄膜。The thickness of the organic semiconductor layer is determined by the product of the deposition rate and the deposition time. When the product of the two is less than the thickness of the monolayer film, the resulting film is a discontinuous film; the material used for the second organic semiconductor layer 4 is formed of The thickness of the monolayer film is greater than 1.5 nanometers, so the film of the second organic semiconductor layer 4 prepared by the above method is a discontinuous film.

(II)本发明涉及的第二种气敏层含有机异质结的有机半导体气体传感器制法如下:(II) The second kind of gas sensitive layer that the present invention relates to contains the organic semiconductor gas sensor manufacturing method of organic heterojunction as follows:

(1)基板1是绝缘材料,其为玻璃或陶瓷,或者是在导电材料表面覆盖一层绝缘材料形成的复合材料,其为在重掺杂的硅片表面热生长形成一层二氧化硅;如果基板表面的均方根粗糙度(RMS)大于1纳米,需要用绝缘的聚合物涂层如聚甲基丙烯酸甲酯(PMMA)或聚乙烯醇(PVA)等进行平滑;(1) The substrate 1 is an insulating material, which is glass or ceramics, or a composite material formed by covering a layer of insulating material on the surface of a conductive material, which is a layer of silicon dioxide formed by thermal growth on the surface of a heavily doped silicon wafer; If the root mean square roughness (RMS) of the substrate surface is greater than 1 nm, it needs to be smoothed with an insulating polymer coating such as polymethyl methacrylate (PMMA) or polyvinyl alcohol (PVA);

(2)在基板表面真空沉积诱导层2,厚度不小于2纳米,不超过10纳米,材料是六联苯(p-6P)、2,7-二(4-联苯基)-菲(BPPh)、2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT)和2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh)中的一种;(2) Vacuum-deposit induction layer 2 on the surface of the substrate, the thickness of which is not less than 2 nanometers and not more than 10 nanometers, and the material is hexabiphenyl (p-6P), 2,7-bis(4-biphenyl)-phenanthrene (BPPh ), 2,5-bis(4-1,1′:4′,1″-terphenyl)-thiophene (3PT) and 2,7-bis(4-4′-fluorobiphenyl)-phenanthrene One of (F2-BPPh);

(3)在诱导层2表面真空沉积第一有机半导层3,所述诱导层2和第一有机半导体层3之间存在弱外延关系,厚度不小于1.5纳米,不大于20纳米,所述弱外延关系是诱导层2的材料分子和第一有机半导体层3的材料分子之间的作用力是范德华力,并且两种分子晶体晶格之间存在外延关系;第一有机半导层3的材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;(3) Vacuum-deposit the first organic semiconducting layer 3 on the surface of the inducing layer 2, there is a weak epitaxial relationship between the inducing layer 2 and the first organic semiconductor layer 3, and the thickness is not less than 1.5 nanometers and not greater than 20 nanometers, the The weak epitaxial relationship is that the force between the material molecules of the induction layer 2 and the material molecules of the first organic semiconductor layer 3 is Van der Waals force, and there is an epitaxial relationship between the two kinds of molecular crystal lattices; the first organic semiconductive layer 3 The materials are metal-free phthalocyanine (H 2 Pc) or metal-containing phthalocyanine and its functionalized variants; metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), One of ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); the functionalized variant of the metal-containing phthalocyanine is vanadyl phthalocyanine (VOPc ), titanium oxyphthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxytin phthalocyanine (SnOPc), perfluorocopper phthalocyanine (F 16 CuPc), all One of zinc fluorophthalocyanine (F 16 ZnPc) and cobalt perfluorophthalocyanine (F 16 CoPc);

(4)在第一有机半导体层3的部分表面利用漏板真空沉积金属电极5;(4) utilizing a drain board to vacuum-deposit a metal electrode 5 on a part of the surface of the first organic semiconductor layer 3;

(5)在第一有机半导体层3的表面空沉积金属电极5以外的部分真空沉积第二有机半导体层4,第二有机半导体层4的薄膜为非连续薄膜;所述的第二有机半导体层4和第一有机半导体层3材料之间因为电荷转移形成异质结;所述的第二有机半导体层4的厚度不小于0.2纳米,不大于1.5纳米,第二有机半导体层4的材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;(5) vacuum deposit the second organic semiconductor layer 4 on the surface of the first organic semiconductor layer 3 other than the metal electrode 5, and the film of the second organic semiconductor layer 4 is a discontinuous film; the second organic semiconductor layer 4 and the material of the first organic semiconductor layer 3 form a heterojunction due to charge transfer; the thickness of the second organic semiconductor layer 4 is not less than 0.2 nanometers and not greater than 1.5 nanometers, and the material of the second organic semiconductor layer 4 is no Metallic phthalocyanines (H2Pc) or metal-containing phthalocyanines and their functionalized variants; metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), ferrous phthalocyanine ( FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); functionalized variants of metal-containing phthalocyanines are vanadyl phthalocyanine (VOPc), oxyphthalocyanine Titanium (TiOPc), Aluminum Chlorophthalocyanine (AlClPc), Dichlorotin Phthalocyanine (SnCl 2 Pc), Tin Oxyphthalocyanine (SnOPc), Copper Perfluorophthalocyanine (F 16 CuPc), Zinc Perfluorophthalocyanine One of (F 16 ZnPc) and perfluorocobalt phthalocyanine (F 16 CoPc);

其中,本底真空度不低于8.0×10-4Pa,金属电极沉积速率为20纳米/分钟,其他材料的沉积速率为1纳米/分钟。Among them, the background vacuum degree is not lower than 8.0×10 -4 Pa, the deposition rate of the metal electrode is 20 nm/min, and the deposition rate of other materials is 1 nm/min.

有机半导体层的厚度是由沉积速率和沉积时间的乘积决定,当二者乘积小于单分子层薄膜厚度时,所得薄膜为非连续薄膜。所述的第二有机半导体层4所使用的材料形成的单分子层薄膜的厚度均大于1.5纳米,因此按上述方法制备的第二有机半导体层4的薄膜为非连续薄膜。由于金属电极先于第二有机半导体层4沉积,因此沉积第二有机半导体层4时会有部分第二有机半导体4沉积在金属电极表面,这一点对器件的影响可以忽略不计。The thickness of the organic semiconductor layer is determined by the product of the deposition rate and the deposition time. When the product of the two is less than the thickness of the monolayer film, the resulting film is a discontinuous film. The thickness of the monomolecular film formed by the materials used in the second organic semiconductor layer 4 is greater than 1.5 nanometers, so the film of the second organic semiconductor layer 4 prepared by the above method is a discontinuous film. Since the metal electrode is deposited before the second organic semiconductor layer 4 , part of the second organic semiconductor 4 will be deposited on the surface of the metal electrode when the second organic semiconductor layer 4 is deposited, which has negligible impact on the device.

有益效果:本发明提供的气敏层含有机异质结的有机半导体气体传感器,包括第一种气敏层含有机异质结的有机半导体气体传感器器和第二种气敏层含有机异质结的有机半导体气体传感器。本发明提供的气敏层含有机异质结的有机半导体气体传感器是利用两种有机半导体材料间发生电荷转移形成异质结,改变薄膜表面的氧化还原电势,从而提高传感器对敏感气体的响应。本发明提供的气敏层含有机异质结的有机半导体气体传感器室温条件下敏感性高,气敏层厚度小,有效的缩短了器件的响应/回复时间,并且利用真空沉积方法一次性完成器件的制备,不需要退火等后续工艺,简化了器件的制备过程。本发明提供的气敏层含有机异质结的有机半导体气体传感器可以检测体积分数为百万分之五的NO2气体,并且响应/回复均可以在10分钟内完成。Beneficial effects: the organic semiconductor gas sensor with a gas-sensing layer containing an organic heterojunction provided by the present invention includes a first gas-sensing layer containing an organic heterojunction organic semiconductor gas sensor and a second gas-sensing layer containing an organic heterojunction Junction organic semiconductor gas sensors. The organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer provided by the invention utilizes charge transfer between two organic semiconductor materials to form a heterojunction to change the oxidation-reduction potential of the film surface, thereby improving the response of the sensor to sensitive gases. The organic semiconductor gas sensor with a gas-sensing layer containing an organic heterojunction provided by the present invention has high sensitivity at room temperature, and the thickness of the gas-sensing layer is small, which effectively shortens the response/recovery time of the device, and uses a vacuum deposition method to complete the device at one time The preparation of the device does not require subsequent processes such as annealing, which simplifies the preparation process of the device. The organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer provided by the invention can detect NO2 gas with a volume fraction of 5 parts per million, and the response/recovery can be completed within 10 minutes.

附图说明 Description of drawings

图1是本发明涉及的第一种气敏层含有机异质结的有机半导体气体传感器的结构示意图。FIG. 1 is a schematic structural view of the first organic semiconductor gas sensor with a gas-sensing layer containing an organic heterojunction according to the present invention.

图2是本发明涉及的第二种气敏层含有机异质结的有机半导体气体传感器的结构示意图。Fig. 2 is a schematic structural view of the second organic semiconductor gas sensor with an organic heterojunction in the gas sensing layer according to the present invention.

图3是采用图1所示构型的本发明涉及的气敏层含有机异质结的有机半导体气体传感器室温下在对体积分数为百万分之一的NO2气体的响应/回复曲线。其中,基板是表面热氧化生长形成SiO2的重掺杂的硅片,诱导层是p-6P,厚度4纳米,有机半导体层3是TiOPc,厚度3纳米,机半导体层4是F16CuPc,厚度0.5纳米,采用金作为电极。Fig. 3 is the response/recovery curve to NO2 gas with a volume fraction of one part per million of the organic semiconductor gas sensor with an organic heterojunction in the gas-sensing layer of the present invention adopting the configuration shown in Fig. 1 at room temperature. Wherein, the substrate is a heavily doped silicon wafer whose surface is thermally oxidized and grown to form SiO 2 , the induction layer is p-6P with a thickness of 4 nanometers, the organic semiconductor layer 3 is TiOPc with a thickness of 3 nanometers, and the organic semiconductor layer 4 is F 16 CuPc, The thickness is 0.5 nm, and gold is used as the electrode.

图4是采用图2所示构型的本发明涉及的第二种气敏层含有机异质结的有机半导体气体传感器室温下在对体积分数为百万分之五的NO2气体的响应/回复曲线。其中,基板是表面覆盖一层热生长的SiO2的重掺杂的硅片,诱导层是p-6P,厚度2纳米,有机半导体层3是VOPc,厚度2纳米,有机半导体层4是CuPc,厚度1纳米,采用金作为电极。Fig. 4 adopts the second kind of gas sensitive layer of the present invention that adopts the configuration shown in Fig. 2 to contain the organic semiconductor gas sensor of organic heterojunction at room temperature to be 5 parts per million by volume NO Gas response/ recovery curve. Wherein, the substrate is a heavily doped silicon wafer whose surface is covered with thermally grown SiO 2 , the induction layer is p-6P with a thickness of 2 nanometers, the organic semiconductor layer 3 is VOPc with a thickness of 2 nanometers, and the organic semiconductor layer 4 is CuPc, The thickness is 1 nm, and gold is used as the electrode.

具体实施方式 Detailed ways

以下所有实施例中采用无金属酞菁(H2Pc)、酞菁铜(CuPc),酞菁镍(NiPc),酞菁钴(CoPc),酞菁亚铁(FePc),酞菁锌(ZnPc),酞菁铅(PbPc),酞菁锡(SnPc),酞菁氧钒(VOPc),酞菁氧钛(TiOPc),酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc),全氟代酞菁铜(F16CuPc),全氟代酞菁锌(F16ZnPc),全氟代酞菁钴(F16CoPc),2,7-二(4-联苯基)-菲(BPPh),2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT),2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh)均为商业产品,购买后经真空升华提纯二次后使用。玻璃,陶瓷,表面热氧化生长形成二氧化硅(SiO2)的重掺杂的硅片,清洗后使用,聚甲基苯烯酸甲酯(PMMA),聚乙烯醇(PVA),为商业化产品,购买后直接使用。Metal-free phthalocyanine (H 2 Pc), copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc) are used in all the following examples. ), lead phthalocyanine (PbPc), tin phthalocyanine (SnPc), vanadyl phthalocyanine (VOPc), titanyl phthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), tin dichloride phthalocyanine (SnCl 2 Pc) , oxytin phthalocyanine (SnOPc), perfluorocopper phthalocyanine (F 16 CuPc), perfluorozinc phthalocyanine (F 16 ZnPc), perfluorocobalt phthalocyanine (F 16 CoPc), 2,7-di (4-biphenyl)-phenanthrene (BPPh), 2,5-bis(4-1,1′:4′,1″-terphenyl)-thiophene (3PT), 2,7-bis(4- 4'-fluorobiphenyl)-phenanthrene (F2-BPPh) is a commercial product, which is used after being purified by vacuum sublimation twice after purchase. Glass, pottery, surface thermal oxidation growth forms the heavy weight of silicon dioxide (SiO 2 ) Doped silicon wafers are used after cleaning. Polymethyl methacrylate (PMMA) and polyvinyl alcohol (PVA) are commercial products and used directly after purchase.

实施例1Example 1

本发明的第一种气敏层含有机异质结的有机半导体气体传感器的构型如图1所示,具体制备方法如下:The configuration of the first organic semiconductor gas sensor with an organic heterojunction in the gas-sensitive layer of the present invention is shown in Figure 1, and the specific preparation method is as follows:

(1)基板1是绝缘材料,其为玻璃或陶瓷,或者是在导电材料表面覆盖一层绝缘材料形成的复合材料,其为在表面热生长形成一层二氧化硅的重掺杂的硅片;如果基板表面的均方根粗糙度(RMS)大于1纳米,需要用绝缘的聚合物涂层如聚甲基丙烯酸甲酯(PMMA)或聚乙烯醇(PVA)进行平滑;(1) Substrate 1 is an insulating material, which is glass or ceramics, or a composite material formed by covering a layer of insulating material on the surface of a conductive material, which is a heavily doped silicon wafer that forms a layer of silicon dioxide thermally grown on the surface ; If the root mean square roughness (RMS) of the substrate surface is greater than 1 nm, it needs to be smoothed with an insulating polymer coating such as polymethyl methacrylate (PMMA) or polyvinyl alcohol (PVA);

(2)在基板1表面真空沉积诱导层2,厚度不小于2纳米,不超过10纳米,材料是六联苯(p-6P)、2,7-二(4-联苯基)-菲(BPPh)、2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT)和2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh)中一种;(2) vacuum-deposit induction layer 2 on the surface of substrate 1, the thickness is not less than 2 nanometers, not more than 10 nanometers, the material is hexabiphenyl (p-6P), 2,7-bis(4-biphenyl)-phenanthrene ( BPPh), 2,5-bis(4-1,1′:4′,1″-terphenyl)-thiophene (3PT) and 2,7-bis(4-4′-fluorobiphenyl)- One of phenanthrene (F2-BPPh);

(3)在诱导层2表面真空沉积第一有机半导层3,所述诱导层2和第一有机半导体层3之间存在弱外延关系;所述弱外延关系是诱导层2的材料分子和有机半导体层3的材料分子之间的作用力是范德华力,并且两种分子晶体晶格之间存在外延关系。厚度不小于1.5纳米,不大于20纳米,第一有机半导层3的材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中一种;(3) the first organic semiconducting layer 3 is vacuum-deposited on the surface of the inducing layer 2, and there is a weak epitaxial relationship between the inducing layer 2 and the first organic semiconducting layer 3; The force between the material molecules of the organic semiconductor layer 3 is van der Waals force, and there is an epitaxial relationship between the two molecular crystal lattices. The thickness is not less than 1.5 nanometers and not more than 20 nanometers. The material of the first organic semiconducting layer 3 is metal-free phthalocyanine (H 2 Pc) or metal-containing phthalocyanine and its functionalized variants; the metal-containing phthalocyanine is phthalocyanine One of copper (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc) and tin phthalocyanine (SnPc) species; functionalized variants of metal-containing phthalocyanines are vanadyl phthalocyanine (VOPc), titanyl phthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), phthalocyanine One of tin oxide (SnOPc), perfluorocopper phthalocyanine (F 16 CuPc), zinc perfluorophthalocyanine (F 16 ZnPc) and cobalt perfluorophthalocyanine (F 16 CoPc);

(4)在第一有机半导体层3表面真空沉积第二有机半导体层4,第二有机半导体层4的薄膜为非连续薄膜;所述的第二有机半导体层4和第一有机半导体层3材料之间因为电荷转移形成异质结;所述的第二有机半导体层4的厚度不小于0.2纳米,不大于1.5纳米,第二有机半导体层4的材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中一种;(4) Vacuum deposit the second organic semiconductor layer 4 on the surface of the first organic semiconductor layer 3, the film of the second organic semiconductor layer 4 is a discontinuous film; the second organic semiconductor layer 4 and the first organic semiconductor layer 3 materials A heterojunction is formed between them due to charge transfer; the thickness of the second organic semiconductor layer 4 is not less than 0.2 nanometers and not greater than 1.5 nanometers, and the material of the second organic semiconductor layer 4 is metal-free phthalocyanine (H 2 Pc) or Metal-containing phthalocyanines and their functionalized variants; metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), zinc phthalocyanine ( One of ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); functionalized variants of metal-containing phthalocyanines are vanadyl phthalocyanine (VOPc), titanyl phthalocyanine (TiOPc), phthalocyanine Aluminum chloride (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxide phthalocyanine (SnOPc), perfluoro copper phthalocyanine (F 16 CuPc), perfluoro zinc phthalocyanine (F 16 ZnPc) and all One of fluorocobalt phthalocyanine (F 16 CoPc);

(5)在第二有机半导体层4部分表面利用漏板真空沉积金属电极5;金属电极5的材料为金;(5) Utilize the drain plate to vacuum-deposit the metal electrode 5 on the surface of the second organic semiconductor layer 4; the material of the metal electrode 5 is gold;

其中,本底真空度不低于8.0×10-4Pa,金属电极沉积速率为20纳米/分钟,其他材料的沉积速率为1纳米/分钟。Among them, the background vacuum degree is not lower than 8.0×10 -4 Pa, the deposition rate of the metal electrode is 20 nm/min, and the deposition rate of other materials is 1 nm/min.

有机半导体层的厚度是由沉积速率和沉积时间的乘积决定,当二者乘积小于单分子层薄膜厚度时,所得薄膜为非连续薄膜;所述的第二有机半导体层4所使用的材料形成的单分子层薄膜的厚度均大于1.5纳米,因此按上述方法制备的第二有机半导体层4的薄膜为非连续薄膜。The thickness of the organic semiconductor layer is determined by the product of the deposition rate and the deposition time. When the product of the two is less than the thickness of the monolayer film, the resulting film is a discontinuous film; the material used for the second organic semiconductor layer 4 is formed of The thickness of the monolayer film is greater than 1.5 nanometers, so the film of the second organic semiconductor layer 4 prepared by the above method is a discontinuous film.

图3是采用图1所示构型的本发明涉及的第一种气敏层含有机异质结的有机半导体气体传感器室温下在对体积分数为百万分之一的NO2气体的响应/回复曲线。其中,基板是表面热氧化生长形成SiO2的重掺杂的硅片,诱导层是p-6P,厚度4纳米,有机半导体层3是TiOPc,厚度3纳米,机半导体层4是F16CuPc,厚度0.5纳米,采用金作为电极。与参比器件比较,参比器件没有响应,采用图1所示结构的第一种有机半导体气体传感器的灵敏度是17,响应时间2.5分钟,回复时间7分钟。所述的响应时间是从开始通NO2开始到传感器的电流值达到峰值50%所需时间,回复时间是停止通NO2开始到传感器的电流值减少到峰值50%所需的时间。因此,采用本发明的气敏层含有机异质结的有机半导体气体传感器可以有效提高器件的灵敏度,缩短了器件的响应/回复时间。Fig. 3 is that adopting the configuration shown in Fig. 1 is the first kind of organic semiconductor gas sensor whose gas-sensitive layer contains organic heterojunction involved in the present invention at room temperature to the volume fraction of NO2 gas response/ recovery curve. Wherein, the substrate is a heavily doped silicon wafer whose surface is thermally oxidized and grown to form SiO 2 , the induction layer is p-6P with a thickness of 4 nanometers, the organic semiconductor layer 3 is TiOPc with a thickness of 3 nanometers, and the organic semiconductor layer 4 is F 16 CuPc, The thickness is 0.5 nm, and gold is used as the electrode. Compared with the reference device, the reference device has no response, the sensitivity of the first organic semiconductor gas sensor adopting the structure shown in Figure 1 is 17, the response time is 2.5 minutes, and the recovery time is 7 minutes. The response time is the time required from the start of NO2 supply to the sensor current value reaching 50% of the peak value, and the recovery time is the time required from the stop of NO2 supply to the sensor current value decreasing to 50% of the peak value. Therefore, the use of the organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer of the present invention can effectively improve the sensitivity of the device and shorten the response/recovery time of the device.

表1给出了采用上述工艺并按表1的给定条件制备的第一种气敏层含有机异质结的有机半导体气体传感器的组成及在NO2体积分数为百万分之五时器件参数。Table 1 shows the composition of the first organic semiconductor gas sensor with an organic heterojunction in the gas-sensing layer prepared by the above-mentioned process and the given conditions in Table 1, and the device when the volume fraction of NO2 is 5ppm parameter.

表1Table 1

注:SiO2是指表面热氧化生长形成SiO2的重掺杂的硅片,灵敏度和响应/回复时间后标注*号的是采用晶体管测量方式得到的数据,其余未作标注的是采用平面二极管测量方式得到的数据。Note: SiO 2 refers to the heavily doped silicon wafer formed by thermal oxidation on the surface. The data marked with * after the sensitivity and response /recovery time are measured by transistors, and the rest are measured by planar diodes. The data obtained by the measurement method.

实施例2Example 2

如图2所示结构的本发明涉及的第二种气敏层含有机异质结的有机半导体气体传感器制法如下:The method for making the second gas-sensing layer of the present invention with the structure shown in Figure 2 contains an organic heterojunction organic semiconductor gas sensor is as follows:

(1)基板1是绝缘材料,其为玻璃或陶瓷,或者是在导电材料表面覆盖一层绝缘材料形成的复合材料,其为在重掺杂的硅片表面热生长形成一层二氧化硅;如果基板表面的均方根粗糙度(RMS)大于1纳米,需要用绝缘的聚合物涂层如聚甲基丙烯酸甲酯(PMMA)或聚乙烯醇(PVA)进行平滑;(1) The substrate 1 is an insulating material, which is glass or ceramics, or a composite material formed by covering a layer of insulating material on the surface of a conductive material, which is a layer of silicon dioxide formed by thermal growth on the surface of a heavily doped silicon wafer; If the root mean square roughness (RMS) of the substrate surface is greater than 1 nm, it needs to be smoothed with an insulating polymer coating such as polymethyl methacrylate (PMMA) or polyvinyl alcohol (PVA);

(2)在基板表面真空沉积诱导层2,厚度不小于2纳米,不超过10纳米,材料是六联苯(p-6P)、2,7-二(4-联苯基)-菲(BPPh)、2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT)和2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh)中的一种;(2) Vacuum-deposit induction layer 2 on the surface of the substrate, the thickness of which is not less than 2 nanometers and not more than 10 nanometers, and the material is hexabiphenyl (p-6P), 2,7-bis(4-biphenyl)-phenanthrene (BPPh ), 2,5-bis(4-1,1′:4′,1″-terphenyl)-thiophene (3PT) and 2,7-bis(4-4′-fluorobiphenyl)-phenanthrene One of (F2-BPPh);

(3)在诱导层2表面真空沉积第一有机半导层3,所述诱导层2和第一有机半导体层3之间存在弱外延关系,所述弱外延关系是诱导层2的材料分子和第一有机半导体层3的材料分子之间的作用力是范德华力,并且两种分子晶体晶格之间存在外延关系;第一有机半导层3的厚度不小于1.5纳米,不大于20纳米,材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;(3) Vacuum deposition of the first organic semiconducting layer 3 on the surface of the inducing layer 2, there is a weak epitaxial relationship between the inducing layer 2 and the first organic semiconductor layer 3, and the weak epitaxial relationship is the material molecules of the inducing layer 2 and The force between the material molecules of the first organic semiconductor layer 3 is van der Waals force, and there is an epitaxial relationship between the two molecular crystal lattices; the thickness of the first organic semiconductor layer 3 is not less than 1.5 nanometers and not greater than 20 nanometers, The materials are metal-free phthalocyanine (H 2 Pc) or metal-containing phthalocyanine and its functionalized variants; metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), One of ferrous phthalocyanine (FePc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); the functionalized variant of the metal-containing phthalocyanine is vanadyl phthalocyanine (VOPc ), titanium oxyphthalocyanine (TiOPc), aluminum chloride phthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxytin phthalocyanine (SnOPc), perfluorocopper phthalocyanine (F 16 CuPc), all One of zinc fluorophthalocyanine (F 16 ZnPc) and cobalt perfluorophthalocyanine (F 16 CoPc);

(4)在第一有机半导体层3部分表面利用漏板真空沉积金属电极5;金属电极5的材料为金;(4) Utilize the drain plate to vacuum-deposit the metal electrode 5 on the surface of the first organic semiconductor layer 3; the material of the metal electrode 5 is gold;

(5)在第一有机半导体层3的表面空沉积金属电极5以外的部分真空沉积第二有机半导体层4,第二有机半导体层4的薄膜为非连续薄膜;所述的第二有机半导体层4和第一有机半导体层3材料之间因为电荷转移形成异质结,所述的第二有机半导体层4的厚度不小于0.2纳米,不大于1.5纳米,材料是无金属酞菁(H2Pc)或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜(CuPc)、酞菁镍(NiPc)、酞菁钴(CoPc)、酞菁亚铁(FePc)、酞菁锌(ZnPc)、酞菁铅(PbPc)和酞菁锡(SnPc)中的一种;含金属的酞菁的官能化变体为酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁氯铝(AlClPc)、酞菁二氯锡(SnCl2Pc)、酞菁氧锡(SnOPc)、全氟代酞菁铜(F16CuPc)、,全氟代酞菁锌(F16ZnPc)和全氟代酞菁钴(F16CoPc)中的一种;(5) vacuum deposit the second organic semiconductor layer 4 on the surface of the first organic semiconductor layer 3 other than the metal electrode 5, and the film of the second organic semiconductor layer 4 is a discontinuous film; the second organic semiconductor layer 4 and the material of the first organic semiconductor layer 3 form a heterojunction due to charge transfer, the thickness of the second organic semiconductor layer 4 is not less than 0.2 nanometers and not more than 1.5 nanometers, and the material is metal-free phthalocyanine (H 2 Pc ) or metal-containing phthalocyanines and their functionalized variants; metal-containing phthalocyanines are copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), cobalt phthalocyanine (CoPc), ferrous phthalocyanine (FePc), phthalocyanine One of zinc (ZnPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc); functionalized variants of metal-containing phthalocyanines are vanadyl phthalocyanine (VOPc), titanium oxyphthalocyanine (TiOPc), Aluminum chlorophthalocyanine (AlClPc), dichlorotin phthalocyanine (SnCl 2 Pc), tin oxide phthalocyanine (SnOPc), copper perfluorophthalocyanine (F 16 CuPc), zinc perfluorophthalocyanine (F 16 ZnPc ) and one of perfluorocobalt phthalocyanine (F 16 CoPc);

其中,本底真空度不低于8.0×10-4Pa,金属电极沉积速率为20纳米/分钟,其他材料的沉积速率为1纳米/分钟。Among them, the background vacuum degree is not lower than 8.0×10 -4 Pa, the deposition rate of the metal electrode is 20 nm/min, and the deposition rate of other materials is 1 nm/min.

有机半导体层的厚度是由沉积速率和沉积时间的乘积决定,当二者乘积小于单分子层薄膜厚度时,所得薄膜为非连续薄膜。所述的第二有机半导体层4所使用的材料形成的单分子层薄膜的厚度均大于1.5纳米,因此按上述方法制备的第二有机半导体层4的薄膜为非连续薄膜。由于金属电极先于第二有机半导体层4沉积,因此沉积第二有机半导体层4时会有部分第二有机半导体4沉积在金属电极表面,这一点对器件的影响可以忽略不计。The thickness of the organic semiconductor layer is determined by the product of the deposition rate and the deposition time. When the product of the two is less than the thickness of the monolayer film, the resulting film is a discontinuous film. The thickness of the monomolecular film formed by the materials used in the second organic semiconductor layer 4 is greater than 1.5 nanometers, so the film of the second organic semiconductor layer 4 prepared by the above method is a discontinuous film. Since the metal electrode is deposited before the second organic semiconductor layer 4 , part of the second organic semiconductor 4 will be deposited on the surface of the metal electrode when the second organic semiconductor layer 4 is deposited, which has negligible impact on the device.

图4给出图2所示结构的气敏层含有机异质结的有机半导体气体传感器在二氧化氮体积分数为百万分之五时的响应/回复曲线。其中,基板是表面覆盖一层热生长的SiO2的重掺杂的硅片,诱导层是p-6P,厚度2纳米,有机半导体层3是VOPc,厚度2纳米,有机半导体层4是CuPc,厚度1纳米,采用金作为电极。与参比器件比较,参比器件无响应,采用本发明提供的气敏层含有机异质结的有机半导体气体传感器灵敏度为10,响应时间2.5分钟,回复时间7分钟。所述的响应时间是从开始通NO2开始到传感器的电流值达到峰值50%所需时间,回复时间是停止通NO2开始到传感器的电流值减少到峰值50%所需的时间。因此,采用本发明的气敏层含有机异质结的有机半导体气体传感器可以有效提高器件的灵敏度,降低器件的响应/回复时间。Fig. 4 shows the response/recovery curve of the organic semiconductor gas sensor with the structure shown in Fig. 2 and the gas-sensing layer containing an organic heterojunction when the volume fraction of nitrogen dioxide is 5ppm. Wherein, the substrate is a heavily doped silicon wafer whose surface is covered with thermally grown SiO 2 , the induction layer is p-6P with a thickness of 2 nanometers, the organic semiconductor layer 3 is VOPc with a thickness of 2 nanometers, and the organic semiconductor layer 4 is CuPc, The thickness is 1 nm, and gold is used as the electrode. Compared with the reference device, the reference device has no response, the sensitivity of the organic semiconductor gas sensor using the gas-sensing layer containing the organic heterojunction provided by the present invention is 10, the response time is 2.5 minutes, and the recovery time is 7 minutes. The response time is the time required from the start of NO2 supply to the sensor current value reaching 50% of the peak value, and the recovery time is the time required from the stop of NO2 supply to the sensor current value decreasing to 50% of the peak value. Therefore, the use of the organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer of the present invention can effectively improve the sensitivity of the device and reduce the response/recovery time of the device.

表2给出了采用上述工艺并按表2的给定条件制备的第二种气敏层含有机异质结的有机半导体气体传感器的组成及在NO2体积分数为百万分之五时器件参数。Table 2 shows the composition of the second organic semiconductor gas sensor with an organic heterojunction in the gas-sensitive layer prepared by the above-mentioned process and the given conditions in Table 2 and the device when the volume fraction of NO2 is 5 ppm parameter.

表2Table 2

注:SiO2是指表面热氧化生长形成二氧化硅(SiO2)的重掺杂的硅片,灵敏度和响应/回复时间后标注*号的是采用晶体管测量方式得到的数据,其余未作标注的是采用平面二极管测量方式得到的数据。Note: SiO 2 refers to heavily doped silicon wafers formed by thermal oxidation on the surface to form silicon dioxide (SiO 2 ). Those marked with * after the sensitivity and response/recovery time are the data obtained by transistor measurement, and the rest are not marked The data obtained by using the planar diode measurement method.

Claims (5)

1.气敏层含有机异质结的有机半导体气体传感器,其特征在于,包括第一种气敏层含有机异质结的有机半导体气体传感器和第二种气敏层含有机异质结的有机半导体气体传感器;(A)第一种气敏层含有机异质结的有机半导体气体传感器的构成如下:基板(1)、诱导层(2)、第一有机半导体层(3)、第二有机半导体层(4)顺次连接,第二有机半导体层(4)的薄膜为非连续薄膜,金属电极(5)部分覆盖第二有机半导体层(4)后与第一有机半导体层(3)对应的有部分连接;所述诱导层(2)和第一有机半导体层(3)之间存在弱外延关系,所述的弱外延关系是诱导层(2)的材料分子和第一有机半导体层(3)的材料分子之间的作用力是范德华力,并且两种分子晶体晶格之间存在外延关系;所述的第一有机半导体层(3)和第二有机半导体层(4)之间由于电荷转移而形成异质结;(B)第二种气敏层含有机异质结的有机半导体气体传感器的构成如下:基板(1)、诱导层(2)、第一有机半导体层(3)顺次连接,第一有机半导体层(3)与第二有机半导体层(4)、金属电极(5)均连接,金属电极(5)与第一有机半导体层(3)还有部分直接接触;所述的诱导层(2)和第一有机半导体层(3)之间存在弱外延关系;所述的第一有机半导体层(3)和第二有机半导体层(4)之间因为电荷转移而形成异质结;第二有机半导体层(4)的薄膜为非连续薄膜。1. The organic semiconductor gas sensor whose gas-sensing layer contains organic heterojunction, is characterized in that, comprises the organic semiconductor gas sensor that the first gas-sensing layer contains organic hetero-junction and the second gas-sensing layer contains organic hetero-junction Organic semiconductor gas sensor; (A) The composition of the organic semiconductor gas sensor with organic heterojunction in the first gas sensitive layer is as follows: substrate (1), induction layer (2), first organic semiconductor layer (3), second The organic semiconductor layers (4) are connected in sequence, the film of the second organic semiconductor layer (4) is a discontinuous film, and the metal electrode (5) partly covers the second organic semiconductor layer (4) and connects with the first organic semiconductor layer (3) Correspondingly, there is a partial connection; there is a weak epitaxial relationship between the induction layer (2) and the first organic semiconductor layer (3), and the weak epitaxial relationship is that the material molecules of the induction layer (2) and the first organic semiconductor layer (3) The force between the material molecules is van der Waals force, and there is an epitaxial relationship between the two molecular crystal lattices; between the first organic semiconductor layer (3) and the second organic semiconductor layer (4) Due to charge transfer, a heterojunction is formed; (B) the composition of the organic semiconductor gas sensor with an organic heterojunction in the second gas sensitive layer is as follows: substrate (1), induction layer (2), first organic semiconductor layer (3 ) are connected in sequence, the first organic semiconductor layer (3) is connected with the second organic semiconductor layer (4), and the metal electrode (5), and the metal electrode (5) is in direct contact with the first organic semiconductor layer (3) ; there is a weak epitaxial relationship between the induction layer (2) and the first organic semiconductor layer (3); between the first organic semiconductor layer (3) and the second organic semiconductor layer (4) due to charge transfer And a heterojunction is formed; the thin film of the second organic semiconductor layer (4) is a discontinuous thin film. 2.按权利要求1所述的气敏层含有机异质结的有机半导体气体传感器,其特征在于,所述的基板(1)是绝缘材料,其为玻璃或陶瓷,或者是在导电材料表面覆盖一层绝缘材料形成的复合材料,其为在表面热生长形成一层二氧化硅的重掺杂的硅片;如果基板表面的均方根粗糙度大于1纳米,需要用绝缘的聚合物涂层进行平滑,所述的绝缘的聚合物涂层为聚甲基丙烯酸甲酯或聚乙烯醇;所述的诱导层(2)是六联苯、2,7-二(4一联苯基)-菲、2,5-二(4-1,1':4',1〞-三联苯基)-噻吩)和2,7-二(4-4ˊ-氟代联苯基)-菲中的一种;所述的第一有机半导体层(3)是无金属酞菁或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜、酞菁镍、酞菁钴、酞菁亚铁、酞菁锌、酞菁铅和酞菁锡中的一种;含金属的酞菁的官能化变体为酞菁氧钒、酞菁氧钛、酞菁氯铝、酞菁二氯锡、酞菁氧锡、全氟代酞菁铜、全氟代酞菁锌和全氟代酞菁钴中的一种;所述的第二有机半导体层(4)是无金属酞菁或含金属酞菁及其官能化变体;含金属的酞菁为酞菁铜、酞菁镍、酞菁钴、酞菁亚铁、酞菁锌、酞菁铅和酞菁锡中的一种;含金属的酞菁的官能化变体为酞菁氧钒、酞菁氧钛、酞菁氯铝、酞菁二氯锡、酞菁氧锡、全氟代酞菁铜、全氟代酞菁锌和全氟代酞菁钴中的一种。2. The organic semiconductor gas sensor containing an organic heterojunction in the gas-sensitive layer according to claim 1, characterized in that, said substrate (1) is an insulating material, which is glass or pottery, or is on the surface of a conductive material A composite material formed by covering a layer of insulating material, which is a heavily doped silicon wafer with a layer of silicon dioxide thermally grown on the surface; if the root mean square roughness of the substrate surface is greater than 1 nanometer, it needs to be coated with an insulating polymer The layer is smoothed, and the insulating polymer coating is polymethyl methacrylate or polyvinyl alcohol; the induction layer (2) is hexabiphenyl, 2,7-bis(4-biphenyl) -Phenanthrene, 2,5-bis(4-1,1':4',1"-terphenyl)-thiophene) and 2,7-bis(4-4'-fluorobiphenyl)-phenanthrene One; the first organic semiconductor layer (3) is metal-free phthalocyanine or metal-containing phthalocyanine and functionalized variants thereof; metal-containing phthalocyanine is copper phthalocyanine, nickel phthalocyanine, cobalt phthalocyanine, phthalocyanine One of ferrocyanine, zinc phthalocyanine, lead phthalocyanine, and tin phthalocyanine; functionalized variants of metal-containing phthalocyanines are vanadyl phthalocyanine, oxytitanium phthalocyanine, aluminum phthalocyanine chloride, dichlorophthalocyanine One of tin, oxytin phthalocyanine, perfluorophthalocyanine copper, perfluorophthalocyanine zinc and perfluorophthalocyanine cobalt; the second organic semiconductor layer (4) is metal-free phthalocyanine or containing Metallic phthalocyanines and functionalized variants thereof; metal-containing phthalocyanines being one of copper phthalocyanine, nickel phthalocyanine, cobalt phthalocyanine, ferrous phthalocyanine, zinc phthalocyanine, lead phthalocyanine and tin phthalocyanine; containing Functionalized variants of metallic phthalocyanines are vanadyl phthalocyanine, oxytitanyl phthalocyanine, chloroaluminum phthalocyanine, dichlorotin phthalocyanine, oxytin phthalocyanine, copper perfluorophthalocyanine, zinc perfluorophthalocyanine, and One of the perfluorinated cobalt phthalocyanines. 3.按权利要求1或2所述的气敏层含有机异质结的有机半导体气体传感器,其特征在于所述诱导层(2)的厚度不小于2纳米,不大于10纳米。3. The organic semiconductor gas sensor with an organic heterojunction in the gas sensitive layer according to claim 1 or 2, characterized in that the thickness of the inductive layer (2) is not less than 2 nanometers and not greater than 10 nanometers. 4.按权利要求1或2所述的气敏层含有机异质结的有机半导体气体传感器,其特征在于所述的第一有机半导体层(3)的厚度不小于1.5纳米,不大于20纳米。4. The gas-sensing layer containing organic heterojunction organic semiconductor gas sensor according to claim 1 or 2, characterized in that the thickness of the first organic semiconductor layer (3) is not less than 1.5 nanometers, not more than 20 nanometers . 5.按权利要求1或2所述的气敏层含有机异质结的有机半导体气体传感器,其特征在于所述的第二有机半导体层(4)的厚度不小于0.2纳米,不大于1.5纳米。5. The gas-sensing layer containing an organic heterojunction organic semiconductor gas sensor according to claim 1 or 2, characterized in that the thickness of the second organic semiconductor layer (4) is not less than 0.2 nanometers, not more than 1.5 nanometers .
CN201110073330.XA 2011-03-25 2011-03-25 Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer Active CN102692445B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110073330.XA CN102692445B (en) 2011-03-25 2011-03-25 Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110073330.XA CN102692445B (en) 2011-03-25 2011-03-25 Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer

Publications (2)

Publication Number Publication Date
CN102692445A CN102692445A (en) 2012-09-26
CN102692445B true CN102692445B (en) 2015-07-22

Family

ID=46858041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110073330.XA Active CN102692445B (en) 2011-03-25 2011-03-25 Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer

Country Status (1)

Country Link
CN (1) CN102692445B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039528A1 (en) * 2015-09-03 2017-03-09 Robert Bosch Gmbh Carbon dioxide sensing compounds

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502421A (en) * 2014-12-16 2015-04-08 电子科技大学 Room-temperature P-N-P heterostructure hydrogen sensor and preparation method thereof
WO2016118072A1 (en) * 2015-01-19 2016-07-28 Robert Bosch Gmbh Volatile organic compound vapour sensing compounds
CN104713915B (en) * 2015-03-18 2017-12-08 华中科技大学 A kind of high-performance gas sensor based on laminated construction and preparation method thereof
WO2017010932A1 (en) * 2015-07-10 2017-01-19 Robert Bosch Gmbh Sensor element for a chemical sensor and chemical sensor
CN107561129B (en) * 2017-07-04 2020-02-18 上海工程技术大学 A heterojunction gas sensor with an inorganic-organic composite structure
CN109142446A (en) * 2018-08-20 2019-01-04 长春工业大学 A kind of poroid three-dimensional organic gas sensor preparation method of thin polymer film
JPWO2020202978A1 (en) * 2019-03-29 2020-10-08

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697104A (en) * 2005-04-18 2005-11-16 中国科学院长春应用化学研究所 Electrical contact material containing organic heterojunction and device thereof
CN101260566A (en) * 2007-12-17 2008-09-10 中国科学院长春应用化学研究所 Organic superlattice material composed of discotic molecular organic semiconductor and preparation method thereof
JP2010016212A (en) * 2008-07-04 2010-01-21 Fujifilm Corp Organic thin-film photoelectric conversion element and method of manufacturing the same
JP2010070596A (en) * 2008-09-16 2010-04-02 Ricoh Co Ltd Organic pigment dispersion, method for forming organic semiconductor layer, method for producing organic transistor and organic transistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211824B2 (en) * 2004-09-27 2007-05-01 Nitto Denko Corporation Organic semiconductor diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697104A (en) * 2005-04-18 2005-11-16 中国科学院长春应用化学研究所 Electrical contact material containing organic heterojunction and device thereof
CN101260566A (en) * 2007-12-17 2008-09-10 中国科学院长春应用化学研究所 Organic superlattice material composed of discotic molecular organic semiconductor and preparation method thereof
JP2010016212A (en) * 2008-07-04 2010-01-21 Fujifilm Corp Organic thin-film photoelectric conversion element and method of manufacturing the same
JP2010070596A (en) * 2008-09-16 2010-04-02 Ricoh Co Ltd Organic pigment dispersion, method for forming organic semiconductor layer, method for producing organic transistor and organic transistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王海波等.结晶性有机半导体异质结器件.《中国科学 B辑:化学》.2009,第39卷(第1期),1-21. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039528A1 (en) * 2015-09-03 2017-03-09 Robert Bosch Gmbh Carbon dioxide sensing compounds

Also Published As

Publication number Publication date
CN102692445A (en) 2012-09-26

Similar Documents

Publication Publication Date Title
CN102692445B (en) Organic semiconductor gas sensor with organic heterojunction-containing gas-sensitive layer
Song et al. Ionic‐activated chemiresistive gas sensors for room‐temperature operation
Kumar et al. MoS2‐based nanomaterials for room‐temperature gas sensors
CN108447915B (en) A kind of thin film field effect transistor type gas sensor and preparation method thereof
Zang et al. Device engineered organic transistors for flexible sensing applications
CN102221569B (en) Gas sensor with gas-sensitive layer adopting weak epitaxial organic semiconductor film
Choi et al. Dual functional sensing mechanism in SnO2–ZnO core–shell nanowires
Young et al. Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate
Jaisutti et al. Low-temperature photochemically activated amorphous indium-gallium-zinc oxide for highly stable room-temperature gas sensors
Saini et al. Solution processed films and nanobelts of substituted zinc phthalocyanine as room temperature ppb level Cl2 sensors
Zhu et al. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature
Le et al. Versatile solution‐processed organic–inorganic hybrid superlattices for ultraflexible and transparent high‐performance optoelectronic devices
Surya et al. H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs
CN106706718A (en) Three-layer-structure sensitive layer phthalocyanine gas sensitive sensor and preparation method thereof
CN107561129B (en) A heterojunction gas sensor with an inorganic-organic composite structure
CN103399072A (en) Gas-assisted organic field-effect transistor sensor, and preparation method and applications thereof
Zeng et al. A novel room temperature SO2 gas sensor based on TiO2/rGO buried-gate FET
Yadav et al. Effect of precursor chemistry on the structural and sensing properties of hydrothermally grown nanorods
CN108287189B (en) A kind of organic field effect tube humidity sensor based on synergistic effect and preparation method thereof
Peng et al. Performance Improvement of MoS₂ Gas Sensor at Room Temperature
Pathak et al. Nanocomposites of ZnO nanostructures and reduced graphene oxide nanosheets for NO2 gas sensing
Foo et al. Au decorated ZnO thin film: application to DNA sensing
Ewenike et al. Toward Weak Epitaxial Growth of Silicon Phthalocyanines: How the Choice of the Optimal Templating Layer Differs from Traditional Phthalocyanines
Tseng et al. Synthesis of Ti3C2Tx/ZnO composites decorated with PEDOT: PSS for NO2 gas sensors
CN107991353B (en) NO2Chemical resistance type gas sensor and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181108

Address after: No. 9, river Hai Dong Road, Tianning District, Changzhou, Jiangsu

Patentee after: Changzhou Institute of Energy Storage Materials & Devices

Address before: 130022 No. 5625 Renmin Street, Jilin, Changchun

Patentee before: Changchun Institue of Applied Chemistry, Chinese Academy of Sciences

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201021

Address after: 130022 No. 5625 Renmin Street, Changchun, Jilin, Chaoyang District

Patentee after: Changchun Institute of Applied Chemistry Chinese Academy of Sciences

Address before: Tianning District Hehai road 213000 Jiangsu city of Changzhou province No. 9

Patentee before: CHANGZHOU INSTITUTE OF ENERGY STORAGE MATERIALS & DEVICES

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210107

Address after: 341000 No.36, Huangjin Avenue, Ganzhou economic and Technological Development Zone, Ganzhou City, Jiangxi Province

Patentee after: Jiangxi Rare Earth Research Institute, Chinese Academy of Sciences

Address before: 130022 5625 people's street, Chaoyang District, Changchun, Jilin.

Patentee before: Changchun Institute of Applied Chemistry Chinese Academy of Sciences