CN102690019A - 一种处理低浓度废水高效同步脱氮除磷的方法 - Google Patents
一种处理低浓度废水高效同步脱氮除磷的方法 Download PDFInfo
- Publication number
- CN102690019A CN102690019A CN2012101405913A CN201210140591A CN102690019A CN 102690019 A CN102690019 A CN 102690019A CN 2012101405913 A CN2012101405913 A CN 2012101405913A CN 201210140591 A CN201210140591 A CN 201210140591A CN 102690019 A CN102690019 A CN 102690019A
- Authority
- CN
- China
- Prior art keywords
- reactor
- anoxic
- aerobic
- sludge
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910052698 phosphorus Inorganic materials 0.000 title claims abstract description 45
- 239000011574 phosphorus Substances 0.000 title claims abstract description 45
- 239000002351 wastewater Substances 0.000 title claims abstract description 11
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title description 14
- 229910052757 nitrogen Inorganic materials 0.000 title description 7
- 239000010802 sludge Substances 0.000 claims abstract description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000010865 sewage Substances 0.000 claims abstract description 49
- 238000004062 sedimentation Methods 0.000 claims description 29
- 241000894006 Bacteria Species 0.000 claims description 27
- 238000005273 aeration Methods 0.000 claims description 19
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 12
- 238000005276 aerator Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000004576 sand Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 230000001546 nitrifying effect Effects 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 241000727649 Orbales Species 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 230000003203 everyday effect Effects 0.000 claims description 3
- 238000011081 inoculation Methods 0.000 claims description 3
- 241000894007 species Species 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 30
- 229910052799 carbon Inorganic materials 0.000 abstract description 30
- 238000005192 partition Methods 0.000 abstract description 5
- 239000003344 environmental pollutant Substances 0.000 abstract description 3
- 231100000719 pollutant Toxicity 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000005416 organic matter Substances 0.000 description 12
- 229910002651 NO3 Inorganic materials 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000013019 agitation Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005112 continuous flow technique Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
一种处理低浓度废水高效同步脱氮除磷的方法,属于生化法污水生物处理技术领域。针对低浓度废水存在污染物浓度低、进水C/N低特点,而传统A/O工艺处理该类污水碳源利用率低、同步脱氮除磷效果不佳、能耗较高等缺点,本发明将传统A/O工艺与分段进水技术结合,通过将A/O工艺缺氧段增加一道隔墙,变成前置预缺氧段和厌氧段,污泥回流至预缺氧反硝化段;硝化阶段改良为缺氧/好氧交替运行模式,同时将原水分点进入各缺氧段和厌氧段。通过控制四点进水流量比以及控制第一好氧段DO为1.5-2mg/L、第二好氧段和第三好氧段DO为1.0-1.5mg/L,可实现对低浓度城市污水进水碳源有效利用率达77%以及出水达一级A排放标准。
Description
技术领域
本发明涉及一种去除低浓度城镇生活污水可生化有机物和氮磷营养物方法,属于生化法污水生物处理技术领域,将A/O工艺缺氧段增加一道隔墙,变成前置预缺氧反硝化段和厌氧段,污泥回流至预缺氧反硝化段;硝化阶段改良为缺氧/好氧交替运行模式,同时将原水分点进入各缺氧段和厌氧段,开发了具有较短水利停留时间、碳源利用率高的的同步脱氮除磷工艺,适用于我们大、中、小型城镇低浓度生活污水及工业废水深度脱氮除磷处理。
背景技术
目前,我国城镇污水处理厂中运行的生物处理工艺以A2/O、SBR、OD为主导,然而该类传统单一污泥处理系统由于自养菌和异养菌混合生长引起泥齢的矛盾、回流污泥中硝酸盐对厌氧释磷的影响以及存在较长的HRT等原因,导致系统对进水碳源有效利用率不高,很难达到氮磷的高效、稳定去除,同时增加了基建和运行费用。尤其是我们南方城镇存在较低的污染物浓度甚至低C/N的生活污水,更是增加了污水处理厂出水达标排放的难度。可见在现有基础上如何缩短系统HRT以提高进水负荷、如何提高进水碳源利用率是解决低浓度废水甚至低C/N废水氮磷高效稳定去除的一个途径。
(1)传统前置反硝化(A/O)工艺
A/O(缺氧/好氧)生物脱氮工艺于20世纪80年代初开发,是目前城市污水处理厂广泛采用的一种生物脱氮工艺。该工艺利用污水中的含碳有机物作为反硝化碳源,能有效去除COD和含氮化合物。A/O生物脱氮的工艺流程如下,原污水首先进入缺氧池,在其中污水中的有机物作为电子供体,对内循环回流的硝态氮进行发硝化脱氮,有机物得到初步讲解;再进入好氧池,在其中有机物进一步降解同时发生硝化反应氨氮被去除;最后好氧池硝化混合液和沉淀后的部分污泥同时回流到缺氧池,使缺氧池既能从原水中得到充足的有机碳源,又能从回流中得到大量的硝态氮,从而进行反硝化作用。
A/O工艺具有如下特点:流程简单、省去了中间沉淀池,构筑物少,大大节省了基建费用,同时运行费用较低,电耗较低,占地面积小;好氧池在缺氧池之后,可进一步去除反硝化残留有机物;缺氧池在好氧池之前,由于反硝化消耗了大部分有机碳源,有利于减轻好氧池的有机负荷,减少好氧池的碳氧化需氧量;反硝化产生的碱度可以补充硝化过程对碱度的消耗;A/O工艺只有一个污泥系统,缺氧池在好氧池之前,起到生物选择器的作用,活性污泥交替的处于好氧和缺氧状态,利于控制污泥膨胀;此外,由于系统结构简单,易于在常规活性污泥系统上进行改建,不必增加更多的设施与设备。
由于受进水碳源、内循环比及回流比的影响,A/O工艺脱氮效率很低,一般为60%左右;此外A/O工艺影响因素较多,需要进行硝化液内回流、污泥回流和曝气充氧,能耗和运行费用较高。
(2)分段进水A/O深度脱氮工艺
分段进水生物脱氮工艺通常由2~4段缺氧/好氧顺序排列组成。原水分别在各段的缺氧区进入反应器,回流污泥回流到系统的首端,通常不设内回流设施。
第一段的缺氧区主要对回流污泥中的NOx--N进行反硝化,同时,进入该区的污水(Q1)为反硝化提供碳源。然后,混合液流入第一段的好氧区进行硝化反应,反应后的混合污水流入到第二段的缺氧区进行反硝化,同时,第二段缺氧区进入的污水(Q2)为反硝化提供碳源。混合液再进入到第二段的好氧区进行硝化反应,以后各段以此类推。由于最后一段进入的污水只发生了硝化反应,没有反硝化的条件,所以出水将含有一定的硝态氮。因此,对出水总氮有严格要求的污水处理工程,可以考虑最后一段不投加污水,只投加外碳源,并在最后的好氧区加大曝气量,以去除碳有机物。
在分段进水A/O系统中,缺氧/好氧顺序排列,可以为反硝化菌、硝化菌的生长创造合适的环境,其实质是多个A/O的串联。缺氧/好氧交替布置,可充分利用原水中的有机碳源进行反硝化,在各段硝化反硝化完全的情况下,出水TN浓度由最后一段的进水量决定,这就为深度脱氮提供了可能,在最后一段进水量足够小,或者投加少量碳源的情况下,可以达到出水TN小于1mg/L的处理效果。缺氧/好氧的交替也使得系统无需设置内循环系统,而内循环系统不仅增加项目的建设投资,且运行时需要消耗大量的能量,内循环流量的实时控制也是A/O高效运行的一个较难解决的难题。分段进水A/O工艺形式决定其具有如下特点:
(1)缺氧/好氧交替布置,省去传统A/O工艺的硝化液内回流设施,且可充分利用原水中的碳源进行反硝化,对低C/N城市生活污水的高效脱氮尤其有利。
(2)由于污水分散进入各段,其总的稀释作用被推迟,系统各段悬浮物浓度(MLSS)呈梯度分布。和传统A/O工艺或其它单级脱氮工艺相比,在流入终沉池MLSS相同的情况下,分段进水A/O工艺比常规营养物去除工艺具有较多的污泥储量和较长的固体停留时间,且不增加二沉池固体负荷。设置不同的进水点和不同的进水流量分配比,可使分段进水A/O工艺系统平均MLSS较普通A/O系统增加35%~70%,从而增加了单位池容的处理能力,大大降低脱氮所需的池容。
(3)缺氧区进水,一方面可以充分利用原水中的易生物降解COD,为反硝化提供碳源,节省外碳源投加量;另外,缺氧区进水,反硝化消耗大量的可利用碳源,使得进入好氧区的可利用碳源较少,异养菌的生长受到限制,利于自养硝化菌的生长;
(4)缺氧区和好氧区交替存在,因此,缺氧区反硝化产生的碱度对好氧区硝化时消耗的碱度有一定的补充,可以避免硝化碱度不足的情况发生;此外,缺氧、好氧交替布置,每段的缺氧区相当于一个高负荷的选择器,可有效抑制丝状菌污泥膨胀。
(5)由于污水分散进入反应池,系统抗冲击负荷能力增强。此外,对合流制排水系统,暴雨产生洪峰流量时,通过对流量分配比的调整,可有效避免污泥冲刷流失。
发明内容
目前传统前置反硝化A/O工艺急需解决的问题是如何实现生物高效脱氮性能,同时如何提高进水碳源利用率;而分段进水A/O深度脱氮工艺急面临的问题是如何实现同步生物除磷性能,在强化除磷的同时如何解决回流污泥中硝酸盐对厌氧释磷的影响。本发明的目的是为了解决上述两大技术问题,提出一种处理低浓度甚至低C/N城镇生活污水的高效同步脱氮除磷的工艺装置和方法,即高效利用原水碳源的分段进水策略和同步脱氮除磷技术的联合。
改良A/O四点分段进水高效同步脱氮除磷装置,该装置包括:顺次连接的污水水箱、预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器和沉淀池,通过设有连通管的隔板将预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器连通;污水水箱通过四台泵分别连接预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器,预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器反应器均安装搅拌器;从沉淀池底部通过回流污泥控制阀和污泥回流泵回流到预缺氧反应器的污泥回流管路;各好氧反应器底部设有砂头曝气器,空气压缩机通过气体流量计、空气调节阀与砂头曝气器连通,砂头曝气器、空气调节阀、气体流量计和空气压缩机共同组成曝气系统;各好氧反应器设有溶解氧浓度监测控制仪表;
(1)预缺氧反应器2:经进水泵11抽取的城市生活污水与污泥回流泵17从沉淀池9底部抽取的泥水混合液同时进入预缺氧器2,在搅拌器12的搅拌作用下反硝化细菌利用进入预缺氧器原水中的有机碳源进行反硝化脱氮,完成对回流污泥中携带的硝酸盐的绝大部分去除,以利于后续聚磷菌的厌氧释磷。通过前置预缺氧反应器2的设置,可以有效解决传统单一污泥系统中回流污泥所携带的硝酸盐与聚磷菌厌氧释磷同时对碳源的竞争。
(2)厌氧反应器3:经进水泵11抽取的城市生活污水与预缺氧反应器2中经过前置反硝化脱氮后的混合液出水同时进入厌氧反应器3,在厌氧反应器3内搅拌机12的搅拌作用下完成聚磷菌吸收原水中的可生物降解有机物,以内碳源PHB的形式贮存在聚磷菌体内,同时释放大量的溶解性正磷酸盐。
(3)第一段好氧反应器4:厌氧反应器3出水混合液直接进入第一段好氧反应器4,由曝气系统提供曝气,异养菌氧化剩余的极少有机物,硝化菌将NH4 +-N转化为NOx-N,聚磷菌包括反硝化聚磷菌完成好氧吸磷过程。曝气量的大小根据DO仪表在线监测和运行状态进出水情况,运用气体流量计15进行调整,控制第一段好氧反应器4出水NH4 +-N在0~3mg/L,若出水NH4 +-N超出此范围,就要对曝气量进行调整,保证硝化效果。
(4)第二段缺氧反应器5:经进水泵11抽取的城市生活污水与第一段好氧反应器4硝化液进入第二段缺氧反应器5,在搅拌器12的搅拌作用下异养反硝化菌利用进水有机碳源进行反硝化脱氮,同时伴随部分反硝化聚磷菌利用硝酸盐作为电子供体,实现对磷酸盐的吸收。
(5)第二段好氧反应器6:功能同第一段好氧反应器4,第二段缺氧反应器5出水混合液直接进入第二段好氧反应器6,由曝气系统提供曝气,完成剩余的极少有机物的氧化去除和氨氮的硝化以及磷的好氧吸收。
(6)第三段缺氧反应器7:功能同第二段缺氧反应器5,经进水泵11抽取的城市生活污水与第二段好氧反应器6硝化液进入第三段缺氧反应器7,在搅拌器12的搅拌作用下异养反硝化菌利用进水有机物进行反硝化反应,同时伴随部分磷酸盐的吸收。
(7)第三段好氧反应器8:功能同第一段好氧反应器4和第二段好氧反应器6,第三段缺氧反应器7出水混合液直接进入第三段好氧反应器8,由曝气系统提供曝气,完成剩余的极少有机物的氧化去除和氨氮的硝化以及磷的好氧吸收。
(8)沉淀池9:第三段好氧反应器8混合液通过出水堰20进入沉淀池9进行泥水分离,上清液外排,污泥沉淀在污泥斗,经污泥回流控制阀18和污泥回流泵17提升至预缺氧反应器2,剩余沉淀污泥作为剩余污泥经污泥排放控制阀19排出。
本发明还提供了一种改良A/O四点分段进水工艺处理低浓度废水高效同步脱氮除磷的方法,其特征包括以下步骤:
(1)快速启动阶段:从Orbal氧化沟内沟取活性污泥混合液,沉淀后将上清液滗去,注入到预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器和沉淀池,接种后通过增加或减少反应器中的沉淀污泥或上清液控制反应器中混合液污泥浓度MLSS=4000-4500mg/L;开始启动进水泵注入城市生活污水(COD=160±31mg/L, BOD =54.5±5.5mg/L, NH4 +-N =30.23±3.51mg/L, TN=31.73±3.66mg/L, TP=3.47±0.79mg/L)进行连续运行,同时打开搅拌器,以及污泥回流泵和回流污泥控制阀;然后启动曝气系统在各好氧反应器进行氨氮的硝化反应,维持溶解氧DO=2-3mg/L,开始连续运行;按照从低负荷Q=37L/d到正常负荷Q=185L/d,并以20%-30%梯度逐步增加的运行方式驯化污泥,在每组负荷下通过调整曝气量大小控制氨氮硝化率达75%以上即可转入下一组负荷运行,并且每天通过开启控制阀排放剩余污泥控制系统泥齢为10-15d,使得硝化菌、聚磷菌、异养菌大量繁殖生长,逐步成为系统的优势种属;运行10-15d后,二沉池出水SS小于15mg/L,氨氮的硝化效果维持在90%以上,出水NH4 +-N<5mg/L,PO4 3--P<1mg/L,确认其启动结束进入平稳运行阶段;
(2)连续运行:当改良A/O四点分段进水高效同步脱氮除磷工艺启动结束之后,生活污水分为四点,按照20%:35%:35%:10%比例经各段进水泵依次进入预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器,同时沉淀池中的污泥通过污泥回流泵按照50%-100%的回流比提升至预缺氧反应器,通过排放剩余污泥控制污泥龄为10-15d;
(3)优化控制:维持第一段好氧反应器末端DO为1.5-2mg/L,第二段好氧反应器和第三段好氧反应器末端DO为1-1.5mg/L,当系统出水满足甚至优于一级A排放标准即完成了改良A/O四点分段进水高效同步脱氮除磷过程。
本发明涉及的处理低浓度废水同步脱氮除磷工艺的装置和方法与现有技术相比,具有以下优点:
(1)系统较高的污泥浓度增加了单位池容处理能力,可缩短系统的HRT以提高处理负荷;与常规连续流工艺相比,系统HRT可缩短至8-9h,实现了处理低浓度废水通过提高负荷的方法达到高效同步脱氮除磷的效果。
(2)与连续流前置反硝化A/O工艺相比,通过将原水分段进入各段厌氧反应器或缺氧反应器进行放磷和反硝化反应,提高了原水碳源的利用率,因此无需外加碳源即可实现污水的高效生物脱氮除磷,突破了低C/N污水脱氮除磷效率难以提高的瓶颈。
(3)与分段进水A/O深度脱氮工艺相比,本工艺通过设置首段厌氧反应器,实现了生物除磷的功能,增加了分段进水工艺的实际应用价值,有利于污水的再生利用,防止水体富营养化的发生;同时在厌氧反应器前设置预缺氧反硝化池,并分流20%原水进入预缺氧反应器,有效解决回流污泥中硝酸盐对厌氧释磷的影响。
附图说明
图1为改良A/O四点分段进水高效同步脱氮除磷工艺的系统装置流程图。
图2为改良A/O四点分段进水工艺主体反应器俯视图。
图3为连续5个月对氨氮和TN去除效果的变化曲线图。
图4为连续5个月对TP去除效果的变化曲线图
图中:1——污水水箱;2——预缺氧反应器;3——厌氧反应器;4——第一段好氧反应器;5——第二段缺氧反应器;6——第二段好氧反应器;7——第三段缺氧反应器;8——第三段好氧反应器;9——沉淀池;10——出水口;11——进水泵;12——搅拌器;13——砂头曝气器;14——空气调节阀;15——转子流量计;16——空气压缩机;17——污泥回流泵;18——回流污泥控制阀;19——剩余污泥排放控制阀;20——溢流口;21——搅拌器插槽。
具体实施方式
下面结合附图和实例详细说明本发明专利:
如图1所示,改良A/O四点分段进水高效同步脱氮除磷工艺的装置,包括:顺次连接的污水水箱1、预缺氧反应器2、厌氧反应器3、第一段好氧反应器4、第二段缺氧反应器5、第二段好氧反应器6、第三段缺氧反应器7、第三段好氧反应器8和沉淀池9,通过设有连通管的隔板将预缺氧反应器2、厌氧反应器3、第一段好氧反应器4、第二段缺氧反应器5、第二段好氧反应器6、第三段缺氧反应器7、第三段好氧反应器8联通;污水水箱1通过四台泵分别连接预缺氧反应器2、厌氧反应器3、第二段缺氧反应器5和第三段缺氧反应器7,预缺氧反应器2、厌氧反应器3、第二段缺氧反应器5和第三段缺氧反应器7反应器均安装搅拌器12;从沉淀池9底部通过回流污泥控制阀18和污泥回流泵17回流到预缺氧反应器2的污泥回流管路;各好氧反应器底部设有砂头曝气器13,空气压缩机16通过气体流量计15、空气调节阀14与砂头曝气器13连通,砂头曝气器13、空气调节阀14、气体流量计15和空气压缩机16共同组成曝气系统;各好氧反应器设有溶解氧浓度监测控制仪表。
污水水箱1的有效容积为185L,试验所选用的试验模型为单廊道式矩形反应器,有效容积为67L,共分7个格室运行:第一个格室为预缺氧反应器2(7L),第二个格室为厌氧反应器3(12L),紧接着为第一段好氧反应器4(12L),然后依次是第二段缺氧反应器5(9L)、第二段好氧反应器6(9L)、第三段缺氧反应器7(9L)、第三段好氧反应器8(9L)。沉淀池9有效容积为33L,为中心进水周边出水的辐流式沉淀池。在厌氧反应器和缺氧反应器分别安装搅拌机12以保持污泥处于悬浮状态,曝气系统将压缩空气经供气管路到达第一段好氧反应器4、第二段6好氧反应器和第三段好氧反应器8,各段好氧器溶解氧浓度通过转子流量计15控制调节,通过砂头曝气器13鼓出微细气泡满足污染物的降解和微生物生长。进水、污泥外回流分别通过进水泵11、污泥回流泵17进行提升计量,各反应器通过隔板分离,并且隔板设有连通管以防止混合液的返混现象。
本发明还提供了一种改良A/O四点分段进水工艺处理低浓度废水高效同步脱氮除磷的方法,其特征包括以下步骤:
(1)快速启动阶段:从Orbal氧化沟内沟取活性污泥混合液,沉淀后将上清液滗去,注入到预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器和沉淀池,接种后通过增加或减少反应器中的沉淀污泥或上清液控制反应器中混合液污泥浓度MLSS=4000-4500mg/L;开始启动进水泵注入城市生活污水(COD=160±31mg/L, BOD =54.5±5.5mg/L,NH4 +-N =30.23±3.51mg/L, TN=31.73±3.66mg/L, TP =3.47±0.79mg/L)进行连续运行,同时打开搅拌器,以及污泥回流泵和回流污泥控制阀;然后启动曝气系统在各好氧反应器进行氨氮的硝化反应,维持溶解氧DO=2-3mg/L,开始连续运行;按照从低负荷Q=37L/d到正常负荷Q=185L/d,并以20%-30%梯度逐步增加的运行方式驯化污泥,在每组负荷下通过调整曝气量大小控制氨氮硝化率达75%以上即可转入下一组负荷运行,并且每天通过开启控制阀排放剩余污泥控制系统泥齢为10-15d,使得硝化菌、聚磷菌、异养菌大量繁殖生长,逐步成为系统的优势种属;运行10-15d后,二沉池出水SS小于15mg/L,氨氮的硝化效果维持在90%以上,出水NH4 +-N<5mg/L,PO4 3--P<1mg/L,确认其启动结束进入平稳运行阶段;
(2)连续运行:当改良A/O四点分段进水高效同步脱氮除磷工艺启动结束之后,生活污水分为四点,按照20%:35%:35%:10%比例经各段进水泵依次进入预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器,同时沉淀池中的污泥通过污泥回流泵按照50%-100%的回流比提升至预缺氧反应器,通过排放剩余污泥控制污泥龄为10-15d;
(3)优化控制:维持第一段好氧反应器末端DO为1.5-2mg/L,第二段好氧反应器和第三段好氧反应器末端DO为1-1.5mg/L,当系统出水满足甚至优于一级A排放标准即完成了改良A/O四点分段进水高效同步脱氮除磷过程。
实例
以江苏省某市污水处理厂旋流式沉砂池出水为处理对象(COD=89-200mg/L,TN=22-42mg/L,TP=2.2-6.7 mg/L,C/N=2.18-6.2,C/P=21.2-78.8),水力停留时间8.7h,污泥龄10-15d,平均污泥浓度5600 mg/L,污泥回流比50%-75%,温度由加热棒控制在20-22℃,厌氧/缺氧/好氧体积比为4:8:10。试验结果表明,系统最佳流量分配比为20%:35%:35%:10%;在此工况下COD、氨氮、总氮、总磷出水水质分别为33.05 mg.L-1、0.58 mg.L-1、9.26 mg.L-1、0.46 mg.L-1,去除率分别为78.90%、98.31%、70.24%、86.11%。
图3为以实际污水为处理对象,连续运行4个多月的系统对氨氮和TN去除效果情况。在中试反应器规模日处理量为Q=185L/d情况下,连续4个月运行结果表明尽管进水氨氮和TN波动较大,但出水氨氮和TN水质基本维持在1mg/L和15mg/L以下,平均出水TN=11.27mg/L,且出水TN以硝态氮为主,平均出水NH4 +-N为0.76mg/L,NH4 +-N和TN平均去除率分别为97.6%和61.9%,达到国家城镇污水一级A排放标准。
图4表明了系统对TP的去除效果情况。由图可知,系统经过反应器顺次的充分释磷和后续的反硝化除磷及好氧吸磷过程,出水TP平均0.46mg/L,去除率平均为85.7%;此外,平均出水COD为32.3mg/L,去除率平均为80.1%,均达到一级A排放标准的要求。
Claims (1)
1.一种处理低浓度废水高效同步脱氮除磷的方法,其特征在于应用如下改良A/O四点分段进水高效同步脱氮除磷装置;
该装置包括:顺次连接的污水水箱、预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器和沉淀池,通过设有连通管的隔板将预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器连通;污水水箱通过四台泵分别连接预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器,预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器反应器均安装搅拌器;从沉淀池底部通过回流污泥控制阀和污泥回流泵回流到预缺氧反应器的污泥回流管路;各好氧反应器底部设有砂头曝气器,空气压缩机通过气体流量计、空气调节阀与砂头曝气器连通,砂头曝气器、空气调节阀、气体流量计和空气压缩机共同组成曝气系统;各好氧反应器设有溶解氧浓度监测控制仪表;
该方法包括以下步骤:
(1)快速启动阶段:从Orbal氧化沟内沟取活性污泥混合液,沉淀后将上清液滗去,注入到预缺氧反应器、厌氧反应器、第一段好氧反应器、第二段缺氧反应器、第二段好氧反应器、第三段缺氧反应器、第三段好氧反应器和沉淀池,接种后通过增加或减少反应器中的沉淀污泥或上清液控制反应器中混合液污泥浓度MLSS=4000-4500mg/L;开始启动进水泵注入城市生活污水进行连续运行,同时打开搅拌器,以及污泥回流泵和回流污泥控制阀;然后启动曝气系统在各好氧反应器进行氨氮的硝化反应,维持溶解氧DO=2-3mg/L,开始连续运行;按照从低负荷Q=37L/d到正常负荷Q=185L/d,并以20%-30%梯度逐步增加的运行方式驯化污泥,在每组负荷下通过调整曝气量大小控制氨氮硝化率达75%以上即可转入下一组负荷运行,并且每天通过开启控制阀排放剩余污泥控制系统泥齢为10-15d,使得硝化菌、聚磷菌、异养菌大量繁殖生长,逐步成为系统的优势种属;运行10-15d后,二沉池出水SS小于15mg/L,氨氮的硝化效果维持在90%以上,出水NH4 +-N<5mg/L,PO4 3--P<1mg/L,确认其启动结束进入平稳运行阶段;
(2)连续运行:当改良A/O四点分段进水高效同步脱氮除磷工艺启动结束之后,生活污水分为四点,按照20%:35%:35%:10%比例经各段进水泵依次进入预缺氧反应器、厌氧反应器、第二段缺氧反应器和第三段缺氧反应器,同时沉淀池中的污泥通过污泥回流泵按照50%-100%的回流比提升至预缺氧反应器,通过排放剩余污泥控制污泥龄为10-15d;
(3)优化控制:维持第一段好氧反应器末端DO为1.5-2mg/L,第二段好氧反应器和第三段好氧反应器末端DO为1-1.5mg/L,当系统出水满足甚至优于一级A排放标准即完成了改良A/O四点分段进水高效同步脱氮除磷过程。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101405913A CN102690019A (zh) | 2012-05-08 | 2012-05-08 | 一种处理低浓度废水高效同步脱氮除磷的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101405913A CN102690019A (zh) | 2012-05-08 | 2012-05-08 | 一种处理低浓度废水高效同步脱氮除磷的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102690019A true CN102690019A (zh) | 2012-09-26 |
Family
ID=46855778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101405913A Pending CN102690019A (zh) | 2012-05-08 | 2012-05-08 | 一种处理低浓度废水高效同步脱氮除磷的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102690019A (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103102044A (zh) * | 2013-01-02 | 2013-05-15 | 北京工业大学 | 强化城市污水氧化沟工艺自养脱氮作用的方法 |
CN103755095A (zh) * | 2014-01-14 | 2014-04-30 | 江苏裕隆环保有限公司 | A/o分段进水mbbr工艺耦合滤布滤池脱氮除磷方法 |
CN104591507A (zh) * | 2015-02-04 | 2015-05-06 | 中蓝连海设计研究院 | 一种两段式a/o工艺处理含氮废水中总氮的快速启动方法 |
CN104671605A (zh) * | 2015-02-03 | 2015-06-03 | 江苏商达水务有限公司 | 一种高效集成化污水处理工艺及装置 |
CN105668785A (zh) * | 2014-11-17 | 2016-06-15 | 成都安捷宜康环保科技有限公司 | 填料氧化沟复合工艺处理城市污水的方法 |
CN105753153A (zh) * | 2016-03-17 | 2016-07-13 | 北京工业大学 | 基于deamox的改良a/o四点分段进水高效生物脱氮除磷装置及应用方法 |
CN106006975A (zh) * | 2016-07-29 | 2016-10-12 | 扬州市洁源排水有限公司 | 内部碳源优化利用的aao污水处理工艺 |
CN106495324A (zh) * | 2016-11-17 | 2017-03-15 | 天津市市政工程设计研究院 | 高效脱氮除磷多级ao+sbr污水处理反应池及方法 |
CN106630420A (zh) * | 2016-12-20 | 2017-05-10 | 中冶华天南京工程技术有限公司 | 用于低碳源污水的生物脱氮除磷工艺 |
CN106745740A (zh) * | 2016-12-26 | 2017-05-31 | 上海中信水务产业有限公司 | 一种用于脱氮除磷的改良型复合式高效水体处理方法和系统 |
CN108178424A (zh) * | 2017-12-15 | 2018-06-19 | 张正乾 | 一种双回流活性污泥床污水处理方法 |
CN108947100A (zh) * | 2018-06-20 | 2018-12-07 | 昆明滇池水务股份有限公司 | 一种污水强化反硝化脱氮系统和方法 |
CN110745948A (zh) * | 2019-09-27 | 2020-02-04 | 中车环境科技有限公司 | 分段进水深度除磷脱氮工艺 |
CN110980946A (zh) * | 2019-11-25 | 2020-04-10 | 北京林业大学 | 一种总氮强化去除的cass污水处理工艺改进方法 |
CN112897696A (zh) * | 2021-01-19 | 2021-06-04 | 中国电建集团中南勘测设计研究院有限公司 | 一种基于分段进水的生物脱氮除磷的装置及方法 |
CN113735263A (zh) * | 2021-08-27 | 2021-12-03 | 清华大学 | 基于同步硝化反硝化细菌的废水脱氮工艺及装置 |
CN113800632A (zh) * | 2020-06-16 | 2021-12-17 | 临沂讯飞环保设备有限公司 | 一种城市污水极限脱氮的方法 |
CN115340187A (zh) * | 2022-08-25 | 2022-11-15 | 北京工业大学 | 一种防止返混污水处理构筑物连接装置与方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101012088A (zh) * | 2007-02-01 | 2007-08-08 | 北京工业大学 | 分段进水a/o生物脱氮工艺低氧曝气控制装置及其方法 |
CN101104541A (zh) * | 2007-06-28 | 2008-01-16 | 北京工业大学 | 改良型四段进水a/o深度脱氮装置及过程控制方法 |
CN101143750A (zh) * | 2007-06-28 | 2008-03-19 | 北京工业大学 | 四段进水a/o工艺进水流量分配过程控制装置和方法 |
CN101570382A (zh) * | 2009-06-10 | 2009-11-04 | 北京工业大学 | 改良分段进水深度脱氮除磷的装置和方法 |
CN101570383A (zh) * | 2009-06-10 | 2009-11-04 | 北京工业大学 | 一种深度脱氮除磷装置及过程控制方法 |
ES2345090A1 (es) * | 2009-03-13 | 2010-09-14 | Universitat De Valencia | Sistema de control para la eliminacion biologica de nitrogeno de aguas residuales mediante sondas de bajo coste. |
CN102053615A (zh) * | 2011-01-13 | 2011-05-11 | 北京工业大学 | 非稳态分段进水深度脱氮除磷过程控制系统及控制方法 |
KR101087673B1 (ko) * | 2011-07-29 | 2011-11-30 | 주식회사 경호엔지니어링 종합건축사사무소 | 기존 침전지 개량형 총인(t-p)제거 하수고도처리시스템 및 방법 |
-
2012
- 2012-05-08 CN CN2012101405913A patent/CN102690019A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101012088A (zh) * | 2007-02-01 | 2007-08-08 | 北京工业大学 | 分段进水a/o生物脱氮工艺低氧曝气控制装置及其方法 |
CN101104541A (zh) * | 2007-06-28 | 2008-01-16 | 北京工业大学 | 改良型四段进水a/o深度脱氮装置及过程控制方法 |
CN101143750A (zh) * | 2007-06-28 | 2008-03-19 | 北京工业大学 | 四段进水a/o工艺进水流量分配过程控制装置和方法 |
ES2345090A1 (es) * | 2009-03-13 | 2010-09-14 | Universitat De Valencia | Sistema de control para la eliminacion biologica de nitrogeno de aguas residuales mediante sondas de bajo coste. |
CN101570382A (zh) * | 2009-06-10 | 2009-11-04 | 北京工业大学 | 改良分段进水深度脱氮除磷的装置和方法 |
CN101570383A (zh) * | 2009-06-10 | 2009-11-04 | 北京工业大学 | 一种深度脱氮除磷装置及过程控制方法 |
CN102053615A (zh) * | 2011-01-13 | 2011-05-11 | 北京工业大学 | 非稳态分段进水深度脱氮除磷过程控制系统及控制方法 |
KR101087673B1 (ko) * | 2011-07-29 | 2011-11-30 | 주식회사 경호엔지니어링 종합건축사사무소 | 기존 침전지 개량형 총인(t-p)제거 하수고도처리시스템 및 방법 |
Non-Patent Citations (1)
Title |
---|
曹贵华等: "流量分配比对改良A/O分段进水脱氮除磷特性的影响", 《化工学报》, vol. 63, no. 4, 30 April 2012 (2012-04-30), pages 1249 - 1256 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103102044B (zh) * | 2013-01-02 | 2014-02-26 | 北京工业大学 | 强化城市污水氧化沟工艺自养脱氮作用的方法 |
CN103102044A (zh) * | 2013-01-02 | 2013-05-15 | 北京工业大学 | 强化城市污水氧化沟工艺自养脱氮作用的方法 |
CN103755095A (zh) * | 2014-01-14 | 2014-04-30 | 江苏裕隆环保有限公司 | A/o分段进水mbbr工艺耦合滤布滤池脱氮除磷方法 |
CN103755095B (zh) * | 2014-01-14 | 2015-04-22 | 江苏裕隆环保有限公司 | A/o分段进水mbbr工艺耦合滤布滤池脱氮除磷方法 |
CN105668785A (zh) * | 2014-11-17 | 2016-06-15 | 成都安捷宜康环保科技有限公司 | 填料氧化沟复合工艺处理城市污水的方法 |
CN104671605A (zh) * | 2015-02-03 | 2015-06-03 | 江苏商达水务有限公司 | 一种高效集成化污水处理工艺及装置 |
CN104591507A (zh) * | 2015-02-04 | 2015-05-06 | 中蓝连海设计研究院 | 一种两段式a/o工艺处理含氮废水中总氮的快速启动方法 |
CN105753153A (zh) * | 2016-03-17 | 2016-07-13 | 北京工业大学 | 基于deamox的改良a/o四点分段进水高效生物脱氮除磷装置及应用方法 |
CN105753153B (zh) * | 2016-03-17 | 2018-12-25 | 北京工业大学 | 基于deamox的改良a/o四点分段进水高效生物脱氮除磷装置及应用方法 |
CN106006975A (zh) * | 2016-07-29 | 2016-10-12 | 扬州市洁源排水有限公司 | 内部碳源优化利用的aao污水处理工艺 |
CN106006975B (zh) * | 2016-07-29 | 2019-04-23 | 扬州市洁源排水有限公司 | 内部碳源优化利用的aao污水处理工艺 |
CN106495324A (zh) * | 2016-11-17 | 2017-03-15 | 天津市市政工程设计研究院 | 高效脱氮除磷多级ao+sbr污水处理反应池及方法 |
CN106495324B (zh) * | 2016-11-17 | 2019-08-16 | 天津市市政工程设计研究院 | 高效脱氮除磷多级ao+sbr污水处理反应池及方法 |
CN106630420A (zh) * | 2016-12-20 | 2017-05-10 | 中冶华天南京工程技术有限公司 | 用于低碳源污水的生物脱氮除磷工艺 |
CN106745740A (zh) * | 2016-12-26 | 2017-05-31 | 上海中信水务产业有限公司 | 一种用于脱氮除磷的改良型复合式高效水体处理方法和系统 |
CN106745740B (zh) * | 2016-12-26 | 2023-04-21 | 国投信开水环境投资有限公司 | 一种用于脱氮除磷的改良型复合式高效水体处理方法和系统 |
CN108178424A (zh) * | 2017-12-15 | 2018-06-19 | 张正乾 | 一种双回流活性污泥床污水处理方法 |
CN108178424B (zh) * | 2017-12-15 | 2021-08-13 | 张正乾 | 一种双回流活性污泥床污水处理方法 |
CN108947100A (zh) * | 2018-06-20 | 2018-12-07 | 昆明滇池水务股份有限公司 | 一种污水强化反硝化脱氮系统和方法 |
CN110745948A (zh) * | 2019-09-27 | 2020-02-04 | 中车环境科技有限公司 | 分段进水深度除磷脱氮工艺 |
CN110980946A (zh) * | 2019-11-25 | 2020-04-10 | 北京林业大学 | 一种总氮强化去除的cass污水处理工艺改进方法 |
CN113800632A (zh) * | 2020-06-16 | 2021-12-17 | 临沂讯飞环保设备有限公司 | 一种城市污水极限脱氮的方法 |
CN113800632B (zh) * | 2020-06-16 | 2023-09-19 | 临沂讯飞环保设备有限公司 | 一种城市污水极限脱氮的方法 |
CN112897696A (zh) * | 2021-01-19 | 2021-06-04 | 中国电建集团中南勘测设计研究院有限公司 | 一种基于分段进水的生物脱氮除磷的装置及方法 |
CN113735263A (zh) * | 2021-08-27 | 2021-12-03 | 清华大学 | 基于同步硝化反硝化细菌的废水脱氮工艺及装置 |
CN113735263B (zh) * | 2021-08-27 | 2023-03-14 | 清华大学 | 基于同步硝化反硝化细菌的废水脱氮工艺及装置 |
CN115340187A (zh) * | 2022-08-25 | 2022-11-15 | 北京工业大学 | 一种防止返混污水处理构筑物连接装置与方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102690019A (zh) | 一种处理低浓度废水高效同步脱氮除磷的方法 | |
CN101570382B (zh) | 改良分段进水深度脱氮除磷的装置和方法 | |
CN105884028B (zh) | 连续流城市污水短程硝化厌氧氨氧化耦合反硝化除磷的装置与方法 | |
CN108409033B (zh) | Fna强化短程硝化的分段进水uct深度脱氮除磷的装置与方法 | |
CN105293702B (zh) | 一种通过控制不同的缺好氧体积比启动并稳定维持短程硝化反硝化的方法与装置 | |
CN103601341B (zh) | 一种基于厌氧氨氧化的sbr+sbbr城市污水高效生物处理方法 | |
WO2022088778A1 (zh) | 城市污水处理厂主流与侧流区生物膜循环交替实现部分厌氧氨氧化深度脱氮除磷系统与方法 | |
CN105217786B (zh) | 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法 | |
CN102153236A (zh) | 一种后置反硝化污水处理装置及工艺 | |
CN106745743A (zh) | 一种污水脱氮除磷系统 | |
CN109160670A (zh) | 一种基于短程反硝化+厌氧氨氧化的城市污水反硝化滤池脱氮方法 | |
CN202688093U (zh) | 改良a/o四点分段进水高效同步脱氮除磷的装置 | |
CN114477420A (zh) | 连续流aoa短程硝化及内源短程反硝化双耦合厌氧氨氧化实现污水深度脱氮的方法与装置 | |
CN105217891A (zh) | 基于deamox强化a2/o+baf工艺生物脱氮除磷的装置与方法 | |
CN108408897B (zh) | 一体化短程硝化厌氧氨氧化同时除磷的间歇曝气实时控制方法 | |
CN110002587A (zh) | 一种分段排水式短程硝化并联厌氧氨氧化反硝化除磷耦合内源反硝化的装置和方法 | |
CN112125396A (zh) | 一种厌氧氨氧化强化市政污水脱氮除磷系统及方法 | |
CN113024032B (zh) | 一种短程硝化反硝化耦合厌氧氨氧化-mbr-硫自养反硝化脱氮工艺及系统 | |
CN207877509U (zh) | 一种低碳源污水的强化脱氮除磷的装置 | |
CN106045041A (zh) | 双颗粒污泥改良a2/o反硝化除磷的装置及方法 | |
CN114772724B (zh) | 污泥发酵联合pn/a技术强化城市污水碳捕获的工艺 | |
CN108996687A (zh) | 一种短程内回流强化缺氧/好氧反应器脱氮装置及方法 | |
CN108862588A (zh) | 连续流短程硝化并联一体化厌氧氨氧化反硝化除磷sbbr工艺 | |
CN112607862A (zh) | 多级ao污水生化处理工艺 | |
CN117886445A (zh) | 一种强化污泥预沉淀浓缩的深度脱氮污水处理方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120926 |