[go: up one dir, main page]

CN102687203B - The SRAM delay circuit of trace bit element characteristics - Google Patents

The SRAM delay circuit of trace bit element characteristics Download PDF

Info

Publication number
CN102687203B
CN102687203B CN201080047089.7A CN201080047089A CN102687203B CN 102687203 B CN102687203 B CN 102687203B CN 201080047089 A CN201080047089 A CN 201080047089A CN 102687203 B CN102687203 B CN 102687203B
Authority
CN
China
Prior art keywords
reference current
sram device
discharge
capacitive network
sram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080047089.7A
Other languages
Chinese (zh)
Other versions
CN102687203A (en
Inventor
I·阿瑟沃斯基
G·M·布拉瑟拉斯
R·M·郝尔
H·皮洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN102687203A publication Critical patent/CN102687203A/en
Application granted granted Critical
Publication of CN102687203B publication Critical patent/CN102687203B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/08Control thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/227Timing of memory operations based on dummy memory elements or replica circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)
  • Pulse Circuits (AREA)

Abstract

A kind of SRAM delay circuit (14) of trace bit element characteristics.Disclosing a kind of circuit, comprising the input node for receiving input signal (13); For catching the reference mode (20) from the reference current of multiple reference unit (12); There is the capacitance network (15) of the electric discharge controlled by described reference current; And exporting the output circuit with the described input signal of delay (16), wherein said delay is by the described control of discharge of described capacitance network (15).

Description

跟踪位单元特性的SRAM延迟电路SRAM Delay Circuit Tracking Bit Cell Characteristics

技术领域 technical field

本公开涉及SRAM设备,尤其涉及用于生成跟踪位单元特性并独立于任何非单元设备的延迟的SRAM电路。The present disclosure relates to SRAM devices, and more particularly to SRAM circuits for generating delays that track bitcell characteristics and are independent of any non-cell devices.

背景技术 Background technique

SRAM(静态随机存取存储器)设备一般用于静态存储器存储。每个位通常都存储在具有四个晶体管的SRAM存储单元中。两个附加的存取晶体管用于在读和写操作过程中控制对存储单元的存取。对单元的存取是由控制两个存取晶体管的字线来使能的,这两个存取晶体管又控制所述单元是否应当连接到用于传输用于读和写操作的数据的位线。SRAM (Static Random Access Memory) devices are generally used for static memory storage. Each bit is typically stored in an SRAM memory cell with four transistors. Two additional access transistors are used to control access to the memory cell during read and write operations. Access to a cell is enabled by a word line controlling two access transistors which in turn control whether the cell should be connected to a bit line for transferring data for read and write operations .

在实现SRAM中必须处理的一个挑战是解决在(1)开启字线的时间与(2)准备好利用感测放大器从位线读出数据的时间之间发生的延迟。因为延迟可能基于任何数量的因素相对可变,所以需要用于生成延迟的某种类型的电路来通知感测放大器何时激发(fire)并读取位线。目前的方法利用逻辑设备来生成延迟。不幸的是,逻辑设备经受与SRAM单元设备不同的处理、电压和温度(PVT)变化。使用逻辑设备导致不是最优的性能和更易于出现SRAM单元写能力及稳定性问题。One challenge that must be addressed in implementing SRAM is addressing the delay that occurs between (1) the time the word line is turned on and (2) the time data is ready to be read from the bit line using the sense amplifier. Because the delay may be relatively variable based on any number of factors, some type of circuitry for generating the delay is required to inform the sense amplifier when to fire and read the bit line. Current approaches utilize logic devices to generate delays. Unfortunately, logic devices are subject to different processing, voltage, and temperature (PVT) variations than SRAM cell devices. Using logic devices results in sub-optimal performance and is more prone to SRAM cell writeability and stability issues.

发明内容 Contents of the invention

公开了用于生成跟踪位单元特性并独立于任何逻辑设备的延迟的SRAM电路。在第一方面,本发明提供了具有用于跟踪SRAM位单元特性的延迟电路的SRAM设备,其中该延迟电路包括:用于接收输入信号的输入节点;用于捕捉来自多个参考SRAM单元的参考电流的参考节点;具有由所述参考电流控制的放电率的电容网络;及输出延迟信号的输出电路,其中所述延迟信号是由所述电容网络的放电率控制的。SRAM circuits are disclosed for generating delays that track bit cell characteristics and are independent of any logic device. In a first aspect, the present invention provides an SRAM device having a delay circuit for tracking the characteristics of an SRAM bit cell, wherein the delay circuit includes: an input node for receiving an input signal; for capturing a reference from a plurality of reference SRAM cells a reference node for a current; a capacitive network having a discharge rate controlled by the reference current; and an output circuit that outputs a delayed signal, wherein the delayed signal is controlled by the discharge rate of the capacitive network.

在第二方面,本发明提供了在SRAM设备中生成延迟信号的方法,包括:提供具有耦合到公共参考节点的多个参考单元的SRAM设备,其中所述多个参考单元配置成响应于字线转换(transition)而在所述公共参考节点生成参考电流;响应于所述字线转换而在所述公共参考节点生成参考电流;利用所述参考电流来指定到放电线上的电容网络的放电率;响应于所述放电线上的电压电势超出阈值电压而激活输出电路;及输出延迟信号。In a second aspect, the present invention provides a method of generating a delay signal in an SRAM device comprising: providing an SRAM device having a plurality of reference cells coupled to a common reference node, wherein the plurality of reference cells are configured to respond to a word line generating a reference current at the common reference node during a transition; generating a reference current at the common reference node in response to the word line transition; using the reference current to specify a discharge rate to a capacitive network on a discharge line ; activating an output circuit in response to a voltage potential on said discharge line exceeding a threshold voltage; and outputting a delay signal.

在第三方面,本发明提供了用于在SRAM设备中生成延迟信号的系统,包括:耦合到公共参考节点的多个参考单元,其中所述多个参考单元配置成响应于字线转换而在所述公共参考节点生成参考电流,而且其中该参考电流包括所述多个参考单元的平均特性;利用所述参考电流指定到放电线上的电容网络的放电率的电路;响应于所述放电线上的电压电势超过阈值电压而被激活的输出电路;及响应于传输栅极晶体管(passgatetransistor)被激活而输出延迟信号的输出节点。In a third aspect, the present invention provides a system for generating a delay signal in an SRAM device, comprising: a plurality of reference cells coupled to a common reference node, wherein the plurality of reference cells are configured to switch between The common reference node generates a reference current, and wherein the reference current comprises an average characteristic of the plurality of reference cells; a circuit that uses the reference current to assign a discharge rate to a capacitive network on a discharge line; responsive to the discharge line an output circuit that is activated when the voltage potential on the above threshold voltage is exceeded; and an output node that outputs a delayed signal in response to activation of a passgate transistor.

在第四方面,本发明提供了具有利用虚地跟踪SRAM位单元特性的延迟电路的SRAM设备,其中所述延迟电路包括:用于接收输入信号的输入节点;用于从多个参考SRAM单元捕捉参考电流的虚地节点;具有提供由所述参考电流控制的放电率的电容器对的电容网络;及输出延迟信号的输出电流,其中所述延迟信号是由所述电容网络的放电率控制的。In a fourth aspect, the present invention provides an SRAM device having a delay circuit utilizing a virtual ground to track an SRAM bit cell characteristic, wherein the delay circuit includes: an input node for receiving an input signal; for capturing from a plurality of reference SRAM cells a virtual ground node for a reference current; a capacitive network having a pair of capacitors providing a discharge rate controlled by the reference current; and an output current outputting a delayed signal, wherein the delayed signal is controlled by the discharge rate of the capacitive network.

本发明的例示性方面被设计成解决本文中描述的问题和没有讨论的其它问题。The illustrative aspects of the invention are designed to address the problems described herein and others not discussed.

附图说明 Description of drawings

根据以下结合附图对本发明各方面的具体描述,本发明的这些及其它特征将更加容易理解。These and other features of the present invention will be more easily understood from the following detailed description of various aspects of the present invention in conjunction with the accompanying drawings.

图1绘出了根据本发明实施方式的具有延迟电路的SRAM设备。FIG. 1 depicts an SRAM device with a delay circuit according to an embodiment of the present invention.

图2绘出了根据本发明实施方式的延迟电路。Figure 2 depicts a delay circuit according to an embodiment of the present invention.

图3绘出了根据本发明实施方式的用于获得参考电流的两种附加实施方式。Figure 3 depicts two additional implementations for obtaining a reference current according to an embodiment of the present invention.

图4绘出了根据本发明实施方式的延迟电路。Figure 4 depicts a delay circuit according to an embodiment of the present invention.

图5绘出了根据本发明实施方式的延迟电路。Figure 5 depicts a delay circuit according to an embodiment of the present invention.

图6绘出了根据本发明实施方式的延迟电路。Figure 6 depicts a delay circuit according to an embodiment of the present invention.

图7绘出了根据本发明实施方式的耦合到延迟电路的限制器。Figure 7 depicts a limiter coupled to a delay circuit according to an embodiment of the invention.

图8绘出了根据本发明实施方式的显示生成延迟信号的方法的流程图。FIG. 8 depicts a flowchart showing a method for generating a delayed signal according to an embodiment of the present invention.

这些附图仅仅是示意性的表示,而不是旨在描绘本发明的具体参数。附图旨在绘出本发明的仅典型实施方式,因此不应当被认为是限制本发明的范围。在附图中,类似的编号表示类似的元件。The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbers indicate like elements.

具体实施方式 Detailed ways

图1绘出了包括用于生成延迟信号16的延迟电路14的SRAM设备10,其中延迟信号16是输入信号13的延迟版本。输入信号13可以例如包括激活SRAM设备10上的读和/或写操作的时钟转换。延迟信号16中的延迟量基于从单元阵列12中的一组参考单元20(即,位单元)获得的参考电流i。应当指出,参考单元20不必在功能性单元阵列12中,而是可以驻留在其它地方,例如小的单独的参考阵列。延迟电路14利用具有一个或多个电容器的电容网络15来基于参考电流i生成放电。该放电控制延迟信号16中的延迟量。FIG. 1 depicts an SRAM device 10 comprising a delay circuit 14 for generating a delayed signal 16 , which is a delayed version of an input signal 13 . Input signal 13 may, for example, include a clock transition that activates read and/or write operations on SRAM device 10 . The amount of delay in delay signal 16 is based on a reference current i obtained from a set of reference cells 20 (ie, bit cells) in cell array 12 . It should be noted that the reference cell 20 need not be in the functional cell array 12, but may reside elsewhere, such as a small separate reference array. The delay circuit 14 utilizes a capacitive network 15 having one or more capacitors to generate a discharge based on a reference current i. This discharge controls the amount of delay in delay signal 16 .

在本实施方式中,延迟信号16被提供给感测放大器18,来确定单元阵列12中的位线什么时候应被读取/写入。然而,应当理解,延迟信号16可以用于任何目的,例如定义WL(字线)脉冲宽度、BL(位线)恢复激活,等等。由此,因为参考单元20可以简单地实现为单元阵列12中一组额外的位单元或者实现为单独的不同的阵列,所以这种方法提取SRAM设备特性来控制定时,而不需要修改设备本身的构造布局。这组参考单元20可以例如包括16个或32个单元,从这些单元获得平均或者参考电流i,由此从统计上来说消除了单元之间的性能变化。描述了用于获得参考电流i的各种实施方式及各种延迟电路14。In this embodiment, the delay signal 16 is provided to the sense amplifier 18 to determine when the bit lines in the cell array 12 should be read/written. However, it should be understood that delay signal 16 may be used for any purpose, such as defining WL (word line) pulse width, BL (bit line) reactivation, etc. Thus, since the reference cell 20 can be implemented simply as an extra set of bit cells in the cell array 12 or as a separate distinct array, this approach extracts SRAM device characteristics to control timing without modifying the device itself. Construct the layout. The set of reference cells 20 may for example comprise 16 or 32 cells, from which the average or reference current i is obtained, thereby statistically eliminating variations in performance between cells. Various implementations and various delay circuits 14 for obtaining the reference current i are described.

图2绘出了包括四个部件的延迟电路50的例示性实施方式,这四个部件包括设备跟踪偏置发生器22、放电网络24、开关电容网络26和阈值补偿电路28。延迟电路50从一组参考单元42获得参考电流30并生成延迟的波形40(WLEND),延迟的波形是字线或时钟信号36(CLK,WLSTART)的延迟版本。除延迟之外,延迟的波形40本质上模拟设备中字线WLSTART的行为。在参考单元42中,字线VDDW及位线VDDB1和位线VDDB2都设置成VDD,而且从每个单元上的IREAD节点获得电流。为了避免影响参考单元的SRAM特性,参考单元42中的信号可以利用对参考和功能性SRAM单元公共的现有单元信号来设置,而没有附加的金属线或者通孔。这允许提取SRAM设备特性,而不修改参考SRAM单元的构造布局。FIG. 2 depicts an exemplary embodiment of a delay circuit 50 comprising four components including device tracking bias generator 22 , discharge network 24 , switched capacitor network 26 and threshold compensation circuit 28 . Delay circuit 50 takes reference current 30 from set of reference cells 42 and generates delayed waveform 40 (WL END ), which is a delayed version of word line or clock signal 36 (CLK, WL START ). Delayed waveform 40 essentially simulates the behavior of word line WL START in the device, except for the delay. In reference cell 42, word line VDD W and bit lines VDD B1 and bit lines VDD B2 are all set to VDD and current is drawn from the I READ node on each cell. To avoid affecting the SRAM characteristics of the reference cell, the signals in the reference cell 42 can be set using existing cell signals common to the reference and functional SRAM cells without additional metal lines or vias. This allows extraction of SRAM device characteristics without modifying the fabric layout of reference SRAM cells.

设备跟踪偏置发生器22包括从参考单元42接收参考电流30并生成偏置34的电流镜32。然后,该偏置34被馈送到放电网络24中,当时钟信号36上升时,放电网络24把该偏置信号释放到开关电容网络26中的放电线(DL)节点38上。偏置34确定用于DL节点38通过放电网络24的放电率。Device tracking bias generator 22 includes current mirror 32 that receives reference current 30 from reference unit 42 and generates bias 34 . This bias 34 is then fed into discharge network 24 which discharges the bias signal onto discharge line (DL) node 38 in switched capacitor network 26 when clock signal 36 rises. The bias 34 determines the discharge rate for the DL node 38 through the discharge network 24 .

当CLK36为低时,阈值补偿电路28通过把DL节点38充电至逆变器46的阈值和进行自校准来工作,以便抵消设备不匹配和PVT引入的任何阈值变化。当CLK36为高时,DL节点38的充电停止,而且,当DL电压跨逆变器46的阈值放电时,阈值补偿电路28生成上升沿。Threshold compensation circuit 28 operates by charging DL node 38 to the threshold of inverter 46 and self-calibrating when CLK 36 is low to counteract any threshold variations introduced by device mismatch and PVT. When CLK 36 is high, charging of DL node 38 stops, and threshold compensation circuit 28 generates a rising edge when the DL voltage discharges across the threshold of inverter 46 .

当CLK36转换到高时,开关电容网络26基于在CLK36为低时生成的DL预充电电压和Cboost与Csignal之比,在DL节点38上生成独立于逻辑设备的电压增量。实际上,开关电容网络以Cboost和Csignal之间的比率把DL线上的电压从逆变器46的阈值电压升高到比逆变器46的阈值高的电压。When CLK 36 transitions high, switched capacitor network 26 generates a logic-device-independent voltage increment on DL node 38 based on the DL precharge voltage generated while CLK 36 is low and the ratio of Cboost to Csignal. In effect, the switched capacitor network boosts the voltage on the DL line from the threshold voltage of the inverter 46 to a voltage higher than the threshold of the inverter 46 at a ratio between Cboost and Csignal.

然后,DL节点38上的电压增量通过放电网络24释放,并且当该电压增量变高到足以超过逆变器46的电压阈值时打开阈值栅极44。阈值栅极44和逆变器46确保实际上独立于PVT的延迟信号40(WLEND)具有对随机设备变化的低灵敏性(即,上面描述过的自校准)。因而,延迟主要是由升压生成的DL电压、DL节点38上的电容和对DL节点38进行放电的参考电流的函数。The voltage increase on DL node 38 is then discharged through discharge network 24 and threshold gate 44 is opened when the voltage increase becomes high enough to exceed the voltage threshold of inverter 46 . The threshold gate 44 and inverter 46 ensure that the delay signal 40 (WL END ) is virtually PVT independent with low sensitivity to random device variations (ie self-calibration as described above). Thus, the delay is primarily a function of the DL voltage generated by the boost, the capacitance on the DL node 38 and the reference current discharging the DL node 38 .

在图2的实施方式中,传输栅极(PG)配置用于获得参考电流,即,电流是从每个单元中的传输栅极晶体管汲取的。更特别地,这种配置使用通过下拉(PD)FET和传输栅极(PG)FET的消耗电流(current-drain)(利用PGFET充当电流限制器)。图3绘出了用于从一组参考单元获得参考电流并把该电流提供给偏置发生器的两种替代性实施方式52、54。在实施方式52中,上拉(PU)配置是通过连接单元信号56而使用的,以便通过上拉(PU)FET和PGFET提供消耗电流(利用PUFET充当电流限制器)。在实施方式54中,下拉配置是通过连接单元信号58来实现的,以便通过PD和PGFET提供消耗电流,其中PGFET利用高得多的电压来进行门控,以便使PDFET成为电流限制器。In the embodiment of Fig. 2, the transfer gate (PG) configuration is used to obtain the reference current, ie the current is drawn from the transfer gate transistor in each cell. More specifically, this configuration uses current-drain through a pull-down (PD) FET and a pass-gate (PG) FET (with the PGFET acting as a current limiter). Figure 3 depicts two alternative implementations 52, 54 for obtaining a reference current from a set of reference cells and supplying this current to a bias generator. In embodiment 52, a pull-up (PU) configuration is used by connecting the cell signal 56 to provide the drain current through the pull-up (PU) FET and the PGFET (with the PUFET acting as a current limiter). In embodiment 54, the pull-down configuration is achieved by connecting the cell signal 58 to provide current draw through the PD and the PGFET, where the PGFET is gated with a much higher voltage to make the PDFET a current limiter.

应当指出,在这些实施方式的每一种当中,都利用具有电流镜的偏置发生器来生成偏置信号。然而,如在本文中所描述的,偏置发生器/电流镜可以省略。It should be noted that in each of these embodiments, a bias generator with a current mirror is utilized to generate the bias signal. However, as described herein, the bias generator/current mirror can be omitted.

还要指出,所例示的偏置发生器实施方式的每一个中的电流镜可以以多种不同的方式实现,例如,级联等,而且可以在不使用的时候断电。此外,偏置发生器可以用于控制其它的SRAM辅助功能,例如写辅助、读辅助,等等。Note also that the current mirrors in each of the illustrated bias generator embodiments can be implemented in many different ways, eg, cascaded, etc., and can be powered down when not in use. In addition, the bias generator can be used to control other SRAM auxiliary functions, such as write assist, read assist, and so on.

图4绘出了延迟电路的替代性实施方式60。在这种实施方式中,使用了两个偏置发生器,即PU-BIAS发生器62和PG-BIAS发生器64。放电网络66与图2实施方式相比有所改变,以便允许写操作的适当建模,其中PU-BIAS发生器62控制上拉特性。与门72用于把上拉偏置限制到仅写操作。对于读操作,使用PG-BIAS发生器64。开关电容网络68和阈值补偿电路70与图2中所描述的相同。FIG. 4 depicts an alternative implementation 60 of a delay circuit. In this embodiment, two bias generators, PU-BIAS generator 62 and PG-BIAS generator 64, are used. The discharge network 66 is changed from the Figure 2 embodiment in order to allow proper modeling of write operations, where the PU-BIAS generator 62 controls the pull-up characteristics. AND gate 72 is used to limit the pull-up bias to write operations only. For read operations, the PG-BIAS generator 64 is used. Switched capacitor network 68 and threshold compensation circuit 70 are the same as described in FIG. 2 .

图5绘出了延迟电路的另一种实施方式80。在本实施方式中,参考电流82(IRead)象图2中那样从下拉(PD)FET和传输栅极(PG)FET流出来。然而,电流82作为虚地(V_VSS)被直接馈送到延迟电路80中。因而,V_VSS构成通过SRAM单元的PD/PGFET完全放电的电源,由此控制两个Csignal电容器的放电率并从而控制延迟输出。FIG. 5 depicts another embodiment 80 of a delay circuit. In this embodiment, the reference current 82 (I Read ) flows from the pull-down (PD) FET and transfer gate (PG) FET as in FIG. 2 . However, current 82 is fed directly into delay circuit 80 as a virtual ground (V_VSS). Thus, V_VSS constitutes the power supply through which the PD/PGFET of the SRAM cell is fully discharged, thereby controlling the discharge rate of the two Csignal capacitors and thus controlling the delayed output.

图6绘出了延迟电路的又一种实施方式90。除偏置发生器/电流镜和放电网络被有效地消除了之外,这种实施方式与图2所示的类似。代替地,参考电流92直接连接到DL节点,而时钟信号(CLK)充当用于参考单元的字线94。FIG. 6 depicts yet another embodiment 90 of a delay circuit. This implementation is similar to that shown in Figure 2, except that the bias generator/current mirror and discharge network are effectively eliminated. Instead, the reference current 92 is directly connected to the DL node, while the clock signal (CLK) acts as the word line 94 for the reference cell.

图7绘出了一种系统,其中基于SRAM的延迟电路100(如在本文中所描述的)与限制器102耦合(即,相与),以便把延迟量设置成不小于最小脉冲宽度(PW)。限制器102可以由例如把最小延迟设置在设备的高压角落的逻辑设备构成。FIG. 7 depicts a system in which a SRAM-based delay circuit 100 (as described herein) is coupled (i.e., ANDed) with a limiter 102 to set the amount of delay to be no less than the minimum pulse width (PW ). The limiter 102 may consist of, for example, a logic device that sets the minimum delay at the high voltage corner of the device.

图8绘出了用于实现本发明实施方式的方法的流程图。在S1,SRAM设备利用一排(即,多个)参考单元配置,其中参考单元耦合到公共参考节点,以便提供参考电流。在S2,响应于字线转换而生成参考电流。在S3,该参考电流用于指定从电容网络到放电线的放电率。在S4,当放电量超过阈值电压时,激活传输栅极晶体管。最后,在S5,响应于传输栅极晶体管的激活而生成延迟信号。Figure 8 depicts a flowchart of a method for implementing an embodiment of the present invention. At S1, the SRAM device is configured with a bank (ie, a plurality) of reference cells, where the reference cells are coupled to a common reference node in order to provide a reference current. At S2, a reference current is generated in response to a word line transition. At S3, this reference current is used to specify the discharge rate from the capacitive network to the discharge line. At S4, when the discharge amount exceeds the threshold voltage, the transfer gate transistor is activated. Finally, at S5, a delayed signal is generated in response to the activation of the transfer gate transistor.

尽管在本文中已经例示和描述了具体的实施方式,但是本领域普通技术人员都将认识到,被认为能获得相同目的的任何布置都可以替换所示出的具体实施方式,而且本发明具有在其它环境中的其它应用。本申请旨在覆盖本发明的任何修改或变体。以下权利要求绝不旨在把本发明的范围限制到本文中所描述的具体实施方式。Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will recognize that any arrangement that is believed to achieve the same purpose may be substituted for the specific embodiments shown and that the invention has the advantages described herein. other applications in other environments. This application is intended to cover any adaptations or variations of the present invention. The following claims are in no way intended to limit the scope of the invention to the specific embodiments described herein.

Claims (25)

1.一种具有用于跟踪SRAM位单元特性的延迟电路的SRAM设备,其中,所述延迟电路包括:1. A SRAM device having a delay circuit for tracking SRAM bit cell characteristics, wherein the delay circuit comprises: 用于接收输入信号的输入节点;an input node for receiving an input signal; 用于捕捉来自多个参考单元的参考电流的参考节点;a reference node for capturing reference currents from multiple reference cells; 具有由所述参考电流控制的放电线上的电容网络的放电率;及having a discharge rate of a capacitive network on the discharge line controlled by said reference current; and 输出延迟信号的输出电路,其中,该延迟信号由所述电容网络的所述放电率控制,所述延迟信号是输入信号的延迟版本。An output circuit that outputs a delayed signal, wherein the delayed signal is controlled by said discharge rate of said capacitive network, said delayed signal being a delayed version of an input signal. 2.如权利要求1所述的SRAM设备,其中,所述输入信号包括时钟转换。2. The SRAM device of claim 1, wherein the input signal comprises a clock transition. 3.如权利要求1所述的SRAM设备,其中,所述参考电流是利用选自以下的一种配置从所述多个参考单元捕捉的:传输栅极配置;上拉配置;及下拉配置。3. The SRAM device of claim 1, wherein the reference current is captured from the plurality of reference cells using a configuration selected from the group consisting of: a transfer gate configuration; a pull-up configuration; and a pull-down configuration. 4.如权利要求1所述的SRAM设备,其中,所述参考电流输入到具有电流镜的偏置发生器中。4. The SRAM device of claim 1, wherein the reference current is input into a bias generator having a current mirror. 5.如权利要求4所述的SRAM设备,其中,所述偏置发生器把偏置输出到耦合于所述电容网络的放电网络,其中,该偏置指定所述电容网络的放电率。5. The SRAM device of claim 4, wherein the bias generator outputs a bias to a discharge network coupled to the capacitive network, wherein the bias specifies a discharge rate of the capacitive network. 6.如权利要求1所述的SRAM设备,其中,所述电容网络包括升压电容器和信号电容器,并基于所述升压电容器和所述信号电容器之比在放电线上生成独立于逻辑的电压增量。6. The SRAM device of claim 1 , wherein the capacitive network includes a boost capacitor and a signal capacitor, and generates a logic-independent voltage on a discharge line based on a ratio of the boost capacitor and the signal capacitor increment. 7.如权利要求1所述的SRAM设备,其中,所述输出电路包括传输栅极晶体管,该传输栅极晶体管响应于在所述放电线上电压阈值被超过而打开。7. The SRAM device of claim 1, wherein the output circuit includes a transfer gate transistor that turns on in response to a voltage threshold being exceeded on the discharge line. 8.如权利要求1所述的SRAM设备,其中,所述电容网络具有电容器对,所述参考电流用作虚地,来控制所述电容器对的放电。8. The SRAM device of claim 1, wherein the capacitive network has capacitor pairs, and the reference current is used as a virtual ground to control discharge of the capacitor pairs. 9.如权利要求1所述的SRAM设备,其中,所述参考电流被提供给用于控制写操作的上拉偏置发生器和用于控制读操作的传输栅极偏置发生器。9. The SRAM device of claim 1, wherein the reference current is supplied to a pull-up bias generator for controlling a write operation and a transfer gate bias generator for controlling a read operation. 10.如权利要求1所述的SRAM设备,其中,所述参考电流被直接提供给电容网络中的放电线。10. The SRAM device of claim 1, wherein the reference current is provided directly to a discharge line in a capacitive network. 11.一种在SRAM设备中生成延迟信号的方法,包括:11. A method of generating a delayed signal in an SRAM device, comprising: 提供具有耦合到公共参考节点的多个参考单元的SRAM设备,其中,所述多个参考单元配置成响应于字线转换而在所述公共参考节点生成参考电流;providing an SRAM device having a plurality of reference cells coupled to a common reference node, wherein the plurality of reference cells are configured to generate a reference current at the common reference node in response to a word line transition; 响应于所述字线转换而在所述公共参考节点生成所述参考电流;generating the reference current at the common reference node in response to the word line transition; 利用所述参考电流来指定到放电线上的电容网络的放电率;using said reference current to specify a discharge rate to a capacitive network on a discharge line; 响应于所述放电线上的电压电势超过阈值电压而激活输出电路;及activating an output circuit in response to a voltage potential on the discharge line exceeding a threshold voltage; and 输出延迟信号,所述延迟信号是输入信号的延迟版本。A delayed signal is output that is a delayed version of the input signal. 12.如权利要求11所述的方法,还包括利用选自以下的一种配置来捕捉来自所述多个参考单元的所述参考电流:传输栅极配置;上拉配置;及下拉配置。12. The method of claim 11, further comprising capturing the reference current from the plurality of reference cells using a configuration selected from: a transfer gate configuration; a pull-up configuration; and a pull-down configuration. 13.如权利要求11所述的方法,还包括把所述参考电流输入到具有电流镜的偏置发生器中。13. The method of claim 11, further comprising inputting the reference current into a bias generator having a current mirror. 14.如权利要求13所述的方法,还包括根据需要给所述电流镜上电或断电,以便生成所述延迟信号。14. The method of claim 13, further comprising powering on and off the current mirror as needed to generate the delayed signal. 15.如权利要求11所述的方法,其中,所述电容网络包括升压电容器和信号电容器,并基于所述升压电容器和所述信号电容器之比在所述放电线上生成独立于逻辑的电压增量。15. The method of claim 11, wherein the capacitive network includes a boost capacitor and a signal capacitor, and generates a logic-independent voltage increment. 16.如权利要求11所述的方法,所述电容网络具有电容器对,所述方法还包括把所述参考电流用作虚地,来控制所述电容器对的放电。16. The method of claim 11, the capacitive network having capacitor pairs, the method further comprising using the reference current as a virtual ground to control discharge of the capacitor pairs. 17.如权利要求11所述的方法,还包括把所述参考电流提供给用于控制写操作的上拉偏置发生器和用于控制读操作的传输栅极偏置发生器。17. The method of claim 11, further comprising providing the reference current to a pull-up bias generator for controlling write operations and a transfer gate bias generator for controlling read operations. 18.如权利要求11所述的方法,还包括把所述参考电流直接提供给所述电容网络中的所述放电线。18. The method of claim 11, further comprising providing said reference current directly to said discharge line in said capacitive network. 19.一种用于在SRAM设备中生成延迟信号的系统,所述延迟信号是输入信号的延迟版本,包括:19. A system for generating a delayed signal in an SRAM device, the delayed signal being a delayed version of an input signal, comprising: 耦合到公共参考节点的多个参考单元,其中,所述多个参考单元配置成响应于字线转换而在所述公共参考节点生成参考电流,其中,该参考电流包括所述多个参考单元的平均特性;a plurality of reference cells coupled to a common reference node, wherein the plurality of reference cells are configured to generate a reference current at the common reference node in response to a word line transition, wherein the reference current comprises the Average properties; 利用所述参考电流指定到放电线上的电容网络的放电率的电路;a circuit that uses said reference current to assign a discharge rate to a capacitive network on a discharge line; 响应于所述放电线上的放电量超过阈值电压而激活的传输栅极晶体管;及a transfer gate transistor activated in response to a discharge on said discharge line exceeding a threshold voltage; and 响应于所述放电线上的电压电势超过阈值电压而激活的输出电路。An output circuit activated in response to the voltage potential on the discharge line exceeding a threshold voltage. 20.如权利要求19所述的系统,其中,所述参考电流是利用选自以下的一种配置从所述多个参考单元捕捉的:传输栅极配置;上拉配置;及下拉配置。20. The system of claim 19, wherein the reference current is captured from the plurality of reference cells using a configuration selected from the group consisting of: a transfer gate configuration; a pull-up configuration; and a pull-down configuration. 21.如权利要求19所述的系统,还包括利用电流镜把所述参考电流转换成偏置的偏置发生器。21. The system of claim 19, further comprising a bias generator that converts the reference current into a bias using a current mirror. 22.如权利要求19所述的系统,其中,所述输出电路包括阈值补偿电路。22. The system of claim 19, wherein the output circuit includes a threshold compensation circuit. 23.如权利要求22所述的系统,其中,所述阈值补偿电路把来自所述电容网络的放电线升压参考到降低压力电压和温度PVT特性的阈值。23. The system of claim 22, wherein the threshold compensation circuit references a discharge line boost from the capacitive network to a threshold that reduces pressure voltage and temperature PVT characteristics. 24.如权利要求19所述的系统,其中,所述多个参考单元与所述SRAM设备上的一组功能单元在构造布局上是基本上相同的。24. The system of claim 19, wherein the plurality of reference cells are substantially identical in architectural layout to a set of functional cells on the SRAM device. 25.一种具有延迟电路的SRAM设备,该延迟电路利用虚地来跟踪SRAM位单元特性,其中,所述延迟电路包括:25. A SRAM device having a delay circuit utilizing a virtual ground to track SRAM bit cell characteristics, wherein the delay circuit comprises: 用于接收输入信号的输入节点;an input node for receiving an input signal; 用于从多个参考SRAM单元捕捉参考电流的虚地节点;Virtual ground node for capturing reference current from multiple reference SRAM cells; 具有电容器对的电容网络,该电容器对提供由所述参考电流控制的放电率;及a capacitive network having a pair of capacitors providing a discharge rate controlled by said reference current; and 输出延迟信号的输出电路,其中,所述延迟信号由所述电容网络的所述放电率控制,所述延迟信号是输入信号的延迟版本。An output circuit that outputs a delayed signal, wherein the delayed signal is controlled by the discharge rate of the capacitive network, the delayed signal being a delayed version of the input signal.
CN201080047089.7A 2009-10-19 2010-09-08 The SRAM delay circuit of trace bit element characteristics Expired - Fee Related CN102687203B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/581,440 US8233337B2 (en) 2009-10-19 2009-10-19 SRAM delay circuit that tracks bitcell characteristics
US12/581,440 2009-10-19
PCT/US2010/048052 WO2011049679A1 (en) 2009-10-19 2010-09-08 Sram delay circuit that tracks bitcell characteristics

Publications (2)

Publication Number Publication Date
CN102687203A CN102687203A (en) 2012-09-19
CN102687203B true CN102687203B (en) 2015-11-25

Family

ID=42831511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080047089.7A Expired - Fee Related CN102687203B (en) 2009-10-19 2010-09-08 The SRAM delay circuit of trace bit element characteristics

Country Status (4)

Country Link
US (1) US8233337B2 (en)
CN (1) CN102687203B (en)
DE (1) DE112010003722B4 (en)
WO (1) WO2011049679A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027676B1 (en) * 2008-06-26 2011-04-12 주식회사 하이닉스반도체 Phase synchronizer
JP5539916B2 (en) * 2011-03-04 2014-07-02 ルネサスエレクトロニクス株式会社 Semiconductor device
KR20130021175A (en) 2011-08-22 2013-03-05 삼성전자주식회사 Memory device and devices having the same
US9105328B2 (en) * 2012-07-31 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Tracking signals in memory write or read operation
US8848414B2 (en) 2012-10-22 2014-09-30 International Business Machines Corporation Memory system incorporating a circuit to generate a delay signal and an associated method of operating a memory system
US9099200B2 (en) 2013-06-27 2015-08-04 International Business Machines Corporation SRAM restore tracking circuit and method
CN106297874B (en) * 2015-06-05 2019-06-21 台湾积体电路制造股份有限公司 Clock signal generating circuit and method and memory
US9548104B1 (en) 2015-06-30 2017-01-17 International Business Machines Corporation Boost control to improve SRAM write operation
US9940999B2 (en) 2016-06-22 2018-04-10 Darryl G. Walker Semiconductor devices, circuits and methods for read and/or write assist of an SRAM circuit portion based on voltage detection and/or temperature detection circuits
US10163524B2 (en) 2016-06-22 2018-12-25 Darryl G. Walker Testing a semiconductor device including a voltage detection circuit and temperature detection circuit that can be used to generate read assist and/or write assist in an SRAM circuit portion and method therefor
US10217507B2 (en) 2016-11-08 2019-02-26 Globalfoundries Inc. Bending circuit for static random access memory (SRAM) self-timer
GB2557297B (en) * 2016-12-05 2020-02-19 Advanced Risc Mach Ltd Generating a reference current for sensing
US10984854B1 (en) * 2019-10-01 2021-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with signal edge sharpener circuitry
US11955171B2 (en) 2021-09-15 2024-04-09 Mavagail Technology, LLC Integrated circuit device including an SRAM portion having end power select circuits

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287363A (en) * 1999-09-06 2001-03-14 日本电气株式会社 Semiconductor storage capable of increasing fetching speed of storage unit
US6473356B1 (en) * 2001-11-01 2002-10-29 Virage Logic Corp. Low power read circuitry for a memory circuit based on charge redistribution between bitlines and sense amplifier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282889A (en) * 1996-04-09 1997-10-31 Toshiba Corp Semiconductor device
US6072733A (en) 1997-10-17 2000-06-06 Waferscale Integration, Inc. Programmable sense amplifier delay (PSAD) circuit which is matched to the memory array
US5999482A (en) 1997-10-24 1999-12-07 Artisan Components, Inc. High speed memory self-timing circuitry and methods for implementing the same
JP2002216481A (en) 2001-01-19 2002-08-02 Hitachi Ltd Semiconductor integrated circuit device
KR100416623B1 (en) * 2002-05-03 2004-02-05 삼성전자주식회사 Sense amplifier enable signal generating circuit having process tracking circuit and semiconductor memory device including the same
JP4287235B2 (en) * 2003-10-09 2009-07-01 株式会社東芝 Nonvolatile semiconductor memory device
JP4050690B2 (en) 2003-11-21 2008-02-20 株式会社東芝 Semiconductor integrated circuit device
US7142466B1 (en) 2005-10-14 2006-11-28 Texas Instruments Incorporated Determining optimal time instances to sense the output of a memory array which can generate data outputs with variable delay
US7440312B2 (en) 2006-10-02 2008-10-21 Analog Devices, Inc. Memory write timing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287363A (en) * 1999-09-06 2001-03-14 日本电气株式会社 Semiconductor storage capable of increasing fetching speed of storage unit
US6473356B1 (en) * 2001-11-01 2002-10-29 Virage Logic Corp. Low power read circuitry for a memory circuit based on charge redistribution between bitlines and sense amplifier

Also Published As

Publication number Publication date
US8233337B2 (en) 2012-07-31
DE112010003722T5 (en) 2013-01-10
WO2011049679A1 (en) 2011-04-28
CN102687203A (en) 2012-09-19
US20110090750A1 (en) 2011-04-21
DE112010003722B4 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
CN102687203B (en) The SRAM delay circuit of trace bit element characteristics
KR100880069B1 (en) How to Write to Memory Devices and Memory Devices
US10032507B2 (en) SRAM bit-line and write assist apparatus and method for lowering dynamic power and peak current, and a dual input level-shifter
US10008258B2 (en) Method and circuit to enable wide supply voltage difference in multi-supply memory
JP5922320B2 (en) Memory with write assist with increased speed
JP7051676B2 (en) Single-ended bit line current sensing amplifier for SRAM applications
JP3416062B2 (en) Content addressable memory (CAM)
US9245595B2 (en) System and method for performing SRAM access assists using VSS boost
JP2012515411A (en) Dynamic leakage control for memory arrays
CN101501778A (en) Low power memory control circuits and methods
JP2011014222A (en) Sense amplifier and semiconductor integrated circuit using the same
CN104321818A (en) Devices for lowering the minimum supply voltage for memory writes
JP2004039204A (en) Word line driving circuit
KR100925368B1 (en) Sense amplifier voltage supply circuit and its driving method
WO2006121491A3 (en) Method and apparatus for low voltage write in a static random access memory
US20040170077A1 (en) Semiconductor memory device
TWI538407B (en) Pulse-width modulation device
US6456519B1 (en) Circuit and method for asynchronously accessing a ferroelectric memory device
CN116524969A (en) Random access memory and sensitive amplifying and driving circuit thereof
KR100745072B1 (en) Internal voltage discharge circuit
CN106024043A (en) Power driving device and semiconductor device including the same
CN218939253U (en) Random access memory
JPH10172281A (en) Semiconductor device
KR100961206B1 (en) Sense amplifier circuit
CN118430609A (en) Random access memory

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171114

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171114

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20200908