[go: up one dir, main page]

CN102682418A - Method for embedding and extracting multiple zero watermarks of digital image - Google Patents

Method for embedding and extracting multiple zero watermarks of digital image Download PDF

Info

Publication number
CN102682418A
CN102682418A CN2012101440404A CN201210144040A CN102682418A CN 102682418 A CN102682418 A CN 102682418A CN 2012101440404 A CN2012101440404 A CN 2012101440404A CN 201210144040 A CN201210144040 A CN 201210144040A CN 102682418 A CN102682418 A CN 102682418A
Authority
CN
China
Prior art keywords
watermark
facs
binary digital
cosine transform
discrete cosine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101440404A
Other languages
Chinese (zh)
Other versions
CN102682418B (en
Inventor
周亚训
金炜
陈芬
徐星辰
郑世超
殷丹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201210144040.4A priority Critical patent/CN102682418B/en
Publication of CN102682418A publication Critical patent/CN102682418A/en
Application granted granted Critical
Publication of CN102682418B publication Critical patent/CN102682418B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种数字图像的多个零水印嵌入及提取方法,多个零水印嵌入和提取均是在离散小波变换和离散余弦变换复合域内进行的,多个零水印嵌入是利用原始数字图像复合域内系数构造出二值水印密钥,再与实际的多个二值数字水印进行异或运算实现的,多个零水印提取是利用待测数字图像复合域内系数构造出二值水印密钥,结合零水印信息实现的,本发明的嵌入及提取方法具有优异的水印鲁棒性能,能够抗常规图像处理攻击;同时本发明的嵌入方法是将多个二值数字水印注册到版权数据库中,不对原始数字图像产生任何改变,因此嵌入的多个二值数字水印完全不可觉察,既平衡了数字水印的鲁棒性和不可觉察性之间的矛盾,又满足了数字水印应用的多样性需要。

The invention discloses a method for embedding and extracting multiple zero watermarks of a digital image. The embedding and extraction of multiple zero watermarks are all carried out in the compound domain of discrete wavelet transform and discrete cosine transform. The embedding of multiple zero watermarks utilizes the original digital image The binary watermark key is constructed by the coefficients in the composite domain, and then XOR operation is carried out with the actual multiple binary digital watermarks. The extraction of multiple zero watermarks is to use the coefficients in the composite domain of the digital image to be tested to construct the binary watermark key. Combined with zero watermark information, the embedding and extraction method of the present invention has excellent watermark robustness and can resist conventional image processing attacks; at the same time, the embedding method of the present invention registers multiple binary digital watermarks into the copyright database, which is not correct No changes are made to the original digital image, so the embedded multiple binary digital watermarks are completely imperceptible, which not only balances the contradiction between the robustness and imperceptibility of digital watermarking, but also satisfies the diverse needs of digital watermarking applications.

Description

一种数字图像的多个零水印嵌入及提取方法A Multiple Zero-Watermark Embedding and Extraction Method for Digital Image

技术领域 technical field

本发明涉及一种零水印技术,尤其是涉及一种数字图像的多个零水印嵌入及提取方法。The invention relates to a zero watermark technology, in particular to a method for embedding and extracting multiple zero watermarks of a digital image.

背景技术 Background technique

数字水印作为有效解决数字媒体作品版权保护和所有权鉴别的一种技术手段,是当前数字媒体信息安全领域的研究热点。数字水印要发挥应有的作用,必须具备鲁棒性和不可觉察性两个基本要素。水印鲁棒性,是指数字媒体在经过常规的数字信号处理或者外来攻击之后,嵌入的数字水印仍然具有较好的可检测性或者说仍能够反映出原始数字媒体的版权等方面信息。水印不可觉察性,是指数字水印的嵌入不能影响到原始数字媒体的听觉或视觉质量,从而不会影响原始数字媒体的应用价值。显然,传统的数字水印技术,即通过对原始数字媒体的空域数据或变换域系数进行一定的修改,将包含作者或作品的某种特征信息例如签名、版权标识、序列号、日期或图标等作为数字水印嵌入到原始数字媒体中,不可避免地存在着水印鲁棒性和水印不可觉察性之间的矛盾:一方面,水印鲁棒性要求在原始数字媒体中尽可能多地嵌入数字水印信息以抵抗各种常规处理或有意攻击,而另一方面,水印不可觉察性则希望尽可能少地嵌入数字水印信息以避免造成与原始数字媒体的明显差异,这对于一些敏感的数字图像例如医学图像和掌纹图像等尤为重要,因为这类数字图像的细节像素包含了极为重要的信息,这类数字图像中任何像素的变化所造成的失真都会影响对原始数字图像的判断。As a technical means to effectively solve the copyright protection and ownership identification of digital media works, digital watermarking is a research hotspot in the field of digital media information security. In order to play its due role, digital watermarking must have two basic elements: robustness and imperceptibility. Watermark robustness means that after the digital media undergoes conventional digital signal processing or external attacks, the embedded digital watermark still has good detectability or can still reflect the copyright information of the original digital media. The imperceptibility of watermark means that the embedding of digital watermark cannot affect the auditory or visual quality of the original digital media, so it will not affect the application value of the original digital media. Obviously, the traditional digital watermarking technology, by modifying the spatial domain data or transform domain coefficients of the original digital media, will include some characteristic information of the author or work, such as signature, copyright logo, serial number, date or icon, etc. When digital watermarking is embedded in the original digital media, there is inevitably a contradiction between watermark robustness and watermark imperceptibility: on the one hand, watermark robustness requires embedding as much digital watermark information as possible in the original digital media to Resist various conventional processing or intentional attacks, and on the other hand, watermark imperceptibility hopes to embed as little digital watermark information as possible to avoid obvious differences from the original digital media, which is important for some sensitive digital images such as medical images and Palmprint images are particularly important, because the detailed pixels of such digital images contain extremely important information, and the distortion caused by any pixel change in such digital images will affect the judgment of the original digital image.

近几年来,零水印技术的提出很好地解决了传统的数字水印技术中的水印鲁棒性和水印不可觉察性之间的矛盾,成为数字水印技术中一个新的研究分支。所谓零水印技术,就是通过原始数字媒体的自身特征构造出一个水印密钥,再与待嵌入的有实际意义的数字水印结合形成相关零水印信息后注册到知识产权水印信息数据库中的一种数字水印技术,它不对原始数字媒体作任何修改。因此,在零水印技术中,零水印的构造和注册过程就是通常意义上的数字水印嵌入过程,一旦注册完成,原始数字媒体就被认为包含了实际数字水印而具备了相应的版权保护能力。由于零水印技术中的实际数字水印是注册到知识产权水印信息数据库中,而不是嵌入到原始数字媒体中,也就不存在原始数字媒体质量下降的任何问题,正因为这个特性,零水印技术很好地平衡了传统的数字水印技术中的水印鲁棒性和水印不可觉察性之间的矛盾。In recent years, the zero watermark technology has been proposed to solve the contradiction between watermark robustness and watermark imperceptibility in traditional digital watermark technology, and has become a new research branch in digital watermark technology. The so-called zero watermark technology is to construct a watermark key through the characteristics of the original digital media, and then combine it with the digital watermark to be embedded to form relevant zero watermark information, and then register it in the intellectual property watermark information database. Watermarking technology, which does not make any modification to the original digital media. Therefore, in the zero watermarking technology, the construction and registration process of the zero watermark is the digital watermark embedding process in the usual sense. Once the registration is completed, the original digital media is considered to contain the actual digital watermark and has corresponding copyright protection capabilities. Since the actual digital watermark in the zero watermarking technology is registered in the intellectual property watermark information database instead of being embedded in the original digital media, there is no problem of degradation in the quality of the original digital media. Because of this feature, the zero watermarking technology is very It well balances the contradiction between watermark robustness and watermark imperceptibility in traditional digital watermarking technology.

目前,已有多种零水印方案被提出。2008年,曾凡娟、周安民在计算机应用刊物上提出了一种基于Contourlet变换和奇异值分解的数字图像零水印方案,该方案首先对原始图像进行Contourlet变换,将其分解为一系列多尺度、局部化、方向性的子带图像,再选择低频子带进行分块奇异值分解,根据每块分解中第一个奇异值的整数位大小的不变性构造出零水印。2009年,赵杰、王晅和何冰等人在计算机工程与科学刊物上提出了一种基于图像置乱和小波变换的零水印方案,该方案首先对水印图像进行置乱处理,然后利用载体图像一级小波分解后的低频子图和置乱后的水印图像得到提取矩阵,再对提取矩阵进行一定的打乱加密,由此完成零水印的嵌入和提取。2010年,毕秀丽,何春香和程诚在计算机工程与科学刊物上提出了一种基于对数极坐标映射和小波提升的零水印方案,该方案首先将水印图像进行置乱,对载体图像进行缩放归一化处理,然后进行对数极坐标映射,再进行一级整数小波提升,最后利用分解后的低频子图和置乱后水印图像构造出零水印。2011年,王武军在计算机与数字工程刊物上提出了一种多级离散余弦变换和奇异值分解的零水印方案,该方案首先对要嵌入的原始图像进行多级离散余弦变换,提取低频子图并对其进行奇异值分解,其次对嵌入的水印图像进行置乱,将置乱后的水印图像进行奇异值分解,最后将原始图像和水印图像两次奇异值分解后的结果进行运算产生零水印。Currently, several zero-watermarking schemes have been proposed. In 2008, Zeng Fanjuan and Zhou Anmin proposed a digital image zero-watermarking scheme based on Contourlet transform and singular value decomposition in the Computer Application Journal. The scheme first performs Contourlet transform on the original image and decomposes it into a series of multi-scale, local Then select the low-frequency sub-band for block singular value decomposition, and construct the zero watermark according to the invariance of the integer bit size of the first singular value in each block decomposition. In 2009, Zhao Jie, Wang Hao and He Bing proposed a zero-watermarking scheme based on image scrambling and wavelet transform in the Journal of Computer Engineering and Science. The low-frequency sub-image after first-level wavelet decomposition of the image and the watermark image after scrambling are extracted matrix, and then the extracted matrix is scrambled and encrypted to complete the embedding and extraction of zero watermark. In 2010, Bi Xiuli, He Chunxiang and Cheng Cheng proposed a zero-watermarking scheme based on logarithmic polar coordinate mapping and wavelet lifting in the Journal of Computer Engineering and Science. Scaling and normalization processing, then logarithmic polar coordinate mapping, and then one-level integer wavelet lifting, and finally using the decomposed low-frequency sub-image and the scrambled watermark image to construct a zero watermark. In 2011, Wang Wujun proposed a zero-watermarking scheme of multi-level discrete cosine transform and singular value decomposition in the Journal of Computer and Digital Engineering. The scheme first performs multi-level discrete cosine transform on the original image to be embedded, extracts low-frequency sub-images and Singular value decomposition is performed on it, and then the embedded watermark image is scrambled, and the scrambled watermark image is subjected to singular value decomposition. Finally, the original image and the watermark image are calculated by the two singular value decomposition results to generate a zero watermark.

然而,目前已提出的零水印方案基本上是基于单个零水印嵌入和提取的数字水印技术,存在着功能单一的局限性。由于实际应用中更多地存在着向数字媒体作品中嵌入多个数字水印以满足不同应用目的的需要,比如一幅数字媒体作品完成后需要有两人或多人的签名以共享版权,或者一幅数字媒体作品在发布、销售、使用等不同阶段需要标志不同所有者(如创作者、发行者、使用者等)使用的合法信息,又如数字媒体作品的作者(或出版者)在作品中同时嵌入用于版权认证的鲁棒水印和用于内容认证的脆弱水印等等。因此,从数字水印的应用多样性考虑,嵌入多个数字水印的零水印方案研究更具有实际应用价值和广阔的应用前景。However, the zero watermark schemes that have been proposed so far are basically based on the digital watermark technology of single zero watermark embedding and extraction, and have the limitation of single function. In practical applications, there are more needs to embed multiple digital watermarks into digital media works to meet different application purposes. For example, after a digital media work is completed, it needs two or more A digital media work needs to mark the legal information used by different owners (such as creators, distributors, users, etc.) at different stages such as release, sale, and use. Simultaneously embed a robust watermark for copyright authentication and a fragile watermark for content authentication, etc. Therefore, considering the application diversity of digital watermarking, the research of zero-watermarking scheme embedded with multiple digital watermarks has more practical application value and broad application prospects.

发明内容 Contents of the invention

本发明所要解决的技术问题是提供一种数字图像的多个零水印嵌入及提取方法,其实现了在原始数字图像中嵌入多个零水印,且嵌入的多个零水印具有优异的鲁棒性能,同时有效保证了原始数字图像的质量不受影响。The technical problem to be solved by the present invention is to provide a method for embedding and extracting multiple zero watermarks of a digital image, which realizes embedding multiple zero watermarks in the original digital image, and the embedded multiple zero watermarks have excellent robust performance , while effectively ensuring that the quality of the original digital image is not affected.

本发明解决上述技术问题所采用的技术方案为:一种数字图像的多个零水印嵌入方法,其特征在于包括以下步骤:The technical solution adopted by the present invention to solve the above-mentioned technical problems is: a method for embedding multiple zero-watermarks of a digital image, which is characterized in that it comprises the following steps:

①-1、在多个零水印嵌入端,假设待嵌入K个二值数字水印的原始数字图像为8bit的灰度图像,并记为F,F={0≤f(m,n)≤255,1≤m≤M,1≤n≤N},其中,K≥2,M表示待嵌入K个二值数字水印的原始数字图像F的竖直分辨率,N表示待嵌入K个二值数字水印的原始数字图像F的横向分辨率,M×N表示待嵌入K个二值数字水印的原始数字图像F的分辨率,f(m,n)表示待嵌入K个二值数字水印的原始数字图像F中坐标位置为(m,n)的像素的像素值;①-1. At multiple zero-watermark embedding terminals, assume that the original digital image to be embedded with K binary digital watermarks is an 8-bit grayscale image, and denoted as F, F={0≤f(m,n)≤255 ,1≤m≤M,1≤n≤N}, where K≥2, M represents the vertical resolution of the original digital image F to be embedded with K binary digital watermarks, and N represents the K binary digital watermarks to be embedded The horizontal resolution of the original digital image F of the watermark, M×N represents the resolution of the original digital image F to be embedded with K binary digital watermarks, f(m,n) represents the original digital image F to be embedded with K binary digital watermarks The pixel value of the pixel whose coordinate position is (m, n) in the image F;

①-2、在多个零水印嵌入端,假设待嵌入的K个二值数字水印皆为二值图像,并分别记为W1,W2,…,Wk,…WK,则对于待嵌入的第k个二值数字水印Wk,Wk={wk(ik,jk)=0或1,1≤ik≤Ik,1≤jk≤Jk},其中,1≤k≤K,Ik表示待嵌入的第k个二值数字水印Wk的竖直分辨率,Jk表示待嵌入的第k个二值数字水印Wk的横向分辨率,Ik×Jk表示待嵌入的第k个二值数字水印Wk的分辨率,wk(ik,jk)表示待嵌入的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值;①-2. At multiple zero-watermark embedding terminals, assuming that the K binary digital watermarks to be embedded are all binary images, which are recorded as W 1 , W 2 ,...,W k ,...W K , then for the The embedded kth binary digital watermark W k , W k ={w k (i k , j k )=0 or 1, 1≤i k ≤I k ,1≤j k ≤J k }, where, 1 ≤k≤K, I k represents the vertical resolution of the kth binary digital watermark W k to be embedded, J k represents the horizontal resolution of the kth binary digital watermark W k to be embedded, I k ×J k represents the resolution of the kth binary digital watermark W k to be embedded, w k (i k , j k ) represents the coordinate position of the kth binary digital watermark W k to be embedded is (i k , j k ) pixel value of the pixel;

①-3、对待嵌入K个二值数字水印的原始数字图像F进行归一化处理,得到归一化处理后的数字图像,记为F′,将归一化处理后的数字图像F′中坐标位置为(m,n)的像素的像素值记为f′(m,n),f′(m,n)=f(m,n)/255;①-3. The original digital image F to be embedded with K binary digital watermarks is normalized to obtain the normalized digital image, denoted as F′, and the normalized digital image F′ is The pixel value of the pixel whose coordinate position is (m,n) is recorded as f'(m,n), f'(m,n)=f(m,n)/255;

①-4、对F′进行L级二维离散小波变换,得到一个第一小波逼近子图和多个第一小波细节子图,将第一小波逼近子图记为FA,其中,FA的分辨率为(M/2L)×(N/2L),

Figure BDA00001628451500031
min()为取最小值函数,max()为取最大值函数,符号表示取小于其自身的最大整数,I1表示待嵌入的第1个二值数字水印W1的竖直分辨率,J1表示待嵌入的第1个二值数字水印W1的横向分辨率,IK表示待嵌入的第K个二值数字水印WK的竖直分辨率,JK表示待嵌入的第K个二值数字水印WK的横向分辨率;①-4. Carry out L-level two-dimensional discrete wavelet transform to F′ to obtain a first wavelet approximation subgraph and multiple first wavelet detail subgraphs, and denote the first wavelet approximation subgraph as FA, where the resolution of FA The rate is (M/2 L )×(N/2 L ),
Figure BDA00001628451500031
min() is the minimum value function, max() is the maximum value function, the symbol Indicates the largest integer smaller than itself, I 1 represents the vertical resolution of the first binary digital watermark W 1 to be embedded, J 1 represents the horizontal resolution of the first binary digital watermark W 1 to be embedded, I K represents the vertical resolution of the Kth binary digital watermark W K to be embedded, and J K represents the horizontal resolution of the Kth binary digital watermark W K to be embedded;

①-5、对FA进行二维离散余弦变换,得到一个与FA相同分辨率的第一二维离散余弦变换系数矩阵,记为FAC,然后对FAC进行Zig-Zag扫描排列,得到一个第一一维离散余弦变换系数序列,记为FACS,FACS={facs(x),1≤x≤(M/2L)×(N/2L)},其中,facs(x)表示FACS中的第x个离散余弦变换系数,FACS中的第2个离散余弦变换系数开始均为离散余弦变换交流系数;①-5. Carry out two-dimensional discrete cosine transform to FA to obtain a first two-dimensional discrete cosine transform coefficient matrix with the same resolution as FA, denoted as FAC, and then carry out Zig-Zag scanning arrangement on FAC to obtain a first one dimensional discrete cosine transform coefficient sequence, denoted as FACS, FACS={facs(x),1≤x≤(M/2 L )×(N/2 L )}, where facs(x) represents the x-th in FACS Discrete cosine transform coefficients, the second discrete cosine transform coefficients in FACS are initially all discrete cosine transform AC coefficients;

①-6、依次根据待嵌入的每个二值数字水印的分辨率,分别从FACS中选取出满足设定条件的I1×J1、I2×J2、…、Ik×Jk、…和IK×JK个离散余弦变换交流系数,构成K个第一一维离散余弦变换交流系数序列,分别对应记为FACS1、FACS2、…、FACSk、…和FACSK,对于从FACS中选取出的满足设定条件的Ik×Jk个离散余弦变换交流系数构成的第k个第一一维离散余弦变换交流系数序列FACSk,FACSk={facsk(y),1≤y≤Ik×Jk},然后记录FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的对应位置信息,其中,I2表示待嵌入的第2个二值数字水印W2的竖直分辨率,J2表示待嵌入的第2个二值数字水印W2的横向分辨率,facsk(y)表示FACSk中的第y个离散余弦变换交流系数,设定条件为使得构成的第一一维离散余弦变换交流系数序列中的任意相邻两个离散余弦变换交流系数的差值的绝对值大于或等于设定的差值阈值;①-6. According to the resolution of each binary digital watermark to be embedded, select I 1 ×J 1 , I 2 ×J 2 ,…, I k ×J k , ...and I K ×J K discrete cosine transform AC coefficients to form K first one-dimensional discrete cosine transform AC coefficient sequences, respectively denoted as FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , for from The kth first one-dimensional discrete cosine transform AC coefficient sequence FACS k composed of I k ×J k discrete cosine transform AC coefficients selected in FACS that meet the set conditions, FACS k = {facs k (y),1 ≤y≤I k ×J k }, and then record the corresponding position information of each discrete cosine transform AC coefficient in FACS in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , where I 2 represents the The vertical resolution of the second binary digital watermark W 2 , J 2 represents the horizontal resolution of the second binary digital watermark W 2 to be embedded, and facs k (y) represents the yth discrete value in FACS k For the cosine transform AC coefficient, the setting condition is such that the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in the formed first one-dimensional discrete cosine transform AC coefficient sequence is greater than or equal to the set difference threshold;

①-7、分别比较FACS1、FACS2、…、FACSk、…和FACSK中的任意相邻两个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于FACSk中的任意相邻两个离散余弦变换交流系数,将其分别记为facsk(z)和facsk(z+1),判断facsk(z)>facsk(z+1)是否成立,如果成立,则返回逻辑值1,否则,返回逻辑值0,其中,1≤z≤Ik×Jk-1;然后比较FACS1、FACS2、…、FACSk、…和FACSK中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于FACSk中的最后一个离散余弦变换交流系数与第1个离散余弦变换交流系数,如果前者大,则返回逻辑值1,否则,返回逻辑值0;再根据FACS1、FACS2、…、FACSk、…和FACSK各自对应的返回的逻辑值,构建一一对应的第一二值数字水印密钥,对于FACSk对应的返回的逻辑值,将返回的逻辑值按先行后列顺序排列方式贮存于一个大小为Ik×Jk的二维矩阵中,将该二维矩阵作为第k个第一二值数字水印密钥,记为WBk①-7. Compare the size of any two adjacent discrete cosine transform AC coefficients in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K respectively, and return a logical value 1 or 0 according to the comparison result, for FACS k Any two adjacent discrete cosine transform AC coefficients in , record them as facs k (z) and facs k (z+1) respectively, and judge whether facs k (z)>facs k (z+1) is true, if If it is true, return a logic value of 1, otherwise, return a logic value of 0, where, 1≤z≤I k ×J k -1; then compare the last one of FACS 1 , FACS 2 , ..., FACS k , ... and FACS K DCT AC coefficient and the size of the first DCT AC coefficient, and return a logic value of 1 or 0 according to the comparison result. For the last DCT AC coefficient and the first DCT AC coefficient in FACS k , If the former is greater, return a logical value of 1, otherwise, return a logical value of 0 ; then construct a one-to-one correspondence of the first and second value digital watermark key, for the returned logical value corresponding to FACS k , the returned logical value is stored in a two-dimensional matrix with a size of I k × J k in the order of first row and second column, and the two-dimensional matrix is used as The k-th first binary digital watermark key, denoted as WB k ;

①-8、对待嵌入的K个二值数字水印W1,W2,…,Wk,…,WK分别进行置乱处理,将置乱处理后得到的K个二值数字水印分别对应记为WS1、WS2、…、WSk、…和WSK,然后将WS1、WS2、…、WSk、…和WSK分别与K个第一二值数字水印密钥WB1、WB2、…、WBk、…和WBK一一对应进行异或运算得到K个零水印信息,分别对应记为WO1、WO2、…、WOk、…和WOK,WO1=xor(WS1,WB1),WO2=xor(WS2,WB2),…,WOk=xor(WSk,WBk),…,WOK=xor(WSK,WBK),再将K个零水印信息WO1、WO2、…、WOk、…和WOK保存于注册机构的数字水印信息数据库中,完成K个二值数字水印W1,W2,…,Wk,…,WK的嵌入,其中,WS1表示对W1进行置乱处理后得到的二值数字水印,WS2表示对W2进行置乱处理后得到的二值数字水印,WSk表示对Wk进行置乱处理后得到的二值数字水印,WSK表示对WK进行置乱处理后得到的二值数字水印,WB1表示第1个第一二值数字水印密钥,WB2表示第2个第一二值数字水印密钥,WBK表示第K个第一二值数字水印密钥,xor()为异或运算函数;①-8. The K binary digital watermarks W 1 , W 2 ,...,W k ,...,W K to be embedded are respectively scrambled, and the K binary digital watermarks obtained after the scrambled processing are respectively corresponding to are WS 1 , WS 2 , ..., WS k , ... and WSK , then combine WS 1 , WS 2 , ..., WS k , ... and WS K with K first binary digital watermark keys WB 1 , WB 2 , ..., WB k , ... and WB K are one-to-one XORed to obtain K zero-watermark information, respectively recorded as WO 1 , WO 2 , ..., WO k , ... and WO K , WO 1 =xor( WS 1 ,WB 1 ), WO 2 =xor(WS 2 ,WB 2 ),…, WO k =xor(WS k ,WB k ),…, WO K =xor(WS K ,WB K ), and K Zero watermark information WO 1 , WO 2 , ..., WO k , ... and WO K are stored in the digital watermark information database of the registration authority, and K binary digital watermarks W 1 , W 2 , ..., W k , ..., The embedding of W K , where WS 1 represents the binary digital watermark obtained after scrambling W 1 , WS 2 represents the binary digital watermark obtained after scrambling W 2 , and WS k represents the binary watermark obtained after scrambling W k The binary digital watermark obtained after scrambling processing, WS K represents the binary digital watermark obtained after scrambling W K , WB 1 represents the first first binary digital watermark key, WB 2 represents the second The first binary digital watermark key, WB K represents the Kth first binary digital watermark key, and xor() is an exclusive OR operation function;

①-9、在多个零水印嵌入端,将记录的FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的位置信息、K个零水印信息WO1,WO2,…,WOk,…,WOK以及K个二值数字水印W1,W2,…,Wk,…,WK传输给多个零水印提取端。①-9. At multiple zero-watermark embedding terminals, record the position information of each discrete cosine transform AC coefficient in FACS in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , and K zero-watermark information WO 1 , WO 2 ,..., WO k ,..., WO K and K binary digital watermarks W 1 , W 2 ,..., W k ,..., W K are transmitted to multiple zero-watermark extraction terminals.

所述的步骤①-6中FACS1、FACS2、…、FACSk、…和FACSK中的任意相邻两个离散余弦变换交流系数的差值的绝对值分别大于或等于δ1、δ2、…、δk、…和δK,其中,δ1表示针对FACS1中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第1个差值阈值,δ2表示针对FACS2中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第2个差值阈值,δk表示针对FACSk中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第k个差值阈值,δK表示针对FACSK中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第K个差值阈值。The absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS 1 , FACS 2 , ... , FACS k , ... and FACS K in steps ①-6 is greater than or equal to δ 1 , δ 2 respectively , ..., δ k , ... and δ K , where δ 1 represents the first difference threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS 1 , and δ 2 represents The second difference threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS 2 , δ k represents the value of any two adjacent discrete cosine transform AC coefficients in FACS k The kth difference threshold set by the absolute value of the difference, δ K represents the Kth difference threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS K.

一种数字图像的多个零水印提取方法,其特征在于包括以下步骤:A method for extracting multiple zero watermarks of a digital image, characterized in that it comprises the following steps:

②-1、在多个零水印提取端,将待提取K个二值数字水印的数字图像记为TF,TF={0≤tf(m′,n′)≤255,1≤m′≤M′,1≤n′≤N′},其中,K≥2,M′表示待提取K个二值数字水印的数字图像TF的竖直分辨率,N′表示待提取K个二值数字水印的数字图像TF的横向分辨率,M′×N′表示待提取K个二值数字水印的数字图像TF的分辨率,待提取K个二值数字水印的数字图像TF的分辨率与多个零水印嵌入端的嵌入有数字水印的数字图像的分辨率相同,tf(m′,n′)表示待提取K个二值数字水印的数字图像TF中坐标位置为(m′,n′)的像素的像素值;②-1. At multiple zero-watermark extraction terminals, record the digital images of K binary digital watermarks to be extracted as TF, TF={0≤tf(m′,n′)≤255, 1≤m′≤M ', 1≤n'≤N'}, where K≥2, M' represents the vertical resolution of the digital image TF of the K binary digital watermarks to be extracted, and N' represents the resolution of the K binary digital watermarks to be extracted The horizontal resolution of the digital image TF, M'×N' represents the resolution of the digital image TF to be extracted K binary digital watermarks, the resolution of the digital image TF to be extracted K binary digital watermarks and multiple zero watermarks The resolution of the digital image embedded with the digital watermark at the embedding end is the same, and tf(m',n') represents the pixel whose coordinate position is (m',n') in the digital image TF of the K binary digital watermark to be extracted value;

②-2、在多个零水印提取端,将待提取的K个二值数字水印分别记为W′1、W′2、…、W′k、…和W′K,对于待提取的第k个二值数字水印W′k,W′k={w′k(i′k,j′k)=0或1,1≤i′k≤I′k,1≤j′k≤J′k},其中,1≤k≤K,I′k表示待提取的第k个二值数字水印W′k的竖直分辨率,J′k表示待提取的第k个二值数字水印W′k的横向分辨率,I′k×J′k表示待提取的第k个二值数字水印W′k的分辨率,待提取的第k个二值数字水印W′k的分辨率与多个零水印嵌入端嵌入的第k个二值数字水印的分辨率相同,w′k(i′k,j′k)表示待提取的第k个二值数字水印W′k中坐标位置为(i′k,j′k)的像素的像素值;②-2. At multiple zero-watermark extraction terminals, mark the K binary digital watermarks to be extracted as W′ 1 , W′ 2 , ..., W′ k , ... and W′ K . k binary digital watermarks W′ k , W′ k ={w′ k (i′ k ,j′ k )=0 or 1, 1≤i′ k ≤I′ k ,1≤j′ k ≤J′ k }, where, 1≤k≤K, I′ k represents the vertical resolution of the kth binary digital watermark W′ k to be extracted, and J′ k represents the kth binary digital watermark W′ to be extracted The horizontal resolution of k , I′ k ×J′ k represents the resolution of the kth binary digital watermark W′ k to be extracted, and the resolution of the kth binary digital watermark W′ k to be extracted is related to multiple The resolution of the kth binary digital watermark embedded in the zero watermark embedding end is the same, w′ k (i′ k , j′ k ) means that the coordinate position of the kth binary digital watermark W′ k to be extracted is (i ′ k , j′ k ) pixel value of the pixel;

②-3、对待提取K个二值数字水印的数字图像TF进行归一化处理,得到归一化处理后的数字图像,记为TF′,将归一化处理后的数字图像TF′中坐标位置为(m′,n′)的像素的像素值记为tf′(m′,n′),tf′(m′,n′)=tf(m′,n′)/255;②-3. Perform normalization processing on the digital image TF to be extracted K binary digital watermarks, and obtain the digital image after normalization processing, which is denoted as TF′, and the coordinates in the digital image TF′ after normalization processing The pixel value of the pixel at position (m',n') is recorded as tf'(m',n'), tf'(m',n')=tf(m',n')/255;

②-4、对TF′进行L′级二维离散小波变换,得到一个第二小波逼近子图和多个第二小波细节子图,将第二小波逼近子图记为TFA,其中,TFA的分辨率为(M′/2L′)×(N′/2L′),

Figure BDA00001628451500071
min()为取最小值函数,max()为取最大值函数,符号
Figure BDA00001628451500072
表示取小于其自身的最大整数,I1′表示待提取的第1个二值数字水印W1′的竖直分辨率,J1′表示待提取的第1个二值数字水印W1′的横向分辨率,IK′表示待提取的第K个二值数字水印W′K的竖直分辨率,JK′表示待提取的第K个二值数字水印W′K的横向分辨率;②-4. Carry out L'-level two-dimensional discrete wavelet transform to TF' to obtain a second wavelet approximation subgraph and a plurality of second wavelet detail subgraphs, and denote the second wavelet approximation subgraph as TFA, wherein the TFA's The resolution is (M′/2 L ′)×(N′/2 L ′),
Figure BDA00001628451500071
min() is the minimum value function, max() is the maximum value function, the symbol
Figure BDA00001628451500072
Indicates the largest integer smaller than itself, I 1 ′ represents the vertical resolution of the first binary digital watermark W 1 ′ to be extracted, J 1 ′ represents the resolution of the first binary digital watermark W 1 ′ to be extracted Horizontal resolution, I K ′ represents the vertical resolution of the Kth binary digital watermark W′ K to be extracted, and J K ′ represents the horizontal resolution of the Kth binary digital watermark W′ K to be extracted;

②-5、对TFA进行二维离散余弦变换,得到一个与TFA相同分辨率的第二二维离散余弦变换系数矩阵,记为TFAC,然后对TFAC进行Zig-Zag扫描排列,得到一个第二一维离散余弦变换系数序列,记为TFACS,TFACS={tfacs(x′),1≤x′≤(M′/2L′)×(N′/2L′)},其中,tfacs(x′)表示TFACS中的第x′个离散余弦变换系数,TFACS中的第2个离散余弦变换系数开始均为离散余弦变换交流系数;②-5. Perform two-dimensional discrete cosine transform on TFA to obtain a second two-dimensional discrete cosine transform coefficient matrix with the same resolution as TFA, denoted as TFAC, and then carry out Zig-Zag scanning arrangement on TFAC to obtain a second one dimensional discrete cosine transform coefficient sequence, denoted as TFACS, TFACS={tfacs(x′),1≤x′≤(M′/2 L ′)×(N′/2 L ′)}, where, tfacs(x′ ) represents the x′th discrete cosine transform coefficient in TFACS, and the second discrete cosine transform coefficient in TFACS is initially an AC discrete cosine transform coefficient;

②-6、根据多个零水印嵌入端记录的FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的对应位置信息,从TFACS中分别提取出对应位置的I1′×J1′、I2′×J2′、…、Ik′×Jk′、…和IK′×JK′个离散余弦变换交流系数,构成K个第二一维离散余弦变换交流系数序列,分别对应记为TFACS1、TFACS2、…、TFACSk、…和TFACSK,对于根据多个零水印嵌入端记录的FACSk中的各个离散余弦变换交流系数在FACS中的对应位置信息,从TFACS中提取出对应位置的Ik′×Jk′个离散余弦变换交流系数构成的第k个第二一维离散余弦变换交流系数序列TFACSk,TFACSk={tfacsk(y′),1≤y′≤Ik′×Jk′},其中,Ik′表示待提取的第k个二值数字水印W′k的竖直分辨率,Jk′表示待提取的第k个二值数字水印W′k的横向分辨率,tfacsk(y′)表示TFACSk中的第y′个离散余弦变换交流系数;②-6. According to the corresponding position information in FACS of each discrete cosine transform AC coefficient in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K recorded by multiple zero-watermark embedding terminals, extract from TFACS respectively The I 1 ′×J 1 ′, I 2 ′×J 2 ′, ..., I k ′×J k ′, ... and I K ′×J K ′ discrete cosine transform AC coefficients at the corresponding positions constitute K second The one-dimensional discrete cosine transform AC coefficient sequence is correspondingly denoted as TFACS 1 , TFACS 2 , ..., TFACS k , ... and TFACS K , for each discrete cosine transform AC coefficient in FACS k recorded according to multiple zero-watermark embedding terminals in Corresponding position information in FACS, extract the kth second one-dimensional discrete cosine transform AC coefficient sequence TFACS k composed of I k ′×J k ′ discrete cosine transform AC coefficients corresponding to the position from TFACS, TFACS k = { tfacs k (y′), 1≤y′≤I k ′×J k ′}, where I k ′ represents the vertical resolution of the kth binary digital watermark W′ k to be extracted, and J k ′ represents The horizontal resolution of the kth binary digital watermark W′ k to be extracted, tfacs k (y′) represents the y′ discrete cosine transform AC coefficient in TFACS k ;

②-7、分别比较TFACS1、TFACS2、…、TFACSk、…和TFACSK中的任意相邻两个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于TFACSk中的任意相邻两个离散余弦变换交流系数,将其分别记为tfacsk(z′)和tfacsk(z′+1),判断tfacsk(z′)>tfacsk(z′+1)是否成立,如果成立,则返回逻辑值1,否则,返回逻辑值0,其中,1≤z′≤Ik′×Jk′-1;然后比较TFACS1、TFACS2、…、TFACSk、…和TFACSK中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于TFACSk中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数,如果前者大,则返回逻辑值1,否则,返回逻辑值0;再根据TFACS1、TFACS2、…、TFACSk、…和TFACSK各自对应的返回的逻辑值,构建一一对应的第二二值数字水印密钥,对于TFACSk对应的返回的逻辑值,将返回的逻辑值按先行后列顺序排列方式贮存于一个大小为Ik′×Jk′的二维矩阵中,将该二维矩阵作为第k个第二二值数字水印密钥,记为TWBk②-7. Compare the size of any two adjacent discrete cosine transform AC coefficients in TFACS 1 , TFACS 2 , ..., TFACS k , ... and TFACS K respectively, and return a logical value 1 or 0 according to the comparison result. For TFACS k Any two adjacent discrete cosine transform AC coefficients in , record them as tfacs k (z′) and tfacs k (z′+1) respectively, judge tfacs k (z′)>tfacs k (z′+1) Whether it is true, if true, return a logical value 1, otherwise, return a logical value 0, where, 1≤z′≤I k ′×J k ′-1; then compare TFACS 1 , TFACS 2 , ..., TFACS k , ... and the size of the last DCT AC coefficient and the first DCT coefficient in TFACS K , and return a logical value 1 or 0 according to the comparison result, for the last DCT AC coefficient and the first DCT coefficient in TFACS k A discrete cosine transform AC coefficient, if the former is large, return a logical value of 1, otherwise, return a logical value of 0; then construct One-to-one correspondence with the second binary digital watermark key, for the returned logical value corresponding to TFACS k , store the returned logical value in a two-dimensional array with a size of I k ′×J k ′ In the matrix, the two-dimensional matrix is used as the kth second binary digital watermark key, denoted as TWB k ;

②-8、将来自多个零水印嵌入端的K个零水印信息WO1、WO2、…、WOk、…和WOK,分别与K个第二二值数字水印密钥TWB1、TWB2、…、TWBk、…和TWBK一一对应进行异或运算,恢复得到K个二值数字水印,分别对应记为TW1、TW2、…、TWk、…和TWK,TW1=xor(WO1,TWB1),TW2=xor(WO2,TWB2),…,TWk=xor(WOk,TWBk),…,TWK=xor(WOK,TWBK),其中,TWB1表示第1个第二二值数字水印密钥,TWB2表示第2个第二二值数字水印密钥,TWBk表示第k个第二二值数字水印密钥,TWBK表示第K个第二二值数字水印密钥,xor()为异或运算函数;②-8. Combine K pieces of zero-watermark information WO 1 , WO 2 , ..., WO k , ... and WO K from multiple zero-watermark embedding terminals with K second binary digital watermark keys TWB 1 , TWB 2 respectively , ..., TWB k , ... and TWB K are one-to-one XOR operation, and K binary digital watermarks are recovered, which are respectively recorded as TW 1 , TW 2 , ..., TW k , ... and TW K , TW 1 = xor(WO 1 ,TWB 1 ), TW 2 =xor(WO 2 ,TWB 2 ),…,TW k =xor(WO k ,TWB k ),…,TW K =xor(WO K ,TWB K ), where , TWB 1 represents the first second binary digital watermark key, TWB 2 represents the second second binary digital watermark key, TWB k represents the k-th second binary digital watermark key, TWB K represents the second K second binary digital watermark keys, xor () is an exclusive OR operation function;

②-9、分别对K个二值数字水印TW1、TW2、…、TWk、…和TWK进行反置乱处理,得到具有版权认证信息的K个二值数字水印,分别对应记为

Figure BDA00001628451500081
②-9. Perform anti-scrambling processing on K binary digital watermarks TW 1 , TW 2 , ..., TW k , ... and TW K respectively, to obtain K binary digital watermarks with copyright authentication information, which are respectively recorded as
Figure BDA00001628451500081
and

②-10、将具有版权认证信息的K个二值数字水印

Figure BDA00001628451500083
Figure BDA00001628451500084
分别与多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK一一对应进行相似度计算,对应得到K个归一化相关系数,然后根据K个归一化相关系数的大小判定是否提取出多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK。②-10. K binary digital watermarks with copyright authentication information
Figure BDA00001628451500083
and
Figure BDA00001628451500084
Carry out similarity calculation in one-to-one correspondence with K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals, and obtain K normalized correlation coefficients correspondingly, and then Determine whether to extract K binary digital watermarks W 1 , W 2 , . . . , W k , .

所述的步骤②-10的具体过程为:The concrete process of described step ②-10 is:

z1、将具有版权认证信息的K个二值数字水印

Figure BDA00001628451500091
分别与多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK一一对应进行相似度计算,对应得到K个归一化相关系数,对于将
Figure BDA00001628451500093
与Wk进行相似度计算后得到的第k个归一化相关系数,将其记为
Figure BDA00001628451500094
ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , 其中,wk(ik,jk)表示多个零水印嵌入端嵌入的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值,多个零水印嵌入端嵌入的第k个二值数字水印Wk中所有像素的像素值的均值,
Figure BDA00001628451500097
表示具有版权认证信息的第k个二值数字水印
Figure BDA00001628451500098
中坐标位置为(ik,jk)的像素的像素值,
Figure BDA00001628451500099
表示具有版权认证信息的第k个二值数字水印
Figure BDA000016284515000910
中所有像素的像素值的均值;z1. K binary digital watermarks with copyright authentication information
Figure BDA00001628451500091
and Carry out one-to-one similarity calculation with the K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals, and obtain K normalized correlation coefficients correspondingly. For Will
Figure BDA00001628451500093
The kth normalized correlation coefficient obtained after similarity calculation with W k is recorded as
Figure BDA00001628451500094
ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , Among them, w k (i k , j k ) represents the pixel value of the pixel whose coordinate position is (i k , j k ) in the kth binary digital watermark W k embedded by multiple zero-watermark embedding terminals, The mean value of the pixel values of all pixels in the kth binary digital watermark W k embedded in multiple zero watermark embedding terminals,
Figure BDA00001628451500097
Represents the kth binary digital watermark with copyright authentication information
Figure BDA00001628451500098
The pixel value of the pixel whose coordinate position is (i k , j k ),
Figure BDA00001628451500099
Represents the kth binary digital watermark with copyright authentication information
Figure BDA000016284515000910
The mean of the pixel values of all pixels in ;

z2、根据K个归一化相关系数的大小判定是否提取出多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK,对于归一化相关系数

Figure BDA000016284515000911
如果
Figure BDA000016284515000912
的值为1,则确定Wk被无损地提取出,如果
Figure BDA000016284515000913
的值大于或等于δT并小于1,则确定Wk提取成功,如果
Figure BDA000016284515000914
的值小于δT,则确定Wk提取失败,其中,δT表示水印提取门限。z2. Determine whether to extract K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals according to the size of the K normalized correlation coefficients. correlation coefficient
Figure BDA000016284515000911
if
Figure BDA000016284515000912
A value of 1 determines that W k is extracted losslessly, if
Figure BDA000016284515000913
The value of is greater than or equal to δ T and less than 1, then it is determined that the extraction of W k is successful, if
Figure BDA000016284515000914
If the value of is less than δ T , it is determined that W k extraction fails, where δ T represents the watermark extraction threshold.

与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:

1)相比于现有的单个零水印技术,本发明的嵌入方法可以根据实际应用的需要,实现不同目的、不同用途的多个二值数字水印的同时嵌入,且嵌入的多个二值数字水印间互不干扰,因此更能满足数字水印的应用多样性,具有更大实际应用价值和广阔的应用前景。1) Compared with the existing single zero watermark technology, the embedding method of the present invention can realize the simultaneous embedding of multiple binary digital watermarks for different purposes and purposes according to the needs of practical applications, and the embedded multiple binary digital watermarks Watermarks do not interfere with each other, so it can better meet the application diversity of digital watermarks, and has greater practical application value and broad application prospects.

2)相比于传统的数字水印技术,本发明的嵌入方法并没有将实际多个二值数字水印嵌入到原始数字图像中,而是将其注册到数字水印信息数据库中,因此不仅实现了嵌入的二值数字水印完全不可觉察性,而且没有对原始数字图像数据产生任何破坏,不存在图像质量下降的任何问题,维持了原始数字图像信息的完整性,这非常适用于一些敏感的数字图像例如医学图像、掌纹图像和军事图像等方面的版权保护。2) Compared with the traditional digital watermarking technology, the embedding method of the present invention does not embed multiple binary digital watermarks into the original digital image, but registers them in the digital watermark information database, so not only embedding The binary digital watermark is completely imperceptible, and does not cause any damage to the original digital image data, there is no problem of image quality degradation, and the integrity of the original digital image information is maintained, which is very suitable for some sensitive digital images such as Copyright protection in areas such as medical images, palm print images, and military images.

3)本发明的嵌入及提取方法是在二维离散小波变换(DWT)和二维离散余弦变换(DCT)的复合域内进行的,充分利用了两者的特点,从而实现了具有优异鲁棒性能的抗常规图像处理攻击的多个零水印嵌入和提取,很好地平衡了数字水印的鲁棒性和不可觉察性之间的矛盾。3) The embedding and extraction method of the present invention is carried out in the composite domain of two-dimensional discrete wavelet transform (DWT) and two-dimensional discrete cosine transform (DCT), making full use of the characteristics of both, thus achieving excellent robust performance The embedding and extraction of multiple zero watermarks against conventional image processing attacks well balances the contradiction between the robustness and imperceptibility of digital watermarking.

附图说明 Description of drawings

图1a为原始Lena数字图像;Figure 1a is the original Lena digital image;

图1b为原始二值签名水印;Figure 1b is the original binary signature watermark;

图1c为原始二值序号水印;Figure 1c is the original binary serial number watermark;

图1d为原始二值图标水印;Figure 1d is the original binary icon watermark;

图2a为嵌入一个二值水印后的Lena数字图像;Figure 2a is a Lena digital image embedded with a binary watermark;

图2b为嵌入二个二值水印后的Lena数字图像;Figure 2b is the Lena digital image embedded with two binary watermarks;

图2c为嵌入三个二值水印后的Lena数字图像;Figure 2c is a Lena digital image embedded with three binary watermarks;

图2d为从图2c中提取的二值签名水印;Figure 2d is the binary signature watermark extracted from Figure 2c;

图2e为从图2c中提取的二值序号水印;Fig. 2e is the binary serial number watermark extracted from Fig. 2c;

图2f为从图2c中提取的二值图标水印;Figure 2f is the binary icon watermark extracted from Figure 2c;

图3a为对图2c所示的数字图像将所有像素值加0.2后的水印Lena数字图像;Fig. 3 a is the watermark Lena digital image after all pixel values are added 0.2 to the digital image shown in Fig. 2c;

图3b为对图2c所示的数字图像将所有像素值加0.5后的水印Lena数字图像;Fig. 3b is the watermark Lena digital image after adding 0.5 to all pixel values of the digital image shown in Fig. 2c;

图3c为对图2c所示的数字图像将所有像素值减0.2后的水印Lena数字图像;Fig. 3c is the watermark Lena digital image after all pixel values are subtracted by 0.2 to the digital image shown in Fig. 2c;

图3d为对图2c所示的数字图像将所有像素值减0.5后的水印Lena数字图像;Figure 3d is the watermarked Lena digital image after subtracting 0.5 from all pixel values of the digital image shown in Figure 2c;

图3e为从图3a、图3b和图3c中提取的二值签名水印;Fig. 3e is the binary signature watermark extracted from Fig. 3a, Fig. 3b and Fig. 3c;

图3f为从图3a、图3b和图3c中提取的二值序号水印;Fig. 3f is the binary serial number watermark extracted from Fig. 3a, Fig. 3b and Fig. 3c;

图3g为从图3a、图3b和图3c中提取的二值图标水印;Fig. 3g is the binary icon watermark extracted from Fig. 3a, Fig. 3b and Fig. 3c;

图4a为对图2c所示的数字图像经直方图均衡化处理后的水印Lena数字图像;Fig. 4a is the watermarked Lena digital image after histogram equalization processing to the digital image shown in Fig. 2c;

图4b为从图4a中提取的二值签名水印;Fig. 4b is the binary signature watermark extracted from Fig. 4a;

图4c为从图4a中提取的二值序号水印;Fig. 4c is the binary serial number watermark extracted from Fig. 4a;

图4d为从图4a中提取的二值图标水印;Figure 4d is a binary icon watermark extracted from Figure 4a;

图5a为对图2c所示的数字图像经[5×5]窗口中值滤波后的水印Lena数字图像;Fig. 5a is the watermarked Lena digital image after the digital image shown in Fig. 2c is filtered by [5 * 5] window median;

图5b为对图2c所示的数字图像经[11×11]窗口中值滤波后的水印Lena数字图像;Fig. 5b is the watermarked Lena digital image after the digital image shown in Fig. 2c is filtered by [11×11] window median;

图5c为从图5a中提取的二值签名水印;Figure 5c is the binary signature watermark extracted from Figure 5a;

图5d为从图5a中提取的二值序号水印;Figure 5d is the binary serial number watermark extracted from Figure 5a;

图5e为从图5a中提取的二值图标水印;Figure 5e is a binary icon watermark extracted from Figure 5a;

图5f为从图5b中提取的二值签名水印;Figure 5f is the binary signature watermark extracted from Figure 5b;

图5g为从图5b中提取的二值序号水印;Figure 5g is the binary serial number watermark extracted from Figure 5b;

图5h为从图5b中提取的二值图标水印;Figure 5h is a binary icon watermark extracted from Figure 5b;

图6a为对图2c所示的数字图像经10%质量因子的JPEG压缩后的水印Lena数字图像;Fig. 6 a is the watermark Lena digital image after the JPEG compression of 10% quality factor to the digital image shown in Fig. 2c;

图6b为对图2c所示的数字图像经4%质量因子的JPEG压缩后的水印Lena数字图像;Fig. 6 b is the watermark Lena digital image after the JPEG compression of 4% quality factor to the digital image shown in Fig. 2 c;

图6c为从图6a中提取的二值签名水印;Fig. 6c is the binary signature watermark extracted from Fig. 6a;

图6d为从图6a中提取的二值序号水印;Figure 6d is the binary serial number watermark extracted from Figure 6a;

图6e为从图6a中提取的二值图标水印;Figure 6e is a binary icon watermark extracted from Figure 6a;

图6f为从图6b中提取的二值签名水印;Figure 6f is the binary signature watermark extracted from Figure 6b;

图6g为从图6b中提取的二值序号水印;Fig. 6g is the binary serial number watermark extracted from Fig. 6b;

图6h为从图6b中提取的二值图标水印;Figure 6h is the binary icon watermark extracted from Figure 6b;

图7a为对图2c所示的数字图像叠加均值为0方差为0.02高斯噪声后的水印Lena数字图像;Figure 7a is the watermarked Lena digital image after superimposing the digital image shown in Figure 2c with a mean value of 0 and a variance of 0.02 Gaussian noise;

图7b为对图2c所示的数字图像叠加均值为0方差为0.05高斯噪声后的水印Lena数字图像;Figure 7b is the watermarked Lena digital image after superimposing the digital image shown in Figure 2c with a mean value of 0 and a variance of 0.05 Gaussian noise;

图7c为从图7a中提取的二值签名水印;Figure 7c is the binary signature watermark extracted from Figure 7a;

图7d为从图7a中提取的二值序号水印;Figure 7d is the binary serial number watermark extracted from Figure 7a;

图7e为从图7a中提取的二值图标水印;Figure 7e is a binary icon watermark extracted from Figure 7a;

图7f为从图7b中提取的二值签名水印;Figure 7f is the binary signature watermark extracted from Figure 7b;

图7g为从图7b中提取的二值序号水印;Figure 7g is the binary serial number watermark extracted from Figure 7b;

图7h为从图7b中提取的二值图标水印;Figure 7h is a binary icon watermark extracted from Figure 7b;

图8a为对图2c所示的数字图像切去左上角128×128像素点后的水印Lena数字图像;Fig. 8a is the watermark Lena digital image after cutting the upper left corner 128 * 128 pixels from the digital image shown in Fig. 2c;

图8b为对图2c所示的数字图像切去左上角256×256像素点后的水印Lena数字图像;Fig. 8b is the watermarked Lena digital image after cutting the upper left corner 256×256 pixels from the digital image shown in Fig. 2c;

图8c为从图8a中提取的二值签名水印;Figure 8c is the binary signature watermark extracted from Figure 8a;

图8d为从图8a中提取的二值序号水印;Figure 8d is the binary serial number watermark extracted from Figure 8a;

图8e为从图8a中提取的二值图标水印;Figure 8e is a binary icon watermark extracted from Figure 8a;

图8f为从图8b中提取的二值签名水印;Figure 8f is the binary signature watermark extracted from Figure 8b;

图8g为从图8b中提取的二值序号水印;Figure 8g is the binary serial number watermark extracted from Figure 8b;

图8h为从图8b中提取的二值图标水印;Figure 8h is a binary icon watermark extracted from Figure 8b;

图9a为对图2c所示的数字图像经逆时针方向旋转5度再恢复原方向后的水印Lena数字图像;Figure 9a is the watermarked Lena digital image after the digital image shown in Figure 2c is rotated 5 degrees counterclockwise and then restored to its original direction;

图9b为对图2c所示的数字图像经逆时针方向旋转25度再恢复原方向后的水印Lena数字图像;Figure 9b is the watermarked Lena digital image after the digital image shown in Figure 2c is rotated 25 degrees counterclockwise and then restored to its original direction;

图9c为从图9a中提取的二值签名水印;Figure 9c is the binary signature watermark extracted from Figure 9a;

图9d为从图9a中提取的二值序号水印;Figure 9d is the binary serial number watermark extracted from Figure 9a;

图9e为从图9a中提取的二值图标水印;Figure 9e is a binary icon watermark extracted from Figure 9a;

图9f为从图9b中提取的二值签名水印;Figure 9f is the binary signature watermark extracted from Figure 9b;

图9g为从图9b中提取的二值序号水印;Figure 9g is the binary serial number watermark extracted from Figure 9b;

图9h为从图9b中提取的二值图标水印。Figure 9h is the binary icon watermark extracted from Figure 9b.

具体实施方式 Detailed ways

以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

本发明提出的一种数字图像的多个零水印嵌入及提取方法,水印嵌入和提取均是在离散小波变换和离散余弦变换的复合域内进行的,充分利用了两者的优异特性。多个零水印嵌入的主要过程为:首先对原始数字图像进行适当层次的离散小波变换,并对得到的小波逼近子图再进行离散余弦变换,然后依据待嵌入的K个二值数字水印的分辨率,分别选取K组满足一定差值的绝对值要求的离散余弦变换交流系数构成K个离散余弦变换交流系数序列,最后根据每一序列中离散余弦变换交流系数相互之间的大小关系构造出K个鲁棒的二值数字水印密钥,并与待嵌入的有实际意义的K个二值数字水印进行异或运算后保存到注册机构完成K个零水印的嵌入;多个零水印提取的主要过程为:通过对待提取K个二值数字水印的数字图像进行相似的离散小波变换和离散余弦变换处理过程,结合保存在注册机构里的K个零水印信息,提取出K个相关水印以证明对原始数字图像的版权或所有权。The invention proposes a method for embedding and extracting multiple zero watermarks of a digital image. The watermark embedding and extraction are all carried out in the compound domain of discrete wavelet transform and discrete cosine transform, and the excellent characteristics of both are fully utilized. The main process of multiple zero-watermark embedding is as follows: firstly, perform discrete wavelet transform of appropriate levels on the original digital image, and then perform discrete cosine transform on the obtained wavelet approximation sub-graph, and then according to the resolution of the K binary digital watermarks to be embedded rate, respectively select K groups of DCT AC coefficients that meet the absolute value requirements of a certain difference to form K discrete cosine transform AC coefficient sequences, and finally construct K according to the relationship between the discrete cosine transform AC coefficients in each sequence. A robust binary digital watermark key, which is XORed with K practically meaningful binary digital watermarks to be embedded, and then saved to the registration agency to complete the embedding of K zero-watermarks; the main method for extracting multiple zero-watermarks The process is: through the similar discrete wavelet transform and discrete cosine transform processing process of the digital image to be extracted K binary digital watermarks, combined with the K zero watermark information stored in the registration agency, extract K related watermarks to prove the Copyright or ownership of the original digital image.

本发明的一种数字图像的多个零水印嵌入方法,其包括以下步骤:A kind of multiple zero watermark embedding method of digital image of the present invention, it comprises the following steps:

①-1、在多个零水印嵌入端,假设待嵌入K个二值数字水印的原始数字图像为8bit的灰度图像,并记为F,F={0≤f(m,n)≤255,1≤m≤M,1≤n≤N},其中,K≥2,M表示待嵌入K个二值数字水印的原始数字图像F的竖直分辨率,N表示待嵌入K个二值数字水印的原始数字图像F的横向分辨率,M×N表示待嵌入K个二值数字水印的原始数字图像F的分辨率,f(m,n)表示待嵌入K个二值数字水印的原始数字图像F中坐标位置为(m,n)的像素的像素值。①-1. At multiple zero-watermark embedding terminals, assume that the original digital image to be embedded with K binary digital watermarks is an 8-bit grayscale image, and denoted as F, F={0≤f(m,n)≤255 ,1≤m≤M,1≤n≤N}, where K≥2, M represents the vertical resolution of the original digital image F to be embedded with K binary digital watermarks, and N represents the K binary digital watermarks to be embedded The horizontal resolution of the original digital image F of the watermark, M×N represents the resolution of the original digital image F to be embedded with K binary digital watermarks, f(m,n) represents the original digital image F to be embedded with K binary digital watermarks The pixel value of the pixel whose coordinate position is (m, n) in the image F.

①-2、在多个零水印嵌入端,假设待嵌入的K个数字水印皆为二值图像,并分别记为W1,W2,…,Wk,…,WK,则对于待嵌入的第k个二值数字水印Wk,Wk={wk(ik,jk)=0或1,1≤ik≤Ik,1≤jk≤Jk},其中,1≤k≤K,Ik表示待嵌入的第k个二值数字水印Wk的竖直分辨率,Jk表示待嵌入的第k个二值数字水印Wk的横向分辨率,Ik×Jk表示待嵌入的第k个二值数字水印Wk的分辨率,wk(ik,jk)表示待嵌入的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值。①-2. At multiple zero-watermark embedding terminals, assuming that the K digital watermarks to be embedded are all binary images, which are recorded as W 1 , W 2 ,...,W k ,...,W K , then for the The k-th binary digital watermark W k , W k ={w k (i k ,j k )=0 or 1,1≤i k ≤I k ,1≤j k ≤J k }, where, 1≤ k≤K, I k represents the vertical resolution of the k-th binary digital watermark W k to be embedded, J k represents the horizontal resolution of the k-th binary digital watermark W k to be embedded, I k ×J k Indicates the resolution of the kth binary digital watermark W k to be embedded, w k (i k , j k ) indicates the coordinate position of the kth binary digital watermark W k to be embedded is (i k , j k ) The pixel value of the pixel.

在此具体实施例中,待嵌入的K个数字水印可以选用具有实际意义的相应版权信息或所有权信息的作者或所有者签名、标识、序列号、日期或公司图标等二值图像。In this specific embodiment, the K digital watermarks to be embedded can be binary images such as signatures, logos, serial numbers, dates or company icons of authors or owners of corresponding copyright information or ownership information with practical significance.

①-3、对待嵌入K个二值数字水印的原始数字图像F进行归一化处理,得到归一化处理后的数字图像,记为F′,将归一化处理后的数字图像F′中坐标位置为(m,n)的像素的像素值记为f′(m,n),f′(m,n)=f(m,n)/255。①-3. The original digital image F to be embedded with K binary digital watermarks is normalized to obtain the normalized digital image, denoted as F′, and the normalized digital image F′ is The pixel value of the pixel whose coordinate position is (m,n) is recorded as f'(m,n), f'(m,n)=f(m,n)/255.

①-4、对F′进行L级二维离散小波变换,得到一个第一小波逼近子图和多个第一小波细节子图,将第一小波逼近子图记为FA,其中,FA的分辨率为(M/2L)×(N/2L),

Figure BDA00001628451500131
min()为取最小值函数,max()为取最大值函数,符号表示取小于其自身的最大整数,即该符号为向下取整符号,I1表示待嵌入的第1个二值数字水印W1的竖直分辨率,J1表示待嵌入的第1个二值数字水印W1的横向分辨率,IK表示待嵌入的第K个二值数字水印WK的竖直分辨率,JK表示待嵌入的第K个二值数字水印WK的横向分辨率。①-4. Carry out L-level two-dimensional discrete wavelet transform to F′ to obtain a first wavelet approximation subgraph and multiple first wavelet detail subgraphs, and denote the first wavelet approximation subgraph as FA, where the resolution of FA The rate is (M/2 L )×(N/2 L ),
Figure BDA00001628451500131
min() is the minimum value function, max() is the maximum value function, the symbol Indicates to take the largest integer smaller than itself, that is, the symbol is a rounded-down symbol, I 1 represents the vertical resolution of the first binary digital watermark W 1 to be embedded, J 1 represents the first binary digital watermark to be embedded The horizontal resolution of the value digital watermark W 1 , I K represents the vertical resolution of the Kth binary digital watermark W K to be embedded, and J K represents the horizontal resolution of the Kth binary digital watermark W K to be embedded .

①-5、对FA进行二维离散余弦变换,得到一个与FA相同分辨率的第一二维离散余弦变换系数矩阵,记为FAC,然后对FAC进行Zig-Zag扫描排列,得到一个第一一维离散余弦变换系数序列,记为FACS,FACS={facs(x),1≤x≤(M/2L)×(N/2L)},其中,facs(x)表示FACS中的第x个离散余弦变换系数,FACS中的第2个离散余弦变换系数开始均为离散余弦变换交流系数。①-5. Carry out two-dimensional discrete cosine transform to FA to obtain a first two-dimensional discrete cosine transform coefficient matrix with the same resolution as FA, denoted as FAC, and then carry out Zig-Zag scanning arrangement on FAC to obtain a first one dimensional discrete cosine transform coefficient sequence, denoted as FACS, FACS={facs(x),1≤x≤(M/2 L )×(N/2 L )}, where facs(x) represents the x-th in FACS The first discrete cosine transform coefficient in FACS is the first discrete cosine transform AC coefficient.

①-6、依次根据待嵌入的每个二值数字水印的分辨率,分别从FACS中选取出满足设定条件的I1×J1、I2×J2、…、Ik×Jk、…和IK×JK个离散余弦变换交流系数,构成K个第一一维离散余弦变换交流系数序列,分别对应记为FACS1、FACS2、…、FACSk、…和FACSK,对于从FACS中选取出的满足设定条件的Ik×Jk个离散余弦变换交流系数构成的第k个第一一维离散余弦变换交流系数序列FACSk,FACSk={facsk(y),1≤y≤Ik×Jk},然后记录FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的对应位置信息,其中,I2表示待嵌入的第2个二值数字水印W2的竖直分辨率,J2表示待嵌入的第2个二值数字水印W2的横向分辨率,facsk(y)表示FACSk中的第y个离散余弦变换交流系数,设定条件为使得构成的第一一维离散余弦变换交流系数序列中的任意相邻两个离散余弦变换交流系数的差值的绝对值大于或等于设定的差值阈值。①-6. According to the resolution of each binary digital watermark to be embedded, select I 1 ×J 1 , I 2 ×J 2 ,…, I k ×J k , ...and I K ×J K discrete cosine transform AC coefficients to form K first one-dimensional discrete cosine transform AC coefficient sequences, respectively denoted as FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , for from The kth first one-dimensional discrete cosine transform AC coefficient sequence FACS k composed of I k ×J k discrete cosine transform AC coefficients selected in FACS that meet the set conditions, FACS k = {facs k (y),1 ≤y≤I k ×J k }, and then record the corresponding position information of each discrete cosine transform AC coefficient in FACS in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , where I 2 represents the The vertical resolution of the second binary digital watermark W 2 , J 2 represents the horizontal resolution of the second binary digital watermark W 2 to be embedded, and facs k (y) represents the yth discrete value in FACS k For the cosine transform AC coefficient, the setting condition is such that the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in the formed first one-dimensional discrete cosine transform AC coefficient sequence is greater than or equal to the set difference threshold.

在此,每个第一一维离散余弦变换交流系数序列中的离散余弦变换交流系数的选取都是从第一一维离散余弦变换系数序列FACS中的第2个离散余弦变换系数开始(即第1个离散余弦变换交流系数),且选取而形成的K个第一一维离散余弦变换交流系数序列FACS1、FACS2、…、FACSk、…和FACSK中的任意相邻两个离散余弦变换交流系数的差值的绝对值分别大于或等于δ1、δ2、…、δk、…和δK,其中,δ1表示针对FACS1中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第1个差值阈值,δ2表示针对FACS2中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第2个差值阈值,δk表示针对FACSk中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第k个差值阈值,δK表示针对FACSK中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第K个差值阈值。以δk为例,δk的设定原则是这样的,在确保能够选取到Ik×Jk个离散余弦变换交流系数的前提下取最大值,以提高数字图像在受到攻击处理时所选取的这些离散余弦变换交流系数相互间大小关系的不变性。Here, the selection of the discrete cosine transform AC coefficients in each first one-dimensional discrete cosine transform AC coefficient sequence starts from the second discrete cosine transform coefficient in the first one-dimensional discrete cosine transform coefficient sequence FACS (that is, the second discrete cosine transform coefficient 1 discrete cosine transform AC coefficient), and any two adjacent discrete cosines in the selected K first one-dimensional discrete cosine transform AC coefficient sequences FACS 1 , FACS 2 , ..., FACS k , ... and FACS K The absolute values of the differences of the transformed AC coefficients are respectively greater than or equal to δ 1 , δ 2 , ..., δ k , ... and δ K , where δ 1 represents the difference between any two adjacent discrete cosine transform AC coefficients in FACS 1 The first difference threshold set by the absolute value of the difference, δ 2 represents the second difference threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS 2 , δ k represents the kth difference threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS k , and δ K represents the value for any adjacent two discrete cosine transform AC coefficients in FACS K The absolute value of the coefficient difference sets the Kth difference threshold. Taking δ k as an example, the setting principle of δ k is as follows: take the maximum value under the premise of ensuring that I k × J k discrete cosine transform AC coefficients can be selected, so as to improve the selection of digital images when they are under attack. The invariance of the relationship between the magnitudes of these discrete cosine transform AC coefficients.

①-7、分别比较FACS1、FACS2、…、FACSk、…和FACSK中的任意相邻两个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于FACSk中的任意相邻两个离散余弦变换交流系数,将其分别记为facsk(z)和facsk(z+1),判断facsk(z)>facsk(z+1)是否成立,如果成立,则返回逻辑值1,否则,返回逻辑值0,其中,1≤z≤Ik×Jk-1;然后比较FACS1、FACS2、…、FACSk、…和FACSK中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于FACSk中的最后一个离散余弦变换交流系数与第1个离散余弦变换交流系数,如果前者大,则返回逻辑值1,否则,返回逻辑值0;再根据FACS1、FACS2、…、FACSk、…和FACSK各自对应的返回的逻辑值,构建一一对应的第一二值数字水印密钥,对于FACSk对应的返回的逻辑值,将返回的逻辑值按先行后列顺序排列方式贮存于一个大小为Ik×Jk的二维矩阵中,将该二维矩阵作为第k个第一二值数字水印密钥,记为WBk①-7. Compare the size of any two adjacent discrete cosine transform AC coefficients in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K respectively, and return a logical value 1 or 0 according to the comparison result, for FACS k Any two adjacent discrete cosine transform AC coefficients in , record them as facs k (z) and facs k (z+1) respectively, and judge whether facs k (z)>facs k (z+1) is true, if If it is true, return a logic value of 1, otherwise, return a logic value of 0, where, 1≤z≤I k ×J k -1; then compare the last one of FACS 1 , FACS 2 , ..., FACS k , ... and FACS K DCT AC coefficient and the size of the first DCT AC coefficient, and return a logic value of 1 or 0 according to the comparison result. For the last DCT AC coefficient and the first DCT AC coefficient in FACS k , If the former is greater, return a logical value of 1, otherwise, return a logical value of 0 ; then construct a one-to-one correspondence of the first and second value digital watermark key, for the returned logical value corresponding to FACS k , the returned logical value is stored in a two-dimensional matrix with a size of I k × J k in the order of first row and second column, and the two-dimensional matrix is used as The k-th first binary digital watermark key is denoted as WB k .

①-8、对待嵌入的K个二值数字水印W1,W2,…,Wk,…,WK分别进行置乱处理,将置乱处理后得到的K个二值数字水印分别对应记为WS1、WS2、…、WSk、…和WSK,然后将WS1、WS2、…、WSk、…和WSK分别与K个第一二值数字水印密钥WB1、WB2、…、WBk、…和WBK一一对应进行异或运算得到K个零水印信息,分别对应记为WO1、WO2、…、WOk、…和WOK,WO1=xor(WS1,WB1),WO2=xor(WS2,WB2),…,WOk=xor(WSk,WBk),…,WOK=xor(WSK,WBK),再将K个零水印信息WO1、WO2、…、WOk、…和WOK保存于注册机构的数字水印信息数据库中,完成K个二值数字水印W1,W2,…,Wk,…,WK的嵌入,其中,WS1表示对W1进行置乱处理后得到的二值数字水印,WS2表示对W2进行置乱处理后得到的二值数字水印,WSk表示对Wk进行置乱处理后得到的二值数字水印,WSK表示对WK进行置乱处理后得到的二值数字水印,WB1表示第1个第一二值数字水印密钥,WB2表示第2个第一二值数字水印密钥,WBK表示第K个第一二值数字水印密钥,xor()为异或运算函数。①-8. The K binary digital watermarks W 1 , W 2 ,...,W k ,...,W K to be embedded are respectively scrambled, and the K binary digital watermarks obtained after the scrambled processing are respectively corresponding to are WS 1 , WS 2 , ..., WS k , ... and WSK , then combine WS 1 , WS 2 , ..., WS k , ... and WS K with K first binary digital watermark keys WB 1 , WB 2 , ..., WB k , ... and WB K are one-to-one XORed to obtain K zero-watermark information, respectively recorded as WO 1 , WO 2 , ..., WO k , ... and WO K , WO 1 =xor( WS 1 ,WB 1 ), WO 2 =xor(WS 2 ,WB 2 ),…, WO k =xor(WS k ,WB k ),…, WO K =xor(WS K ,WB K ), and K Zero watermark information WO 1 , WO 2 , ..., WO k , ... and WO K are stored in the digital watermark information database of the registration authority, and K binary digital watermarks W 1 , W 2 , ..., W k , ..., The embedding of W K , where WS 1 represents the binary digital watermark obtained after scrambling W 1 , WS 2 represents the binary digital watermark obtained after scrambling W 2 , and WS k represents the binary watermark obtained after scrambling W k The binary digital watermark obtained after scrambling processing, WS K represents the binary digital watermark obtained after scrambling W K , WB 1 represents the first first binary digital watermark key, WB 2 represents the second The first binary digital watermark key, WB K represents the Kth first binary digital watermark key, and xor() is an exclusive OR operation function.

在此,对待嵌入的K个二值数字水印W1,W2,…,Wk,…,WK分别进行置乱处理,可以有效提高零水印在注册机构中的安全性,在此置乱处理可以采用常规的Arnold变换,也可采用现有其他成熟的置乱方法。Here, scrambling the K binary digital watermarks W 1 , W 2 ,...,W k ,...,W K to be embedded can effectively improve the security of the zero watermark in the registration authority. Here, the scrambling The processing can use conventional Arnold transformation, or other existing mature scrambling methods.

①-9、在多个零水印嵌入端,将记录的FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的位置信息、K个零水印信息WO1,WO2,…,WOk,…,WOK以及K个二值数字水印W1,W2,…,Wk,…,WK传输给多个零水印提取端。①-9. At multiple zero-watermark embedding terminals, record the position information of each discrete cosine transform AC coefficient in FACS in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , and K zero-watermark information WO 1 , WO 2 ,..., WO k ,..., WO K and K binary digital watermarks W 1 , W 2 ,..., W k ,..., W K are transmitted to multiple zero-watermark extraction terminals.

本发明的一种数字图像的多个零水印提取方法,其包括以下步骤:A method for extracting a plurality of zero watermarks of a digital image of the present invention comprises the following steps:

②-1、在多个零水印提取端,将待提取K个二值数字水印的数字图像(即测试图像)记为TF,TF={0≤tf(m′,n′)≤255,1≤m′≤M′,1≤n′≤N′},其中,K≥2,M′表示待提取K个二值数字水印的数字图像TF的竖直分辨率,N′表示待提取K个二值数字水印的数字图像TF的横向分辨率,M′×N′表示待提取K个二值数字水印的数字图像TF的分辨率,待提取K个二值数字水印的数字图像TF的分辨率与多个零水印嵌入端的嵌入有数字水印的数字图像的分辨率相同,tf(m′,n′)表示待提取K个二值数字水印的数字图像TF中坐标位置为(m′,n′)的像素的像素值。②-1. At multiple zero-watermark extraction terminals, record the digital images (that is, test images) of K binary digital watermarks to be extracted as TF, TF={0≤tf(m′,n′)≤255,1 ≤m'≤M',1≤n'≤N'}, where K≥2, M' represents the vertical resolution of the digital image TF of K binary digital watermarks to be extracted, and N' represents the K binary watermarks to be extracted The horizontal resolution of the digital image TF of the binary digital watermark, M'×N' represents the resolution of the digital image TF of K binary digital watermarks to be extracted, and the resolution of the digital image TF of K binary digital watermarks to be extracted The resolution of digital images embedded with digital watermarks at multiple zero-watermark embedding terminals is the same, and tf(m',n') means that the coordinate positions in the digital image TF of K binary digital watermarks to be extracted are (m',n' ) pixel value of the pixel.

②-2、在多个零水印提取端,将待提取的K个二值数字水印分别记为W′1、W′2、…、W′k、…和W′K,对于待提取的第k个二值数字水印W′k,W′k={w′k(i′k,j′k)=0或1,1≤i′k≤I′k,1≤j′k≤J′k},其中,1≤k≤K,I′k表示待提取的第k个二值数字水印W′k的竖直分辨率,J′k表示待提取的第k个二值数字水印W′k的横向分辨率,I′k×J′k表示待提取的第k个二值数字水印W′k的分辨率,待提取的第k个二值数字水印W′k的分辨率与多个零水印嵌入端嵌入的第k个二值数字水印的分辨率相同,w′k(i′k,j′k)表示待提取的第k个二值数字水印W′k中坐标位置为(i′k,j′k)的像素的像素值。②-2. At multiple zero-watermark extraction terminals, mark the K binary digital watermarks to be extracted as W′ 1 , W′ 2 , ..., W′ k , ... and W′ K . k binary digital watermarks W′ k , W′ k ={w′ k (i′ k ,j′ k )=0 or 1, 1≤i′ k ≤I′ k ,1≤j′ k ≤J′ k }, where, 1≤k≤K, I′ k represents the vertical resolution of the kth binary digital watermark W′ k to be extracted, and J′ k represents the kth binary digital watermark W′ to be extracted The horizontal resolution of k , I′ k ×J′ k represents the resolution of the kth binary digital watermark W′ k to be extracted, and the resolution of the kth binary digital watermark W′ k to be extracted is related to multiple The resolution of the kth binary digital watermark embedded in the zero watermark embedding end is the same, w′ k (i′ k , j′ k ) means that the coordinate position of the kth binary digital watermark W′ k to be extracted is (i ′ k , j′ k ) pixel value of the pixel.

②-3、对待提取K个二值数字水印的数字图像TF进行归一化处理,得到归一化处理后的数字图像,记为TF′,将归一化处理后的数字图像TF′中坐标位置为(m′,n′)的像素的像素值记为tf′(m′,n′),tf′(m′,n′)=tf(m′,n′)/255。②-3. Perform normalization processing on the digital image TF to be extracted K binary digital watermarks, and obtain the digital image after normalization processing, which is denoted as TF′, and the coordinates in the digital image TF′ after normalization processing The pixel value of the pixel at the position (m',n') is recorded as tf'(m',n'), tf'(m',n')=tf(m',n')/255.

②-4、对TF′进行L′级二维离散小波变换,得到一个第二小波逼近子图和多个第二小波细节子图,将第二小波逼近子图记为TFA,其中,TFA的分辨率为(M′/2L′)×(N′/2L′),

Figure BDA00001628451500171
min()为取最小值函数,max()为取最大值函数,符号
Figure BDA00001628451500172
表示取小于其自身的最大整数,即该符号为向下取整符号,I1′表示待提取的第1个二值数字水印W′1的竖直分辨率,J1′表示待提取的第1个二值数字水印W′1的横向分辨率,IK′表示待提取的第K个二值数字水印W′K的竖直分辨率,JK′表示待提取的第K个二值数字水印W′K的横向分辨率。②-4. Carry out L'-level two-dimensional discrete wavelet transform to TF' to obtain a second wavelet approximation subgraph and a plurality of second wavelet detail subgraphs, and denote the second wavelet approximation subgraph as TFA, wherein the TFA's The resolution is (M′/2 L ′)×(N′/2 L ′),
Figure BDA00001628451500171
min() is the minimum value function, max() is the maximum value function, the symbol
Figure BDA00001628451500172
Indicates to take the largest integer smaller than itself, that is, the symbol is a rounded-down symbol, I 1 ′ represents the vertical resolution of the first binary digital watermark W′ 1 to be extracted, and J 1 ′ represents the first binary watermark to be extracted 1 horizontal resolution of a binary digital watermark W′ 1 , I K ′ represents the vertical resolution of the Kth binary digital watermark W′ K to be extracted, and J K ′ represents the Kth binary number to be extracted The lateral resolution of the watermark W′ K.

②-5、对TFA进行二维离散余弦变换,得到一个与TFA相同分辨率的第二二维离散余弦变换系数矩阵,记为TFAC,然后对TFAC进行Zig-Zag扫描排列,得到一个第二一维离散余弦变换系数序列,记为TFACS,TFACS={tfacs(x′),1≤x′≤(M′/2L′)×(N′/2L′)},其中,tfacs(x′)表示TFACS中的第x′个离散余弦变换系数,TFACS中的第2个离散余弦变换系数开始均为离散余弦变换交流系数。②-5. Perform two-dimensional discrete cosine transform on TFA to obtain a second two-dimensional discrete cosine transform coefficient matrix with the same resolution as TFA, denoted as TFAC, and then carry out Zig-Zag scanning arrangement on TFAC to obtain a second one dimensional discrete cosine transform coefficient sequence, denoted as TFACS, TFACS={tfacs(x′),1≤x′≤(M′/2 L ′)×(N′/2 L ′)}, where, tfacs(x′ ) represents the x′th discrete cosine transform coefficient in TFACS, and the second discrete cosine transform coefficient in TFACS is initially an AC coefficient of discrete cosine transform.

②-6、根据多个零水印嵌入端记录的FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的对应位置信息,从TFACS中分别提取出对应位置的I1′×J1′、I2′×J2′、…、Ik′×Jk′、…和IK′×JK′个离散余弦变换交流系数,构成K个第二一维离散余弦变换交流系数序列,分别对应记为TFACS1、TFACS2、…、TFACSk、…和TFACSK,对于根据多个零水印嵌入端记录的FACSk中的各个离散余弦变换交流系数在FACS中的对应位置信息,从TFACS中提取出对应位置的Ik′×Jk′个离散余弦变换交流系数构成的第k个第二一维离散余弦变换交流系数序列TFACSk,TFACSk={tfacsk(y′),1≤y′≤Ik′×Jk′},其中,Ik′表示待提取的第k个二值数字水印W′k的竖直分辨率,Jk′表示待提取的第k个二值数字水印W′k的横向分辨率,tfacsk(y′)表示TFACSk中的第y′个离散余弦变换交流系数。②-6. According to the corresponding position information in FACS of each discrete cosine transform AC coefficient in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K recorded by multiple zero-watermark embedding terminals, extract from TFACS respectively The I 1 ′×J 1 ′, I 2 ′×J 2 ′, ..., I k ′×J k ′, ... and I K ′×J K ′ discrete cosine transform AC coefficients at the corresponding positions constitute K second The one-dimensional discrete cosine transform AC coefficient sequence is correspondingly denoted as TFACS 1 , TFACS 2 , ..., TFACS k , ... and TFACS K , for each discrete cosine transform AC coefficient in FACS k recorded according to multiple zero-watermark embedding terminals in Corresponding position information in FACS, extract the kth second one-dimensional discrete cosine transform AC coefficient sequence TFACS k composed of I k ′×J k ′ discrete cosine transform AC coefficients corresponding to the position from TFACS, TFACS k = { tfacs k (y′), 1≤y′≤I k ′×J k ′}, where I k ′ represents the vertical resolution of the kth binary digital watermark W′ k to be extracted, and J k ′ represents The horizontal resolution of the kth binary digital watermark W′ k to be extracted, tfacs k (y′) represents the y′th discrete cosine transform AC coefficient in TFACS k .

②-7、分别比较TFACS1、TFACS2、…、TFACSk、…和TFACSK中的任意相邻两个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于TFACSk中的任意相邻两个离散余弦变换交流系数,将其分别记为tfacsk(z′)和tfacsk(z′+1),判断tfacsk(z′)>tfacsk(z′+1)是否成立,如果成立,则返回逻辑值1,否则,返回逻辑值0,其中,1≤z′≤Ik′×Jk′-1;然后比较TFACS1、TFACS2、…、TFACSk、…和TFACSK中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于TFACSk中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数,如果前者大,则返回逻辑值1,否则,返回逻辑值0;再根据TFACS1、TFACS2、…、TFACSk、…和TFACSK各自对应的返回的逻辑值,构建一一对应的第二二值数字水印密钥,对于TFACSk对应的返回的逻辑值,将返回的逻辑值按先行后列顺序排列方式贮存于一个大小为Ik′×Jk′的二维矩阵中,将该二维矩阵作为第k个第二二值数字水印密钥,记为TWBk②-7. Compare the size of any two adjacent discrete cosine transform AC coefficients in TFACS 1 , TFACS 2 , ..., TFACS k , ... and TFACS K respectively, and return a logical value 1 or 0 according to the comparison result. For TFACS k Any two adjacent discrete cosine transform AC coefficients in , record them as tfacs k (z′) and tfacs k (z′+1) respectively, judge tfacs k (z′)>tfacs k (z′+1) Whether it is true, if true, return a logical value 1, otherwise, return a logical value 0, where, 1≤z′≤I k ′×J k ′-1; then compare TFACS 1 , TFACS 2 , ..., TFACS k , ... and the size of the last DCT AC coefficient and the first DCT coefficient in TFACS K , and return a logical value 1 or 0 according to the comparison result, for the last DCT AC coefficient and the first DCT coefficient in TFACS k A discrete cosine transform AC coefficient, if the former is large , return a logical value of 1, otherwise, return a logical value of 0 ; then construct One-to-one correspondence with the second binary digital watermark key, for the returned logical value corresponding to TFACS k , store the returned logical value in a two-dimensional array with a size of I k ′×J k ′ In the matrix, the two-dimensional matrix is used as the kth second binary digital watermark key, which is denoted as TWB k .

②-8、将来自多个零水印嵌入端的K个零水印信息WO1、WO2、…、WOk、…和WOK,分别与K个第二二值数字水印密钥TWB1、TWB2、…、TWBk、…和TWBK一一对应进行异或运算,恢复得到K个二值数字水印,分别对应记为TW1、TW2、…、TWk、…和TWK,TW1=xor(WO1,TWB1),TW2=xor(WO2,TWB2),…,TWk=xor(WOk,TWBk),…,TWK=xor(WOK,TWBK),其中,TWB1表示第1个第二二值数字水印密钥,TWB2表示第2个第二二值数字水印密钥,TWBk表示第k个第二二值数字水印密钥,TWBK表示第K个第二二值数字水印密钥,xor()为异或运算函数。②-8. Combine K pieces of zero-watermark information WO 1 , WO 2 , ..., WO k , ... and WO K from multiple zero-watermark embedding terminals with K second binary digital watermark keys TWB 1 , TWB 2 respectively , ..., TWB k , ... and TWB K are one-to-one XOR operation, and K binary digital watermarks are recovered, which are respectively recorded as TW 1 , TW 2 , ..., TW k , ... and TW K , TW 1 = xor(WO 1 ,TWB 1 ), TW 2 =xor(WO 2 ,TWB 2 ),...,TW k =xor(WO k ,TWB k ),...,TW K =xor(WO K ,TWB K ), where , TWB 1 represents the first second binary digital watermark key, TWB 2 represents the second second binary digital watermark key, TWB k represents the k-th second binary digital watermark key, TWB K represents the second K second binary digital watermark keys, and xor() is an exclusive OR operation function.

②-9、分别对K个二值数字水印TW1、TW2、…、TWk、…和TWK进行反置乱处理,得到具有版权认证信息的K个二值数字水印,分别对应记为

Figure BDA00001628451500181
Figure BDA00001628451500191
②-9. Perform anti-scrambling processing on K binary digital watermarks TW 1 , TW 2 , ..., TW k , ... and TW K respectively, to obtain K binary digital watermarks with copyright authentication information, which are respectively recorded as
Figure BDA00001628451500181
and
Figure BDA00001628451500191

②-10、将具有版权认证信息的K个二值数字水印

Figure BDA00001628451500192
Figure BDA00001628451500193
分别与多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK一一对应进行相似度计算,对应得到K个归一化相关系数,然后根据K个归一化相关系数的大小来判定是否提取出多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK以及嵌入的K个二值数字水印的鲁棒性。②-10. K binary digital watermarks with copyright authentication information
Figure BDA00001628451500192
and
Figure BDA00001628451500193
Carry out similarity calculation in one-to-one correspondence with K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals, and obtain K normalized correlation coefficients correspondingly, and then According to the size of the K normalized correlation coefficients, it is judged whether to extract the K binary digital watermarks W 1 , W 2 ,..., W k ,... and W K embedded in multiple zero-watermark embedding terminals and the embedded K binary Robustness of digital watermarking.

在此具体实施例中,步骤②-10的具体过程为:In this specific embodiment, the concrete process of step 2.-10 is:

z1、将具有版权认证信息的K个二值数字水印

Figure BDA00001628451500194
分别与多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK一一对应进行相似度计算,对应得到K个归一化相关系数,对于将
Figure BDA00001628451500196
与Wk进行相似度计算后得到的第k个归一化相关系数,将其记为
Figure BDA00001628451500197
ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , 其中,wk(ik,jk)表示多个零水印嵌入端嵌入的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值,
Figure BDA00001628451500199
表示多个零水印嵌入端嵌入的第k个二值数字水印Wk中所有像素的像素值的均值,
Figure BDA000016284515001910
表示具有版权认证信息的第k个二值数字水印
Figure BDA000016284515001911
中坐标位置为(ik,jk)的像素的像素值,
Figure BDA000016284515001912
表示具有版权认证信息的第k个二值数字水印
Figure BDA000016284515001913
中所有像素的像素值的均值。z1. K binary digital watermarks with copyright authentication information
Figure BDA00001628451500194
and Carry out one-to-one similarity calculation with the K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals, and obtain K normalized correlation coefficients correspondingly. For Will
Figure BDA00001628451500196
The kth normalized correlation coefficient obtained after similarity calculation with W k is recorded as
Figure BDA00001628451500197
ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , Among them, w k (i k , j k ) represents the pixel value of the pixel whose coordinate position is (i k , j k ) in the kth binary digital watermark W k embedded by multiple zero-watermark embedding terminals,
Figure BDA00001628451500199
Represents the mean value of the pixel values of all pixels in the kth binary digital watermark W k embedded in multiple zero-watermark embedding terminals,
Figure BDA000016284515001910
Represents the kth binary digital watermark with copyright authentication information
Figure BDA000016284515001911
The pixel value of the pixel whose coordinate position is (i k , j k ),
Figure BDA000016284515001912
Represents the kth binary digital watermark with copyright authentication information
Figure BDA000016284515001913
The mean of the pixel values of all pixels in .

z2、根据K个归一化相关系数的大小判定是否提取出多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK,对于归一化相关系数

Figure BDA000016284515001914
判断
Figure BDA000016284515001915
的值是否为1,如果的值为1,则确定与Wk完全一致,表明Wk被无损地提取出,如果这是嵌入水印后的Lena数字图像受到某种处理或攻击后的提取结果,说明嵌入的二值数字水印Wk具有抵抗这种处理或攻击的能力,具有理想的鲁棒性。如果
Figure BDA00001628451500201
的值不为1,则再判断
Figure BDA00001628451500202
的值是否介于δT-1,如果
Figure BDA00001628451500203
的值介于δT-1,则说明提取出的二值数字水印
Figure BDA00001628451500204
与嵌入端嵌入的二值数字水印Wk存在一定差异,但两者间具有很大的相似性,这时可以从提取结果中辨认出嵌入的二值数字水印Wk,提取成功。相关系数的值越大,提取出的二值数字水印
Figure BDA00001628451500205
与嵌入端嵌入的二值数字水印Wk越相似,越容易辨认出嵌入的二值数字水印Wk,提取效果越好。如果这是嵌入水印后的Lena数字图像受到某种处理或攻击后的提取结果,说明嵌入的二值数字水印Wk具有比较理想的抵抗这种处理或攻击的能力,具有很好的鲁棒性。其中,δT为水印提取门限,一般可取值为0.5。如果
Figure BDA00001628451500206
的值不介于δT-1,则再判断
Figure BDA00001628451500207
的值是否小于δT,如果是,则说明提取出的二值数字水印
Figure BDA00001628451500208
与嵌入端嵌入的二值数字水印Wk相关性很小,这时已无法从提取结果中辨认出嵌入的二值数字水印Wk,提取失败。z2. Determine whether to extract K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals according to the size of the K normalized correlation coefficients. correlation coefficient
Figure BDA000016284515001914
judge
Figure BDA000016284515001915
Is the value of 1, if value of 1, then determine It is completely consistent with W k , indicating that W k is extracted losslessly. If this is the extraction result after the watermarked Lena digital image is subjected to some kind of processing or attack, it means that the embedded binary digital watermark W k has the ability to resist this processing. Or the ability to attack, with ideal robustness. if
Figure BDA00001628451500201
value is not 1, then judge again
Figure BDA00001628451500202
Whether the value of is between δ T -1, if
Figure BDA00001628451500203
If the value is between δ T -1, it means that the extracted binary digital watermark
Figure BDA00001628451500204
There are certain differences with the binary digital watermark W k embedded in the embedding terminal, but there is a great similarity between them. At this time, the embedded binary digital watermark W k can be identified from the extraction result, and the extraction is successful. The larger the value of the correlation coefficient, the extracted binary digital watermark
Figure BDA00001628451500205
The more similar it is to the binary digital watermark W k embedded in the embedding end, the easier it is to identify the embedded binary digital watermark W k , and the better the extraction effect is. If this is the extraction result of the embedded watermarked Lena digital image after some kind of processing or attack, it shows that the embedded binary digital watermark W k has an ideal ability to resist such processing or attack, and has good robustness . Among them, δ T is the threshold of watermark extraction, and the generally desirable value is 0.5. if
Figure BDA00001628451500206
value is not between δ T -1, then judge
Figure BDA00001628451500207
Is the value of is less than δ T , if yes, it means that the extracted binary digital watermark
Figure BDA00001628451500208
The correlation with the binary digital watermark W k embedded in the embedding terminal is very small, and the embedded binary digital watermark W k cannot be recognized from the extraction result at this time, and the extraction fails.

为了更好地说明本发明提出的一种数字图像的多个零水印嵌入及提取方法的可行性和有效性,以嵌入三个二值数字水印为例(K=3),通过以下实验进行仿真。In order to better illustrate the feasibility and effectiveness of a multiple zero-watermark embedding and extraction method for a digital image proposed by the present invention, taking embedding three binary digital watermarks as an example (K=3), the simulation is carried out through the following experiments .

实验仿真是在Matlab7.5平台上进行的,待嵌入三个二值数字水印的原始数字图像F选用8bit的Lena灰度图像,分辨率为512×512,如图1a所示。三个二值数字水印分别为二值签名水印W1、二值序号水印W2和二值图标水印W3,分辨率分别为28×50、16×64和25×32,分别如图1b、图1c和图1d所示。The experimental simulation is carried out on the Matlab7.5 platform. The original digital image F to be embedded with three binary digital watermarks is an 8-bit Lena grayscale image with a resolution of 512×512, as shown in Figure 1a. The three binary digital watermarks are binary signature watermark W 1 , binary serial number watermark W 2 and binary icon watermark W 3 , with resolutions of 28×50, 16×64 and 25×32, respectively, as shown in Fig. 1b, Figure 1c and Figure 1d show.

二值数字水印嵌入之前,对原始数字图像F像素进行归一化处理,然后对归一化处理后的数字图像F′进行3级二维离散小波变换。Before the binary digital watermark is embedded, normalize the pixels of the original digital image F, and then perform three-level two-dimensional discrete wavelet transform on the normalized digital image F'.

嵌入数字水印后的数字图像的质量采用峰值信噪比(PSNR)进行评判, PSNR = - 10 × log 10 ( Σ m = 1 M Σ n = 1 N ( f ( m , n ) - f ′ ′ ( m , n ) ) 2 M × N × f max 2 ) , 其中,f(m,n)表示待嵌入二值数字水印的原始数字图像中坐标位置为(m,n)的像素的像素值,f″(m,n)表示嵌入二值数字水印后的数字图像中坐标位置为(m,n)的像素的像素值,fmax表示原始数字图像的最大像素值。The quality of the digital image embedded with the digital watermark is judged by the peak signal-to-noise ratio (PSNR). PSNR = - 10 × log 10 ( Σ m = 1 m Σ no = 1 N ( f ( m , no ) - f ′ ′ ( m , no ) ) 2 m × N × f max 2 ) , Among them, f(m,n) represents the pixel value of the pixel whose coordinate position is (m,n) in the original digital image to be embedded with binary digital watermark, and f″(m,n) represents the number after embedding binary digital watermark The pixel value of the pixel whose coordinate position is (m, n) in the image, f max represents the maximum pixel value of the original digital image.

数字水印检测结果的客观评价采用归一化相关系数(ρ): ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , 1≤k≤K,其中,wk(ik,jk)表示原始的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值,

Figure BDA00001628451500212
表示提取出的第k个二值数字水印
Figure BDA00001628451500213
中坐标位置为(ik,jk)的像素的像素值,
Figure BDA00001628451500215
分别表示数字水印Wk
Figure BDA00001628451500216
的所有像素的像素值的均值。根据归一化相关系数ρ的大小可以判定是否提取出嵌入的二值数字水印以及嵌入的二值数字水印鲁棒性如何。The objective evaluation of digital watermark detection results uses the normalized correlation coefficient (ρ): ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , 1≤k≤K, where w k (i k , j k ) represents the pixel value of the pixel whose coordinate position is (i k , j k ) in the original kth binary digital watermark W k ,
Figure BDA00001628451500212
Indicates the extracted kth binary digital watermark
Figure BDA00001628451500213
The pixel value of the pixel whose coordinate position is (i k , j k ), and
Figure BDA00001628451500215
represent the digital watermark W k and
Figure BDA00001628451500216
The mean of the pixel values of all pixels in . According to the size of the normalized correlation coefficient ρ, it can be judged whether to extract the embedded binary digital watermark and how robust the embedded binary digital watermark is.

图2a、图2b和图2c分别给出了嵌入二值签名水印W1、嵌入二值签名水印W1和二值序号水印W2以及嵌入二值签名水印W1、二值序号水印W2和二值图标水印W3后的Lena数字图像。从图2a、图2b和图2c中可以看到,嵌入水印后的Lena数字图像质量并没有发生任何变化(PSNR→∞dB),与原始Lena数字图像一致,完全满足了水印不可觉察性要求。同时可见,利用本发明的多个零水印嵌入方法,嵌入水印后的Lena数字图像质量不会随嵌入的水印个数而变,因此在实际应用中可以根据需要方便灵活地嵌入多个二值数字水印。图2d、图2e和图2f分别为从图2c中提取出的三个二值数字水印,在图2c所示的水印Lena数字图像未受任何攻击处理时,可以完全无损地提取出嵌入的三个二值数字水印,归一化相关系数ρ都为1。Figure 2a, Figure 2b and Figure 2c show the embedded binary signature watermark W 1 , embedded binary signature watermark W 1 and binary serial number watermark W 2 and embedded binary signature watermark W 1 , binary serial number watermark W 2 and Lena digital image after binary icon watermark W 3 . From Figure 2a, Figure 2b and Figure 2c, it can be seen that the quality of the Lena digital image after embedding the watermark does not change (PSNR→∞dB), which is consistent with the original Lena digital image and fully meets the watermark imperceptibility requirements. At the same time, it can be seen that with the multiple zero-watermark embedding method of the present invention, the quality of the Lena digital image after embedding the watermark will not change with the number of embedded watermarks, so in practical applications, multiple binary digital images can be conveniently and flexibly embedded as required watermark. Figure 2d, Figure 2e, and Figure 2f are the three binary digital watermarks extracted from Figure 2c respectively. When the watermarked Lena digital image shown in Figure 2c is not subjected to any attack processing, the embedded three-level digital watermark can be extracted completely losslessly. A binary digital watermark, the normalized correlation coefficient ρ is 1.

下面对水印Lena数字图像进行多种攻击处理,来验证本发明提出的多个零水印嵌入方法的鲁棒性。In the following, a variety of attack processing is performed on the watermarked Lena digital image to verify the robustness of the multiple zero-watermark embedding methods proposed by the present invention.

(1)亮度变化(1) Brightness change

对图2c所示的水印Lena数字图像进行亮度调节处理,即将其所有像素值分别进行加0.2、0.5和减0.2、0.5的运算,对应得到如图3a、图3b、图3c和图3d所示的水印Lena数字图像。经图像像素值加减处理后,从视觉上来看,图3a、图3b、图3c和图3d所示的水印Lena数字图像的亮、暗度发生了明显改变,而峰值信噪比PSNR分别下降至13.97dB、6.02dB、13.97dB和6.02dB。分别对图3a、图3b、图3c和图3d的水印Lena数字图像进行水印提取,提取出的三个二值数字水印分别如图3e、图3f和图3g所示。结果显示,从这4个水印Lena数字图像中提取的水印结果不仅完全相同,而且与原始的三个二值数字水印完全一致。可见,对于本发明方法嵌入的数字水印完全不受数字图像亮度变化的影响,能正确无误地提取出。Perform brightness adjustment processing on the watermarked Lena digital image shown in Figure 2c, that is, add 0.2, 0.5 and subtract 0.2, 0.5 to all pixel values, and the corresponding results are as shown in Figure 3a, Figure 3b, Figure 3c and Figure 3d Watermark Lena digital image. After the addition and subtraction of image pixel values, visually, the brightness and darkness of the watermarked Lena digital images shown in Figure 3a, Figure 3b, Figure 3c and Figure 3d have changed significantly, while the peak signal-to-noise ratio (PSNR) has decreased respectively to 13.97dB, 6.02dB, 13.97dB and 6.02dB. Watermark extraction is performed on the watermarked Lena digital images in Figure 3a, Figure 3b, Figure 3c and Figure 3d respectively, and the extracted three binary digital watermarks are shown in Figure 3e, Figure 3f and Figure 3g respectively. The results show that the watermarks extracted from the four watermarked Lena digital images are not only identical, but also completely consistent with the original three binary digital watermarks. It can be seen that the digital watermark embedded by the method of the present invention is not affected by the brightness change of the digital image at all, and can be extracted correctly.

(2)直方图均衡化(2) Histogram equalization

对图2c所示的水印Lena数字图像进行直方图均衡化处理,得到如图4a所示的水印Lena数字图像。经过直方图均衡化处理,水印Lena数字图像的像素值分布发生了明显改变,峰值信噪比PSNR下降至19.56dB。图4b、图4c和图4d分别为从图4a的水印Lena数字图像中提取出的三个二值数字水印,由结果可知,嵌入的三个二值数字水印都能被很理想地提取出,归一化相关系数ρ分别达到了0.990、0.991和0.997。Perform histogram equalization processing on the watermarked Lena digital image shown in Figure 2c to obtain the watermarked Lena digital image shown in Figure 4a. After histogram equalization, the pixel value distribution of the watermarked Lena digital image has changed significantly, and the peak signal-to-noise ratio (PSNR) has dropped to 19.56dB. Figure 4b, Figure 4c and Figure 4d are three binary digital watermarks extracted from the watermarked Lena digital image in Figure 4a respectively. From the results, it can be seen that the embedded three binary digital watermarks can be ideally extracted. The normalized correlation coefficient ρ reached 0.990, 0.991 and 0.997, respectively.

(3)中值滤波(3) Median filtering

对图2c所示的水印Lena数字图像进行中值滤波处理,滤波器窗口大小分别为[5×5]和[11×11],滤波后得到的水印Lena数字图像分别如图5a和图5b所示。图5c、图5d和图5e分别为从图5a的水印Lena数字图像中提取出的三个二值数字水印,图5f、图5g和图5h分别为从图5b的水印Lena数字图像中提取出的三个二值数字水印。由水印提取结果可知,对于[5×5]小窗口的中值滤波处理,嵌入的三个二值数字水印不受任何影响,具有理想的鲁棒性,而对于[11×11]大窗口的中值滤波处理,由图5b可以看到,这时水印Lena数字图像的细节信息已非常模糊,峰值信噪比PSNR下降至25.83dB,但嵌入的三个二值数字水印具有很理想的抗滤波处理能力,归一化相关系数ρ分别达到了0.964、0.991和0.997。Median filtering is performed on the watermarked Lena digital image shown in Figure 2c, and the filter window sizes are [5×5] and [11×11] respectively. The watermarked Lena digital image obtained after filtering is shown in Figure 5a and Figure 5b respectively. Show. Figure 5c, Figure 5d and Figure 5e are three binary digital watermarks extracted from the watermark Lena digital image in Figure 5a respectively, and Figure 5f, Figure 5g and Figure 5h are the watermarks extracted from the watermark Lena digital image in Figure 5b The three binary digital watermarks of . From the results of watermark extraction, we can see that for the median filter processing of the [5×5] small window, the embedded three binary digital watermarks are not affected in any way, and have ideal robustness, while for the [11×11] large window Median filtering process, as can be seen from Figure 5b, at this time, the details of the watermarked Lena digital image are very blurred, and the peak signal-to-noise ratio PSNR drops to 25.83dB, but the embedded three binary digital watermarks have very ideal anti-filtering The processing capacity and the normalized correlation coefficient ρ reached 0.964, 0.991 and 0.997 respectively.

表1具体给出了经不同窗口大小中值滤波后的水印Lena数字图像及其水印提取结果,由表可以看出,本发明提出的多个零水印嵌入方法具有非常理想的抗滤波处理能力。Table 1 specifically shows the watermarked Lena digital image and its watermark extraction results after median filtering with different window sizes. It can be seen from the table that the multiple zero-watermark embedding methods proposed by the present invention have very ideal anti-filtering processing capabilities.

表1不同窗口大小中值滤波后的水印Lena数字图像质量及提取结果Table 1 Watermark Lena digital image quality and extraction results after median filter with different window sizes

(4)JPEG有损压缩(4) JPEG lossy compression

对图2c所示的水印Lena数字图像进行JPEG有损压缩处理,压缩质量因子分别为10%和4%,得到的水印Lena数字图像分别如图6a和图6b所示。图6c、图6d和图6e分别为从图6a的水印Lena数字图像中提取出的三个二值数字水印,图6f、图6g和图6h分别为从图6b的水印Lena数字图像中提取出的三个二值数字水印。由水印提取结果可知,对于压缩质量因子为10%的JPEG有损压缩处理,嵌入的三个二值数字水印不受任何影响,具有理想的鲁棒性,而对于压缩质量因子为4%的JPEG有损压缩处理,由图6b可以看到,这时水印Lena数字图像呈现出非常明显的方块效应,视觉质量发生了严重退化,峰值信噪比PSNR仅为25.92dB,但嵌入的三个二值数字水印仍有很理想的抗JPEG有损压缩处理能力,归一化相关系数ρ分别达到了0.985、0.997和1.0。The watermarked Lena digital image shown in Figure 2c is subjected to JPEG lossy compression processing, and the compression quality factors are 10% and 4%, respectively, and the obtained watermarked Lena digital images are shown in Figure 6a and Figure 6b, respectively. Figure 6c, Figure 6d and Figure 6e are three binary digital watermarks extracted from the watermark Lena digital image in Figure 6a respectively, and Figure 6f, Figure 6g and Figure 6h are the watermarks extracted from the watermark Lena digital image in Figure 6b respectively The three binary digital watermarks of . From the results of watermark extraction, it can be seen that for the JPEG lossy compression process with a compression quality factor of 10%, the embedded three binary digital watermarks are not affected in any way and have ideal robustness, while for the JPEG with a compression quality factor of 4%. Lossy compression processing, as can be seen from Figure 6b, at this time the watermarked Lena digital image presents a very obvious block effect, the visual quality is seriously degraded, and the peak signal-to-noise ratio PSNR is only 25.92dB, but the embedded three binary values Digital watermarking still has ideal anti-JPEG lossy compression processing ability, and the normalized correlation coefficient ρ has reached 0.985, 0.997 and 1.0 respectively.

表2具体给出了不同JPEG压缩质量因子下的水印Lena数字图像质量及其水印提取结果。从表2可以看出,本发明方法具有非常理想的抗JPEG压缩处理能力,压缩质量因子减小至6%时仍能无差错地提取出所嵌入的三个二值数字水印。Table 2 specifically gives the watermarked Lena digital image quality and watermark extraction results under different JPEG compression quality factors. It can be seen from Table 2 that the method of the present invention has a very ideal anti-JPEG compression processing ability, and can still extract the three embedded binary digital watermarks without error when the compression quality factor is reduced to 6%.

表2不同JPEG压缩质量因子下的水印Lena数字图像质量及提取结果Table 2 Watermark Lena digital image quality and extraction results under different JPEG compression quality factors

Figure BDA00001628451500231
Figure BDA00001628451500231

(5)叠加高斯噪声(5) Superimposed Gaussian noise

对图2c所示的水印Lena数字图像进行噪声干扰,噪声选用均值为0方差为0.02以及均值为0方差为0.05的两种高斯噪声,得到的水印Lena数字图像分别如图7a和图7b所示。图7c、图7d和图7e分别为从图7a的水印Lena数字图像中提取出的三个二值数字水印,图7f、图7g和图7h分别为从图7b的水印Lena数字图像中提取出的三个二值数字水印。由水印提取结果可知,尽管水印Lena数字图像受到高斯噪声干扰,视觉质量发生严重退化,峰值信噪比PSNR仅为17.22dB和13.67dB。但对于均值为0方差为0.02的高斯噪声干扰,嵌入的三个二值数字水印没有受到任何影响,具有理想的鲁棒性,而对于均值为0方差为0.05的高斯噪声干扰,嵌入的三个二值数字水印仍有很理想的抗噪声干扰能力,归一化相关系数ρ分别达到了0.980、0.994和1.0。Noise interference is performed on the watermarked Lena digital image shown in Figure 2c. The noise is selected from two Gaussian noises with a mean value of 0 and a variance of 0.02 and a mean value of 0 and a variance of 0.05. The obtained watermarked Lena digital images are shown in Figure 7a and Figure 7b respectively . Figure 7c, Figure 7d and Figure 7e are three binary digital watermarks extracted from the watermark Lena digital image in Figure 7a respectively, and Figure 7f, Figure 7g and Figure 7h are the watermarks extracted from the watermark Lena digital image in Figure 7b The three binary digital watermarks of . It can be seen from the watermark extraction results that although the watermarked Lena digital image is interfered by Gaussian noise, the visual quality is seriously degraded, and the peak signal-to-noise ratio PSNR is only 17.22dB and 13.67dB. But for the Gaussian noise interference with the mean value of 0 and the variance of 0.02, the embedded three binary digital watermarks are not affected in any way, which has ideal robustness, while for the Gaussian noise interference with the mean value of 0 and the variance of 0.05, the embedded three Binary digital watermarking still has ideal anti-noise ability, and the normalized correlation coefficient ρ has reached 0.980, 0.994 and 1.0 respectively.

表3具体给出了均值为0不同方差高斯噪声干扰下的水印Lena数字图像质量及其水印提取结果。从表3可以看出,本发明方法具有非常理想的抗噪声干扰能力,对于方差小于0.03的高斯噪声干扰,嵌入的三个二值数字水印都能被完好无损地提取出。Table 3 specifically shows the watermark Lena digital image quality and watermark extraction results under the interference of Gaussian noise with a mean of 0 and different variances. It can be seen from Table 3 that the method of the present invention has a very ideal anti-noise ability, and for Gaussian noise interference with a variance less than 0.03, the three embedded binary digital watermarks can be extracted intact.

表3不同高斯噪声强度下的水印Lena数字图像质量及提取结果Table 3 Watermark Lena digital image quality and extraction results under different Gaussian noise intensities

Figure BDA00001628451500241
Figure BDA00001628451500241

(6)几何切割(6) Geometric cutting

对图2c所示的水印Lena数字图像进行几何切割,自左上角开始分别切去128×128和256×256个像素点,得到如图8a和图8b所示的水印Lena数字图像。图8c、图8d和图8e分别为从图8a的水印Lena数字图像中提取出的三个二值数字水印,图8f、图8g和图8h分别为从图8b的水印Lena数字图像中提取出的三个二值数字水印。由水印提取结果可知,尽管水印Lena数字图像受到较大程度的破坏,峰值信噪比PSNR仅为17.29dB和11.14dB,但本发明方法对于几何切割具有相当好的鲁棒性,嵌入的三个二值数字水印仍能被很完好提取出来,归一化相关系数ρ分别达到了0.973、0.972和0.981以及0.874、0.883和0.899。Geometrically cut the watermarked Lena digital image shown in Figure 2c, and cut off 128×128 and 256×256 pixels from the upper left corner, respectively, to obtain the watermarked Lena digital image shown in Figure 8a and Figure 8b. Figure 8c, Figure 8d and Figure 8e are three binary digital watermarks extracted from the watermark Lena digital image in Figure 8a respectively, and Figure 8f, Figure 8g and Figure 8h are the watermarks extracted from the watermark Lena digital image in Figure 8b The three binary digital watermarks of . It can be known from the watermark extraction results that although the watermarked Lena digital image is damaged to a large extent, and the peak signal-to-noise ratio PSNR is only 17.29dB and 11.14dB, the method of the present invention is quite robust to geometric cutting, and the embedded three The binary digital watermark can still be extracted well, and the normalized correlation coefficient ρ reaches 0.973, 0.972 and 0.981 and 0.874, 0.883 and 0.899 respectively.

(7)几何旋转(7) Geometric rotation

对图2c所示的水印Lena数字图像进行逆时针方向旋转,角度分别为5度和25度。为了提取水印,将旋转后的图像再反向旋转,以恢复原方向,这时得到的水印Lena数字图像分别如图9a和图9b所示,其峰值信噪比PSNR为19.10dB和13.80dB。图9c、图9d和图9e分别为从图9a的水印Lena数字图像中提取出的三个二值数字水印,图9f、图9g和图9h分别为从图9b的水印Lena数字图像中提取出的三个二值数字水印。由水印提取结果可知,本发明方法对于几何旋转攻击也有比较好的鲁棒性,嵌入的三个二值数字水印仍能被很清晰地提取出来,归一化相关系数ρ分别达到了0.819、0.829和0.871以及0.694、0.751和0.817。The watermarked Lena digital image shown in Fig. 2c is rotated counterclockwise, and the angles are 5 degrees and 25 degrees respectively. In order to extract the watermark, the rotated image is reversely rotated to restore the original direction. The watermarked Lena digital images obtained at this time are shown in Figure 9a and Figure 9b respectively, and their peak signal-to-noise ratios PSNR are 19.10dB and 13.80dB. Figure 9c, Figure 9d and Figure 9e are three binary digital watermarks extracted from the watermark Lena digital image in Figure 9a respectively, and Figure 9f, Figure 9g and Figure 9h are the watermarks extracted from the watermark Lena digital image in Figure 9b respectively The three binary digital watermarks of . It can be seen from the watermark extraction results that the method of the present invention is also relatively robust to geometric rotation attacks, and the embedded three binary digital watermarks can still be clearly extracted, and the normalized correlation coefficients ρ have reached 0.819 and 0.829 respectively and 0.871 and 0.694, 0.751 and 0.817.

Claims (4)

1.一种数字图像的多个零水印嵌入方法,其特征在于包括以下步骤:1. a plurality of zero watermark embedding methods of digital image, it is characterized in that comprising the following steps: ①-1、在多个零水印嵌入端,假设待嵌入K个二值数字水印的原始数字图像为8bit的灰度图像,并记为F,F={0≤f(m,n)≤255,1≤m≤M,1≤n≤N},其中,K≥2,M表示待嵌入K个二值数字水印的原始数字图像F的竖直分辨率,N表示待嵌入K个二值数字水印的原始数字图像F的横向分辨率,M×N表示待嵌入K个二值数字水印的原始数字图像F的分辨率,f(m,n)表示待嵌入K个二值数字水印的原始数字图像F中坐标位置为(m,n)的像素的像素值;①-1. At multiple zero-watermark embedding terminals, assume that the original digital image to be embedded with K binary digital watermarks is an 8-bit grayscale image, and denoted as F, F={0≤f(m,n)≤255 ,1≤m≤M,1≤n≤N}, where K≥2, M represents the vertical resolution of the original digital image F to be embedded with K binary digital watermarks, and N represents the K binary digital watermarks to be embedded The horizontal resolution of the original digital image F of the watermark, M×N represents the resolution of the original digital image F to be embedded with K binary digital watermarks, f(m,n) represents the original digital image F to be embedded with K binary digital watermarks The pixel value of the pixel whose coordinate position is (m, n) in the image F; ①-2、在多个零水印嵌入端,假设待嵌入的K个二值数字水印皆为二值图像,并分别记为W1,W2,…,Wk,…,WK,则对于待嵌入的第k个二值数字水印Wk,Wk={wk(ik,jk)=0或1,1≤ik≤Ik,1≤jk≤Jk},其中,1≤k≤K,Ik表示待嵌入的第k个二值数字水印Wk的竖直分辨率,Jk表示待嵌入的第k个二值数字水印Wk的横向分辨率,Ik×Jk表示待嵌入的第k个二值数字水印Wk的分辨率,wk(ik,jk)表示待嵌入的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值;①-2. At multiple zero-watermark embedding terminals, assuming that the K binary digital watermarks to be embedded are all binary images, which are recorded as W 1 , W 2 ,...,W k ,...,W K , then for The kth binary digital watermark W k to be embedded, W k ={w k (i k , j k )=0 or 1, 1≤i k ≤I k ,1≤j k ≤Jk}, where, 1 ≤k≤K, I k represents the vertical resolution of the kth binary digital watermark W k to be embedded, J k represents the horizontal resolution of the kth binary digital watermark W k to be embedded, I k ×J k represents the resolution of the kth binary digital watermark W k to be embedded, w k (i k , j k ) represents the coordinate position of the kth binary digital watermark W k to be embedded is (i k , j k ) pixel value of the pixel; ①-3、对待嵌入K个二值数字水印的原始数字图像F进行归一化处理,得到归一化处理后的数字图像,记为F′,将归一化处理后的数字图像F′中坐标位置为(m,n)的像素的像素值记为f′(m,n),f′(m,n)=f(m,n)/255;①-3. The original digital image F to be embedded with K binary digital watermarks is normalized to obtain the normalized digital image, denoted as F′, and the normalized digital image F′ is The pixel value of the pixel whose coordinate position is (m,n) is recorded as f'(m,n), f'(m,n)=f(m,n)/255; ①-4、对F′进行L级二维离散小波变换,得到一个第一小波逼近子图和多个第一小波细节子图,将第一小波逼近子图记为FA,其中,FA的分辨率为(M/2L)×(N/2L),
Figure FDA00001628451400011
min()为取最小值函数,max()为取最大值函数,符号
Figure FDA00001628451400012
表示取小于其自身的最大整数,I1表示待嵌入的第1个二值数字水印W1的竖直分辨率,J1表示待嵌入的第1个二值数字水印W1的横向分辨率,IK表示待嵌入的第K个二值数字水印WK的竖直分辨率,JK表示待嵌入的第K个二值数字水印WK的横向分辨率;
①-4. Carry out L-level two-dimensional discrete wavelet transform to F′ to obtain a first wavelet approximation subgraph and multiple first wavelet detail subgraphs, and denote the first wavelet approximation subgraph as FA, where the resolution of FA The rate is (M/2 L )×(N/2 L ),
Figure FDA00001628451400011
min() is the minimum value function, max() is the maximum value function, the symbol
Figure FDA00001628451400012
Indicates the largest integer smaller than itself, I 1 represents the vertical resolution of the first binary digital watermark W 1 to be embedded, J 1 represents the horizontal resolution of the first binary digital watermark W 1 to be embedded, I K represents the vertical resolution of the Kth binary digital watermark W K to be embedded, and J K represents the horizontal resolution of the Kth binary digital watermark W K to be embedded;
①-5、对FA进行二维离散余弦变换,得到一个与FA相同分辨率的第一二维离散余弦变换系数矩阵,记为FAC,然后对FAC进行Zig-Zag扫描排列,得到一个第一一维离散余弦变换系数序列,记为FACS,FACS={facs(x),1≤x≤(M/2L)×(N/2L)},其中,facs(x)表示FACS中的第x个离散余弦变换系数,FACS中的第2个离散余弦变换系数开始均为离散余弦变换交流系数;①-5. Carry out two-dimensional discrete cosine transform to FA to obtain a first two-dimensional discrete cosine transform coefficient matrix with the same resolution as FA, denoted as FAC, and then carry out Zig-Zag scanning arrangement on FAC to obtain a first one dimensional discrete cosine transform coefficient sequence, denoted as FACS, FACS={facs(x),1≤x≤(M/2 L )×(N/2 L )}, where facs(x) represents the x-th in FACS Discrete cosine transform coefficients, the second discrete cosine transform coefficients in FACS are initially all discrete cosine transform AC coefficients; ①-6、依次根据待嵌入的每个二值数字水印的分辨率,分别从FACS中选取出满足设定条件的I1×J1、I2×J2、…、Ik×Jk、…和IK×JK个离散余弦变换交流系数,构成K个第一一维离散余弦变换交流系数序列,分别对应记为FACS1、FACS2、…、FACSk、…和FACSK,对于从FACS中选取出的满足设定条件的Ik×Jk个离散余弦变换交流系数构成的第k个第一一维离散余弦变换交流系数序列FACSk,FACSk={facsk(y),1≤y≤Ik×Jk},然后记录FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的对应位置信息,其中,I2表示待嵌入的第2个二值数字水印W2的竖直分辨率,J2表示待嵌入的第2个二值数字水印W2的横向分辨率,facsk(y)表示FACSk中的第y个离散余弦变换交流系数,设定条件为使得构成的第一一维离散余弦变换交流系数序列中的任意相邻两个离散余弦变换交流系数的差值的绝对值大于或等于设定的差值阈值;①-6. According to the resolution of each binary digital watermark to be embedded, select I 1 ×J 1 , I 2 ×J 2 ,…, I k ×J k , ...and I K ×J K discrete cosine transform AC coefficients to form K first one-dimensional discrete cosine transform AC coefficient sequences, respectively denoted as FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , for from The kth first one-dimensional discrete cosine transform AC coefficient sequence FACS k composed of I k ×J k discrete cosine transform AC coefficients selected in FACS that meet the set conditions, FACS k = {facs k (y),1 ≤y≤I k ×J k }, and then record the corresponding position information of each discrete cosine transform AC coefficient in FACS in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , where I 2 represents the The vertical resolution of the second binary digital watermark W 2 , J 2 represents the horizontal resolution of the second binary digital watermark W 2 to be embedded, and facs k (y) represents the yth discrete value in FACS k For the cosine transform AC coefficient, the setting condition is such that the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in the formed first one-dimensional discrete cosine transform AC coefficient sequence is greater than or equal to the set difference threshold; ①-7、分别比较FACS1、FACS2、…、FACSk、…和FACSK中的任意相邻两个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于FACSk中的任意相邻两个离散余弦变换交流系数,将其分别记为facsk(z)和facsk(z+1),判断facsk(z)>facsk(z+1)是否成立,如果成立,则返回逻辑值1,否则,返回逻辑值0,其中,1≤z≤Ik×Jk-1;然后比较FACS1、FACS2、…、FACSk、…和FACSK中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于FACSk中的最后一个离散余弦变换交流系数与第1个离散余弦变换交流系数,如果前者大,则返回逻辑值1,否则,返回逻辑值0;再根据FACS1、FACS2、…、FACSk、…和FACSK各自对应的返回的逻辑值,构建一一对应的第一二值数字水印密钥,对于FACSk对应的返回的逻辑值,将返回的逻辑值按先行后列顺序排列方式贮存于一个大小为Ik×Jk的二维矩阵中,将该二维矩阵作为第k个第一二值数字水印密钥,记为WBk①-7. Compare the size of any two adjacent discrete cosine transform AC coefficients in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K respectively, and return a logical value 1 or 0 according to the comparison result, for FACS k Any two adjacent discrete cosine transform AC coefficients in , record them as facs k (z) and facs k (z+1) respectively, and judge whether facs k (z)>facs k (z+1) is true, if If it is true, return a logic value of 1, otherwise, return a logic value of 0, where, 1≤z≤I k ×J k -1; then compare the last one of FACS 1 , FACS 2 , ..., FACS k , ... and FACS K DCT AC coefficient and the size of the first DCT AC coefficient, and return a logic value of 1 or 0 according to the comparison result. For the last DCT AC coefficient and the first DCT AC coefficient in FACS k , If the former is greater, return a logical value of 1, otherwise, return a logical value of 0 ; then construct a one-to-one correspondence of the first and second value digital watermark key, for the returned logical value corresponding to FACS k , the returned logical value is stored in a two-dimensional matrix with a size of I k × J k in the order of first row and second column, and the two-dimensional matrix is used as The k-th first binary digital watermark key, denoted as WB k ; ①-8、对待嵌入的K个二值数字水印W1,W2,…,Wk,…,WK分别进行置乱处理,将置乱处理后得到的K个二值数字水印分别对应记为WS1、WS2、…、WSk、…和WSK,然后将WS1、WS2、…、WSk、…和WSK分别与K个第一二值数字水印密钥WB1、WB2、…、WBk、…和WBK一一对应进行异或运算得到K个零水印信息,分别对应记为WO1、WO2、…、WOk、…和WOK,WO1=xor(WS1,WB1),WO2=xor(WS2,WB2),…,WOk=xor(WSk,WBk),…,WOK=xor(WSK,WBK),再将K个零水印信息WO1、WO2、…、WOk、…和WOK保存于注册机构的数字水印信息数据库中,完成K个二值数字水印W1,W2,…,Wk,…,WK的嵌入,其中,WS1表示对W1进行置乱处理后得到的二值数字水印,WS2表示对W2进行置乱处理后得到的二值数字水印,WSk表示对Wk进行置乱处理后得到的二值数字水印,WSK表示对WK进行置乱处理后得到的二值数字水印,WB1表示第1个第一二值数字水印密钥,WB2表示第2个第一二值数字水印密钥,WBK表示第K个第一二值数字水印密钥,xor()为异或运算函数;①-8. The K binary digital watermarks W 1 , W 2 ,...,W k ,...,W K to be embedded are respectively scrambled, and the K binary digital watermarks obtained after the scrambled processing are respectively corresponding to are WS 1 , WS 2 , ..., WS k , ... and WSK , then combine WS 1 , WS 2 , ..., WS k , ... and WS K with K first binary digital watermark keys WB 1 , WB 2 , ..., WB k , ... and WB K are one-to-one XORed to obtain K zero-watermark information, respectively recorded as WO 1 , WO 2 , ..., WO k , ... and WO K , WO 1 =xor( WS 1 ,WB 1 ), WO 2 =xor(WS 2 ,WB 2 ),…, WO k =xor(WS k ,WB k ),…, WO K =xor(WS K ,WB K ), and K Zero watermark information WO 1 , WO 2 , ..., WO k , ... and WO K are stored in the digital watermark information database of the registration authority, and K binary digital watermarks W 1 , W 2 , ..., W k , ..., The embedding of W K , where WS 1 represents the binary digital watermark obtained after scrambling W 1 , WS 2 represents the binary digital watermark obtained after scrambling W 2 , and WS k represents the binary watermark obtained after scrambling W k The binary digital watermark obtained after scrambling processing, WS K represents the binary digital watermark obtained after scrambling W K , WB 1 represents the first first binary digital watermark key, WB 2 represents the second The first binary digital watermark key, WB K represents the Kth first binary digital watermark key, and xor() is an exclusive OR operation function; ①-9、在多个零水印嵌入端,将记录的FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的位置信息、K个零水印信息WO1,WO2,…,WOk,…,WOK以及K个二值数字水印W1,W2,…,Wk,…,WK传输给多个零水印提取端。①-9. At multiple zero-watermark embedding terminals, record the position information of each discrete cosine transform AC coefficient in FACS in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K , and K zero-watermark information WO 1 , WO 2 ,..., WO k ,..., WO K and K binary digital watermarks W 1 , W 2 ,..., W k ,..., W K are transmitted to multiple zero-watermark extraction terminals.
2.根据权利要求1所述的一种数字图像的多个零水印嵌入方法,其特征在于所述的步骤①-6中FACS1、FACS2、…、FACSk、…和FACSK中的任意相邻两个离散余弦变换交流系数的差值的绝对值分别大于或等于δ1、δ2、…、δk、…和δK,其中,δ1表示针对FACS1中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第1个差值阈值,δ2表示针对FACS2中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第2个差值阈值,δk表示针对FACSk中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第k个差值阈值,δK表示针对FACSK中的任意相邻两个离散余弦变换交流系数的差值的绝对值设定的第K个差值阈值。2. A plurality of zero watermark embedding methods of a digital image according to claim 1, characterized in that any of FACS 1 , FACS 2 , ..., FACS k , ... and FACS K in the described step 1.-6 The absolute value of the difference between two adjacent discrete cosine transform AC coefficients is greater than or equal to δ 1 , δ 2 , ..., δ k , ... and δ K , where δ 1 means that for any two adjacent discrete cosine transforms in FACS 1 The first difference threshold set by the absolute value of the difference of the discrete cosine transform AC coefficients, δ 2 represents the second threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS 2 difference threshold, δ k represents the kth difference threshold set for the absolute value of the difference between any two adjacent discrete cosine transform AC coefficients in FACS k , and δ K represents the kth difference threshold for any adjacent The absolute value of the difference between the two DCT AC coefficients sets the Kth difference threshold. 3.一种数字图像的多个零水印提取方法,其特征在于包括以下步骤:3. A method for extracting multiple zero watermarks of a digital image, characterized in that it comprises the following steps: ②-1、在多个零水印提取端,将待提取K个二值数字水印的数字图像记为TF,TF={0≤tf(m′,n′)≤255,1≤m′≤M′,1≤n′≤N′},其中,K≥2,M′表示待提取K个二值数字水印的数字图像TF的竖直分辨率,N′表示待提取K个二值数字水印的数字图像TF的横向分辨率,M′×N′表示待提取K个二值数字水印的数字图像TF的分辨率,待提取K个二值数字水印的数字图像TF的分辨率与多个零水印嵌入端的嵌入有数字水印的数字图像的分辨率相同,tf(m′,n′)表示待提取K个二值数字水印的数字图像TF中坐标位置为(m′,n′)的像素的像素值;②-1. At multiple zero-watermark extraction terminals, record the digital images of K binary digital watermarks to be extracted as TF, TF={0≤tf(m′,n′)≤255, 1≤m′≤M ', 1≤n'≤N'}, where K≥2, M' represents the vertical resolution of the digital image TF of the K binary digital watermarks to be extracted, and N' represents the resolution of the K binary digital watermarks to be extracted The horizontal resolution of the digital image TF, M'×N' represents the resolution of the digital image TF to be extracted K binary digital watermarks, the resolution of the digital image TF to be extracted K binary digital watermarks and multiple zero watermarks The resolution of the digital image embedded with the digital watermark at the embedding end is the same, and tf(m',n') represents the pixel whose coordinate position is (m',n') in the digital image TF of the K binary digital watermark to be extracted value; ②-2、在多个零水印提取端,将待提取的K个二值数字水印分别记为W′1、W′2、…、W′k、…和W′K,对于待提取的第k个二值数字水印W′k,W′k={w′k(i′k,j′k)=0或1,1≤i′k≤I′k,1≤j′k≤J′k},其中,1≤k≤K,I′k表示待提取的第k个二值数字水印W′k的竖直分辨率,J′k表示待提取的第k个二值数字水印W′k的横向分辨率,I′k×J′k表示待提取的第k个二值数字水印W′k的分辨率,待提取的第k个二值数字水印W′k的分辨率与多个零水印嵌入端嵌入的第k个二值数字水印的分辨率相同,w′k(i′k,j′k)表示待提取的第k个二值数字水印W′k中坐标位置为(i′k,j′k)的像素的像素值;②-2. At multiple zero-watermark extraction terminals, mark the K binary digital watermarks to be extracted as W′ 1 , W′ 2 , ..., W′ k , ... and W′ K . k binary digital watermarks W′ k , W′ k ={w′ k (i′ k ,j′ k )=0 or 1, 1≤i′ k ≤I′ k ,1≤j′ k ≤J′ k }, where, 1≤k≤K, I′ k represents the vertical resolution of the kth binary digital watermark W′ k to be extracted, and J′ k represents the kth binary digital watermark W′ to be extracted The horizontal resolution of k , I′ k ×J′ k represents the resolution of the kth binary digital watermark W′ k to be extracted, and the resolution of the kth binary digital watermark W′ k to be extracted is related to multiple The resolution of the kth binary digital watermark embedded in the zero watermark embedding end is the same, w′ k (i′ k , j′ k ) means that the coordinate position of the kth binary digital watermark W′ k to be extracted is (i ′ k , j′ k ) pixel value of the pixel; ②-3、对待提取K个二值数字水印的数字图像TF进行归一化处理,得到归一化处理后的数字图像,记为TF′,将归一化处理后的数字图像TF′中坐标位置为(m′,n′)的像素的像素值记为tf′(m′,n′),tf′(m′,n′)=tf(m′,n′)/255;②-3. Perform normalization processing on the digital image TF to be extracted K binary digital watermarks, and obtain the digital image after normalization processing, which is denoted as TF′, and the coordinates in the digital image TF′ after normalization processing The pixel value of the pixel at position (m',n') is recorded as tf'(m',n'), tf'(m',n')=tf(m',n')/255; ②-4、对TF′进行L′级二维离散小波变换,得到一个第二小波逼近子图和多个第二小波细节子图,将第二小波逼近子图记为TFA,其中,TFA的分辨率为(M′/2L′)×(N′/2L′),
Figure FDA00001628451400051
min()为取最小值函数,max()为取最大值函数,符号
Figure FDA00001628451400052
表示取小于其自身的最大整数,I1′表示待提取的第1个二值数字水印W′1的竖直分辨率,J1′表示待提取的第1个二值数字水印W′1的横向分辨率,IK′表示待提取的第K个二值数字水印W′K的竖直分辨率,JK′表示待提取的第K个二值数字水印W′K的横向分辨率;
②-4. Carry out L'-level two-dimensional discrete wavelet transform to TF' to obtain a second wavelet approximation subgraph and a plurality of second wavelet detail subgraphs, and denote the second wavelet approximation subgraph as TFA, wherein the TFA's The resolution is (M′/2 L ′)×(N′/2 L ′),
Figure FDA00001628451400051
min() is the minimum value function, max() is the maximum value function, the symbol
Figure FDA00001628451400052
Indicates the largest integer smaller than itself, I 1 ′ represents the vertical resolution of the first binary digital watermark W′ 1 to be extracted, and J 1 ′ represents the resolution of the first binary digital watermark W′ 1 to be extracted Horizontal resolution, I K ′ represents the vertical resolution of the Kth binary digital watermark W′ K to be extracted, and J K ′ represents the horizontal resolution of the Kth binary digital watermark W′ K to be extracted;
②-5、对TFA进行二维离散余弦变换,得到一个与TFA相同分辨率的第二二维离散余弦变换系数矩阵,记为TFAC,然后对TFAC进行Zig-Zag扫描排列,得到一个第二一维离散余弦变换系数序列,记为TFACS,TFACS={tfacs(x′),1≤x′≤(M′/2L′)×(N′/2L′)},其中,tfacs(x′)表示TFACS中的第x′个离散余弦变换系数,TFACS中的第2个离散余弦变换系数开始均为离散余弦变换交流系数;②-5. Perform two-dimensional discrete cosine transform on TFA to obtain a second two-dimensional discrete cosine transform coefficient matrix with the same resolution as TFA, denoted as TFAC, and then carry out Zig-Zag scanning arrangement on TFAC to obtain a second one dimensional discrete cosine transform coefficient sequence, denoted as TFACS, TFACS={tfacs(x′),1≤x′≤(M′/2 L ′)×(N′/2 L ′)}, where, tfacs(x′ ) represents the x′th discrete cosine transform coefficient in TFACS, and the second discrete cosine transform coefficient in TFACS is initially an AC discrete cosine transform coefficient; ②-6、根据多个零水印嵌入端记录的FACS1、FACS2、…、FACSk、…和FACSK中的各个离散余弦变换交流系数在FACS中的对应位置信息,从TFACS中分别提取出对应位置的I1′×J1′、I2′×J2′、…、Ik′×Jk′、…和IK′×JK′个离散余弦变换交流系数,构成K个第二一维离散余弦变换交流系数序列,分别对应记为TFACS1、TFACS2、…、TFACSk、…和TFACSK,对于根据多个零水印嵌入端记录的FACSk中的各个离散余弦变换交流系数在FACS中的对应位置信息,从TFACS中提取出对应位置的Ik′×Jk′个离散余弦变换交流系数构成的第k个第二一维离散余弦变换交流系数序列TFACSk,TFACSk={tfacsk(y′),1≤y′≤Ik′×Jk′},其中,Ik′表示待提取的第k个二值数字水印W′k的竖直分辨率,Jk′表示待提取的第k个二值数字水印W′k的横向分辨率,tfacsk(y′)表示TFACSk中的第y′个离散余弦变换交流系数;②-6. According to the corresponding position information in FACS of each discrete cosine transform AC coefficient in FACS 1 , FACS 2 , ..., FACS k , ... and FACS K recorded by multiple zero-watermark embedding terminals, extract from TFACS respectively The I 1 ′×J 1 ′, I 2 ′×J 2 ′, ..., I k ′×J k ′, ... and I K ′×J K ′ discrete cosine transform AC coefficients at the corresponding positions constitute K second The one-dimensional discrete cosine transform AC coefficient sequence is correspondingly denoted as TFACS 1 , TFACS 2 , ..., TFACS k , ... and TFACS K , for each discrete cosine transform AC coefficient in FACS k recorded according to multiple zero-watermark embedding terminals in Corresponding position information in FACS, extract the kth second one-dimensional discrete cosine transform AC coefficient sequence TFACS k composed of I k ′×J k ′ discrete cosine transform AC coefficients corresponding to the position from TFACS, TFACS k = { tfacs k (y′), 1≤y′≤I k ′×J k ′}, where I k ′ represents the vertical resolution of the kth binary digital watermark W′ k to be extracted, and J k ′ represents The horizontal resolution of the kth binary digital watermark W′ k to be extracted, tfacs k (y′) represents the y′ discrete cosine transform AC coefficient in TFACS k ; ②-7、分别比较TFACS1、TFACS2、…、TFACSk、…和TFACSK中的任意相邻两个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于TFACSk中的任意相邻两个离散余弦变换交流系数,将其分别记为tfacsk(z′)和tfacsk(z′+1),判断tfacsk(z′)>tfacsk(z′+1)是否成立,如果成立,则返回逻辑值1,否则,返回逻辑值0,其中,1≤z′≤Ik′×Jk′-1;然后比较TFACS1、TFACS2、…、TFACSk、…和TFACSK中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数的大小,并根据比较结果返回逻辑值1或0,对于TFACSk中的最后一个离散余弦变换交流系数和第1个离散余弦变换交流系数,如果前者大,则返回逻辑值1,否则,返回逻辑值0;再根据TFACS1、TFACS2、…、TFACSk、…和TFACSK各自对应的返回的逻辑值,构建一一对应的第二二值数字水印密钥,对于TFACSk对应的返回的逻辑值,将返回的逻辑值按先行后列顺序排列方式贮存于一个大小为Ik′×Jk′的二维矩阵中,将该二维矩阵作为第k个第二二值数字水印密钥,记为TWBk②-7. Compare the size of any two adjacent discrete cosine transform AC coefficients in TFACS 1 , TFACS 2 , ..., TFACS k , ... and TFACS K respectively, and return a logical value 1 or 0 according to the comparison result. For TFACS k Any two adjacent discrete cosine transform AC coefficients in , record them as tfacs k (z′) and tfacs k (z′+1) respectively, judge tfacs k (z′)>tfacs k (z′+1) Whether it is true, if true, return a logical value 1, otherwise, return a logical value 0, where, 1≤z′≤I k ′×J k ′-1; then compare TFACS 1 , TFACS 2 , ..., TFACS k , ... and the size of the last DCT AC coefficient and the first DCT coefficient in TFACS K , and return a logical value 1 or 0 according to the comparison result, for the last DCT AC coefficient and the first DCT coefficient in TFACS k A discrete cosine transform AC coefficient, if the former is large, return a logical value of 1, otherwise, return a logical value of 0; then construct One-to-one correspondence with the second binary digital watermark key, for the returned logical value corresponding to TFACS k , store the returned logical value in a two-dimensional array with a size of I k ′×J k ′ In the matrix, the two-dimensional matrix is used as the kth second binary digital watermark key, denoted as TWB k ; ②-8、将来自多个零水印嵌入端的K个零水印信息WO1、WO2、…、WOk、…和WOK,分别与K个第二二值数字水印密钥TWB1、TWB2、…、TWBk、…和TWBK一一对应进行异或运算,恢复得到K个二值数字水印,分别对应记为TW1、TW2、…、TWk、…和TWK,TW1=xor(WO1,TWB1),TW2=xor(WO2,TWB2),…,TWk=xor(WOk,TWBk),…,TWK=xor(WOK,TWBK),其中,TWB1表示第1个第二二值数字水印密钥,TWB2表示第2个第二二值数字水印密钥,TWBk表示第k个第二二值数字水印密钥,TWBK表示第K个第二二值数字水印密钥,xor()为异或运算函数;②-8. Combine K pieces of zero-watermark information WO 1 , WO 2 , ..., WO k , ... and WO K from multiple zero-watermark embedding terminals with K second binary digital watermark keys TWB 1 , TWB 2 respectively , ..., TWB k , ... and TWB K are one-to-one XOR operation, and K binary digital watermarks are recovered, which are respectively recorded as TW 1 , TW 2 , ..., TW k , ... and TW K , TW 1 = xor(WO 1 ,TWB 1 ), TW 2 =xor(WO 2 ,TWB 2 ),…,TW k =xor(WO k ,TWB k ),…,TW K =xor(WO K ,TWB K ), where , TWB 1 represents the first second binary digital watermark key, TWB 2 represents the second second binary digital watermark key, TWB k represents the k-th second binary digital watermark key, TWB K represents the second K second binary digital watermark keys, xor () is an exclusive OR operation function; ②-9、分别对K个二值数字水印TW1、TW2、…、TWk、…和TWK进行反置乱处理,得到具有版权认证信息的K个二值数字水印,分别对应记为
Figure FDA00001628451400071
…和
Figure FDA00001628451400072
②-9. Perform anti-scrambling processing on K binary digital watermarks TW 1 , TW 2 , ..., TW k , ... and TW K respectively, to obtain K binary digital watermarks with copyright authentication information, which are respectively recorded as
Figure FDA00001628451400071
…and
Figure FDA00001628451400072
②-10、将具有版权认证信息的K个二值数字水印
Figure FDA00001628451400073
…和
Figure FDA00001628451400074
分别与多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK一一对应进行相似度计算,对应得到K个归一化相关系数,然后根据K个归一化相关系数的大小判定是否提取出多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK
②-10. K binary digital watermarks with copyright authentication information
Figure FDA00001628451400073
…and
Figure FDA00001628451400074
Carry out similarity calculation in one-to-one correspondence with K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals, and obtain K normalized correlation coefficients correspondingly, and then Determine whether to extract K binary digital watermarks W 1 , W 2 , . . . , W k , .
4.根据权利要求3所述的一种数字图像的多个零水印提取方法,其特征在于所述的步骤②-10的具体过程为:4. a plurality of zero watermark extracting methods of a kind of digital image according to claim 3 is characterized in that the concrete process of described step 2.-10 is: z1、将具有版权认证信息的K个二值数字水印
Figure FDA00001628451400075
…和
Figure FDA00001628451400076
分别与多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK一一对应进行相似度计算,对应得到K个归一化相关系数,对于将与Wk进行相似度计算后得到的第k个归一化相关系数,将其记为 ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 × Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , 其中,wk(ik,jk)表示多个零水印嵌入端嵌入的第k个二值数字水印Wk中坐标位置为(ik,jk)的像素的像素值,
Figure FDA000016284514000710
表示多个零水印嵌入端嵌入的第k个二值数字水印Wk中所有像素的像素值的均值,
Figure FDA000016284514000711
表示具有版权认证信息的第k个二值数字水印
Figure FDA000016284514000712
中坐标位置为(ik,jk)的像素的像素值,
Figure FDA000016284514000713
表示具有版权认证信息的第k个二值数字水印
Figure FDA000016284514000714
中所有像素的像素值的均值;
z1. K binary digital watermarks with copyright authentication information
Figure FDA00001628451400075
…and
Figure FDA00001628451400076
Carry out one-to-one similarity calculation with the K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals, and obtain K normalized correlation coefficients correspondingly. For Will The kth normalized correlation coefficient obtained after similarity calculation with Wk is recorded as ρ ( W k , W k * ) = Σ i k = 1 I k Σ j k = 1 J k ( ( w k ( i k , j k ) - w k ‾ ) × ( w k * ( i k , j k ) - w k * ‾ ) ) Σ i k = 1 I k Σ j k = 1 J k ( w k ( i k , j k ) - w k ‾ ) 2 × Σ i k = 1 I k Σ j k = 1 J k ( w k * ( i k , j k ) - w k * ‾ ) 2 , Among them, w k (i k , j k ) represents the pixel value of the pixel whose coordinate position is (i k , j k ) in the kth binary digital watermark W k embedded by multiple zero-watermark embedding terminals,
Figure FDA000016284514000710
Represents the mean value of the pixel values of all pixels in the kth binary digital watermark W k embedded in multiple zero-watermark embedding terminals,
Figure FDA000016284514000711
Represents the kth binary digital watermark with copyright authentication information
Figure FDA000016284514000712
The pixel value of the pixel whose coordinate position is (i k , j k ),
Figure FDA000016284514000713
Represents the kth binary digital watermark with copyright authentication information
Figure FDA000016284514000714
The mean of the pixel values of all pixels in ;
z2、根据K个归一化相关系数的大小判定是否提取出多个零水印嵌入端嵌入的K个二值数字水印W1、W2、…、Wk、…和WK,对于归一化相关系数
Figure FDA000016284514000715
如果
Figure FDA000016284514000716
的值为1,则确定Wk被无损地提取出,如果
Figure FDA000016284514000717
的值大于或等于δT并小于1,则确定Wk提取成功,如果
Figure FDA000016284514000718
的值小于δT,则确定Wk提取失败,其中,δT表示水印提取门限。
z2. Determine whether to extract K binary digital watermarks W 1 , W 2 , ..., W k , ... and W K embedded in multiple zero-watermark embedding terminals according to the size of the K normalized correlation coefficients. correlation coefficient
Figure FDA000016284514000715
if
Figure FDA000016284514000716
A value of 1 determines that W k is extracted losslessly, if
Figure FDA000016284514000717
The value of is greater than or equal to δ T and less than 1, then it is determined that the extraction of W k is successful, if
Figure FDA000016284514000718
If the value of is less than δ T , it is determined that W k extraction fails, where δ T represents the watermark extraction threshold.
CN201210144040.4A 2012-05-11 2012-05-11 Method for embedding and extracting multiple zero watermarks of digital image Expired - Fee Related CN102682418B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210144040.4A CN102682418B (en) 2012-05-11 2012-05-11 Method for embedding and extracting multiple zero watermarks of digital image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210144040.4A CN102682418B (en) 2012-05-11 2012-05-11 Method for embedding and extracting multiple zero watermarks of digital image

Publications (2)

Publication Number Publication Date
CN102682418A true CN102682418A (en) 2012-09-19
CN102682418B CN102682418B (en) 2014-06-25

Family

ID=46814289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210144040.4A Expired - Fee Related CN102682418B (en) 2012-05-11 2012-05-11 Method for embedding and extracting multiple zero watermarks of digital image

Country Status (1)

Country Link
CN (1) CN102682418B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198446A (en) * 2013-04-02 2013-07-10 宁波大学 Digital watermark embedding and extracting method for digital image error concealment
CN105263024A (en) * 2015-10-15 2016-01-20 宁波大学 Anti-quantitative-transcoding HEVC video stream zero-watermark registering and detecting method
CN106708449A (en) * 2016-12-31 2017-05-24 金航数码科技有限责任公司 Anti copy method based on negative color image watermark in monochrome printing
CN107742272A (en) * 2017-10-17 2018-02-27 大连理工大学 A semi-fragile watermarking method based on image tampering location and recovery
CN108648130A (en) * 2018-04-04 2018-10-12 宁波大学 A kind of total blindness's digital watermark method with copyright protection and tampering location function
CN108880805A (en) * 2018-07-18 2018-11-23 北京理工大学 Netkey distribution method, device and system based on compression measurement fluctuation
CN110570342A (en) * 2019-07-01 2019-12-13 齐鲁工业大学 Color medical image zero watermark construction method, system and detection method, system
CN114359012A (en) * 2022-03-21 2022-04-15 中国民航大学 A Robust Combinatorial Domain Color Image Zero-Watermark Embedding and Extraction Method
CN115866271A (en) * 2023-01-18 2023-03-28 北京锐马视讯科技有限公司 Watermark multiplexing embedding method, system, equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866478A (en) * 2010-06-22 2010-10-20 北京大学 A Watermark Embedding and Extraction Method in Digital Image
CN101908201A (en) * 2010-06-28 2010-12-08 宁波大学 A Robust Adaptive Zero-Watermarking Method for Digital Images

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866478A (en) * 2010-06-22 2010-10-20 北京大学 A Watermark Embedding and Extraction Method in Digital Image
CN101908201A (en) * 2010-06-28 2010-12-08 宁波大学 A Robust Adaptive Zero-Watermarking Method for Digital Images

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周亚训,叶庆卫,徐铁峰: "基于小波和余弦变换组合的图像水印方案", 《电子学报》 *
周亚训,金炜: "一种小波和余弦变换组合域内鲁棒的自适应零水印算法", 《光电工程》 *
李京兵,黄席樾,周亚训: "一种鲁棒的二值文本图像数字水印算法及仿真", 《计算机工程》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198446B (en) * 2013-04-02 2016-04-20 宁波大学 A kind of digital watermark embedding for digital picture error concealing and extracting method
CN103198446A (en) * 2013-04-02 2013-07-10 宁波大学 Digital watermark embedding and extracting method for digital image error concealment
CN105263024A (en) * 2015-10-15 2016-01-20 宁波大学 Anti-quantitative-transcoding HEVC video stream zero-watermark registering and detecting method
CN105263024B (en) * 2015-10-15 2018-06-29 宁波大学 A kind of registration of HEVC video flowing zero watermarkings of anti-quantization transcoding and detection method
CN106708449A (en) * 2016-12-31 2017-05-24 金航数码科技有限责任公司 Anti copy method based on negative color image watermark in monochrome printing
CN106708449B (en) * 2016-12-31 2019-12-17 金航数码科技有限责任公司 negative color image watermark-based anti-copying method in monochrome printing
CN107742272B (en) * 2017-10-17 2021-01-08 大连理工大学 A semi-fragile watermarking method based on image tampering location and recovery
CN107742272A (en) * 2017-10-17 2018-02-27 大连理工大学 A semi-fragile watermarking method based on image tampering location and recovery
CN108648130A (en) * 2018-04-04 2018-10-12 宁波大学 A kind of total blindness's digital watermark method with copyright protection and tampering location function
CN108880805A (en) * 2018-07-18 2018-11-23 北京理工大学 Netkey distribution method, device and system based on compression measurement fluctuation
CN108880805B (en) * 2018-07-18 2020-06-30 北京理工大学 Network key distribution method, device and system based on compression measurement fluctuation
CN110570342A (en) * 2019-07-01 2019-12-13 齐鲁工业大学 Color medical image zero watermark construction method, system and detection method, system
CN110570342B (en) * 2019-07-01 2023-06-13 齐鲁工业大学 Color medical image zero watermark construction method and system and color medical image zero watermark detection method and system
CN114359012A (en) * 2022-03-21 2022-04-15 中国民航大学 A Robust Combinatorial Domain Color Image Zero-Watermark Embedding and Extraction Method
CN114359012B (en) * 2022-03-21 2022-06-14 中国民航大学 Robust combined domain color image zero watermark embedding and extracting method
CN115866271A (en) * 2023-01-18 2023-03-28 北京锐马视讯科技有限公司 Watermark multiplexing embedding method, system, equipment and storage medium
CN115866271B (en) * 2023-01-18 2023-05-02 北京锐马视讯科技有限公司 Watermark multiplexing embedding method, system, equipment and storage medium

Also Published As

Publication number Publication date
CN102682418B (en) 2014-06-25

Similar Documents

Publication Publication Date Title
CN102682418B (en) Method for embedding and extracting multiple zero watermarks of digital image
Mahto et al. A survey of color image watermarking: State-of-the-art and research directions
CN101908201B (en) Robust digital image adaptive zero-watermarking method
Keshavarzian et al. ROI based robust and secure image watermarking using DWT and Arnold map
Rajput et al. Image tamper detection and self-recovery using multiple median watermarking
CN104616244A (en) Image watermark embedding and extracting method based on back propagation (BP) neural network compressed domain
CN109727179B (en) Zero watermark generation method and system and zero watermark extraction method and system
CN101833745B (en) Method for detecting embedding and extracting of multiple binary embedded watermarks of digital image
Singh et al. Transform domain techniques for image steganography
Kannan et al. An extensive research on robust digital image watermarking techniques: A review
CN104217390B (en) A kind of Zero watermarking method, device and watermark extracting method, device
Thomas et al. Contourlet and Gould Transforms for Hybrid Image Watermarking in RGB Color Images.
Islam et al. SVM regression based robust image watermarking technique in joint DWT-DCT domain
CN116523727B (en) Robust watermark algorithm based on SIFT and image segmentation
Kekre et al. Robust Watermarking Technique using Hybrid Wavelet Transform Generated from Kekre Transform and Discrete Cosine Transform
Wang et al. Review on digital image watermarking based on singular value decomposition
Moniruzzaman et al. Robust RGB color image watermarking scheme based on DWT-SVD and chaotic system
Su An Overview of transparent and robust digital image watermarking
CN102708535A (en) Zero-watermark insertion and extraction methods with multiple keys for digital images
Taherinia et al. A robust spread spectrum watermarking method using two levels DCT
Duan et al. A novel non-redundant contourlet transform for robust image watermarking against non-geometrical and geometrical attacks
Jun et al. An improved watermarking detect algorithm for color image in spatial domain
Hubballi et al. Novel DCT based watermarking scheme for digital images
Sadek Blind synthesis attack on SVD based watermarking techniques
Abraham et al. Watermarking grayscale images using text for copyright protection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

Termination date: 20170511

CF01 Termination of patent right due to non-payment of annual fee