CN102680165B - Acting force measuring device for pile streaming test - Google Patents
Acting force measuring device for pile streaming test Download PDFInfo
- Publication number
- CN102680165B CN102680165B CN 201210160094 CN201210160094A CN102680165B CN 102680165 B CN102680165 B CN 102680165B CN 201210160094 CN201210160094 CN 201210160094 CN 201210160094 A CN201210160094 A CN 201210160094A CN 102680165 B CN102680165 B CN 102680165B
- Authority
- CN
- China
- Prior art keywords
- tension
- bearing
- compression sensor
- fixedly connected
- pile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明公开了一种用于桩柱绕流试验的作用力测量装置,主要包括支架、桩柱、转动机构、三个限位机构、三个拉压传感器。其中,第一限位机构用于使第一拉压传感器的上连接处和下连接处位于同一液流流向平面内,第一拉压传感器的上连接处和下连接处的连线为竖直线。第二限位机构用于使第二拉压传感器的第一连接处和第二连接处均位于所述液流流向平面内,第二拉压传感器的第一连接处和第二连接处的连线为水平线。第三限位机构用于使第三拉压传感器在工作过程中只受到第三拉压传感器的第一连接处和第二连接处的连线方向的作用力。本发明可用于对竖直或斜置的、突出液面的桩柱,在水平或斜向来流下,测量桩柱绕流阻力与沿桩柱轴向的作用力。
The invention discloses an action force measuring device used for a pile circumvention test, which mainly includes a bracket, a pile, a rotating mechanism, three limit mechanisms, and three tension and pressure sensors. Wherein, the first limit mechanism is used to make the upper connection and the lower connection of the first tension-compression sensor be located in the same liquid flow plane, and the connection line between the upper connection and the lower connection of the first tension-compression sensor is vertical Wire. The second limit mechanism is used to make the first connection point and the second connection point of the second tension-pressure sensor be located in the liquid flow direction plane, and the connection between the first connection point and the second connection point of the second tension-pressure sensor The line is horizontal. The third limit mechanism is used to make the third tension-compression sensor only receive force in the direction of the line connecting the first connection point and the second connection point of the third tension-compression sensor during the working process. The invention can be used to measure the flow resistance around the pile and the force along the axial direction of the pile that is vertical or oblique and protruding from the liquid surface under horizontal or oblique flow.
Description
技术领域 technical field
本发明涉及一种用于突出液面的桩柱绕流试验的作用力测量装置。 The invention relates to an active force measuring device used for the flow test of piles protruding from the liquid surface.
背景技术 Background technique
当液流如水流正交地绕过突出液面的各种闸墩和桩柱等物体时,物体将受到沿流动方向的绕流阻力和垂直于流动方向的横向升力作用。当桩柱倾斜时或液流与桩柱斜交时,作用在桩柱上的作用力表现为:沿流动方向的作用力、垂直于桩柱轴向与来流方向的横向力与沿桩柱轴向的作用力。据此可分解为桩柱绕流作用力:沿流动方向且垂直于桩柱的绕流阻力、垂直于来流方向和桩柱轴向的横向升力以及沿桩柱轴向的力。由于桩柱绕流特性复杂,目前还很难从理论上直接计算求解。桩柱绕流的研究大多仍借助于数值模拟和物理模型试验,其中斜置桩柱或液流与桩柱斜交时桩柱受到的绕流阻力、升力与轴向力的精确测量,对于突出液面的桩柱绕流物理模型试验研究尤为重要。 When liquid flow, such as water flow, bypasses objects such as various piers and piles protruding from the liquid surface orthogonally, the object will be subjected to flow resistance along the flow direction and lateral lift perpendicular to the flow direction. When the pile is inclined or when the liquid flow is oblique to the pile, the force acting on the pile is as follows: the force along the flow direction, the transverse force perpendicular to the axial direction of the pile and the flow direction, and the force along the direction of the pile axial force. According to this, it can be decomposed into the flow force around the pile: the flow resistance along the flow direction and perpendicular to the pile, the lateral lift perpendicular to the flow direction and the axial direction of the pile, and the force along the axial direction of the pile. Due to the complex characteristics of the flow around the pile, it is difficult to directly calculate and solve it theoretically. Most of the research on the flow around piles still relies on numerical simulation and physical model tests. Among them, the accurate measurement of the flow resistance, lift force and axial force on the piles when the piles are inclined or the liquid flow obliquely intersects the piles is very important for the outstanding The physical model test research on the pile flow around the liquid surface is particularly important.
在测量突出液面的桩柱绕流作用力时,需要保证测量装置不能干扰流体流动。目前已有的突出液面的竖直桩柱绕流试验的作用力测量装置主要有三种:第一种是将桩柱顶端与浮体相连,利用浮体的浮力使桩柱与渠底留有小间隙,并在桩柱上安装一传力刚架,将绕流作用力传递给测力设备,由测力设备测出该力的大小。该装置中的浮体在非均匀流和非恒定流条件下易出现波动,对试验条件要求较苛刻,且只能测得竖直桩柱水平方向上的绕流阻力,而无法测得斜交流体作用在桩柱上的竖直方向上的作用力及非恒定流体流动的绕流作用力。第二种是在渠底留有一段槽沟,将桩柱安装构件置于槽沟中,桩柱安装面板与槽底齐平,将桩柱安装在面板上,液流对桩柱的冲击作用力通过液面以上的传力刚架构件传递给置于整个构架前面或后面的测力设备。该装置需要槽底预留槽沟,面板运行时槽底存在摩擦阻力,且摩擦力的大小随不同流量和水深的变化而变化,摩擦力的影响难以量化。该装置同样无法测量桩柱受到的竖直方向上的作用力及非恒定流体流动的绕流作用力。第三种是在待测桩柱迎流侧和背流侧对称地各安装一个压力传感器,以测量竖直桩柱受到的沿流动方向的绕流阻力,在竖直桩柱顶端安装一个拉压传感器,以测量液流流向平面内斜交流体作用在桩柱上的竖直方向上的作用力。传感器测得的作用力信号经放大器放大后输入记录仪,通过记录仪可以得到桩柱受到的液流流向平面内水平和竖直方向上液流作用力的动态变化过程。这个装置可用于测量突出液面的竖直桩柱在水平来流或与桩柱斜向相交的液流及非恒定液流的绕流作用力。而且,上述三种测量装置均不能用于斜置桩柱在水平或斜向来流下桩柱绕流阻力与桩柱轴向作用力的测量。 When measuring the flow force around a pile protruding from the liquid surface, it is necessary to ensure that the measuring device cannot interfere with the fluid flow. At present, there are mainly three kinds of force measuring devices for the flow test of vertical piles protruding from the liquid surface: the first one is to connect the top of the pile with a floating body, and use the buoyancy of the floating body to leave a small gap between the pile and the bottom of the channel , and a force-transmitting rigid frame is installed on the pile to transmit the force of the flow around to the force-measuring equipment, and the force-measuring equipment measures the magnitude of the force. The floating body in this device tends to fluctuate under the condition of non-uniform flow and non-steady flow, and the test conditions are relatively strict, and only the flow resistance in the horizontal direction of the vertical pile can be measured, but the oblique flow resistance cannot be measured. The vertical force acting on the pile and the flow force of the unsteady fluid flow. The second is to leave a section of groove at the bottom of the canal, place the pile installation component in the groove, the pile installation panel is flush with the bottom of the groove, install the pile on the panel, the impact of the liquid flow on the pile The force is transmitted to the force-measuring equipment placed in front or behind the entire frame through the force-transmitting frame members above the liquid level. The device needs to reserve a groove at the bottom of the tank. There is friction resistance at the bottom of the tank when the panel is running, and the magnitude of the friction force changes with different flow rates and water depths. The impact of the friction force is difficult to quantify. The device is also unable to measure the vertical force on the pile and the flow around the unsteady fluid flow. The third is to install a pressure sensor symmetrically on the upstream and downstream sides of the pile to be tested to measure the flow resistance of the vertical pile along the flow direction, and install a tension-compression sensor on the top of the vertical pile. The sensor is used to measure the force in the vertical direction of the inclined fluid acting on the pile in the flow direction of the plane. The force signal measured by the sensor is amplified by the amplifier and then input to the recorder. Through the recorder, the dynamic change process of the force of the pile in the horizontal and vertical directions of the liquid flow in the plane can be obtained. This device can be used to measure the flow force of the vertical pile protruding from the liquid surface in the horizontal flow or the liquid flow obliquely intersecting the pile and the unsteady flow. Moreover, none of the above-mentioned three measuring devices can be used to measure the flow resistance and the axial force of the pile when the inclined pile flows down the pile in a horizontal or oblique direction.
然而,对于溢流坝坝面设置分流墩时水流对分流墩的作用、斜坡河渠中水流对水工建筑物的作用及城市积水斜坡和台阶上的柱体或行人受到的作用力等问题,柱体(或其它被绕流物体)并非竖直而是处于斜置状态,且在上述情况下,液流往往是非恒定流,目前已有的测量装置针对斜置柱体(或其它被绕流物体)在水平或斜向来流下的液流绕流的试验的作用力测量受到了限制。 However, for problems such as the effect of water flow on the diversion pier when the diversion pier is set on the overflow dam surface, the effect of the water flow on the hydraulic structure in the slope channel, and the force on the columns or pedestrians on the urban water-logged slope and steps, etc., The cylinder (or other object to be flowed) is not vertical but in an oblique state, and in the above cases, the liquid flow is often an unsteady flow. Object) in the horizontal or oblique to flow around the test force measurement is limited.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种用于桩柱绕流试验的作用力测量装置,该装置可用于对竖直或斜置的、突出液面的桩柱,在水平或斜向来流下,测量桩柱绕流阻力与沿桩柱轴向的作用力。 The technical problem to be solved by the present invention is to provide a force measuring device for the pile flow test, which can be used for vertical or oblique piles protruding from the liquid surface, flowing in the horizontal or oblique direction, Measure the flow resistance around the pile and the force along the axial direction of the pile.
本发明解决其技术问题所采取的技术手段是:该装置包括支架、桩柱、转动机构、第一限位机构、第二限位机构、第三限位机构、第一拉压传感器、第二拉压传感器和第三拉压传感器;所述转动机构包括第一连接轴、第一轴承、第一轴承支座、第二轴承和第二轴承支座,桩柱与第一连接轴固定连接,第一连接轴水平设置且垂直于液流流向平面,第一轴承支座和第二轴承支座对称地分置于桩柱的两侧,第一轴承、第二轴承分别对应地安装于第一轴承支座和第二轴承支座内,第一连接轴分别穿过第一轴承和第二轴承;所述第一限位机构与支架固定连接,第一拉压传感器的上连接处与第一限位机构固定连接,第一拉压传感器的下连接处通过第一连接杆分别与第一轴承支座和第二轴承支座固定连接,所述第一限位机构用于使第一拉压传感器的上连接处和第一拉压传感器的下连接处位于同一个液流流向平面内,第一拉压传感器的上连接处和第一拉压传感器的下连接处的连线为竖直线;所述第二限位机构与支架固定连接,第二拉压传感器的第一连接处与第二限位机构固定连接,第二拉压传感器的第二连接处通过第二连接杆分别与第一轴承支座和第二轴承支座固定连接,所述第二限位机构用于使第二拉压传感器的第一连接处和第二拉压传感器的第二连接处均位于所述液流流向平面内,第二拉压传感器的第一连接处和第二拉压传感器的第二连接处的连线为水平线;第三限位机构与支架固定连接,所述第三拉压传感器的第一连接处和第三拉压传感器的第二连接处两端分别对应地与第三限位机构和桩柱固定连接,其中第三拉压传感器的第二连接处位于第一连接轴的上方,且第三拉压传感器的第一连接处和第三拉压传感器的第二连接处的连线相对于水平面的倾斜角度与桩柱相对于水平面的倾斜角度的和为90°,所述第三限位机构用于使第三拉压传感器在工作过程中只受到第三拉压传感器的第一连接处和第三拉压传感器的第二连接处的连线方向的作用力。 The technical means adopted by the present invention to solve the technical problems are: the device includes a bracket, a pile, a rotating mechanism, a first limiting mechanism, a second limiting mechanism, a third limiting mechanism, a first tension and pressure sensor, a second A tension-pressure sensor and a third tension-pressure sensor; the rotating mechanism includes a first connecting shaft, a first bearing, a first bearing support, a second bearing and a second bearing support, and the pile is fixedly connected to the first connecting shaft, The first connecting shaft is arranged horizontally and perpendicular to the plane of the liquid flow. The first bearing support and the second bearing support are symmetrically arranged on both sides of the pile. The first bearing and the second bearing are respectively installed on the first In the bearing support and the second bearing support, the first connecting shaft passes through the first bearing and the second bearing respectively; the first limit mechanism is fixedly connected with the bracket, and the upper connection of the first tension and pressure sensor is connected with the first The limit mechanism is fixedly connected, and the lower connection of the first tension-compression sensor is fixedly connected with the first bearing support and the second bearing support respectively through the first connecting rod, and the first limit mechanism is used to make the first tension-compression sensor The upper connection of the sensor and the lower connection of the first tension-pressure sensor are located in the same liquid flow plane, and the connection line between the upper connection of the first tension-pressure sensor and the lower connection of the first tension-pressure sensor is a vertical line The second limit mechanism is fixedly connected to the bracket, the first connection of the second tension-compression sensor is fixedly connected to the second limit mechanism, and the second connection of the second tension-compression sensor is respectively connected to the first connection rod through the second connecting rod. A bearing support and a second bearing support are fixedly connected, and the second limit mechanism is used to make the first connection of the second tension-pressure sensor and the second connection of the second tension-pressure sensor both be located in the liquid flow In the flow plane, the connecting line between the first connection of the second tension-compression sensor and the second connection of the second tension-compression sensor is a horizontal line; the third limit mechanism is fixedly connected to the bracket, and the first connection of the third tension-compression sensor The two ends of the first connection and the second connection of the third tension-compression sensor are respectively fixedly connected with the third limit mechanism and the pile, wherein the second connection of the third tension-compression sensor is located above the first connection shaft, And the sum of the inclination angle of the first connection of the third tension-pressure sensor and the second connection of the third tension-pressure sensor relative to the horizontal plane and the inclination angle of the pile relative to the horizontal plane is 90°, the third The limit mechanism is used to make the third tension-compression sensor only receive force in the direction of the line connecting the first connection of the third tension-compression sensor and the second connection of the third tension-compression sensor during operation.
进一步地,本发明所述的第一限位机构可由第三轴承、第三轴承支座和第三连接轴组成,第三轴承安装于第三轴承支座内,第一拉压传感器的上连接处与第三轴承支座固定连接,第三连接轴穿过第三轴承且第三连接轴与支架固定连接;此外,本发明所述的第一限位机构还可由第二滑块和第二导轨组成,第二滑块和第一拉压传感器的上连接处固定连接,第二导轨与支架固定连接,第二滑块能够沿着第二导轨往复滑动。 Further, the first limit mechanism of the present invention can be composed of a third bearing, a third bearing support and a third connecting shaft, the third bearing is installed in the third bearing support, and the upper connection of the first tension-pressure sensor It is fixedly connected with the third bearing support, the third connecting shaft passes through the third bearing and the third connecting shaft is fixedly connected with the bracket; in addition, the first limiting mechanism of the present invention can also be composed of the second slider and the second Composed of guide rails, the second slider is fixedly connected to the upper joint of the first tension-compression sensor, the second guide rail is fixedly connected to the bracket, and the second slider can slide reciprocally along the second guide rail.
进一步地,本发明所述的第二限位机构可由第四轴承、第四轴承支座和第四连接轴组成,第二拉压传感器的第一连接处与第四轴承支座固定连接,第四轴承安装于第四轴承支座内,第四连接轴穿过第四轴承且第四连接轴与支架固定连接;此外,本发明所述的第二限位机构还可由第三滑块和第三导轨组成,第三滑块和第二拉压传感器的第一连接处固定连接,第三导轨与支架固定连接,第三滑块能够沿着第三导轨往复滑动。 Further, the second limit mechanism of the present invention can be composed of a fourth bearing, a fourth bearing support and a fourth connecting shaft, the first connection of the second tension and pressure sensor is fixedly connected with the fourth bearing support, and the second The four bearings are installed in the fourth bearing support, the fourth connecting shaft passes through the fourth bearing and the fourth connecting shaft is fixedly connected with the bracket; in addition, the second limiting mechanism of the present invention can also be composed of the third slider and the first Composed of three guide rails, the third slider is fixedly connected to the first joint of the second tension-compression sensor, the third guide rail is fixedly connected to the bracket, and the third slider can slide reciprocally along the third guide rail.
进一步地,本发明所述的第三限位机构可由第五轴承、第五轴承支座、第五连接轴、第六轴承、第六轴承支座、第五连接轴和第六连接轴组成,第五轴承安装于第五轴承支座内,第六轴承安装于第六轴承支座内,第五连接轴穿过第五轴承,第六连接轴穿过第六轴承,第五轴承支座和第六轴承支座通过第三连杆固定连接,第六连接轴与支架固定连接,第五连接轴通过第四连杆与第三拉压传感器的第一连接处固定连接;此外,本发明所述的第三限位机构还可由第四滑块和第四导轨组成,第四滑块和第三拉压传感器的第一连接处固定连接,第四导轨与支架固定连接,第四滑块能够沿着第四导轨往复滑动。 Further, the third limiting mechanism of the present invention may be composed of a fifth bearing, a fifth bearing support, a fifth connecting shaft, a sixth bearing, a sixth bearing support, a fifth connecting shaft and a sixth connecting shaft, The fifth bearing is installed in the fifth bearing support, the sixth bearing is installed in the sixth bearing support, the fifth connecting shaft passes through the fifth bearing, the sixth connecting shaft passes through the sixth bearing, the fifth bearing support and The sixth bearing support is fixedly connected through the third connecting rod, the sixth connecting shaft is fixedly connected with the bracket, and the fifth connecting shaft is fixedly connected with the first connection of the third tension-compression sensor through the fourth connecting rod; in addition, the present invention The third limit mechanism described above can also be composed of a fourth slide block and a fourth guide rail, the fourth slide block is fixedly connected to the first joint of the third tension-compression sensor, the fourth guide rail is fixedly connected to the bracket, and the fourth slide block can Slide back and forth along the fourth guide rail.
进一步地,本发明所述支架还包括半圆形滑动导轨和第一滑块,第一滑块能够沿半圆形滑动导轨往复滑动,第三限位机构与第一滑块固定连接,第一滑块与半圆形滑动导轨通过螺丝固定连接。 Further, the bracket of the present invention also includes a semicircular sliding guide rail and a first slider, the first slider can slide reciprocally along the semicircular sliding guide rail, the third limit mechanism is fixedly connected with the first slider, and the first The slide block is fixedly connected with the semicircular sliding guide rail by screws.
进一步地,本发明还包括显示器,所述显示器的输入端分别与所述第一拉压传感器、第二拉压传感器和第三拉压传感器的输出端电连接。 Further, the present invention also includes a display, and the input terminals of the display are respectively electrically connected to the output terminals of the first tension-compression sensor, the second tension-compression sensor and the third tension-compression sensor.
进一步地,本发明所述第二拉压传感器处于桩柱的迎流一侧,第三拉压传感器处于桩柱的背流一侧。 Further, in the present invention, the second tension-compression sensor is located on the upstream side of the pile, and the third tension-compression sensor is located on the downstream side of the pile.
与现有桩柱绕流试验的作用力测量装置相比,本发明具有以下有益效果: Compared with the force measuring device of the existing pile flow test, the present invention has the following beneficial effects:
(1)本发明装置利用限位机构和转动结构使各拉压传感器只受到拉压传感器的两个连接处的连线方向的作用力,可保证测量结果的精度和测量过程的稳定性; (1) The device of the present invention uses a limit mechanism and a rotating structure to make each tension-compression sensor only receive the force in the direction of the connection between the two joints of the tension-compression sensor, which can ensure the accuracy of the measurement result and the stability of the measurement process;
(2)本发明装置在绕流试验中,竖直或斜置桩柱所受到的液流作用力在三个不共线的方向上的分力分别由三个拉压传感器来测量,由此本发明装置可适用于竖直或斜置桩柱液流绕流试验的作用力测量; (2) In the flow test of the device of the present invention, the component forces of the liquid flow force on the vertical or oblique piles in three non-collinear directions are measured by three tension and pressure sensors respectively, thus The device of the present invention is applicable to the force measurement of the vertical or oblique pile liquid flow circumvention test;
(3)进一步地,本发明装置通过调整第一滑块与半圆形滑动导轨的相对位置,并通过第一滑块上的螺丝固定,可调整待测桩柱的倾斜角度,可用于不同倾斜角的桩柱绕流试验的绕流作用力测量; (3) Further, the device of the present invention can adjust the inclination angle of the pile to be tested by adjusting the relative position of the first slider and the semicircular sliding guide rail, and fixing it with the screw on the first slider, and can be used for different inclinations The measurement of the flow force of the angled pile flow test;
(4)本发明装置加工制作简单,造价低廉,安装方便。 (4) The device of the present invention is simple to manufacture, low in cost and easy to install.
附图说明 Description of drawings
图1为本发明装置的第一种实施方式的使用状态示意图; Fig. 1 is the schematic view of the use state of the first embodiment of the device of the present invention;
图2为图1的俯视图; Fig. 2 is the top view of Fig. 1;
图3为图1的左视图; Fig. 3 is the left view of Fig. 1;
图4为本发明装置的第二种实施方式的使用状态示意图; Fig. 4 is a schematic diagram of the use state of the second embodiment of the device of the present invention;
图5为图4的俯视图; Figure 5 is a top view of Figure 4;
图6为图4的左视图; Fig. 6 is the left view of Fig. 4;
图7为第三拉压传感器与桩柱的连接关系图; Fig. 7 is the connection diagram of the third tension and pressure sensor and pile;
图中,1.支架、2.桩柱、3.转动机构、4.第一限位机构、5.第二限位机构、6.第三限位机构、7.第一拉压传感器、8.第二拉压传感器、9.第三拉压传感器、10.第一连接轴、11.第一轴承、12.第一轴承支座、13.第二轴承支座、14.第二轴承、16.第四连接轴、17.第四轴承、18.第四轴承支座、19.第五连接轴、20.第五轴承、21.第五轴承支座、22.第六连接轴、23.第六轴承、24.第六轴承支座、25.第三连接轴、26.第三轴承、27.第三轴承支座、28.第一连接杆、29.第二连接杆、30.半圆形滑动导轨、31.螺丝、32.第一滑块、33.导线、35.显示器、36.渠底、37.第二导轨、38.第二滑块、39.第三滑块、40.第三导轨、41.第四滑块、42.第四导轨、43.第三连接杆、44.第四连接杆。 In the figure, 1. bracket, 2. pile, 3. rotating mechanism, 4. first limit mechanism, 5. second limit mechanism, 6. third limit mechanism, 7. first tension and pressure sensor, 8 .The second tension and pressure sensor, 9. The third tension and pressure sensor, 10. The first connecting shaft, 11. The first bearing, 12. The first bearing support, 13. The second bearing support, 14. The second bearing, 16. The fourth connecting shaft, 17. The fourth bearing, 18. The fourth bearing support, 19. The fifth connecting shaft, 20. The fifth bearing, 21. The fifth bearing support, 22. The sixth connecting shaft, 23 .The sixth bearing, 24. The sixth bearing support, 25. The third connecting shaft, 26. The third bearing, 27. The third bearing support, 28. The first connecting rod, 29. The second connecting rod, 30. Semicircular sliding guide rail, 31. screw, 32. first slider, 33. wire, 35. display, 36. canal bottom, 37. second guide rail, 38. second slider, 39. third slider, 40. The third guide rail, 41. The fourth slide block, 42. The fourth guide rail, 43. The third connecting rod, 44. The fourth connecting rod.
具体实施方式:Detailed ways:
如图1至图6所示,本发明作用力测量装置主要包括支架1、桩柱2、转动机构3、第一限位机构4、第二限位机构5、第三限位机构6、第一拉压传感器7、第二拉压传感器8和第三拉压传感器9。进一步地,还可包括显示器35。在桩柱绕流试验中,所用桩柱2通常为长条形柱体。其中,转动机构3包括第一连接轴10、第一轴承11、第一轴承支座12、第二轴承14和第二轴承支座13。桩柱2与第一连接轴10固定连接,第一连接轴10水平设置且垂直于液流流向平面,需要说明的是,在本发明中,液流流向平面是指桩柱2置于试验液流中之前,试验液流的流动方向(即液流流向)所在的平面。第一轴承支座12和第二轴承支座13对称地分置于桩柱2的两侧,第一轴承11安装于第一轴承支座12内,第二轴承14安装于第二轴承支座13内,第一连接轴10同时穿过第一轴承11和第二轴承14。需要说明的是,在本发明中,拉压传感器的连接处是指拉压传感器上的与其他部件进行连接时的交接处(或者称为 “连接点”)。其中,第一拉压传感器7的上连接处与第一限位机构4固定连接,第一拉压传感器7的下连接处通过第一连接杆28分别与第一轴承支座12和第二轴承支座13固定连接,且第一限位机构4与支架1固定连接。由此,第一限位机构4使得第一拉压传感器7的上连接端连接处和第一拉压传感器7的下连接处位于同一个液流流向平面内,且第一拉压传感器7的上连接处和第一拉压传感器7的下连接处的连线为竖直线。第二限位机构5与支架1固定连接,第二拉压传感器8的第一连接处与第二限位机构5固定连接,且第二拉压传感器8的第二连接处通过第二连接杆29分别与第一轴承支座12和第二轴承支座13固定连接。由此,第二限位机构5使得第二拉压传感器8的第一连接处和第二拉压传感器8的第二连接处均位于所述液流流向平面内,且第二拉压传感器8的第一连接处和第二拉压传感器8的第二连接处的连线为水平线。在本发明中,支架1、转动机构3、第一限位机构4、第二限位机构5、第一连接杆28和第二连接杆29共同作用,从而避免桩柱2在流向平面内平动,而使桩柱2能够在流向平面内绕第一连接轴10转动。第三限位机构6与支架1固定连接,第三拉压传感器9的第一连接处与第三限位机构6固定连接,第三拉压传感器9的第二连接处与桩柱2固定连接,其中第三拉压传感器9的与桩柱2连接的第二连接处位于第一连接轴10的上方。第三限位机构6能够使第三拉压传感器9在工作过程中只受到第三拉压传感器9的第一连接处和第三拉压传感器9的第二连接处的连线方向的作用力。如图7所示,第三拉压传感器9的第一连接处A和第三拉压传感器9的第二连接处B的连线相对于水平面的倾斜角度为β,桩柱2相对于水平面的倾斜角度为α,且α+β=90°,由此,使得本发明装置在工作过程中,桩柱2传递给第三拉压传感器9的作用力的作用线与第三拉压传感器9的第一连接处A和第三拉压传感器9的第二连接处B的连线重合,从而通过支架1和第三限位机构6的共同作用避免桩柱2在流向平面内绕第一连接轴10转动。第一拉压传感器7、第二拉压传感器8和第三拉压传感器9可选用S型拉压传感器。
As shown in Figures 1 to 6, the force measuring device of the present invention mainly includes a
图1、图2和图3是本发明装置的第一种实施方式的使用状态示意图。第一限位机构4由第三轴承26、第三轴承支座27和第三连接轴25组成。其中,第三轴承26安装于第三轴承支座内27,第一拉压传感器7的上连接处与第三轴承支座27固定连接,第三连接轴25穿过第三轴承26且第三连接轴25与支架1固定连接。第二限位机构5由第四轴承17、第四轴承支座18和第四连接轴16组成。其中,第二拉压传感器8的第一连接处与第四轴承支座18固定连接,第四轴承17安装于第四轴承支座18内,第四连接轴16穿过第四轴承17且第四连接轴16与支架1固定连接。第三限位机构6由第五轴承20、第五轴承支座21、第五连接轴19、第六轴承23、第六轴承支座24和第六连接轴22组成。第五轴承20安装于第五轴承支座21内,第六轴承23安装于第六轴承支座24内,第五连接轴19穿过第五轴承20,第六连接轴22穿过第六轴承23,第五轴承支座21和第六轴承支座24通过第三连杆43固定连接,第六连接轴22与支架1固定连接,第五连接轴19通过第四连杆44与第三拉压传感器9的第一连接处固定连接。
Fig. 1, Fig. 2 and Fig. 3 are schematic views of the use state of the first embodiment of the device of the present invention. The first limiting
图4、图5和图6是本发明装置的第二种实施方式的使用状态示意图。其中,第一限位机构4由第二滑块38和第二导轨37组成,第二滑块38和第一拉压传感器7的上连接处固定连接,第二导轨37与支架1固定连接,第二滑块38能够沿着第二导轨37来回往复滑动。第二限位机构5由第三滑块39和第三导轨40组成,第三滑块39和第二拉压传感器8的第一连接处固定连接,第三导轨40与支架1固定连接,第三滑块39能够沿着第三导轨40来回往复滑动。第三限位机构6由第四滑块41和第四导轨42组成,第四滑块41和第三拉压传感器9的第一连接处固定连接,第四导轨42与支架1固定连接,第四滑块41能够沿着第四导轨42来回往复滑动。
Fig. 4, Fig. 5 and Fig. 6 are schematic views of the use state of the second embodiment of the device of the present invention. Wherein, the
如图1至图6所示,作为本发明的优选实施方式,支架1还可包括半圆形滑动导轨30、第一滑块32和螺丝31,其中,第一滑块32能够沿半圆形滑动导轨30往复滑动,第一滑块32与半圆形滑动导轨30通过螺丝31固定连接,第三限位机构6与第一滑块32固定连接。由此,通过沿半圆滑动导轨30移动第一滑块32可调节桩柱2的倾斜角度α,利用螺丝31则能够将第一滑块32固定在半圆滑动导轨30上。
As shown in Figures 1 to 6, as a preferred embodiment of the present invention, the
本发明工作时,第二拉压传感器8处于桩柱2的迎流一侧,第三拉压传感器9处于桩柱2的背流一侧,通过测量桩柱2在来流流向平面内,第一拉压传感器7、第二拉压传感器8和第三拉压传感器9分别所受到的作用力,可得到桩柱2在水平来流或与桩柱2斜向相交的液流作用下的受力大小。
When the present invention works, the second tension and
显示器的输入端分别通过导线33与第一拉压传感器7、第二拉压传感器8和第三拉压传感器9的输出端电连接。第一拉压传感器7、第二拉压传感器8和第三拉压传感器9将测量信号通过导线33传输至显示器35的不同通道,从而同步显示各拉压传感器所受到的作用力的测量值。将第一拉压传感器7、第二拉压传感器8和第三拉压传感器9的作用力的合力进行分解,其中沿液流流动方向且垂直于桩柱2的分力就是桩柱2受到的绕流阻力,沿桩柱2轴向的分力就是桩柱2受到的沿桩柱2轴向的作用力。因此,本发明装置可用于竖直或斜置桩柱2在水平或斜向相交液流作用下桩柱2绕流试验的作用力测量。
The input terminals of the display are electrically connected to the output terminals of the first tension-
本发明装置工作时,桩柱2在非恒定流作用下,绕流作用力随时间变化,第一拉压传感器7、第二拉压传感器8和第三拉压传感器9可同步测量桩柱2所受作用力的动态变化过程,并通过显示器35同步动态显示各传感器测量数据,因此,本发明装置不仅可用于恒定流下桩柱2的绕流作用力测量,还可用于非恒定流下桩柱2的绕流作用力测量。
When the device of the present invention is working, the
综上,将桩柱2置于试验液流中,使第二拉压传感器8处于桩柱2的迎流一侧,第三拉压传感器9处于桩柱2的背流一侧。通过改变本发明装置的第一滑块32在半圆形滑动导轨30上的相对位置,即可调整桩柱2的倾斜角度α。当液流绕过桩柱2时,第一拉压传感器7、第二拉压传感器8和第三拉压传感器9将测量信号通过导线33传输至显示器35的不同通道,由此同步显示各拉压传感器的测量值。将第一拉压传感器7、第二拉压传感器8和第三拉压传感器9所受的作用力的合力进行分解,即可分别获得桩柱2受到的绕流阻力以及桩柱2受到的沿桩柱2轴向的作用力。由此,通过显示器35显示各拉压传感器的测量数据,可得到竖直或斜置桩柱2受到的水平或斜交液流作用力的动态变化过程,可用于竖直或斜置桩柱2在恒定或非恒定流下液流绕流试验的作用力测量。
To sum up, the
以上不同结构的第一限位机构、第二限位机构和第三限位机构可在本发明作用力测量装置中任意组合使用,并不限于以上第一种实施方式和第二种实施方式的组合方式。 The first limit mechanism, the second limit mechanism and the third limit mechanism of the above different structures can be used in any combination in the force measuring device of the present invention, and are not limited to the first embodiment and the second embodiment above. Combination method.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210160094 CN102680165B (en) | 2012-05-22 | 2012-05-22 | Acting force measuring device for pile streaming test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210160094 CN102680165B (en) | 2012-05-22 | 2012-05-22 | Acting force measuring device for pile streaming test |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102680165A CN102680165A (en) | 2012-09-19 |
CN102680165B true CN102680165B (en) | 2013-12-25 |
Family
ID=46812433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210160094 Expired - Fee Related CN102680165B (en) | 2012-05-22 | 2012-05-22 | Acting force measuring device for pile streaming test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102680165B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105509996B (en) * | 2015-12-29 | 2017-12-26 | 西南石油大学 | A kind of marine riser streams the measure device and method of resistance coefficient and lift coefficient |
CN107063631A (en) * | 2017-05-19 | 2017-08-18 | 大连理工大学 | The measurement apparatus of cylinder institute water resistance in a kind of water |
CN115468734A (en) * | 2022-09-01 | 2022-12-13 | 华北水利水电大学 | A test device for flow resistance around bridge pier column |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191302417A (en) * | 1913-01-29 | 1914-01-08 | British Thomson Houston Co Ltd | Improvements in and relating to Instruments for Measuring the Flow of Fluid through a Conduit. |
CN1610823A (en) * | 2001-10-31 | 2005-04-27 | 电流感应器公司 | Pressure sensing device for rheometers |
CN102207416A (en) * | 2011-04-04 | 2011-10-05 | 浙江大学 | Measuring device for water flow acting force of piles |
CN202614453U (en) * | 2012-05-22 | 2012-12-19 | 浙江大学 | Acting force measuring device for pile streaming test |
-
2012
- 2012-05-22 CN CN 201210160094 patent/CN102680165B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191302417A (en) * | 1913-01-29 | 1914-01-08 | British Thomson Houston Co Ltd | Improvements in and relating to Instruments for Measuring the Flow of Fluid through a Conduit. |
CN1610823A (en) * | 2001-10-31 | 2005-04-27 | 电流感应器公司 | Pressure sensing device for rheometers |
CN102207416A (en) * | 2011-04-04 | 2011-10-05 | 浙江大学 | Measuring device for water flow acting force of piles |
CN202614453U (en) * | 2012-05-22 | 2012-12-19 | 浙江大学 | Acting force measuring device for pile streaming test |
Non-Patent Citations (2)
Title |
---|
桩柱水流绕流阻力特性及其计算;邓绍云;《中国港湾建设》;20070225;第200702卷(第01期);4-5 * |
邓绍云.桩柱水流绕流阻力特性及其计算.《中国港湾建设》.2007,第200702卷(第01期),4-5. |
Also Published As
Publication number | Publication date |
---|---|
CN102680165A (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102607787B (en) | Method for testing influences of internal flow to dynamic property of marine risers | |
CN202403773U (en) | On-line verification/ calibration device for open channel flow meter | |
CN102680165B (en) | Acting force measuring device for pile streaming test | |
Madadi et al. | Investigation of flow characteristics above trapezoidal broad-crested weirs | |
CN110726441B (en) | High-precision river flow detection equipment | |
CN102109405A (en) | Vortex-induced vibration test device for stand pipe under bidirectional shear flow and bidirectional ladder shear flow | |
CN111044107A (en) | An open-use channel variable diameter pendulum rod flowmeter | |
CN108956084A (en) | A kind of river model test instrument is laid and measurement method | |
CN104567771A (en) | Vertical-displacement measurement device for unconfined oil and gas pipeline in transverse motion process | |
CN202614453U (en) | Acting force measuring device for pile streaming test | |
CN103017834A (en) | A Method for Accurately Measuring the Discharge Flow by Utilizing the Opening Degree of the Discharge Arc Gate of Hydropower Station | |
CN103353537A (en) | Shallow layer water flow velocity measurement apparatus | |
CN102207416B (en) | Measuring device for water flow acting force of piles | |
CN207717329U (en) | Siphon drainge system testing stand | |
CN104358560A (en) | Take downhole flow testing arrangement of protection machanism | |
CN206095334U (en) | Two -phase flow gauge automatic switching control equipment | |
CN106643634A (en) | Device for measuring water area-crossing bridge deflection and measurement method thereof | |
CN116539489B (en) | Accurate monitoring method for sediment content of water flow section under different liquid level flow states of rainwater pipe network | |
CN105628498B (en) | A kind of displacement continuous detection apparatus based on dynamic balancing operation principle | |
CN207351651U (en) | Aerodynamic balance measuring device for bridge health test and diagnostics wind tunnel test | |
CN202057447U (en) | Pile water current acting force measuring device | |
CN204177426U (en) | Plug-in type one-piece type temperature and pressure compensation holder hand shaft flowmeter | |
CN204312051U (en) | Take downhole flow testing arrangement of protection machanism | |
CN203551431U (en) | Rheometer | |
CN110532683B (en) | A Calculation Method of Debris Flow Bulk Density Based on Channel Flow Depth and Compressive Stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131225 Termination date: 20190522 |