CN102680096A - Low resolution optical fiber monochromator - Google Patents
Low resolution optical fiber monochromator Download PDFInfo
- Publication number
- CN102680096A CN102680096A CN2012101703560A CN201210170356A CN102680096A CN 102680096 A CN102680096 A CN 102680096A CN 2012101703560 A CN2012101703560 A CN 2012101703560A CN 201210170356 A CN201210170356 A CN 201210170356A CN 102680096 A CN102680096 A CN 102680096A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- signal light
- fiber
- face
- monochromator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 53
- 239000000835 fiber Substances 0.000 claims abstract description 57
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 230000005284 excitation Effects 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000004458 analytical method Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000007373 indentation Methods 0.000 abstract 2
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000004737 colorimetric analysis Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000011481 absorbance measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000013308 plastic optical fiber Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
技术领域 technical field
本发明涉及光纤器件领域,尤其涉及一种低分辨光纤单色仪。 The invention relates to the field of optical fiber devices, in particular to a low-resolution optical fiber monochromator.
背景技术 Background technique
光纤光谱测量以及基于光纤光谱的传感技术方法中,色散元件有光纤光栅、AWG波分复用器、多层膜滤色片、马赫-泽德干涉、法布里-珀罗微光学元件等类型;信号光波长范围较宽、对波长的分辨精度要求不高时,还常常使用小型光纤光谱仪来解析出低分辨光谱。相较之下,本发明的光纤单色仪能够提供低分辨率的色散,且体积微小、制造工艺稳定可靠、使用便利,在产品的成本和应用领域范围方面有很大优势。 In fiber optic spectrum measurement and sensing technology methods based on fiber optic spectroscopy, the dispersive elements include fiber gratings, AWG wavelength division multiplexers, multilayer film filters, Mach-Zehnder interference, Fabry-Perot micro-optical elements, etc. Type; when the wavelength range of the signal light is wide and the resolution accuracy of the wavelength is not high, a small fiber optic spectrometer is often used to analyze the low-resolution spectrum. In contrast, the optical fiber monochromator of the present invention can provide low-resolution dispersion, and has a small volume, stable and reliable manufacturing process, and convenient use, and has great advantages in terms of product cost and application range.
发明内容 Contents of the invention
本发明的目的在于提供一种可用于低分辨光谱测量和光学传感的低分辨光纤单色仪,具体应用包括温度传感、化学传感、吸收率测量分析、色度学测量等。 The object of the present invention is to provide a low-resolution optical fiber monochromator that can be used for low-resolution spectral measurement and optical sensing, and its specific applications include temperature sensing, chemical sensing, absorbance measurement and analysis, colorimetric measurement, and the like.
本发明是这样来实现的,一个Y形多模光纤分束器的两个同侧的光纤分支分别用于激发光和信号光的传输,其中信号光出射光纤的端面相对于光纤轴向呈特定角度倾斜,透射式光栅制作在信号光出射光纤的端面,光电转换元件与信号光出射光纤同轴安装。 The present invention is realized in such a way that two same-side fiber branches of a Y-shaped multimode fiber beam splitter are respectively used for the transmission of excitation light and signal light, wherein the end face of the signal light exit fiber is in a specific direction relative to the fiber axis. The angle is inclined, the transmissive grating is made on the end face of the signal light output fiber, and the photoelectric conversion element is installed coaxially with the signal light output fiber.
Y形多模光纤分束器的信号光出射光纤的端面相对于光纤轴向的倾斜角为γ= 90° – arcsin{λ/[d(n 1–1)]}。 The inclination angle of the end face of the signal light output fiber of the Y-shaped multimode fiber beam splitter relative to the fiber axis is γ = 90° – arcsin{ λ /[ d ( n 1 -1)]}.
所述的透射式光栅的每条刻痕都垂直于光纤轴向和信号光出射光纤端面的倾斜方向,并平行等距分布。 Each score of the transmissive grating is perpendicular to the axis of the optical fiber and the inclination direction of the end face of the optical fiber from which the signal light exits, and is distributed in parallel and equidistant.
是所述的Y形多模光纤分束器的分支比根据激发光强度、信号光强度来确定,通常取50/50。 The branching ratio of the Y-shaped multimode fiber beam splitter is determined according to the intensity of the excitation light and the intensity of the signal light, usually 50/50.
信号光出射光纤的端面研磨或切割出的倾斜角γ= 90° – arcsin{λ/[d(n 1–1)]}使信号光中心波长的一级衍射方向沿光纤轴向。 The inclination angle γ = 90° – arcsin{ λ /[ d ( n 1 –1 )]} of the end face of the signal light output fiber is polished or cut so that the first-order diffraction direction of the central wavelength of the signal light is along the fiber axis.
透射式光栅直接光刻在、或者平行粘贴在、或者模压复制在信号光出射光纤的端面。 The transmissive grating is directly photoengraved, or pasted in parallel, or embossed and replicated on the end face of the signal light exiting optical fiber.
本发明所述的透射式光栅,其特征是光栅直接光刻在、或者平行粘贴在、或者模压复制在信号光出射光纤的端面。制作方法取决于精度要求和光纤材质。 The transmission grating according to the present invention is characterized in that the grating is directly photoengraved, or pasted in parallel, or embossed and copied on the end face of the signal light output optical fiber. The fabrication method depends on the accuracy requirements and the fiber material.
本发明的优点是:便捷的组装方式,极小的器件尺寸,使用便利、成本低廉。 The invention has the advantages of convenient assembly, extremely small device size, convenient use and low cost.
附图说明 Description of drawings
图1为本发明的结构示意图。 Fig. 1 is a structural schematic diagram of the present invention.
图2为本发明A的局部方大图。 Fig. 2 is a partial block diagram of the present invention A.
在图中,1、Y形多模光纤分束器11、激发光入射光纤12、信号光出射光纤13、光纤尾纤2、透射式光栅3、光电转换元件
In the figure, 1. Y-shaped multimode
图中显示信号光中心波长λ的一级衍射沿光纤轴向传播,进入光电转换元件的情况。n 1为光纤纤芯折射率;n 2为空气折射率;θ为信号光束与信号光出射光纤端面法线的夹角;Ф为衍射角;γ为信号光出射光纤的端面的倾斜角。 The figure shows the first-order diffraction of the central wavelength λ of the signal light propagates along the fiber axis and enters the photoelectric conversion element. n 1 is the refractive index of the fiber core; n 2 is the air refractive index; θ is the angle between the signal beam and the normal line of the signal light exiting fiber end face; Ф is the diffraction angle; γ is the inclination angle of the signal light exiting fiber end face.
具体实施方式 Detailed ways
如图1、图2所示,本发明是这样来实现的,它包括一个Y形多模光纤分束器1,分束器的两个同侧的分支分别用于激发光和信号光的传输,激发光经激发光入射光纤11注入传感器探针,信号光经信号光出射光纤12导出,激发光被部分吸收部分反射、或者激发光的波长被调制发生在Y形多模光纤波导分束器另一侧的光纤尾纤13上。信号光出射光纤12的端面相对于光纤轴向呈特定角度倾斜,透射式光栅2制作在信号光出射光纤12的端面。信号光通过透射式光栅2后被色散为单色光。属于一级衍射的单色光的中心波长成分沿信号光出射光纤12的轴向出射。同轴安装在信号光出射光纤12末端的光电转换元件3接收已经色散了的信号光,输出信号光中各不同波长成分的光强度相对值,即信号光的光谱。
As shown in Fig. 1 and Fig. 2, the present invention is realized in this way, and it comprises a Y-shaped multimode
本发明所述的Y形多模光纤分束器1的信号光出射光纤12的端面相对于光纤轴向的倾斜角为γ,且γ= 90° – arcsin{λ/[d(n 1–1)]}。其中λ为信号光的中心波长,d为所述的透射式光栅2的光栅常数,n 1为光纤纤芯的折射率或有效折射率。
The inclination angle of the end face of the signal
本发明所述的透射式光栅2的每条刻痕都垂直于光纤轴向和信号光出射光纤端面的倾斜方向,并平行等距分布。 Each score of the transmissive grating 2 in the present invention is perpendicular to the axial direction of the optical fiber and the inclination direction of the end face of the optical fiber from which the signal light exits, and is distributed in parallel and equidistant.
根据斜入射的光栅方程:d (n 1sinθ+ n 2sinФ) = ± kλ ,信号光出射到空气后被光电转换元件3接收,空气折射率n 2取1。信号光沿光纤轴向传输,在信号光出射光纤12的端面的入射角为θ,而端面相对于光纤轴向的倾斜角γ=90°–θ。对于一级衍射k=1,本发明所述的特定倾斜角γ使信号光中心波长的一级衍射方向沿光纤轴向,亦即一级衍射角Ф = –θ。
According to the grating equation of oblique incidence: d ( n 1 sin θ + n 2 sin Ф ) = ± kλ , the signal light is received by the
信号光出射光纤12的端面可以用研磨或切割的方式加工出来。研磨或切割可以使用常规的光纤研磨机和光纤切刀。
The end face of the signal light output
本发明所述的Y形多模光纤分束器1的分支比根据激发光强度、信号光强度来确定,通常取50/50。但选用其它的分支比不影响本发明的光纤单色仪的色分辨本领。
The branching ratio of the Y-shaped multimode optical
本发明所述的透射式光栅2直接光刻在、或者平行粘贴在、或者模压复制在信号光出射光纤12的端面。制作方法取决于光纤材质。塑料光纤适合采用模压方法在光纤端面复制出光栅;石英或蓝宝石光纤适合直接采用光刻工艺;不同类型的光纤均可粘贴预制好的光栅。
The transmissive grating 2 described in the present invention is directly photoengraved, or pasted in parallel, or embossed and replicated on the end face of the signal light output
控制透射光栅2的闪耀角,可使信号光的绝大部分的光能量集中到预定的光谱级,即本发明中设定的第一级衍射级。 Controlling the blaze angle of the transmission grating 2 can concentrate most of the light energy of the signal light to a predetermined spectral order, that is, the first-order diffraction order set in the present invention.
然后一级衍射的单色光由光电转换元件3接收。光电转换元件3可以使用阵列式探测器例如CCD、CMOS摄像头,也可以使用分立的光电探测器如光敏三极管、光敏电阻等。
The first-order diffracted monochromatic light is then received by the
具体举例一,以光纤尾纤13连接一个Er3+离子荧光温度传感探头的低分辨光纤单色仪为例:
As a specific example, take a low-resolution fiber optic monochromator connected to an Er 3+ ion fluorescence temperature sensing probe with the
用于荧光比强度法温度传感的Er3+离子荧光的波长范围在515nm~570nm。取545nm为所述信号荧光的中心波长,荧光光谱的分辨率达到15nm即可实际应用。 The wavelength range of Er 3+ ion fluorescence used for temperature sensing by fluorescence specific intensity method is 515nm~570nm. Taking 545nm as the central wavelength of the signal fluorescence, the resolution of the fluorescence spectrum can be practically applied when it reaches 15nm.
采用市售的Y形多模石英光纤分束器,纤芯的折射率为n 1=1.468,芯径62.5微米。激发光由激发光入射光纤11导入,将信号光出射光纤12的端面研磨为39度倾斜,然后在端面斜面上光刻出平行等距分布的光栅刻痕,光栅常数1.5微米,光栅刻痕均垂直于光纤轴向和信号光出射光纤端面的倾斜方向。由光栅方程计算可得,波长λ=545nm的光的一级衍射(即k=1)沿光纤轴向。光纤的纤芯范围共刻线数为N = 62.5 / ( 1.5 * sin39°)计66条。由光栅的色分辨本领计算式R = kN–1 = λ/Δλ,该端面光栅的一级衍射光谱在545nm波长处的分辨率为8.4nm。
A commercially available Y-shaped multimode quartz fiber beam splitter is used, the refractive index of the fiber core is n 1 =1.468, and the core diameter is 62.5 microns. The excitation light is introduced by the excitation light incident
具体举例二,光纤尾纤13直接正对一个待测物体的表面测量反射光谱。从物体表面反射的光返回到光纤尾纤13,并最终在信号光出射光纤12的端面处衍射后被光电转换元件3接收。取1.2微米的光栅常数、27度的端面倾斜角,可以使500nm波长光的一级衍射沿光纤轴向出射,并达到约4nm的分辨率。
In the second specific example, the
本发明不限于上述实施方式。 The present invention is not limited to the above-mentioned embodiments.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210170356.0A CN102680096B (en) | 2012-05-29 | 2012-05-29 | Low resolution optical fiber monochromator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210170356.0A CN102680096B (en) | 2012-05-29 | 2012-05-29 | Low resolution optical fiber monochromator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102680096A true CN102680096A (en) | 2012-09-19 |
CN102680096B CN102680096B (en) | 2015-05-20 |
Family
ID=46812367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210170356.0A Expired - Fee Related CN102680096B (en) | 2012-05-29 | 2012-05-29 | Low resolution optical fiber monochromator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102680096B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104884995A (en) * | 2012-12-26 | 2015-09-02 | 西铁城控股株式会社 | Projection device |
CN111751923A (en) * | 2019-03-29 | 2020-10-09 | 成都理想境界科技有限公司 | Optical fiber and scanning light imaging display device |
CN113126279A (en) * | 2019-12-31 | 2021-07-16 | 成都理想境界科技有限公司 | Optical fiber scanner and near-to-eye display system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911516A (en) * | 1989-02-27 | 1990-03-27 | General Electric Company | Optical device with mode selecting grating |
CN2583650Y (en) * | 2002-11-20 | 2003-10-29 | 顺德特种变压器厂 | Optical fiber temperature sensor |
JP2005003594A (en) * | 2003-06-13 | 2005-01-06 | Hitachi Cable Ltd | Reflection wavelength measuring method and physical quantity measuring method of optical fiber grating |
EP1574883A1 (en) * | 2002-12-16 | 2005-09-14 | Sumitomo Electric Industries, Ltd. | Optical fiber having diffractive optical film on end and method for manufacturing same |
CN202057580U (en) * | 2011-04-23 | 2011-11-30 | 浙江大学 | Optical system for fluorescent detection of a photo-conductive relay (PCR) amplifier with quantitative property |
CN102279007A (en) * | 2011-06-29 | 2011-12-14 | 北京工业大学 | Optical fiber coupled wave guide raster sensor and preparation method thereof |
CN102353651A (en) * | 2011-07-07 | 2012-02-15 | 天津大学 | Measuring apparatus for refractive index of active photonic crystal fiber |
-
2012
- 2012-05-29 CN CN201210170356.0A patent/CN102680096B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911516A (en) * | 1989-02-27 | 1990-03-27 | General Electric Company | Optical device with mode selecting grating |
CN2583650Y (en) * | 2002-11-20 | 2003-10-29 | 顺德特种变压器厂 | Optical fiber temperature sensor |
EP1574883A1 (en) * | 2002-12-16 | 2005-09-14 | Sumitomo Electric Industries, Ltd. | Optical fiber having diffractive optical film on end and method for manufacturing same |
JP2005003594A (en) * | 2003-06-13 | 2005-01-06 | Hitachi Cable Ltd | Reflection wavelength measuring method and physical quantity measuring method of optical fiber grating |
CN202057580U (en) * | 2011-04-23 | 2011-11-30 | 浙江大学 | Optical system for fluorescent detection of a photo-conductive relay (PCR) amplifier with quantitative property |
CN102279007A (en) * | 2011-06-29 | 2011-12-14 | 北京工业大学 | Optical fiber coupled wave guide raster sensor and preparation method thereof |
CN102353651A (en) * | 2011-07-07 | 2012-02-15 | 天津大学 | Measuring apparatus for refractive index of active photonic crystal fiber |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104884995A (en) * | 2012-12-26 | 2015-09-02 | 西铁城控股株式会社 | Projection device |
CN111751923A (en) * | 2019-03-29 | 2020-10-09 | 成都理想境界科技有限公司 | Optical fiber and scanning light imaging display device |
CN113126279A (en) * | 2019-12-31 | 2021-07-16 | 成都理想境界科技有限公司 | Optical fiber scanner and near-to-eye display system |
Also Published As
Publication number | Publication date |
---|---|
CN102680096B (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10801956B2 (en) | Resonant periodic structures and methods of using them as filters and sensors | |
US7433552B2 (en) | Obtaining analyte information | |
US7315667B2 (en) | Propagating light to be sensed | |
CN105899983B (en) | Guided Mode Resonance Equipment | |
JP7070984B2 (en) | Equipment and methods for evanescent waveguide detection | |
KR101257309B1 (en) | Fiber-optic surface plasmon resonance sensor and sensing method using the same | |
US7522786B2 (en) | Transmitting light with photon energy information | |
US8977086B2 (en) | Tapered waveguide coupler and spectrometer | |
Li et al. | Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array | |
TWI541493B (en) | A dispersive element and a spectrometer thereof | |
JPH01124723A (en) | Spectrograph | |
CN102564588A (en) | Vertical incidence broadband spectrograph using optical fiber bundle for light splitting and an optical measurement system | |
CN1715842A (en) | Improved wavelength detector | |
CN107340004B (en) | A dual-parameter detection system based on media metasurface | |
CN103575661A (en) | Optical measurement system with vertical and oblique incidence measurement functions | |
CN102680096B (en) | Low resolution optical fiber monochromator | |
Zou et al. | A polarization-insensitive high-resolution micro-spectrometer using (N+ 3)×(N+ 3) arrayed waveguide grating on SOI platform | |
JP2004219330A (en) | Fluorescence measurement device | |
Kobylinskiy et al. | Folded beam path architecture for highly efficient filter-based spectral sensors | |
US11658462B2 (en) | Integrated filter remote gas correlation sensor | |
Wang et al. | Visible (400-to 700-nm) chirped-grating-coupled waveguide spectrometer | |
CN201072457Y (en) | NO2 Pollution Measuring Laser Radar Optical Fiber-Grating Splitting Optical Device | |
Kasberger et al. | Design of a novel fully integrated IR-absorption sensor system | |
US11231322B2 (en) | High resolution prism spectrometer comprising a diffuser film | |
JP2590129B2 (en) | Liquid physical property measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150520 Termination date: 20180529 |