CN102679931B - Novel method for measuring fatigue crack propagation length in situ - Google Patents
Novel method for measuring fatigue crack propagation length in situ Download PDFInfo
- Publication number
- CN102679931B CN102679931B CN201210142369.7A CN201210142369A CN102679931B CN 102679931 B CN102679931 B CN 102679931B CN 201210142369 A CN201210142369 A CN 201210142369A CN 102679931 B CN102679931 B CN 102679931B
- Authority
- CN
- China
- Prior art keywords
- fatigue
- crack
- length
- fatigue crack
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000011065 in-situ storage Methods 0.000 title abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000012360 testing method Methods 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000006073 displacement reaction Methods 0.000 claims abstract description 5
- 238000009661 fatigue test Methods 0.000 claims description 11
- 238000012625 in-situ measurement Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 2
- 238000009417 prefabrication Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 17
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000012800 visualization Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 230000002411 adverse Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 230000010354 integration Effects 0.000 abstract 1
- 125000004122 cyclic group Chemical group 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明涉及一种原位测量疲劳裂纹扩展长度的方法。本发明的优点和特征在于:a) 将100倍金相显微镜、容栅传感器、信号处理系统、CCD摄像头、计算机等进行集成,实现了数据采集和处理一体化,实现了原位、实时测量疲劳裂纹扩展长度;b) 解决了通常采用的普通读数法测量耗时长、操作繁琐、容易对后续测量产生不利影响的缺点;c) 采用容栅传感器,将获取的位移信号转换成电信号,通过信号传输和转换设备得到最终的裂纹长度,实现了半自动测量;d) 将CCD摄像头通过金相显微镜采集到的实时图像传递到计算机,实现了整个测试过程的可视化,解决了传统测量只能观察结果,无法直接观测过程的难题。
The invention relates to a method for measuring the extension length of fatigue cracks in situ. The advantages and characteristics of the present invention are: a) 100 times metallographic microscope, capacitive sensor, signal processing system, CCD camera, computer, etc. are integrated to realize the integration of data acquisition and processing, and realize the in-situ and real-time measurement of fatigue Crack growth length; b) Solve the shortcomings of the common reading method that usually takes a long time to measure, the operation is cumbersome, and it is easy to have an adverse effect on subsequent measurements; c) Using a capacitive sensor, the acquired displacement signal is converted into an electrical signal, and through the signal The transmission and conversion equipment obtains the final crack length, which realizes semi-automatic measurement; d) transmits the real-time image collected by the CCD camera through the metallographic microscope to the computer, realizing the visualization of the entire testing process, and solving the problem that traditional measurement can only observe the results, The problem of not being able to directly observe the process.
Description
技术领域 technical field
本发明涉及一种可以在疲劳性能测试过程中原位测量疲劳裂纹扩展长度的新方法,可实现疲劳列为扩展长度的实时在线测量。本发明属于材料的力学性能测试领域。 The invention relates to a new method capable of measuring fatigue crack extension length in situ during fatigue performance testing, which can realize real-time on-line measurement of fatigue crack extension length. The invention belongs to the field of testing mechanical properties of materials.
背景技术 Background technique
疲劳是指材料、零件和构件在循环加载下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹或使裂纹进一步扩展直到完全断裂的现象。引述美国试验与材料协会(American Society for Testing and Materials, ASTM)在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义:在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。 Fatigue refers to the phenomenon that materials, parts and components produce local permanent damage at a certain point or certain points under cyclic loading, and form cracks after a certain number of cycles or further expand the cracks until they are completely broken. Quoting the definition made by the American Society for Testing and Materials (ASTM) in "Standard Definitions of Terms Related to Fatigue Tests and Statistical Analysis of Data" (EZ06-72): A deflection at a certain point or points The development of localized permanent structural changes that occur in a material when cracks form or complete fracture occurs after sufficient cyclic flexing is called "fatigue".
材料在远低于其强度极限的循环载荷作用下发生破坏的现象,称为疲劳破坏。疲劳破坏主要有以下特征: The phenomenon that a material fails under cyclic loading far below its strength limit is called fatigue failure. Fatigue damage mainly has the following characteristics:
1)只有在材料承受循环载荷作用时,疲劳才会发生。 1) Fatigue occurs only when the material is subjected to cyclic loading.
2)疲劳是一个“发展过程”,这一过程发生在一段时间内。“形成裂纹”和“断裂”,是这一发展过程中不断形成的损伤累积的结果。 2) Fatigue is a "developmental process" that occurs over a period of time. "Crack formation" and "fracture" are the result of the accumulation of damage that continues to form during this development.
3)疲劳通常在某局部区域内发生,而不是由整个结构或构件所控制。 3) Fatigue usually occurs in a local area rather than controlled by the entire structure or component.
4)疲劳过程是结构内部永久变化造成损伤的累积过程。 4) The fatigue process is the cumulative process of damage caused by permanent changes inside the structure.
在现代工程的各个方面,主要零件和构件,大多在循环载荷的作用下工作,疲劳破坏是其主要的失效形式。随着现代工业的发展,对材料的疲劳性能的要求也逐步提高,因此研究材料的疲劳破坏机理,从而寻求提高材料疲劳性能的方法,具有明显的社会效益和经济价值。 In all aspects of modern engineering, most of the main parts and components work under the action of cyclic load, and fatigue damage is the main failure mode. With the development of modern industry, the requirements for the fatigue performance of materials are also gradually increasing. Therefore, it is of obvious social and economic value to study the fatigue failure mechanism of materials and to find ways to improve the fatigue performance of materials.
目前,通常采用的材料疲劳抗力指标有疲劳强度、过载持久值、疲劳缺口敏感性、疲劳裂纹扩展速率以及疲劳裂纹扩展门槛值等。而其中采用最多的评价材料疲劳性能的指标是疲劳裂纹扩展速率(da/dN)和疲劳裂纹扩展门槛值(ΔKth),尤其是ΔKth已经成为衡量材料和重要部件疲劳性能最重要的指标。根据GB/T 6398-2000中的相关规定,定义疲劳裂纹扩展速率等于1×10-7mm/cycle所对应的应力强度因子范围值为ΔKth。 At present, the commonly used fatigue resistance indicators of materials include fatigue strength, overload endurance value, fatigue notch sensitivity, fatigue crack growth rate, and fatigue crack growth threshold value. Among them, the most commonly used indicators to evaluate the fatigue performance of materials are the fatigue crack growth rate (da/dN) and the fatigue crack growth threshold (ΔK th ), especially ΔK th has become the most important indicator to measure the fatigue performance of materials and important components. According to the relevant regulations in GB/T 6398-2000, the range value of the stress intensity factor corresponding to the fatigue crack growth rate equal to 1×10 -7 mm/cycle is defined as ΔK th .
影响材料的疲劳门槛值的因素很多,下面就疲劳测试过程中可能涉及的相关参量作简单介绍(以GB/T6398-2000中规定的标准紧凑拉伸(Compact Tension, CT)试样为例): There are many factors that affect the fatigue threshold of a material. The following is a brief introduction to the relevant parameters that may be involved in the fatigue test process (taking the standard compact tension (Compact Tension, CT) specimen specified in GB/T6398-2000 as an example):
1)循环数N:力循环的次数。 1) Number of cycles N: the number of force cycles.
2)疲劳裂纹扩展速率da/dN:力循环一次的疲劳裂纹的扩展量,国标中表示为疲劳裂纹尖端应力强度因子ΔK的函数。 2) Fatigue crack growth rate da/dN: The amount of fatigue crack growth after one force cycle, expressed in the national standard as a function of the stress intensity factor ΔK at the tip of the fatigue crack.
3)应力强度因子K:裂纹尖端附近区域弹性应力场强度的量值。 3) Stress intensity factor K: the magnitude of the elastic stress field strength in the region near the crack tip.
4)裂纹长度a:与实际裂纹相当的直前缘裂纹长度。对于CT试样,a从加力线开始计算。 4) Crack length a: The length of the straight-edge crack equivalent to the actual crack. For CT samples, a is calculated from the afterburner line.
5)最大载荷Pmax:循环力的最大代数值。 5) Maximum load P max : the maximum algebraic value of the cyclic force.
6)最小载荷Pmin:循环力的最小代数值。 6) Minimum load P min : minimum algebraic value of cyclic force.
7)力值范围 ΔP:最大与最小力之间的差值,即ΔP=Pmax-Pmin。 7) Range of force value ΔP: the difference between the maximum and minimum force, that is, ΔP=P max -P min .
8)应力比R:最小力与最大力的比值,即R= Pmin/Pmax。 8) Stress ratio R: the ratio of the minimum force to the maximum force, that is, R= P min /P max .
9)最大应力强度因子Kmax:对应于最大力的应力强度因子,并随着裂纹长度的增长而变化。 9) Maximum stress intensity factor K max : the stress intensity factor corresponding to the maximum force, and it changes with the growth of the crack length.
10)最大应力强度因子Kmin:对应于最小力的应力强度因子。 10) Maximum stress intensity factor K min : the stress intensity factor corresponding to the minimum force.
11)应力强度因子范围ΔK:最大与最小应力强度因子值之差,即ΔK=Kmax-Kmin。 11) Stress intensity factor range ΔK: the difference between the maximum and minimum stress intensity factor values, that is, ΔK=K max -K min .
对于CT试样, For CT specimens,
(1) (1)
式中:α= a/W(W为力作用线到CT试样边缘的距离);B为CT试样的厚度。 In the formula: α = a/W (W is the distance from the line of force action to the edge of the CT sample); B is the thickness of the CT sample.
由公式(1)可知:在整个的测试过程中,疲劳裂纹扩展长度的精确测量是关键因素之一。目前所采用的测量疲劳裂纹的方法有普通读数法、应变片法、等效电位法等,其中尤以普通读数法精度相对较高。 From the formula (1), it can be seen that during the whole test process, the accurate measurement of the fatigue crack growth length is one of the key factors. The methods currently used to measure fatigue cracks include ordinary reading method, strain gauge method, equivalent potential method, etc. Among them, the ordinary reading method has relatively high accuracy.
普通读数法的操作步骤是在循环若干次后将疲劳试样从疲劳试验机上卸下并将其放置于金相显微镜下测量其长度。这种方法精确度较高,却存在以下缺陷: The operation steps of the common reading method are to remove the fatigue sample from the fatigue testing machine after several cycles and place it under a metallographic microscope to measure its length. This method has high accuracy, but has the following defects:
1) 测量裂纹扩展长度时需要卸去载荷,拆卸试样,在显微镜下测量其裂纹长度;测量完毕后需要重新安装试样,重新加载。整个操作过程繁琐,费时费力,且可能造成CT试样的夹持和对中等参数发生变化,影响测试结果的可重复性。 1) When measuring the crack growth length, it is necessary to unload the load, disassemble the sample, and measure the crack length under a microscope; after the measurement, the sample needs to be reinstalled and reloaded. The entire operation process is cumbersome, time-consuming and laborious, and may cause changes in the clamping and alignment parameters of the CT sample, affecting the repeatability of the test results.
2) 拆卸试样过程中断了载荷的作用,对于后续的疲劳裂纹扩展速率da/dN有较大的影响,导致所测得的da/dN偏离真实值。 2) The process of disassembling the sample interrupts the action of the load, which has a greater impact on the subsequent fatigue crack growth rate da/dN, causing the measured da/dN to deviate from the true value.
3) 凭借上一级的da/dN值估算所需进行的循环数,无法观察实时裂纹扩展长度,降低了实验效率。另外,整个操作过程对操作人员的经验要求比较高。 3) Relying on the da/dN value of the upper level to estimate the number of cycles required, it is impossible to observe the real-time crack growth length, which reduces the experimental efficiency. In addition, the entire operation process has relatively high requirements for the experience of the operator.
因此,寻求更为精确的测量方法无疑有助于提高材料疲劳门槛值测试的精确度和可重复性。 Therefore, seeking a more accurate measurement method will undoubtedly help to improve the accuracy and repeatability of the material fatigue threshold test.
本发明针对疲劳裂纹测试普通读数法的不足,提出采用金相显微镜和容栅传感器等设备的结合,以达到提高疲劳裂纹扩展长度测量的精确度和实现对疲劳裂纹扩展过程可视化的目的,并提出了具体的实施方案。 The present invention aims at the shortcomings of the ordinary reading method for fatigue crack testing, and proposes the combination of metallographic microscope and capacitance sensor and other equipment to achieve the purpose of improving the accuracy of fatigue crack growth length measurement and realizing the visualization of fatigue crack growth process, and proposes specific implementations.
本发明发明人采用疲劳裂纹+原位测量(fatigue crack + in-situ measurement)作为关键词检索了美国专利文摘(USPTO)、欧洲专利文摘(EP—PCT)、《中国专利信息网》以及《中华人民共和国国家知识产权局专利检索》,没有发现同类专利。 The inventor of the present invention used fatigue crack + in-situ measurement (fatigue crack + in-situ measurement) as keywords to search the United States Patent Abstracts (USPTO), European Patent Abstracts (EP-PCT), "China Patent Information Network" and "China Patent Search by the State Intellectual Property Office of the People's Republic of China, no similar patents were found.
发明内容 Contents of the invention
本发明的目的是提供一种原位测量疲劳裂纹扩展长度的新方法及其装置。更具体地说,本发明的目的是提供一种可以在疲劳测试过程中原位测量疲劳裂纹长度和实时观察疲劳裂纹扩展的方法,从而可以更加精确地确定各种疲劳应力指标,以便更好地衡量不同工艺条件下各种材料的疲劳性能,这对很多重要构件的设计和制造具有现实意义。 The purpose of the present invention is to provide a new method and device for in situ measuring fatigue crack growth length. More specifically, the purpose of the present invention is to provide a method that can measure the fatigue crack length in situ and observe the fatigue crack growth in real time during the fatigue test, so that various fatigue stress indicators can be determined more accurately, so as to better measure The fatigue performance of various materials under different process conditions has practical significance for the design and manufacture of many important components.
本发明一种原位测量疲劳裂纹扩展长度的新方法,可用于实时、精确地测量疲劳性能测试时疲劳裂纹扩展长度的测定;该方法的特征在于,采用金相显微镜和电荷耦合(Charge Couple Device, CCD)摄像头,实时跟踪疲劳裂纹尖端扩展路径,通过容栅传感器即时将机械位移量转变成电信号的相位变化量,再通过测量电路处理后得到精确的疲劳裂纹长度;其简要的测量方法如下:(a)将夹具和经过抛光的标准CT试样装夹于疲劳试验机上,将测量设备底座和支架放置于适当位置;(b)调节定位齿条,使得金相显微镜的物镜对准机加工预制的裂纹尖端,在金相显微镜中观察到机加工裂纹尖端在视场的正中心(横向和纵向标尺线的交点)。将显示器上的裂纹长度读数调零;(c)连接CCD摄像头,使得在显示器上能够清晰地显示试样表面图像;(d)启动疲劳试验机,通过调整齿条变换金相显微镜的位置,使得疲劳裂纹的尖端始终处于CCD摄像头采集到的图片中;通过电子显示屏上的读数和金相显微镜中采集的照片中的裂纹长度,精确地确定真实疲劳裂纹的长度;同时,还可以根据CCD摄像头采集到的照片分析其裂纹扩展过程中裂纹扩展方向发生偏移的原因;结合疲劳测试后的对试样的显微组织进行光学显微镜和扫描电子显微镜观察,可进一步分析所测材料的疲劳断裂机理。 The present invention is a new method for in-situ measurement of fatigue crack growth length, which can be used for real-time and accurate measurement of fatigue crack growth length during fatigue performance testing; the method is characterized in that metallographic microscope and Charge Coupled Device (Charge Couple Device) are used , CCD) camera to track the propagation path of the fatigue crack tip in real time, and convert the mechanical displacement into the phase change of the electrical signal immediately through the capacitive sensor, and then obtain the accurate fatigue crack length after processing by the measurement circuit; the brief measurement method is as follows : (a) Clamp the fixture and the polished standard CT sample on the fatigue testing machine, and place the base and bracket of the measuring equipment in an appropriate position; (b) Adjust the positioning rack so that the objective lens of the metallographic microscope is aligned with the machined The prefabricated crack tip, the machined crack tip is observed in the center of the field of view (the intersection of the horizontal and vertical scale lines) in the metallographic microscope. Zero the crack length reading on the monitor; (c) connect the CCD camera so that the image of the sample surface can be clearly displayed on the monitor; (d) start the fatigue testing machine, and change the position of the metallographic microscope by adjusting the rack so that The tip of the fatigue crack is always in the picture collected by the CCD camera; through the reading on the electronic display and the crack length in the photo collected by the metallographic microscope, the length of the real fatigue crack can be accurately determined; at the same time, the length of the real fatigue crack can also be determined according to the CCD camera The collected photos are used to analyze the reasons for the deviation of the crack propagation direction during the crack propagation process; combined with the observation of the microstructure of the sample after the fatigue test by optical microscope and scanning electron microscope, the fatigue fracture mechanism of the tested material can be further analyzed .
本发明一种原位测量疲劳裂纹扩展长度的方法所用的专用装置,其特征是包括有:标准CT试样、金相显微镜、CCD摄像头、缓震底座、容栅传感器、夹具、销钉、数据传输系统、调位旋钮、定位齿条和计算机;各部件的布置关系如下:标准CT试样、销钉用夹具连接到疲劳试验机上,而金相显微镜和定位齿条同步,直接安装在缓震底座上,通过定位旋钮调整其位置;CCD摄像头连接于金相显微镜上,将采集到的数据通过数据传输系统传到计算机上进行处理,得到最终的疲劳裂纹长度以及疲劳裂纹表面形貌照片。 The present invention is a special device used in the method for in-situ measuring fatigue crack extension length, which is characterized in that it includes: standard CT sample, metallographic microscope, CCD camera, cushioning base, capacitance sensor, fixture, pin, data transmission System, adjustment knob, positioning rack and computer; the layout of each component is as follows: the standard CT sample and the pin are connected to the fatigue testing machine with a fixture, while the metallographic microscope and the positioning rack are synchronized and directly installed on the cushioning base , adjust its position through the positioning knob; the CCD camera is connected to the metallographic microscope, and the collected data is transmitted to the computer through the data transmission system for processing, and the final fatigue crack length and fatigue crack surface topography photos are obtained.
本发明的特点Features of the invention
本发明方法结合金相显微镜、定位齿条、容栅传感器、信号转换系统、CCD摄像头、计算机等设备,提出了原位测量疲劳裂纹长度的新方法,通过容栅传感器将位移信号转换成电信号,实现了整个疲劳实验过程中疲劳裂纹扩展过程的原位测量和可视化。不仅可以精确地测量任意时刻的疲劳裂纹长度,而且可以对疲劳裂纹尖端扩展路径进行即时的观测和采集。 The method of the present invention combines metallographic microscope, positioning rack, capacitive sensor, signal conversion system, CCD camera, computer and other equipment to propose a new method for in-situ measurement of fatigue crack length, and the displacement signal is converted into an electrical signal by the capacitive sensor , enabling in-situ measurement and visualization of the fatigue crack growth process throughout the fatigue experiment. Not only can the fatigue crack length be accurately measured at any time, but also the propagation path of the fatigue crack tip can be observed and collected in real time.
原位测量法的工作原理是通过100倍金相显微镜(通过同步的定位齿条调节位置)和CCD摄像头采集裂纹尖端图像,将采集到的图片连接到计算机上,实现疲劳裂纹扩展过程的可视化。同时,与金相显微镜同步的容栅传感器将位移信号转换成电信号,再通过信号转换器变成数字信号,最后通过计算机处理后得到疲劳裂纹长度。 The working principle of the in-situ measurement method is to collect crack tip images through a 100x metallographic microscope (adjusting the position through a synchronous positioning rack) and a CCD camera, and connect the collected images to a computer to realize the visualization of the fatigue crack growth process. At the same time, the capacitive sensor synchronized with the metallographic microscope converts the displacement signal into an electrical signal, and then converts it into a digital signal through a signal converter, and finally obtains the fatigue crack length after computer processing.
附图说明 Description of drawings
图1为原位测量疲劳裂纹扩展长度的设备示意图。该设备主要由金相显微镜、容栅传感器、CCD摄像头、定位齿条、数据采集和传输系统、缓震底座等构成。 Figure 1 is a schematic diagram of the equipment for in-situ measurement of fatigue crack growth length. The equipment is mainly composed of a metallographic microscope, a capacitive sensor, a CCD camera, a positioning rack, a data acquisition and transmission system, and a cushioning base.
图2为原位观察疲劳裂纹扩展长度的设备的侧视图。 Fig. 2 is a side view of the equipment for in-situ observation of fatigue crack growth length.
图3为标准CT试样图,采用线切割的方法按照国标(GB/T 6398-2000)中的尺寸规定进行加工。 Figure 3 is a standard CT sample diagram, which is processed according to the size regulations in the national standard (GB/T 6398-2000) by wire cutting.
图4为某材料各个应力比下材料的疲劳裂纹扩展速率da/dN和裂纹尖端的应力强度因子范围ΔK的变化关系图。 Fig. 4 is a graph showing the relationship between the fatigue crack growth rate da/dN and the stress intensity factor range ΔK at the crack tip of a material under various stress ratios.
图5为该材料各个应力比下lg(da/dN)和lgΔK的拟合图。 Fig. 5 is the fitting diagram of lg(da/dN) and lgΔK under various stress ratios of the material.
图6为该材料裂纹扩展门槛值ΔKth随应力比变化的关系图。 Fig. 6 is a graph showing the relationship between the crack growth threshold ΔK th and the stress ratio of the material.
具体实施方式 Detailed ways
下面结合实施例对本发明进行详细说明: Below in conjunction with embodiment the present invention is described in detail:
实施例一Embodiment one
具体步骤如下: Specific steps are as follows:
疲劳裂纹扩展门槛值(ΔKth)的测试采用ASTM E647-08和GB/T 6398-2000中规定的降K法测量。详细的测量过程如下: The test of fatigue crack growth threshold (ΔK th ) is measured by the falling K method specified in ASTM E647-08 and GB/T 6398-2000. The detailed measurement process is as follows:
1) 从测试材料上截取一定大小的毛坯,用线切割加工出符合GB/T 6398-2000中规定的标准CT和专用夹具,CT试样的具体尺寸见图3。 1) Cut a blank of a certain size from the test material, and use wire cutting to process the standard CT and special fixtures that meet the requirements of GB/T 6398-2000. The specific size of the CT sample is shown in Figure 3.
2) 将加工好的夹具装在载荷疲劳试验机上,调整疲劳试验机拉杆之间的距离至合适位置,将标准CT试样置于夹具中夹紧,保证试验机加载于CT试样上的作用力具有良好的对中。 2) Install the processed fixture on the load fatigue testing machine, adjust the distance between the pull bars of the fatigue testing machine to a suitable position, and place the standard CT sample in the fixture to ensure that the testing machine is loaded on the CT sample. Force has good centering.
3) 将测量装置的底座和支架置于适当的位置,使得显微镜物镜正对CT试样表面,调节金相显微镜的调焦旋钮至目镜中能够清晰地观察到试样表面。 3) Put the base and bracket of the measuring device in an appropriate position so that the microscope objective lens is facing the CT sample surface, and adjust the focus knob of the metallographic microscope to the eyepiece to clearly observe the sample surface.
4) 调节定位齿条,使得显示器中能够清晰地显示机加工裂纹的尖端并将其调整至视场的中心,并将此时显示器中的裂纹长度调零。 4) Adjust the positioning rack so that the tip of the machined crack can be clearly displayed on the display and adjusted to the center of the field of view, and the crack length in the display is zeroed at this time.
5) 选取合适的应力比R和载荷P,进行预制裂纹。当显示器上的读数约为3 mm时,停止加载,裂纹预制结束。精确记录疲劳裂纹长度a和循环次数N。 5) Select an appropriate stress ratio R and load P for pre-cracking. When the reading on the display is about 3 mm, stop loading and the crack preparation ends. Accurately record the fatigue crack length a and cycle number N.
6) 采用预先设计的某个特定的R并选取合适的最大载荷Pmax,保持R恒定不变,逐级降低载荷进行数据采集,用本发明的原位测量疲劳裂纹扩展长度的新方法准确记录每一级作用力下a和N的数值,并根据公式(1)计算出此时的ΔK、Kmax等参量。在降载的过程中,每级力下使得扩展增量Δa大于上一级Kmax(最大应力强度因子)对应的塑性区γy的4~6倍,直到平均裂纹扩展速率Δa/ΔN接近1×10-7mm/cycle时,降K实验结束。为了保证采集数据的变化在允许范围内,每级的降载幅度不超过10%,当da/dN在10-6~10-7mm/cycle区间内时,可以适当减小降载幅度以保证有足够的拟合数据点。 6) Adopt a pre-designed specific R and select a suitable maximum load P max , keep R constant, reduce the load step by step for data collection, and accurately record with the new method of in-situ measurement of fatigue crack growth length of the present invention The value of a and N under each level of force, and calculate the ΔK, K max and other parameters at this time according to the formula (1). In the process of load reduction, each level of force makes the expansion increment Δa larger than the plastic zone γ y corresponding to the previous level K max (maximum stress intensity factor) 4~6 times, until the average crack growth rate Δa/ΔN is close to 1 ×10 -7 mm/cycle, the K-drop experiment ends. In order to ensure that the change of collected data is within the allowable range, the load reduction range of each stage does not exceed 10%. When da/dN is within the range of 10 -6 ~10 -7 mm/cycle, the load reduction range can be appropriately reduced to ensure There are enough data points for the fit.
根据pairs公式: According to the pairs formula:
(2) (2)
其中,C和m是和材料本身性质有关的常量。 Among them, C and m are constants related to the properties of the material itself.
作对数处理后可得lg(da/dN)=m·lgΔK+lgC,由此可知lg(da/dN)和lgΔK呈线性关系。根据da/dN在10-6~10-7mm/cycle区间内得到的da/dN—ΔK对应关系,在lg(da/dN)—lgΔK坐标系中作出其对应点,通过线性拟合的方法得到C和m,将其带入公式(2)中,并令da/dN=1×10-7 mm/cycle ,求出ΔK,即所要求的疲劳裂纹扩展门槛值ΔKth。 After logarithmic processing, lg(da/dN)=m·lgΔK+lgC can be obtained. From this, it can be seen that lg(da/dN) and lgΔK have a linear relationship. According to the da/dN-ΔK correspondence relationship obtained in the range of da/dN in the range of 10 -6 ~10 -7 mm/cycle, draw the corresponding points in the lg(da/dN)-lgΔK coordinate system, and use the method of linear fitting Get C and m, put them into the formula (2), and set da/dN=1×10 -7 mm/cycle to find ΔK, which is the required fatigue crack growth threshold ΔK th .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210142369.7A CN102679931B (en) | 2012-05-10 | 2012-05-10 | Novel method for measuring fatigue crack propagation length in situ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210142369.7A CN102679931B (en) | 2012-05-10 | 2012-05-10 | Novel method for measuring fatigue crack propagation length in situ |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102679931A CN102679931A (en) | 2012-09-19 |
CN102679931B true CN102679931B (en) | 2015-05-06 |
Family
ID=46812222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210142369.7A Expired - Fee Related CN102679931B (en) | 2012-05-10 | 2012-05-10 | Novel method for measuring fatigue crack propagation length in situ |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102679931B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954487B (en) * | 2014-04-28 | 2016-08-31 | 浙江大学 | Preparation method for the original position stretching sample of transmission electron microscope |
CN104833598B (en) * | 2015-05-05 | 2018-01-30 | 上海工程技术大学 | A kind of observation system for Metal Material Fatigue Crack Extension |
CN104865139B (en) * | 2015-06-01 | 2017-09-01 | 南昌航空大学 | A comparative analysis method for three-dimensional fatigue crack growth under the condition of off-line CT detection |
CN105334237B (en) * | 2015-11-10 | 2018-05-18 | 西南交通大学 | The fatigue tester and test method of in situ imaging can be carried out with synchrotron radiation light source |
CN105352968A (en) * | 2015-11-19 | 2016-02-24 | 中国航空工业集团公司北京航空材料研究院 | Method for measuring fatigue crack tip stress strength factor of organic glass |
JP6977092B2 (en) * | 2020-03-27 | 2021-12-08 | 川崎重工業株式会社 | Fatigue sensor jig and its attachment |
CN112964583B (en) * | 2021-02-03 | 2022-02-01 | 天津大学 | Method for detecting and representing crack evolution based on electric signal induction fatigue system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4878114A (en) * | 1988-05-10 | 1989-10-31 | University Of Windsor | Method and apparatus for assessing surface roughness |
CN1983023A (en) * | 2004-12-13 | 2007-06-20 | Hoya株式会社 | Method and system for detecting corrugation defect and manufacturing method of photomask |
CN101358930A (en) * | 2008-10-09 | 2009-02-04 | 中国航空工业第一集团公司北京航空材料研究院 | A test method for corrosion solution fatigue small crack growth |
CN101441154A (en) * | 2008-12-23 | 2009-05-27 | 华东理工大学 | High precision microscopic fatigue tester |
CN101666740A (en) * | 2009-09-28 | 2010-03-10 | 清华大学 | Measuring device of micro scale dynamic response |
-
2012
- 2012-05-10 CN CN201210142369.7A patent/CN102679931B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4878114A (en) * | 1988-05-10 | 1989-10-31 | University Of Windsor | Method and apparatus for assessing surface roughness |
CN1983023A (en) * | 2004-12-13 | 2007-06-20 | Hoya株式会社 | Method and system for detecting corrugation defect and manufacturing method of photomask |
CN101358930A (en) * | 2008-10-09 | 2009-02-04 | 中国航空工业第一集团公司北京航空材料研究院 | A test method for corrosion solution fatigue small crack growth |
CN101441154A (en) * | 2008-12-23 | 2009-05-27 | 华东理工大学 | High precision microscopic fatigue tester |
CN101666740A (en) * | 2009-09-28 | 2010-03-10 | 清华大学 | Measuring device of micro scale dynamic response |
Non-Patent Citations (1)
Title |
---|
研究型金相显微镜及其进展;潘典三;《武汉工学院学报》;19891231;95-103 * |
Also Published As
Publication number | Publication date |
---|---|
CN102679931A (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102679931B (en) | Novel method for measuring fatigue crack propagation length in situ | |
CN110658067A (en) | Method for judging rock crack stress threshold value based on full-field strain measurement | |
CN209606222U (en) | A kind of Fracture of Metal Material toughness specimen crack length on-Line Monitor Device | |
CN107247020A (en) | A kind of reinforcing bar and concrete drawing experimental rig for eliminating high temperature influence | |
CN105527311B (en) | Mass concrete meso fracture pilot system | |
CN106872299A (en) | A kind of method for predicting magnesium alloy component fatigue limit | |
CN105758723B (en) | A kind of linear gradient material crack spreading rate test method | |
CN103884595B (en) | Casting sand five intensity vertical device for testing and the sand bond acquisition methods based on this device | |
CN102854302A (en) | Testing device and method for real-time measurement of cracking time and crack width of concrete at early age | |
CN106908336A (en) | The method that laser displacement gauge based on Orthogonal Decomposition tests detrusion | |
CN109870258A (en) | An Instrumented Spherical Indentation Detection Method for Planar Arbitrary Residual Stress | |
CN106017276A (en) | Crankshaft center distance detecting tool | |
CN105548202A (en) | Automatic concrete shrinkage crack monitoring system | |
CN109870355B (en) | Method for automatic measurement of elongation after fracture of metal plate specimens under uniaxial tension | |
CN109870354B (en) | Method for automatic measurement of elongation after fracture of metal round bar specimens under uniaxial tension | |
CN110031281A (en) | A kind of method of determining steel type | |
CN110907270A (en) | Method for predicting fatigue life by using weak magnetic signal of ferromagnetic material | |
CN111678990B (en) | Ultrasonic fatigue crack growth rate measurement method based on natural frequency | |
CN201382880Y (en) | A Connecting Rod Chuck for Displacement Measurement of Loading Line of Small CT Specimen | |
CN107741368B (en) | Test system for three-dimensional structure internal crack propagation test | |
CN221765116U (en) | A compressive testing device for construction engineering | |
CN206618699U (en) | A kind of Fatigue Crack Growth Rate of Metallic Materials self-operated measuring unit | |
CN209432829U (en) | A kind of evaluating apparatus of cement base self-repair material repairing performance | |
CN110031292A (en) | The online instant measuring system and method for cylindrical structure fatigue growth of surface cracks | |
CN117473702A (en) | Method for predicting fatigue failure origin type of additive manufacturing metal material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150506 Termination date: 20190510 |