CN102675594A - High-elasticity-modulus cyanate ester/bismaleimide resin compound - Google Patents
High-elasticity-modulus cyanate ester/bismaleimide resin compound Download PDFInfo
- Publication number
- CN102675594A CN102675594A CN2012101694400A CN201210169440A CN102675594A CN 102675594 A CN102675594 A CN 102675594A CN 2012101694400 A CN2012101694400 A CN 2012101694400A CN 201210169440 A CN201210169440 A CN 201210169440A CN 102675594 A CN102675594 A CN 102675594A
- Authority
- CN
- China
- Prior art keywords
- bismaleimide
- cyanate
- bisoxazoline
- phenylene
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
本发明涉及一种高弹性模量的氰酸酯/双马来酰亚胺树脂组合物,所述树脂的原料由氰酸酯单体、双马来酰亚胺单体、双噁唑啉化合物、3官能度或4官能度的缩水甘油胺类环氧化合物组成,将3官能度或4官能度的缩水甘油胺类环氧化合物引入到氰酸酯/双马来酰亚胺/双噁唑啉树脂中,通过共固化反应,得到了高玻璃化转变温度和高弹性模量的热固性树脂材料。不仅能够促进树脂的固化反应,还能够提高固化树脂的弹性模量和玻璃化转变温度等性能。The present invention relates to a kind of cyanate ester/bismaleimide resin combination of high elastic modulus, the raw material of described resin is by cyanate ester monomer, bismaleimide monomer, bisoxazoline compound , 3-functionality or 4-functionality glycidylamine epoxy compound composition, the 3-functionality or 4-functionality glycidylamine epoxy compound is introduced into cyanate/bismaleimide/bisoxazole In the phylloline resin, a thermosetting resin material with a high glass transition temperature and a high elastic modulus is obtained through a co-curing reaction. It can not only promote the curing reaction of the resin, but also improve the elastic modulus and glass transition temperature of the cured resin.
Description
技术领域 technical field
本发明涉及一种高弹性模量的氰酸酯/双马来酰亚胺树脂组合物。 The invention relates to a cyanate ester/bismaleimide resin composition with high elastic modulus.
背景技术 Background technique
热固性树脂是一类重要的聚合物材料,通常用作制备复合材料的基体。 Thermosetting resins are an important class of polymer materials, usually used as a matrix for the preparation of composite materials.
复合材料的一个性能缺点是它的弹性模量低,一般要比金属材料低10倍左右。这是因为在复合材料中,基体(热固性树脂)的模量远小于增强材料(如纤维、颗粒等),这在复合材料受力时,往往由于刚度不够而产生较大的变形。在复合材料受到较大的应力(如压缩、剪切)时,基体先于增强材料达到屈服,产生微裂纹,不能有效地支撑纤维和传递应力。如果应力持续增大,基体将先于增强材料破坏,导致复合材料的力学性能急剧下降直至破坏。因此,要保持或提高复合材料的性能,关键是提高基体树脂的模量。 A performance disadvantage of composite materials is their low elastic modulus, which is generally about 10 times lower than that of metal materials. This is because in composite materials, the modulus of the matrix (thermosetting resin) is much smaller than that of the reinforcing materials (such as fibers, particles, etc.), which often cause large deformation due to insufficient stiffness when the composite material is stressed. When the composite material is subject to greater stress (such as compression, shearing), the matrix yields before the reinforcement material, resulting in microcracks, which cannot effectively support the fibers and transmit stress. If the stress continues to increase, the matrix will be destroyed before the reinforced material, resulting in a sharp decline in the mechanical properties of the composite until it fails. Therefore, to maintain or improve the performance of composite materials, the key is to increase the modulus of the matrix resin.
提高热固性树脂模量的途径和方法有:(1)增加分子链的刚性,主要是在单体树脂的化学结构中引入芳环、杂环基团;(2)增加分子链的极性,主要是在单体树脂的化学结构中引入极性基团,如酰胺基、酯基等;(3)适度提高交联度,减弱分子链的相对滑移;(4)添加纳米粒子。其中前三种方式是通过化学手段来提高热固性树脂的模量,后一种方式则属于物理手段。 Ways and methods to increase the modulus of thermosetting resins are: (1) increase the rigidity of the molecular chain, mainly by introducing aromatic rings and heterocyclic groups into the chemical structure of the monomer resin; (2) increase the polarity of the molecular chain, mainly It is to introduce polar groups into the chemical structure of the monomer resin, such as amide groups, ester groups, etc.; (3) moderately increase the degree of crosslinking and weaken the relative slippage of molecular chains; (4) add nanoparticles. Among them, the first three ways are to increase the modulus of thermosetting resin by chemical means, and the latter way belongs to physical means.
发明人在前期的研究中,提出了一种“氰酸酯/双马来酰亚胺共固化树脂” (氰酸酯/双马来酰亚胺共固化树脂及其制备方法ZL200910052207.2),该树脂属于耐高温、高强度、低介电常数和低介电损耗的高性能热固性树脂,固化树脂的弯曲模量为4.5~4.7。对于某些苛刻的使用环境,仍然存在着模量不够大的问题,有待进一步改进。 In the previous research, the inventor proposed a "cyanate/bismaleimide co-curing resin" (cyanate/bismaleimide co-curing resin and its preparation method ZL200910052207.2), The resin is a high-performance thermosetting resin with high temperature resistance, high strength, low dielectric constant and low dielectric loss, and the flexural modulus of the cured resin is 4.5~4.7. For some harsh use environments, there is still the problem that the modulus is not large enough, which needs further improvement.
发明人发现,多官能团缩水甘油胺类环氧能够作为一种交联剂,通过与氰酸酯等组分发生固化反应,提高固化树脂的交联密度,从而提高其弹性模量和玻璃化转变温度等宏观物理性能。 The inventors have found that multifunctional glycidylamine epoxy can be used as a crosslinking agent to increase the crosslinking density of the cured resin by reacting with components such as cyanate esters, thereby increasing its modulus of elasticity and glass transition Macroscopic physical properties such as temperature.
发明内容 Contents of the invention
本发明的目的在于提出一种高弹性模量的氰酸酯/双马来酰亚胺树脂组合物。 The object of the present invention is to propose a kind of high elastic modulus cyanate/bismaleimide resin composition.
发明人在ZL200910052207.2专利中提出的氰酸酯/双马来酰亚胺/双噁唑啉共固化树脂,是一类具有高玻璃化转变温度、高强度、低介电常数和低介电损耗的高性能热固性基体树脂。发明人发现,在此基体树脂组成的基础上,通过引入3官能度和4官能度的环氧组分,能够有效地提固化树脂的宏观物理性能,特别是弹性模量和耐热性能。 The cyanate ester/bismaleimide/bisoxazoline co-curing resin proposed by the inventor in the ZL200910052207.2 patent is a class of resin with high glass transition temperature, high strength, low dielectric constant and low dielectric Loss of high performance thermosetting matrix resin. The inventors found that on the basis of the composition of the matrix resin, the macroscopic physical properties of the cured resin, especially the elastic modulus and heat resistance, can be effectively improved by introducing trifunctional and tetrafunctional epoxy components.
环氧化合物自身能够与氰酸酯或双马来酰亚胺发生固化反应,形成具有共固化结构的热固性树脂材料。发明人发现,在氰酸酯/双马来酰亚胺/双噁唑啉树脂体系中,加入缩水甘油胺类环氧化合物时,缩水甘油胺环氧中的叔胺化学结构对氰酸酯的固化反应将会起到一定的催化作用,有利于提高固化过程中单体的转化率,促进固化反应的完成。同时,多官能度的缩水甘油胺类环氧是一种高效率的交联剂,能够增大固化树脂的交联密度,提高树脂的弹性模量、玻璃化转变温度等性能。 The epoxy compound itself can undergo a curing reaction with cyanate ester or bismaleimide to form a thermosetting resin material with a co-cured structure. The contriver finds, in cyanate ester/bismaleimide/bisoxazoline resin system, when adding glycidyl amine epoxy compound, the tertiary amine chemical structure in glycidyl amine epoxy is opposite to cyanate ester The curing reaction will play a certain catalytic role, which is beneficial to improve the conversion rate of the monomer in the curing process and promote the completion of the curing reaction. At the same time, the polyfunctional glycidylamine epoxy is a high-efficiency crosslinking agent, which can increase the crosslinking density of the cured resin, improve the elastic modulus, glass transition temperature and other properties of the resin.
本发明提出的高弹性模量的氰酸酯/双马来酰亚胺树脂组合物,所述树脂的原料由氰酸酯单体、双马来酰亚胺单体、双噁唑啉化合物、3官能度或4官能度的缩水甘油胺类环氧化合物组成,其组份的重量百分比为: The cyanate ester/bismaleimide resin composition of the high elastic modulus that the present invention proposes, the raw material of described resin is by cyanate ester monomer, bismaleimide monomer, bisoxazoline compound, The glycidyl amine epoxy compound of 3 functionalities or 4 functionalities is composed, and the weight percent of its component is:
氰酸酯单体 5-45% Cyanate monomer 5-45%
双马来酰亚胺单体 5-30% Bismaleimide monomer 5-30%
双噁唑啉化合物 1-15% Bisoxazoline Compounds 1-15%
其余为3官能度或4官能度缩水甘油胺环氧化合物,其总重量满足100%。 The rest are trifunctional or quadrifunctional glycidylamine epoxy compounds, the total weight of which satisfies 100%.
本发明中,所述氰酸酯单体包括:双酚A型氰酸酯(4,4’-二氰酸酯基苯基-丙烷,BADCy)、双酚L型氰酸酯(4,4’-二氰酸酯基苯基-乙烷, BEDCy)、双酚M型氰酸酯(4,4'-[1,3-苯基双(1-甲基-亚乙基)]双苯基氰酸酯)或酚醛型氰酸酯(PT)等中任一种,也可以是其预聚物等中任一种。 In the present invention, the cyanate monomer includes: bisphenol A type cyanate (4,4'-dicyanatophenyl-propane, BADCy), bisphenol L type cyanate (4,4 '-dicyanatophenyl-ethane, BEDCy), bisphenol M-type cyanate (4,4'-[1,3-phenylbis(1-methyl-ethylene)]bisphenyl cyanate) or phenolic cyanate (PT), etc., or any of its prepolymers.
本发明中,所述双马来酰亚胺单体包括:4,4’-二苯甲烷双马来酰亚胺(BDM)、N,N-间苯撑双马来酰亚胺、4,4’-二苯醚双马来酰亚胺或4,4’-二苯砜双马来酰亚胺等中任一种。 In the present invention, the bismaleimide monomer includes: 4,4'-diphenylmethane bismaleimide (BDM), N, N-m-phenylene bismaleimide, 4, Any of 4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, and the like.
本发明中,所述双噁唑啉化合物包括:2,2’-(1,4-亚苯基)-二噁唑啉、2,2’-(1,3-亚苯基)-二噁唑啉、2,2’-(1,4-亚苯基)-4-甲基-二噁唑啉、2,2’-(1,3-亚苯基)-4-甲基-二噁唑啉、2,2’-(1,4-亚苯基)-4,4’-二甲基-二噁唑啉、2,2’-(1,3-亚苯基)-4,4’-二甲基-二噁唑啉、2,2’-乙撑双(2-噁唑啉)、2,2’-亚辛基双(2-噁唑啉)、2,2’-乙撑双(4-甲基-2-噁唑啉)或端噁唑啉聚醚等中任一种。 In the present invention, the bisoxazoline compounds include: 2,2'-(1,4-phenylene)-bisoxazoline, 2,2'-(1,3-phenylene)-diox Azoline, 2,2'-(1,4-phenylene)-4-methyl-bisoxazoline, 2,2'-(1,3-phenylene)-4-methyl-dioxa Azoline, 2,2'-(1,4-phenylene)-4,4'-dimethyl-bisoxazoline, 2,2'-(1,3-phenylene)-4,4 '-Dimethyl-bisoxazoline, 2,2'-ethylenebis(2-oxazoline), 2,2'-octylenebis(2-oxazoline), 2,2'-ethane Any of bis(4-methyl-2-oxazoline) or oxazoline-terminated polyether.
本发明中,所述的3官能度或4官能度缩水甘油胺类环氧化合物包括:三缩水甘油基对氨基苯酚(如AFG-90等)、4,4'- 二氨基二苯甲烷环氧树脂(如AG-80 、SKE-3等)、四缩水甘油基-4,4'-二氨基二苯醚(4,4'-TGDDE,商品牌号SKE-1)或四缩水甘油基-3,4'-二氨基二苯醚(3,4'-TGDDE,商品牌号SKE-2)等中一种以上。 In the present invention, the 3-functionality or 4-functionality glycidylamine epoxy compound includes: triglycidyl p-aminophenol (such as AFG-90, etc.), 4,4'-diaminodiphenylmethane epoxy compound Resin (such as AG-80, SKE-3, etc.), tetraglycidyl-4,4'-diaminodiphenyl ether (4,4'-TGDDE, brand name SKE-1) or tetraglycidyl-3, More than one of 4'-diaminodiphenyl ether (3,4'-TGDDE, brand name SKE-2), etc.
本发明提出的高弹性模量的热固性树脂组合物可以通过熔融混合的方法制备得到:即将各组分按配比称量后,在80~120℃,充分熔融混合均匀,得到未固化树脂。未固化树脂用DMF、丁酮或丙酮等普通溶剂溶解,并配制成一定浓度的胶液,就可以浸渍增强材料,如玻璃布、碳纤维布等,用于成型复合材料。 The thermosetting resin composition with high elastic modulus proposed by the present invention can be prepared by melt mixing: after weighing each component according to the proportion, fully melt and mix at 80-120°C to obtain an uncured resin. The uncured resin is dissolved in a common solvent such as DMF, butanone or acetone, and formulated into a certain concentration of glue, which can be impregnated with reinforcing materials, such as glass cloth, carbon fiber cloth, etc., for forming composite materials.
本发明的优点在于:将3官能度或4官能度的缩水甘油胺类环氧化合物引入到氰酸酯/双马来酰亚胺/双噁唑啉改性树脂中,不仅能够促进树脂的固化反应,还能够提高固化树脂的弹性模量和玻璃化转变温度等性能。 The advantage of the present invention is that the glycidylamine epoxy compound with trifunctionality or quadrifunctionality is introduced into the cyanate/bismaleimide/bisoxazoline modified resin, which not only can accelerate the curing of the resin The reaction can also improve properties such as elastic modulus and glass transition temperature of the cured resin.
具体实施方式 Detailed ways
下面通过实施例进一步说明本发明。 The present invention is further illustrated below by way of examples.
实施例1Example 1
称取40.0g双酚A型氰酸酯(BADCy)和6.5g四缩水甘油基-4,4'-二氨基二苯醚(4,4'-TGDDE)于烧杯中,加热至熔融,然后加入15.0 g 4,4’-二苯甲烷双马来酰亚胺,8.5g 2,2’-(1,3-亚苯基)-二噁唑啉,在80~120℃的温度下熔解、搅拌均匀,得到未固化改性树脂。 Weigh 40.0g of bisphenol A cyanate (BADCy) and 6.5g of tetraglycidyl-4,4'-diaminodiphenyl ether (4,4'-TGDDE) in a beaker, heat to melt, then add 15.0 g 4,4'-diphenylmethanebismaleimide, 8.5g 2,2'-(1,3-phenylene)-bisoxazoline, melt and stir at 80~120℃ Uniform, uncured modified resin is obtained.
未固化树脂在80℃真空干燥箱中脱气15分钟,然后倒入涂有硅酯脱模剂的模具中,在电子烘箱中按150℃/1h + 180℃/1h + 200℃/2h的固化工艺进行固化,后固化条件为240℃/3h。得到的固化树脂为深棕红色固体,玻璃化转变温度294℃(DMA法),弯曲强度142.3MPa,弯曲模量5.7GPa。 The uncured resin is degassed in a vacuum oven at 80°C for 15 minutes, then poured into a mold coated with a silicone ester release agent, and cured in an electronic oven at 150°C/1h + 180°C/1h + 200°C/2h The curing process is carried out, and the post-curing condition is 240°C/3h. The obtained cured resin was a dark brown-red solid with a glass transition temperature of 294° C. (DMA method), a flexural strength of 142.3 MPa, and a flexural modulus of 5.7 GPa.
实施例2Example 2
称取25g双酚A型氰酸酯(BADCy),15 g 4,4’-二苯甲烷双马来酰亚胺,10 g 2,2’-(1,3-亚苯基)-二噁唑啉,20g四缩水甘油基-4,4'-二氨基二苯醚(4,4'-TGDDE),其余与实施例1同。 Weigh 25g bisphenol A cyanate (BADCy), 15 g 4,4'-diphenylmethane bismaleimide, 10 g 2,2'-(1,3-phenylene)-diox Azoline, 20g tetraglycidyl-4,4'-diaminodiphenyl ether (4,4'-TGDDE), and the rest are the same as in Example 1.
固化树脂的玻璃化转变温度288.4℃(DMA法),弯曲强度134.3MPa,弯曲模量5.6GPa。 The glass transition temperature of the cured resin is 288.4°C (DMA method), the flexural strength is 134.3MPa, and the flexural modulus is 5.6GPa.
实施例3Example 3
称取35g酚醛型氰酸酯(PT),25 g 4,4’-二苯甲烷双马来酰亚胺,6 g 2,2’-(1,3-亚苯基)-二噁唑啉,35g4,4'- 二氨基二苯甲烷环氧树脂,其余与实施例1同。 Weigh 35g phenolic cyanate (PT), 25 g 4,4'-diphenylmethane bismaleimide, 6 g 2,2'-(1,3-phenylene)-bisoxazoline , 35g4,4'-diaminodiphenylmethane epoxy resin, all the other are the same as embodiment 1.
固化树脂的玻璃化转变温度335.5℃(DMA法),弯曲强度100.6MPa,弯曲模量6.2GPa。 The glass transition temperature of the cured resin is 335.5°C (DMA method), the flexural strength is 100.6MPa, and the flexural modulus is 6.2GPa.
实施例4Example 4
称取35g 4,4’-二氰酸酯基苯基-乙烷(BEDCy),25g N,N-间苯撑双马来酰亚胺,9 g 2,2’-(1,3-亚苯基)-二噁唑啉,21g三缩水甘油基对氨基苯酚,其余与实施例1同。 Weigh 35g 4,4'-dicyanatophenyl-ethane (BEDCy), 25g N,N-m-phenylene bismaleimide, 9 g 2,2'-(1,3- Phenyl)-bisoxazoline, 21g triglycidyl p-aminophenol, all the other are the same with embodiment 1.
固化树脂的玻璃化转变温度263.4℃(DMA法),弯曲强度146.4MPa,弯曲模量4.9GPa。 The glass transition temperature of the cured resin is 263.4°C (DMA method), the flexural strength is 146.4MPa, and the flexural modulus is 4.9GPa.
对比例:Comparative example:
称取90g双酚A型氰酸酯(BADCy)于烧杯中,加热至熔融,然后加入10 g 4,4’-二苯甲烷双马来酰亚胺,9g 2,2’-(1,3-亚苯基)-二噁唑啉,树脂的制备过程同实施例1。得到的固化树脂玻璃化转变温度286℃(DMA法),弯曲强度111.8MPa,弯曲模量4.5GPa。 Weigh 90g bisphenol A type cyanate (BADCy) in a beaker, heat to melt, then add 10 g 4,4'-diphenylmethane bismaleimide, 9g 2,2'-(1,3 -phenylene)-bisoxazoline, the preparation process of resin is the same as embodiment 1. The obtained cured resin had a glass transition temperature of 286° C. (DMA method), a flexural strength of 111.8 MPa, and a flexural modulus of 4.5 GPa.
由实施例与对比例的比较,本发明的氰酸酯/双马来酰亚胺/双噁唑啉/缩水甘油胺树脂固化得到高玻璃化转变温度的固化树脂,其弯曲弹性模量较不加缩水甘油胺环氧交联剂的固化树脂有了较大幅度的提高。 By the comparison of embodiment and comparative example, cyanate ester/bismaleimide/bisoxazoline/glycidylamine resin of the present invention cures and obtains the cured resin of high glass transition temperature, and its flexural modulus of elasticity is less The cured resin with glycidylamine epoxy crosslinking agent has been greatly improved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101694400A CN102675594A (en) | 2012-05-29 | 2012-05-29 | High-elasticity-modulus cyanate ester/bismaleimide resin compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101694400A CN102675594A (en) | 2012-05-29 | 2012-05-29 | High-elasticity-modulus cyanate ester/bismaleimide resin compound |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102675594A true CN102675594A (en) | 2012-09-19 |
Family
ID=46808189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101694400A Pending CN102675594A (en) | 2012-05-29 | 2012-05-29 | High-elasticity-modulus cyanate ester/bismaleimide resin compound |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102675594A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103665326A (en) * | 2013-09-26 | 2014-03-26 | 同济大学 | Thermosetting cyanate/bismaleimide resin composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481490A (en) * | 2009-01-19 | 2009-07-15 | 东莞联茂电子科技有限公司 | Thermosetting resin composition and application thereof |
CN101597371A (en) * | 2009-05-26 | 2009-12-09 | 同济大学 | High-toughness cyanate ester co-curing resin and its preparation method and application |
CN102336892A (en) * | 2011-06-29 | 2012-02-01 | 同济大学 | Modified cyanate ester resin system for package substrate, and preparation method and application thereof |
-
2012
- 2012-05-29 CN CN2012101694400A patent/CN102675594A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481490A (en) * | 2009-01-19 | 2009-07-15 | 东莞联茂电子科技有限公司 | Thermosetting resin composition and application thereof |
CN101597371A (en) * | 2009-05-26 | 2009-12-09 | 同济大学 | High-toughness cyanate ester co-curing resin and its preparation method and application |
CN102336892A (en) * | 2011-06-29 | 2012-02-01 | 同济大学 | Modified cyanate ester resin system for package substrate, and preparation method and application thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103665326A (en) * | 2013-09-26 | 2014-03-26 | 同济大学 | Thermosetting cyanate/bismaleimide resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101597371B (en) | High-ductility co-cured resin of cyanate, preparation method and use thereof | |
CN105254848B (en) | Epoxy resin composition, prepreg, fiber reinforced composite material and manufacturing method thereof | |
CN101423650B (en) | High interlaminar shear strength epoxy resin base composite material and preparation method thereof | |
CN102030985B (en) | A kind of preparation method of carbon fiber reinforced cyanate resin matrix composite material | |
CN108276578B (en) | High-temperature-resistant high-toughness bismaleimide resin and preparation method and application thereof | |
CN106543647A (en) | A kind of high tenacity, low temperature resistant resin matrix and preparation method thereof | |
CN105400132B (en) | A kind of discontinuous fiber enhancing thermosetting resin based composites and preparation method thereof | |
CN107663268B (en) | Fast curing epoxy resin suitable for HP-RTM and preparation method thereof | |
CN105482141B (en) | A kind of continuous lod thermosetting resin based composites and preparation method thereof | |
CN104974346A (en) | Preparation method of liquid-crystal allyl-compound-modified bismaleimide resin | |
CN112961464A (en) | High-performance large-tow carbon fiber composite material and preparation method thereof | |
KR20140034245A (en) | Fibre reinforced composite moulding | |
CN101570598B (en) | Cyanate/bismaleimide co-cured resin and preparation method and application thereof | |
CN106751503A (en) | The high-modules carbon fibre prepreg preparation method of intermediate temperature setting epoxy-resin systems | |
CN110922616B (en) | Fiber reinforced polymer composite material and preparation method thereof | |
JP2011174045A5 (en) | ||
CN101570599B (en) | Cyanate/bisoxazoline co-cured resin and preparation method and application thereof | |
CN102702482B (en) | High-strength and high-modulus thermosetting resin composition | |
CN102675594A (en) | High-elasticity-modulus cyanate ester/bismaleimide resin compound | |
RU2572139C1 (en) | Method for obtaining carbon fibre-reinforced polymers based of heat-resistant binding agent | |
CN113004690B (en) | A kind of bismaleimide resin composition, its preparation method and application | |
CN103665326A (en) | Thermosetting cyanate/bismaleimide resin composition | |
CN104177827A (en) | Polysulfonamide-based carbon fiber reinforced composite material and preparation method thereof | |
CN102675632A (en) | Cyanate/bismaleimide/bisoxazoline/polyethylene glycol resin composition | |
CN103497310A (en) | High-strength and high-modulus modified cyanate ester resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120919 |