CN102675564B - Method for efficient graft polymerization of glycidyl methacrylate on surface of silica gel particle - Google Patents
Method for efficient graft polymerization of glycidyl methacrylate on surface of silica gel particle Download PDFInfo
- Publication number
- CN102675564B CN102675564B CN201210135384.9A CN201210135384A CN102675564B CN 102675564 B CN102675564 B CN 102675564B CN 201210135384 A CN201210135384 A CN 201210135384A CN 102675564 B CN102675564 B CN 102675564B
- Authority
- CN
- China
- Prior art keywords
- silica gel
- particles
- graft polymerization
- glycidyl methacrylate
- add
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims abstract description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 58
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000010559 graft polymerization reaction Methods 0.000 title claims abstract description 28
- 239000000741 silica gel Substances 0.000 title claims abstract description 24
- 229910002027 silica gel Inorganic materials 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 36
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 claims abstract description 21
- 125000003396 thiol group Chemical group [H]S* 0.000 claims abstract description 15
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 239000003999 initiator Substances 0.000 claims abstract description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 36
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 10
- 238000000967 suction filtration Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 6
- 229910052906 cristobalite Inorganic materials 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 229910052682 stishovite Inorganic materials 0.000 claims description 6
- 229910052905 tridymite Inorganic materials 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 2
- 239000000178 monomer Substances 0.000 abstract description 10
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 abstract 2
- 239000000203 mixture Substances 0.000 abstract 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 9
- 229920002521 macromolecule Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 239000011859 microparticle Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007210 heterogeneous catalysis Methods 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003622 immobilized catalyst Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- -1 mercapto-benzoyl peroxide Chemical compound 0.000 description 1
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Landscapes
- Graft Or Block Polymers (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法,涉及在硅胶微粒表面高效接枝PGMA的接枝聚合方法。包括以下步骤:将活化硅胶用γ-巯丙基三甲氧基硅烷进行表面改性,制得表面含巯基的改性硅胶微粒MPMS-SiO2;然后将MPMS-SiO2、N,N-二甲基甲酰胺和甲基丙烯酸缩水甘油酯混合,加入引发剂BPO,恒温并在搅拌条件下进行接枝聚合反应,即得到接枝微粒PGMA/SiO2。本发明利用巯基-BPO体系引发的接枝聚合,由于活性位点位于载体表面,故具有高的接枝度,实现了油溶性单体GMA在硅胶表面的高效接枝聚合。
The invention discloses a method for efficiently grafting glycidyl methacrylate on the surface of silica gel particles, and relates to a graft polymerization method for efficiently grafting PGMA on the surface of silica gel particles. The method comprises the following steps: modifying the surface of the activated silica gel with γ-mercaptopropyltrimethoxysilane to obtain MPMS-SiO 2 modified silica gel particles containing mercapto groups on the surface; Mix base formamide and glycidyl methacrylate, add initiator BPO, carry out graft polymerization under constant temperature and stirring conditions, and obtain grafted particles PGMA/SiO 2 . The invention utilizes the graft polymerization initiated by the mercapto-BPO system, has high grafting degree because the active site is located on the surface of the carrier, and realizes the high-efficiency graft polymerization of the oil-soluble monomer GMA on the surface of the silica gel.
Description
技术领域 technical field
本发明涉及在硅胶微粒表面高效接枝PGMA的接枝聚合方法,尤其涉及一种利用巯基-BPO氧化还原引发体系实现甲基丙烯酸缩水甘油酯在硅胶微粒表面的高效接枝聚合的方法。 The invention relates to a graft polymerization method for efficiently grafting PGMA on the surface of silica gel particles, in particular to a method for realizing high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles by using a mercapto-BPO redox initiation system.
背景技术 Background technique
将功能大分子接枝于无机微粒表面,使功能大分子的功能性与无机微粒优良的物理化学性能相互结合,是目前制备功能性复合微粒的重要途径。在无机微粒(微米级及纳米级)表面接枝功能大分子,可以赋予粒子许多新的特性,如吸附性能、化学活性、生物活性、生物相容性、光学活性及可分散性等,可广泛应用于色谱固定相、非均相催化、酶的固定化、生物大分子的分离、高性能吸附材料、传感器构建以及塑料的增强增韧等众多科学研究与实际应用领域。 Grafting functional macromolecules on the surface of inorganic particles to combine the functionality of functional macromolecules with the excellent physical and chemical properties of inorganic particles is an important way to prepare functional composite particles. Grafting functional macromolecules on the surface of inorganic particles (micron and nanoscale) can endow the particles with many new characteristics, such as adsorption performance, chemical activity, biological activity, biocompatibility, optical activity and dispersibility, etc., which can be widely used It is used in many scientific research and practical application fields such as chromatographic stationary phase, heterogeneous catalysis, enzyme immobilization, separation of biomacromolecules, high-performance adsorption materials, sensor construction, and reinforcement and toughening of plastics.
甲基丙烯酸缩水甘油酯(GMA)是一种含环氧基的烯类单体,通过均聚合或共聚合可制得带有环氧基团的聚合物大分子。环氧基团是一种活泼的基团,可与羧基、羟基及氨基等多种基团发生开环反应,将GMA聚合物转变为各种功能大分子。因此,将GMA接枝于固体微粒表面,可形成多种功能接枝微粒,在众多科技领域都有广泛的应用。比如,制备螯合材料及吸附剂,用于固相萃取、生物大分子的分离与纯化、环境治理、用作色谱固定相等;制备固载化催化剂,用于非均相催化;制备功能载体,用于构建药物的缓控释体系;还可构筑主-客体体系,用于分子识别以及构造生物传感器等等。总之,在固体微粒表面接枝聚合GMA具有重要的科学价值。 Glycidyl methacrylate (GMA) is an epoxy group-containing ethylenic monomer, and polymer macromolecules with epoxy groups can be prepared by homopolymerization or copolymerization. Epoxy group is a kind of active group, which can undergo ring-opening reaction with various groups such as carboxyl group, hydroxyl group and amino group, and transform GMA polymer into various functional macromolecules. Therefore, grafting GMA on the surface of solid particles can form a variety of functional grafted particles, which are widely used in many scientific and technological fields. For example, preparation of chelating materials and adsorbents for solid phase extraction, separation and purification of biomacromolecules, environmental treatment, and chromatographic fixation; preparation of immobilized catalysts for heterogeneous catalysis; preparation of functional carriers, It is used to build a slow and controlled release system for drugs; it can also build a host-guest system for molecular recognition and biosensor construction, etc. In conclusion, the graft polymerization of GMA on the surface of solid particles has important scientific value.
采用化学接枝法在固体微粒表面接枝大分子的方法,可分为“接枝到”(Grafting onto)法与“接出”(grafting from)法。前者是通过聚合物端基官能团与微粒材料表面活性基团之间的化学反应,将聚合物偶合接枝到微粒表面,故又被称为偶合接枝(coupling graft )法;后者则是通过在微粒材料表面引入可以聚合的活性位点(或可聚合双键或引发基团)使单体从微粒表面开始发生聚合,实现接枝聚合。“接出”法具有接枝度高的优点,故被广泛应用。 The method of grafting macromolecules on the surface of solid particles by chemical grafting can be divided into "grafting onto" (Grafting onto) method and "grafting from" (grafting from) method. The former is through the chemical reaction between the polymer terminal functional group and the surface active group of the particle material, and the polymer is coupled and grafted to the surface of the particle, so it is also called coupling grafting (coupling graft) method; the latter is through The introduction of polymerizable active sites (or polymerizable double bonds or initiating groups) on the surface of particulate materials allows monomers to polymerize from the surface of the particles to achieve graft polymerization. The "grafting" method has the advantage of high grafting degree, so it is widely used.
在“接出”法中,若在固体微粒表面引入引发基团,由于引发物种位于微粒表面,故接枝聚合的效率更高。但是,由于固体微粒表面具有的可改性基团经常被覆盖,必须经过特殊的活化处理才能使这些基团裸露出来,所以要实现在固体微粒表面引入引发基团往往是比较困难的。 In the "grafting out" method, if the initiating group is introduced on the surface of the solid particle, the efficiency of graft polymerization is higher because the initiating species is located on the surface of the particle. However, since the modifiable groups on the surface of solid particles are often covered, special activation treatment is required to expose these groups, so it is often difficult to introduce initiating groups on the surface of solid particles.
发明内容 Contents of the invention
本发明的目的是提供一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法。 The purpose of the present invention is to provide a method for high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles.
本发明根据分子设计的思路,设法将巯基引入微米级硅胶微粒表面,构成巯基-过氧化苯甲酰(BPO)氧化还原引发体系,在硅胶微粒表面产生自由基,实现了甲基丙烯酸缩水甘油酯(GMA)在硅胶表面的接枝聚合,从而制得高接枝度的复合微粒PGMA/SiO2。 According to the idea of molecular design, the present invention manages to introduce mercapto groups into the surface of micron-sized silica gel particles to form a mercapto-benzoyl peroxide (BPO) redox initiation system, generate free radicals on the surface of silica gel particles, and realize glycidyl methacrylate (GMA) graft polymerization on the surface of silica gel to prepare composite particles PGMA/SiO 2 with high grafting degree.
本发明是通过以下技术方案实现的: The present invention is achieved through the following technical solutions:
一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法,包括以下步骤: A method for high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles, comprising the following steps:
(1)活化硅胶表面的巯基改性:将2-3g活化硅胶加入到125mL甲苯中,并加入2-3mL的γ-巯丙基三甲氧基硅烷(MPMS),在110-115℃下反应10-12h,抽滤后的产物用甲苯反复洗涤,之后再用乙醇洗涤,真空干燥,即制得表面含巯基的改性硅胶微粒MPMS-SiO2; (1) Mercapto group modification on the surface of activated silica gel: add 2-3g activated silica gel to 125mL toluene, and add 2-3mL γ-mercaptopropyltrimethoxysilane (MPMS), react at 110-115°C for 10 -12h, the product after suction filtration was repeatedly washed with toluene, then washed with ethanol, and dried in vacuum to obtain modified silica gel particles MPMS-SiO 2 containing mercapto groups on the surface;
(2)甲基丙烯酸缩水甘油酯的接枝聚合:在装有电动搅拌器、回流冷凝管及温度计的四口烧瓶中加入1-2g MPMS-SiO2,再加入70mLN,N-二甲基甲酰胺DMF和7-9mL甲基丙烯酸缩水甘油酯(单体GMA),通氮气30min,以排除体系中的空气,然后将体系的温度升至55℃,加入0.08-0.09g引发剂BPO,恒温并在搅拌条件下进行接枝聚合反应,反应结束后,抽滤,将产物微粒在索氏抽提器中用丙酮抽提24h,以除去物理吸附在微粒表面的聚合物,然后进行真空干燥,即得到接枝微粒PGMA/SiO2。 (2) Graft polymerization of glycidyl methacrylate: Add 1-2g MPMS-SiO 2 to a four-neck flask equipped with an electric stirrer, reflux condenser and thermometer, and then add 70mL N, N-dimethylformaldehyde Amide DMF and 7-9mL glycidyl methacrylate (monomer GMA), blow nitrogen for 30 minutes to remove the air in the system, then raise the temperature of the system to 55°C, add 0.08-0.09g initiator BPO, keep the temperature and Carry out the graft polymerization reaction under stirring conditions, after the reaction is finished, suction filtration, the product particles are extracted with acetone in a Soxhlet extractor for 24 hours, to remove the polymer physically adsorbed on the surface of the particles, and then vacuum-dried, that is The grafted microparticles PGMA/SiO 2 were obtained.
在巯基-BPO引发体系作用下,单体GMA表面引发接枝聚合的反应过程如图式1所示。 Under the action of the mercapto-BPO initiator system, the reaction process of the graft polymerization initiated on the surface of the monomer GMA is shown in Figure 1.
三种微粒SiO2、MPMS-SiO2和PGMA/SiO2的红外光谱图如图2所示,从图中可以看出,与SiO2的红外光谱相比,在改性微粒MPMS-SiO2的红外谱图中,3440cm-1附近与硅羟基相关的吸收峰,已大为减弱,与此同时在2566cm-1处出现了巯基S-H键的伸缩振动吸收峰,在2920cm-1处C-H键的不对称伸缩振动吸收峰明显加强,表明偶联剂MPMS与硅羟基发生了反应,已键合在硅胶微粒表面,在接枝微粒PGMA/SiO2的红外谱图中,于908cm-1处和1740cm-1处分别出现了PGMA的环氧基和酯羰基的特征吸收峰,充分表明接枝微粒PGMA/SiO2的形成。 The infrared spectra of three kinds of particulate SiO 2 , MPMS-SiO 2 and PGMA/SiO 2 are shown in Figure 2. It can be seen from the figure that compared with the infrared spectrum of SiO 2 , the modified particulate MPMS-SiO 2 In the infrared spectrogram, the absorption peak related to silanol near 3440cm -1 has been greatly weakened. At the same time, the stretching vibration absorption peak of the mercapto SH bond appeared at 2566cm -1 , and the non-CH bond at 2920cm -1 The absorption peak of symmetrical stretching vibration is obviously strengthened, indicating that the coupling agent MPMS has reacted with the silicon hydroxyl group and has been bonded on the surface of silica gel particles . The characteristic absorption peaks of epoxy group and ester carbonyl group of PGMA appeared in 1 place, which fully indicated the formation of grafted particle PGMA/SiO 2 .
SiO2微粒与接枝微粒PGMA/SiO2的扫描电镜照片如图3、4所示,从图3中看到,接枝前SiO2颗粒表面比较粗糙,凹凸不平;而从图4中看到,接枝后SiO2颗粒表面明显变得较为光滑,这是由于接枝在硅胶表面的聚苯乙烯的填补包覆作用所致。 The scanning electron micrographs of SiO2 particles and grafted particles PGMA/ SiO2 are shown in Figures 3 and 4. It can be seen from Figure 3 that the surface of SiO2 particles before grafting is rough and uneven; and it can be seen from Figure 4 , the surface of SiO 2 particles obviously becomes smoother after grafting, which is due to the filling and covering effect of polystyrene grafted on the surface of silica gel.
改性微粒MPMS-SiO2和接枝微粒PGMA/SiO2的热失重谱图如图5所示,采用无机微粒接枝聚合物体系热失重谱线的一般方法对图5 进行分析:由图可以看出,改性微粒MPMS-SiO2与接枝微粒PGMA/SiO2均在140℃附近明显分解失重(之前为吸附水的挥发失重),改性微粒于730℃分解完毕,失重10.73%,相应于偶联剂MPMS的键合量(与碘量法测定结果吻合);接枝微粒于750℃分解完毕,失重33.78%。 The thermogravimetric spectrum of modified microparticle MPMS- SiO2 and grafted microparticle PGMA/ SiO2 is shown in Figure 5, which is analyzed by the general method of thermogravimetric line of inorganic microparticle grafted polymer system: from the figure It can be seen that both the modified particle MPMS-SiO 2 and the grafted particle PGMA/SiO 2 decompose and lose weight at around 140°C (previously it was the volatilization weight loss of adsorbed water), and the modified particle is completely decomposed at 730°C, with a weight loss of 10.73%, corresponding to The amount of bonds to the coupling agent MPMS (consistent with the results of the iodometric method); the grafted particles were decomposed at 750°C, and the weight loss was 33.78%.
与现有技术相比,本发明具有以下优点: Compared with the prior art, the present invention has the following advantages:
本发明利用巯基-BPO体系引发的接枝聚合,由于活性位点位于载体表面,故具有高的接枝度,实现了油溶性单体GMA在硅胶表面的高效接枝聚合。 The invention utilizes the graft polymerization initiated by the mercapto-BPO system, has high grafting degree because the active site is located on the surface of the carrier, and realizes the high-efficiency graft polymerization of the oil-soluble monomer GMA on the surface of the silica gel.
附图说明 Description of drawings
图1为甲基丙烯酸缩水甘油酯在硅胶表面的接枝过程的化学反应过程; Fig. 1 is the chemical reaction process of the grafting process of glycidyl methacrylate on the surface of silica gel;
图2为三种微粒SiO2、MPMS-SiO2和PGMA/SiO2的红外光谱图; Figure 2 is the infrared spectrum of three kinds of particles SiO 2 , MPMS-SiO 2 and PGMA/SiO 2 ;
图3为SiO2微粒的扫描电镜; Figure 3 is a scanning electron microscope of SiO particles ;
图4为接枝微粒PGMA/SiO2的扫描电镜; Fig. 4 is the scanning electron microscope of graft particle PGMA/SiO 2 ;
图5为改性微粒MPMS-SiO2和接枝微粒PGMA/SiO2的热失重谱图。 Fig. 5 is the thermogravimetric spectrum of modified particle MPMS-SiO 2 and grafted particle PGMA/SiO 2 .
具体实施方式 Detailed ways
实施例1 Example 1
一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法,包括以下步骤: A method for high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles, comprising the following steps:
(1)活化硅胶表面的巯基改性:将2g活化硅胶加入到125mL甲苯中,并加入2mL的γ-巯丙基三甲氧基硅烷(MPMS),在110℃下反应11h,抽滤后的产物用甲苯反复洗涤,之后再用乙醇洗涤,真空干燥,即制得表面含巯基的改性硅胶微粒MPMS-SiO2; (1) Mercapto group modification on the surface of activated silica gel: Add 2g of activated silica gel to 125mL of toluene, and add 2mL of γ-mercaptopropyltrimethoxysilane (MPMS), react at 110°C for 11h, and the product after suction filtration Repeatedly washing with toluene, then washing with ethanol, and drying in vacuum, the modified silica gel particles MPMS-SiO 2 containing mercapto groups on the surface are obtained;
(2)甲基丙烯酸缩水甘油酯的接枝聚合:在装有电动搅拌器、回流冷凝管及温度计的四口烧瓶中加入1g MPMS-SiO2,再加入70mLN,N-二甲基甲酰胺DMF和7.5mL甲基丙烯酸缩水甘油酯(单体GMA),通氮气30min,以排除体系中的空气,然后将体系的温度升至55℃,加入0.08g引发剂BPO,恒温并在搅拌条件下进行接枝聚合反应,反应结束后,抽滤,将产物微粒在索氏抽提器中用丙酮抽提24h,以除去物理吸附在微粒表面的聚合物,然后进行真空干燥,即得到接枝微粒PGMA/SiO2。 (2) Graft polymerization of glycidyl methacrylate: Add 1g of MPMS-SiO 2 to a four-necked flask equipped with an electric stirrer, reflux condenser and thermometer, and then add 70mL of N, N-dimethylformamide DMF and 7.5mL of glycidyl methacrylate (monomer GMA), blow nitrogen for 30 minutes to remove the air in the system, then raise the temperature of the system to 55°C, add 0.08g of initiator BPO, keep the temperature constant and carry out under stirring conditions Grafting polymerization reaction, after the reaction, suction filtration, the product particles were extracted with acetone in a Soxhlet extractor for 24 hours to remove the polymer physically adsorbed on the surface of the particles, and then vacuum-dried to obtain grafted particles PGMA /SiO 2 .
采用热失重法测得接枝微粒PGMA/SiO2表面PGMA的接枝度为24.4g/100g。 The degree of grafting of PGMA on the surface of grafted particle PGMA/SiO 2 was measured by thermogravimetric method to be 24.4g/100g.
实施例2 Example 2
一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法,包括以下步骤: A method for high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles, comprising the following steps:
(1)硅胶的活化:取30g的硅胶微粒置于150mL浓度为8%的甲烷磺酸水溶液中,在回流温度下搅拌活化8h,活化后的硅胶用蒸馏水反复洗涤至中性,抽滤,真空干燥,得到活化硅胶; (1) Activation of silica gel: Take 30g of silica gel particles and put them in 150mL of 8% methanesulfonic acid aqueous solution, stir and activate at reflux temperature for 8h, the activated silica gel is washed repeatedly with distilled water until neutral, suction filtered, vacuum Dry to obtain activated silica gel;
(2)活化硅胶表面的巯基改性:将3g活化硅胶加入到125mL甲苯中,并加入3mL的γ-巯丙基三甲氧基硅烷(MPMS),在115℃下反应12h,抽滤后的产物用甲苯反复洗涤,之后再用乙醇洗涤,真空干燥,即制得表面含巯基的改性硅胶微粒MPMS-SiO2; (2) Mercapto group modification on the surface of activated silica gel: Add 3g of activated silica gel to 125mL of toluene, and add 3mL of γ-mercaptopropyltrimethoxysilane (MPMS), react at 115°C for 12h, and the product after suction filtration Repeatedly washing with toluene, then washing with ethanol, and drying in vacuum, the modified silica gel particles MPMS-SiO 2 containing mercapto groups on the surface are obtained;
(3)甲基丙烯酸缩水甘油酯的接枝聚合:在装有电动搅拌器、回流冷凝管及温度计的四口烧瓶中加入2g MPMS-SiO2,再加入70mLN,N-二甲基甲酰胺DMF和9mL甲基丙烯酸缩水甘油酯(单体GMA),通氮气30min,以排除体系中的空气,然后将体系的温度升至55℃,加入0.09g引发剂BPO,恒温并在搅拌条件下进行接枝聚合反应,反应结束后,抽滤,将产物微粒在索氏抽提器中用丙酮抽提24h,以除去物理吸附在微粒表面的聚合物,然后进行真空干燥,即得到接枝微粒PGMA/SiO2。 (3) Graft polymerization of glycidyl methacrylate: add 2g MPMS-SiO 2 to a four-neck flask equipped with an electric stirrer, reflux condenser and thermometer, and then add 70mL N, N-dimethylformamide DMF and 9mL glycidyl methacrylate (monomer GMA), blow nitrogen for 30 minutes to remove the air in the system, then raise the temperature of the system to 55°C, add 0.09g initiator BPO, keep the temperature constant and carry out the inoculation under stirring conditions. Branch polymerization reaction, after the reaction, suction filtration, the product particles were extracted with acetone in a Soxhlet extractor for 24 hours to remove the polymer physically adsorbed on the surface of the particles, and then vacuum-dried to obtain the grafted particles PGMA/ SiO 2 .
实施例3 Example 3
一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法,包括以下步骤: A method for high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles, comprising the following steps:
(1)硅胶的活化:取30g的硅胶微粒置于150mL浓度为5%的甲烷磺酸水溶液中,在回流温度下搅拌活化10h,活化后的硅胶用蒸馏水反复洗涤至中性,抽滤,真空干燥,得到活化硅胶; (1) Activation of silica gel: Take 30g of silica gel particles and place them in 150mL of 5% methanesulfonic acid aqueous solution, stir and activate at reflux temperature for 10h, wash the activated silica gel repeatedly with distilled water until neutral, suction filter, vacuum Dried to obtain activated silica gel;
(2)活化硅胶表面的巯基改性:将2.5g活化硅胶加入到125mL甲苯中,并加入2mL的γ-巯丙基三甲氧基硅烷(MPMS),在113℃下反应10h,抽滤后的产物用甲苯反复洗涤,之后再用乙醇洗涤,真空干燥,即制得表面含巯基的改性硅胶微粒MPMS-SiO2; (2) Mercapto group modification on the surface of activated silica gel: add 2.5g activated silica gel to 125mL toluene, and add 2mL of γ-mercaptopropyltrimethoxysilane (MPMS), react at 113°C for 10h, and the The product is washed repeatedly with toluene, then with ethanol, and dried in vacuum to obtain modified silica gel particles MPMS-SiO 2 containing mercapto groups on the surface;
(3)甲基丙烯酸缩水甘油酯的接枝聚合:在装有电动搅拌器、回流冷凝管及温度计的四口烧瓶中加入1.5g MPMS-SiO2,再加入70mLN,N-二甲基甲酰胺DMF和8mL甲基丙烯酸缩水甘油酯(单体GMA),通氮气30min,以排除体系中的空气,然后将体系的温度升至55℃,加入0.08g引发剂BPO,恒温并在搅拌条件下进行接枝聚合反应,反应结束后,抽滤,将产物微粒在索氏抽提器中用丙酮抽提24h,以除去物理吸附在微粒表面的聚合物,然后进行真空干燥,即得到接枝微粒PGMA/SiO2。 (3) Graft polymerization of glycidyl methacrylate: add 1.5g MPMS-SiO 2 to a four-neck flask equipped with an electric stirrer, reflux condenser and thermometer, and then add 70mL N,N-dimethylformamide DMF and 8mL glycidyl methacrylate (monomer GMA), blow nitrogen for 30 minutes to remove the air in the system, then raise the temperature of the system to 55°C, add 0.08g initiator BPO, keep the temperature and carry out under stirring conditions Grafting polymerization reaction, after the reaction, suction filtration, the product particles were extracted with acetone in a Soxhlet extractor for 24 hours to remove the polymer physically adsorbed on the surface of the particles, and then vacuum-dried to obtain grafted particles PGMA /SiO 2 .
实施例4 Example 4
一种在硅胶微粒表面高效接枝聚合甲基丙烯酸缩水甘油酯的方法,包括以下步骤: A method for high-efficiency graft polymerization of glycidyl methacrylate on the surface of silica gel particles, comprising the following steps:
(1)活化硅胶表面的巯基改性:将2.5g活化硅胶加入到125mL甲苯中,并加入2mL的γ-巯丙基三甲氧基硅烷(MPMS),在115℃下反应10h,抽滤后的产物用甲苯反复洗涤,之后再用乙醇洗涤,真空干燥,即制得表面含巯基的改性硅胶微粒MPMS-SiO2; (1) Modification of mercapto groups on the surface of activated silica gel: add 2.5g of activated silica gel to 125mL of toluene, and add 2mL of γ-mercaptopropyltrimethoxysilane (MPMS), react at 115°C for 10h, and the The product is washed repeatedly with toluene, then with ethanol, and dried in vacuum to obtain modified silica gel particles MPMS-SiO 2 containing mercapto groups on the surface;
(2)甲基丙烯酸缩水甘油酯的接枝聚合:在装有电动搅拌器、回流冷凝管及温度计的四口烧瓶中加入1.5g MPMS-SiO2,再加入70mLN,N-二甲基甲酰胺DMF和7mL甲基丙烯酸缩水甘油酯(单体GMA),通氮气30min,以排除体系中的空气,然后将体系的温度升至55℃,加入0.08g引发剂BPO,恒温并在搅拌条件下进行接枝聚合反应,反应结束后,抽滤,将产物微粒在索氏抽提器中用丙酮抽提24h,以除去物理吸附在微粒表面的聚合物,然后进行真空干燥,即得到接枝微粒PGMA/SiO2。 (2) Graft polymerization of glycidyl methacrylate: add 1.5g MPMS-SiO 2 to a four-necked flask equipped with an electric stirrer, reflux condenser and thermometer, and then add 70mL N,N-dimethylformamide DMF and 7mL glycidyl methacrylate (monomer GMA), blow nitrogen for 30 minutes to remove the air in the system, then raise the temperature of the system to 55°C, add 0.08g initiator BPO, keep the temperature and carry out under stirring conditions Grafting polymerization reaction, after the reaction, suction filtration, the product particles were extracted with acetone in a Soxhlet extractor for 24 hours to remove the polymer physically adsorbed on the surface of the particles, and then vacuum-dried to obtain grafted particles PGMA /SiO 2 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210135384.9A CN102675564B (en) | 2012-05-04 | 2012-05-04 | Method for efficient graft polymerization of glycidyl methacrylate on surface of silica gel particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210135384.9A CN102675564B (en) | 2012-05-04 | 2012-05-04 | Method for efficient graft polymerization of glycidyl methacrylate on surface of silica gel particle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102675564A CN102675564A (en) | 2012-09-19 |
CN102675564B true CN102675564B (en) | 2014-04-16 |
Family
ID=46808159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210135384.9A Active CN102675564B (en) | 2012-05-04 | 2012-05-04 | Method for efficient graft polymerization of glycidyl methacrylate on surface of silica gel particle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102675564B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11628381B2 (en) | 2012-09-17 | 2023-04-18 | W.R. Grace & Co. Conn. | Chromatography media and devices |
CN103172804B (en) * | 2012-12-27 | 2015-03-25 | 中北大学 | Preparation method of theophylline molecular surface printing material |
CN103342787B (en) * | 2013-06-28 | 2015-05-13 | 中北大学 | Preparation method of chromate adsorbing material |
PL3094390T3 (en) | 2014-01-16 | 2021-12-06 | W.R. Grace & Co. - Conn. | Affinity chromatography media and chromatography devices |
US11389783B2 (en) | 2014-05-02 | 2022-07-19 | W.R. Grace & Co.-Conn. | Functionalized support material and methods of making and using functionalized support material |
JP2018517559A (en) | 2015-06-05 | 2018-07-05 | ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn | Adsorbing bioprocess clarifier and method for producing and using the same |
CN105175653A (en) * | 2015-09-14 | 2015-12-23 | 中北大学 | Preparation method of PHEMA/SiO2 by surface-initiated graft polymerization in non-aqueous medium |
CN109701503A (en) * | 2018-11-20 | 2019-05-03 | 中北大学 | A kind of preparation method of functional microparticles with strong adsorption capacity to anthocyanins |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5247358B2 (en) * | 1974-12-24 | 1977-12-01 | ||
US20070244262A1 (en) * | 2006-04-05 | 2007-10-18 | Mingfu Zhang | Graft copolymers and related methods of preparation |
CN101402033A (en) * | 2008-10-30 | 2009-04-08 | 上海大学 | Chelate adsorption material and method of producing the same |
CN101845126B (en) * | 2010-04-23 | 2012-03-28 | 华东理工大学 | Artemisinin molecularly imprinted polymer on the surface of porous microsphere silica gel and its preparation and application method |
CN102085477A (en) * | 2010-11-26 | 2011-06-08 | 江南大学 | Polymer coated silica gel high performance liquid chromatography filler as well as preparation method and application thereof |
-
2012
- 2012-05-04 CN CN201210135384.9A patent/CN102675564B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102675564A (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102675564B (en) | Method for efficient graft polymerization of glycidyl methacrylate on surface of silica gel particle | |
CN103102421B (en) | Preparation method of core-shell structure magnetic nano-molecular imprinting polymer for separating starch polysaccharides | |
CN102443120A (en) | Method for realizing efficient graft polymerization of acrylonitrile on surface of silica gel microparticles by utilizing mercapto-Ce(IV) salt redox initiation system | |
CN101613112A (en) | Preparation of a silane coupling agent modified attapulgite | |
CN109970912B (en) | Preparation method of flavonoid magnetic molecularly imprinted polymer | |
CN103861649B (en) | A kind of preparation method with visible light-responded titanium dioxide base composite photocatalyst | |
CN102234343A (en) | Monodisperse surface functionalized polymer microsphere resin and preparation method thereof | |
CN103613720A (en) | Method for preparing silane coupling agent modified attapulgite surface molecular imprinting material aiming at bisphenol A | |
CN102909070A (en) | Load type chiral catalyst and preparation method thereof | |
CN102558461B (en) | Method for realizing styrene high-efficiency graft polymerization on silica gel micro-particle surfaces by using tertiary arylamine-BPO oxidation-reduction initiation system | |
CN106008856A (en) | Preparation method of molecularly imprinted polymer based on click chemistry | |
CN102249733A (en) | Sulfur-alkene click chemistry-based method for preparing stimulation responsive polyether amine macromolecular brush | |
CN103408697B (en) | The method preparing Temperature-sensitive Molecular Imprinted Polymers is caused on a kind of surface | |
CN105294957A (en) | Method for preparing high-aldehyde content polymer microspheres on basis of lignin | |
CN103289030A (en) | Novel method for efficiently grafting glycidyl methacrylate (GMA) on surface of silica gel | |
CN103044640B (en) | Attapulgite grafted polystyrene hybrid particle and preparation method thereof | |
CN101857667B (en) | Method for preparing functional particles with high grafting degree | |
CN102499905A (en) | Controllable photoresponse type hydrophobic medicament carrier hydrogel and preparation method thereof | |
CN1687167A (en) | Molecular cngram resin and prepartion method, and application for separating and purifying protein | |
CN103421155A (en) | Preparation method for novel PS-co-PVEA@SiO2 | |
CN103272654B (en) | A kind of high-specific surface area magnetic anion exchange resin and its preparation method and application | |
CN110982022B (en) | A kind of magnetic capsaicin molecularly imprinted polymer and preparation method thereof | |
CN104587988A (en) | Anatase type titanium oxide nanometer material monolithic column as well as preparation method and application thereof | |
CN104558446A (en) | Porous silica gel microsphere surface tripterygium wilfordii extract molecularly imprinted polymer and preparation and application thereof | |
CN104558543A (en) | Modification method of silica gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Du Ruikui Inventor after: Xu Chunju Inventor after: An Fuqiang Inventor after: Gao Baojiao Inventor after: Li Yanbin Inventor after: Wang Ruixin Inventor after: Shi Xuejun Inventor before: Gao Baojiao Inventor before: An Fuqiang Inventor before: Du Ruikui Inventor before: Li Yanbin Inventor before: Wang Ruixin Inventor before: Shi Xuejun |
|
CB03 | Change of inventor or designer information | ||
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: GAO BAOJIAO AN FUQIANG DU RUIKUI LI YANBIN WANG RUIXIN SHI XUEJUN TO: DU RUIKUI XU CHUNJU AN FUQIANG GAO BAOJIAO LI YANBIN WANG RUIXIN SHI XUEJUN |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |