CN102665079A - Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) - Google Patents
Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) Download PDFInfo
- Publication number
- CN102665079A CN102665079A CN2012101388161A CN201210138816A CN102665079A CN 102665079 A CN102665079 A CN 102665079A CN 2012101388161 A CN2012101388161 A CN 2012101388161A CN 201210138816 A CN201210138816 A CN 201210138816A CN 102665079 A CN102665079 A CN 102665079A
- Authority
- CN
- China
- Prior art keywords
- mode
- prediction
- modes
- angle
- intra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000005457 optimization Methods 0.000 claims abstract description 10
- 230000001174 ascending effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 abstract description 11
- 238000010187 selection method Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000444 liquid chromatography-electrochemical detection Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
联合研究joint research
本申请由北方工业大学与北京交通大学信息所联合研究,并得到以下基金资助:国家自然科学基金(No.61103113),江苏省自然科学基金(BK2011455),国家973计划(2012CB316400),中央高校基础研究基金(No.2011JBM214)。This application is jointly researched by North China University of Technology and Information Institute of Beijing Jiaotong University, and supported by the following funds: National Natural Science Foundation of China (No. Research Fund (No.2011JBM214).
技术领域 technical field
本发明涉及图像处理领域,更具体而言,涉及用于高效视频编码(HEVC)中帧内预测模式选择的自适应快速帧内预测模式决策方法。The present invention relates to the field of image processing, and more specifically, to an adaptive fast intra-frame prediction mode decision method for intra-frame prediction mode selection in High Efficiency Video Coding (HEVC).
背景技术 Background technique
2010年4月,两大国际视频编码标准组织VCEG和MPEG成立视频压缩联合小组JCT-VC(Joint collaborative Team on Video Coding),一同开发HEVC标准,其也称为H.265。HEVC标准主要目标是与上一代标准H.264/AVC实现大幅度的编码效率的提高,尤其是针对高分辨率视频序列。其目标是在相同视频质量(PSNR)下码率降为H.264标准的50%。In April 2010, the two major international video coding standard organizations VCEG and MPEG established the joint video compression group JCT-VC (Joint collaborative Team on Video Coding) to jointly develop the HEVC standard, also known as H.265. The main goal of the HEVC standard is to achieve a substantial improvement in coding efficiency compared with the previous generation standard H.264/AVC, especially for high-resolution video sequences. Its goal is to reduce the bit rate to 50% of the H.264 standard at the same video quality (PSNR).
就目前阶段,HEVC依然沿用H.264就开始采用的混合编码框架。帧间和帧内预测编码:消除时间域和空间域的相关性。变换编码:对残差进行变换编码以消除空间相关性。熵编码:消除统计上的冗余度。HEVC将在混合编码框架内,着力研究新的编码工具或技术,提高视频压缩效率。At the current stage, HEVC still uses the hybrid coding framework adopted by H.264. Inter- and intra-frame predictive coding: De-correlation between temporal and spatial domains. Transform coding: Transform coding is performed on the residual to remove spatial correlation. Entropy coding: remove statistical redundancy. HEVC will focus on researching new coding tools or technologies within the framework of hybrid coding to improve video compression efficiency.
目前,JCT-VC组织的讨论中已经提出的许多编码的新特性,有可能会加入HEVC标准中,各次讨论的具体文献可以从http://wftp3.itu.int获得。At present, many new coding features that have been proposed in the discussion organized by JCT-VC may be added to the HEVC standard. The specific documents of each discussion can be obtained from http://wftp3.itu.int .
编码块的大小将最大可达64x 64,这主要是为了高清视频压缩编码的应用。DCT变换编码将突破8x8,最大能够达到32x32。对于帧内预测,预测的方向更佳细化,多达35种帧内预测(intra predication)模式,其中对于大小为4x4,8x8,16x16,32x32和64x64的预测块(predication unit),分别有17,35,35,35和5种预测模式可用,其中,图2示出了35种帧内预测模式的情况,这将使帧内预测更佳精确,更高效地减少冗余。帧间预测在插值时采用了更多抽头的滤波器,以及1/4像素精度,来提高帧间预测的精度。在熵编码方面,使用了适应性更强的CABAC以及低复杂度的LCEC。The size of the encoding block will be up to 64x64, which is mainly for the application of high-definition video compression encoding. DCT transform coding will break through 8x8, and the maximum can reach 32x32. For intra prediction, the direction of prediction is more refined, and there are as many as 35 intra prediction modes, of which there are 17 prediction units with sizes of 4x4, 8x8, 16x16, 32x32 and 64x64 respectively. , 35, 35, 35 and 5 prediction modes are available, wherein, Fig. 2 shows the situation of 35 intra prediction modes, which will make the intra prediction more accurate and reduce redundancy more efficiently. Inter-frame prediction uses more tapped filters and 1/4 pixel precision during interpolation to improve the accuracy of inter-frame prediction. In terms of entropy coding, the more adaptable CABAC and the low-complexity LCEC are used.
在帧内预测方面,由于使用了多达35种帧内预测模式,因此,在进行帧内编码时,如果直接针对35种帧内预测模式使用率失真优化(Rate-Distortion optimization,RDO)来判断最佳预测模式,则编码器将不能承受将所有预测方向进行RDO的运算量。为了降低编码器进行RDO运算时的运算量,HM4.0(HEVC test model 4.0)采用了Hadamard变换的方法,通过一种粗略模式决策(Rough Mode Decision,RMD)选出若干个较佳的候选模式。随后,在针对由这若干个较佳候选模式进行RDO运算来获得最佳模式。In terms of intra-frame prediction, since up to 35 intra-frame prediction modes are used, when performing intra-frame coding, if you directly use rate-distortion optimization (Rate-Distortion optimization, RDO) for the 35 intra-frame prediction modes to judge If the optimal prediction mode is not used, the encoder will not be able to bear the computational load of RDO for all prediction directions. In order to reduce the computational load of the encoder when performing RDO operations, HM4.0 (HEVC test model 4.0) uses the Hadamard transform method to select several better candidate modes through a rough mode decision (Rough Mode Decision, RMD) . Then, RDO operation is performed on these several better candidate modes to obtain the best mode.
在JCT-VC已经采纳的JCTVC-C207提案中将残差信号哈达玛变换系数绝对和(minimum absolute sum of Hadamard Transformed coefficients ofresidual signal,HSAD)与模式比特数计算过程加入粗略模式决策(RMD)算法。提案JCTVC-D283中,将联合方向帧内预测算法简化,并加入了提取最高概率模式(most probable mode,MPM)算法,即在RMD之后应用MPM算法,从而保证在进行RDO运算的候选模式集合中始终包含MPM。提案JCTVC-C218简化CU分成PU的冗余过程,这些简化算法降低了帧内预测的复杂度,但是这些方案都是最基本的解决方案而没有考虑块的性质。In the JCTVC-C207 proposal that JCT-VC has adopted, the minimum absolute sum of Hadamard Transformed coefficients of residual signal (HSAD) and the calculation process of the number of mode bits are added to the rough mode decision (RMD) algorithm. In the proposal JCTVC-D283, the joint direction intra prediction algorithm is simplified, and the most probable mode (MPM) algorithm is added to extract the highest probability mode (most probable mode, MPM) algorithm, that is, the MPM algorithm is applied after the RMD, so as to ensure that in the candidate mode set for RDO operation Always include the MPM. The proposal JCTVC-C218 simplifies the redundant process of dividing CUs into PUs. These simplified algorithms reduce the complexity of intra prediction, but these solutions are the most basic solutions without considering the nature of blocks.
本申请中主要参考以下技术文献来实现,这些文献皆是JCT-VC,并且可直接从http://wftp3.itu.int获得:This application mainly refers to the following technical documents, which are all JCT-VC and can be obtained directly from http://wftp3.itu.int :
[1]J.H.Min,“Unification of the directional intra prediction methods inTMuC,”JCTVC-B100,July,2010.[1] J.H.Min, "Unification of the directional intra prediction methods inTMuC," JCTVC-B100, July, 2010.
[2]K.McCann et.al.,“Samsung’s response to the call for proposals onvideo compression technology,”JCTVC-A124,April,2010.[2] K.McCann et.al., "Samsung's response to the call for proposals on video compression technology," JCTVC-A124, April, 2010.
[3]K.Ugur,K.R.Andersson and A.Fuldseth,“Description of video codingtechnology proposal by Tandberg,Nokia,Ericsson,”JCTVC-A119,April,2010.[3] K.Ugur, K.R.Andersson and A.Fuldseth, "Description of video codingtechnology proposal by Tandberg, Nokia, Ericsson," JCTVC-A119, April, 2010.
[4]Y.Piao,J.H.Min,J.Chen,“Encoder improvement of unified intraprediction,”JCTVC-C207,Oct.,2010.[4] Y.Piao, J.H.Min, J.Chen, "Encoder improvement of unified intraprediction," JCTVC-C207, Oct., 2010.
[5]L.Zhao,et.al.,“Further Encoder Improvement of intra mode decision,”JCTVC-D283,Jan.,2011.[5] L.Zhao, et.al., "Further Encoder Improvement of intra mode decision," JCTVC-D283, Jan., 2011.
[6]J.Kim,Y.Jeon,B.Jeon,“Encoding complexity reduction for intraprediction by disabling NxN partition,”JCTVC-C218,Oct.,2010.[6] J.Kim, Y.Jeon, B.Jeon, "Encoding complexity reduction for intraprediction by disabling NxN partition," JCTVC-C218, Oct., 2010.
[7]B.Bross,W.J.Han,J.R.Ohm,G.J.Sullivan,T.Wiegand,“WD4:Working Draft 4 of High-Efficiency Video Coding,”JCTVC-F803,July,2011.[7]B.Bross, W.J.Han, J.R.Ohm, G.J.Sullivan, T.Wiegand, "WD4: Working Draft 4 of High-Efficiency Video Coding," JCTVC-F803, July, 2011.
[8]JCT-VC,HEVC reference software“HM-4.0”[online]http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tages[8] JCT-VC, HEVC reference software "HM-4.0" [online] http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tages
[9]Y.H.Tan,C.Yeo,H.L.Tan,Z.Li,“RQT depth selection,”JCTVC-E104,Mar.,2011.[9] Y.H.Tan, C.Yeo, H.L.Tan, Z.Li, "RQT depth selection," JCTVC-E104, Mar., 2011.
[10]K.Panusopone,K.Chono,Y.H.Tan,M.Zhou,“Evaluation of RQT inHM and related TU representation,”JCTVC-E365,Mar.,2011.[10]K.Panusopone, K.Chono, Y.H.Tan, M.Zhou, "Evaluation of RQT inHM and related TU representation," JCTVC-E365, Mar., 2011.
[11]K.McCann,S.Sekiguci,B.Bross,W.J.Han,“HM4:HEVC TestModel 4 Encoder Description,”JCTVC-F802,July,2011.[11] K.McCann, S.Sekiguci, B.Bross, W.J.Han, "HM4: HEVC TestModel 4 Encoder Description," JCTVC-F802, July, 2011.
[12]B.Bross,“Common test conditions and software referenceconfigurations,”JCTVC-F900,July,2011.[12]B.Bross, "Common test conditions and software reference configurations," JCTVC-F900, July, 2011.
在帧内预测方面,虽然已经提出了若干种候选模式选择算法,来降低最终进行RDO的模式数量同时满足BD-rate(BD-率)但是候选模式的数量仍然有下降的空间。In terms of intra prediction, although several candidate mode selection algorithms have been proposed to reduce the number of modes for final RDO while satisfying BD-rate (BD-rate) But the number of candidate patterns still has room to drop.
发明内容 Contents of the invention
根据一个方面,提供了一种用于高效视频编码(HEVC)的自适应帧内(Intra)预测模式决策方法,其中,所述方法是针对当前帧中的每个预测块(PU)执行预测模式决策的,该方法包括:According to one aspect, there is provided an adaptive intra-frame (Intra) prediction mode decision method for high-efficiency video coding (HEVC), wherein the method is to perform a prediction mode for each prediction block (PU) in the current frame For decision-making, the method includes:
(1)使用粗略模式决策(RMD)确定一候选模式集合,在所述候选模式集合中包含了模式集合中具有最小代价的N个候选模式,并且所述N个候选模式已经按照代价进行了升序排序,其中,对于大小4*4和8*8的预测块,N=8,对于大小16*16和32*32的预测块,N=3;(1) Use Rough Mode Decision (RMD) to determine a candidate mode set, which contains N candidate modes with the minimum cost in the mode set, and the N candidate modes have been sorted in ascending order according to the cost sorting, where N=8 for prediction blocks of size 4*4 and 8*8, and N=3 for prediction blocks of size 16*16 and 32*32;
(2)当所使用的预测块大小为4*4或8*8时,(2) When the prediction block size used is 4*4 or 8*8,
判断所述集合中前2个角度模式是否相邻:如果相邻,则保留前2个角度模式以及所述集合中其他角度模式中与第1个角度模式最近邻的角度模式,如果不相邻,则仅保留前两个角度模式;Judging whether the first two angle patterns in the set are adjacent: if they are adjacent, keep the first two angle patterns and the angle pattern closest to the first angle pattern among the other angle patterns in the set, if not , then only the first two angle modes are retained;
判断所述集合中前4个模式中是否存在DC模式或Planar模式,如果存在,则在所述集合中保留DC模式和所述Planar模式;或者Judging whether there is a DC mode or a Planar mode in the first 4 modes in the set, and if so, retaining the DC mode and the Planar mode in the set; or
当所使用的预测块大小为16*16和32*32时,When the prediction block size used is 16*16 and 32*32,
判断所述集合中的第1个模式是否为DC模式或Planar模式,如果是,则在所述集合中保留DC模式和所述Planar模式,并直接进行到步骤(4);Judging whether the first pattern in the set is a DC pattern or a Planar pattern, if so, retaining the DC pattern and the Planar pattern in the set, and directly proceeding to step (4);
(3)使用最高概率模式(MPM)算法,其中,将两个最高概率模式加入所述集合中;(3) using the highest probability mode (MPM) algorithm, wherein the two highest probability modes are added to the set;
(4)对所述集合中的各个模式应用率失真优化(RDO)来获得最佳帧内预测模式。(4) Apply rate-distortion optimization (RDO) to each mode in the set to obtain the best intra prediction mode.
根据另一方面,提供了一种用于高效视频编码(HEVC)的视频编码器,其包括:帧内预测模式决策器,其确定最佳帧内预测模式,并将所述最佳帧内预测模式输入帧内预测器;以及帧内预测器,其基于所述最佳帧内预测模式,执行帧内预测,其中,所述帧内预测器是针对当前帧中的每个预测块(PU)执行预测模式决策的,其中,所述帧内预测模式决策器被配置为:According to another aspect, there is provided a video encoder for High Efficiency Video Coding (HEVC), comprising: an intra prediction mode decider that determines an optimal intra prediction mode, and assigns the optimal intra prediction mode a mode input intra predictor; and an intra predictor that performs intra prediction based on the best intra prediction mode, wherein the intra predictor is for each prediction block (PU) in the current frame performing prediction mode decision-making, wherein the intra-frame prediction mode decider is configured to:
(1)使用粗略模式决策(RMD)确定一候选模式集合,在所述候选模式集合中包含了模式集合中具有最小代价的N个候选模式,并且所述N个候选模式已经按照代价进行了升序排序,其中,对于大小4*4和8*8的预测块,N=8,对于大小16*16和32*32的预测块,N=3;(1) Use Rough Mode Decision (RMD) to determine a candidate mode set, which contains N candidate modes with the minimum cost in the mode set, and the N candidate modes have been sorted in ascending order according to the cost sorting, where N=8 for prediction blocks of size 4*4 and 8*8, and N=3 for prediction blocks of size 16*16 and 32*32;
(2)当所使用的预测块大小为4*4或8*8时,(2) When the prediction block size used is 4*4 or 8*8,
判断所述集合中前2个角度模式是否相邻:如果相邻,则保留前2个角度模式以及所述集合中其他角度模式中与第1个角度模式最近邻的角度模式,如果不相邻,则仅保留前两个角度模式;Judging whether the first two angle patterns in the set are adjacent: if they are adjacent, keep the first two angle patterns and the angle pattern closest to the first angle pattern among the other angle patterns in the set, if not , then only the first two angle modes are retained;
判断所述集合中前4个模式中是否存在DC模式或Planar模式,如果存在,则在所述集合中保留DC模式和所述Planar模式;或者Judging whether there is a DC mode or a Planar mode in the first 4 modes in the set, and if so, retaining the DC mode and the Planar mode in the set; or
当所使用的预测块大小为16*16和32*32时,When the prediction block size used is 16*16 and 32*32,
判断所述集合中的第1个模式是否为DC模式或Planar模式,如果是,则在所述集合中保留DC模式和所述Planar模式,并直接进行到步骤(4);Judging whether the first pattern in the set is a DC pattern or a Planar pattern, if so, retaining the DC pattern and the Planar pattern in the set, and directly proceeding to step (4);
(3)使用最高概率模式(MPM)算法,其中,将两个最高概率模式加入所述集合中;(3) using the highest probability mode (MPM) algorithm, wherein the two highest probability modes are added to the set;
(4)对所述集合中的各个模式应用率失真优化(RDO)来获得所述最佳帧内预测模式。(4) Apply rate-distortion optimization (RDO) to each mode in the set to obtain the best intra prediction mode.
还公开了与上述方法相对应的装置以及用来执行上述方法的视频编码器。A device corresponding to the above method and a video encoder for performing the above method are also disclosed.
附图说明 Description of drawings
图1示出了HEVC的编码器框图的一个实施例。Figure 1 shows an embodiment of an HEVC encoder block diagram.
图2示出了HEVC中使用的多达35种预测模式。Figure 2 shows up to 35 prediction modes used in HEVC.
图3示出了根据本发明的一个实施例的帧内预测模式选择流程图。Fig. 3 shows a flowchart of intra prediction mode selection according to an embodiment of the present invention.
具体实施方式 Detailed ways
现在参考附图来描述各种方案。在以下描述中,为了进行解释,阐述了多个具体细节以便提供对一个或多个方案的透彻理解。然而,显然,在没有这些具体细节的情况下也能够实现这些方案。Various aspects are now described with reference to the figures. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspects can be practiced without these specific details.
如在本申请中所使用的,术语“组件”、“模块”、“系统”等等旨在指代与计算机相关的实体,例如但不限于,硬件、固件、硬件和软件的组合、软件,或者是执行中的软件。例如,组件可以是但不限于:在处理器上运行的进程、处理器、对象、可执行体(executable)、执行线程、程序、和/或计算机。举例而言,运行在计算设备上的应用程序和该计算设备都可以是组件。一个或多个组件可以位于执行进程和/或者执行线程内,并且组件可以位于一台计算机上和/或者分布在两台或更多台计算机上。另外,这些组件可以从具有存储在其上的各种数据结构的各种计算机可读介质执行。组件可以借助于本地和/或远程进程进行通信,例如根据具有一个或多个数据分组的信号,例如,来自于借助于信号与本地系统、分布式系统中的另一组件交互和/或者与在诸如因特网之类的网络上借助于信号与其他系统交互的一个组件的数据。As used in this application, the terms "component", "module", "system" and the like are intended to refer to a computer-related entity such as, but not limited to, hardware, firmware, a combination of hardware and software, software, Or software in execution. For example, a component may be, but is not limited to being limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. For example, both an application running on a computing device and the computing device can be components. One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. Components can communicate by means of local and/or remote processes, such as from signals having one or more data packets, for example, from interacting with another component in a local system, a distributed system, and/or with another component in a distributed system by means of a signal. Data of a component on a network such as the Internet that interacts with other systems by means of signals.
图1示出了高效视频编码(HEVC)所实现的视频编码器的大致结构图。HEVC的编码器架构与H.264所使用的编码器架构大致相同,主要是针对各个模块中所使用的算法进行了进一步的研究、改进,尤其是针对高分辨率视频序列,其改进的目标是在相同视频质量(PSNR)下码率降为H.264标准的50%。FIG. 1 shows a general block diagram of a video encoder implemented by High Efficiency Video Coding (HEVC). The encoder architecture of HEVC is roughly the same as the encoder architecture used by H.264, mainly for further research and improvement on the algorithms used in each module, especially for high-resolution video sequences. The goal of the improvement is Under the same video quality (PSNR), the bit rate is reduced to 50% of the H.264 standard.
由于HEVC的编码器架构与H.264所使用的编码器架构大致相同,因此不混淆本发明,本申请中不对图1中的整体架构进行描述,而仅关注于用于HEVC的帧内预测模式选择和帧内预测。Since the encoder architecture of HEVC is roughly the same as the encoder architecture used by H.264, the present invention will not be confused, and the overall architecture in Figure 1 will not be described in this application, but only focus on the intra prediction mode for HEVC selection and intra prediction.
帧内预测是H.264/AVC视频编码标准中首先采用的一种的新的帧内编码方式,目的是去除当前块与临近块之间的空间冗余。在帧内预测中,预测块P是由当前片(slice)中先前编码和重建之后的块形成的。当前块减去这个预测块P,产生残差块,残差块经过块变换、量化后产生一种量化后的变换系数X,再经过熵编码,与解码器侧所需的其他信息(例如,预测模式量化参数、运动矢量等等)一起组成压缩比特流供传输和解码使用。在H.264/AVC视频编码标准中,针对4*4的块,有包括直流(DC)在内的9种预测模式,针对8*8和16*16的块,有包含DC和平面(planar)在内的4种模式。在进行帧内预测模式选择时,从所支持的预测模式中选取与当前块具有最佳匹配(例如,具有最小率失真(RD))的模式。Intra-frame prediction is a new intra-frame coding method first adopted in the H.264/AVC video coding standard, and its purpose is to remove spatial redundancy between the current block and adjacent blocks. In intra prediction, a predicted block P is formed from previously coded and reconstructed blocks in the current slice. The prediction block P is subtracted from the current block to generate a residual block. After block transformation and quantization, the residual block generates a quantized transformation coefficient X, which is then entropy coded and combined with other information required by the decoder side (for example, prediction mode quantization parameters, motion vectors, etc.) together form a compressed bit stream for transmission and decoding. In the H.264/AVC video coding standard, there are 9 prediction modes including direct current (DC) for 4*4 blocks, and there are 9 prediction modes including DC and planar for 8*8 and 16*16 blocks. ) including 4 modes. When performing intra prediction mode selection, the mode with the best match (for example, with the smallest rate-distortion (RD)) to the current block is selected from the supported prediction modes.
在HEVC中,尤其是HM4.0(HEVC test model 4.0)中(参考文献[11]),针对帧内预测采用了大小分别为4*4,8*8,16*16,32*32和64*64的预测块(predication unit),并且根据预测块的大小所支持的帧内预测模式数量为表1,并且可能的预测模式为图2所示。如图2所示,最多达35种的预测模式包括33种角度帧内预测模式方向,以及DC(直流)模式和Planar(平面)模式。In HEVC, especially in HM4.0 (HEVC test model 4.0) (reference [11]), for intra prediction, the sizes are 4*4, 8*8, 16*16, 32*32 and 64 *64 prediction block (predication unit), and the number of intra prediction modes supported according to the size of the prediction block is shown in Table 1, and the possible prediction modes are shown in Figure 2. As shown in FIG. 2 , there are up to 35 prediction modes including 33 angle intra prediction mode directions, DC (direct current) mode and Planar (planar) mode.
表1Table 1
为了减少帧内预测复杂的RD运算的次数,HEVC的帧内预测模式应用粗略模式决策(Rough Mode Decision,RMD)和提取MPM(most probablemode,MPM)的方法得到了精简的最佳候选模式集合,从而减少RD运算次数。RMD目的是粗略地猜测最佳帧内预测模式,其选择过程考虑到HSAD运算值和模式比特数,但是RMD没有发掘提取模式之间的相关性。因此,分析提取模式之间的规律可以进一步降低联合帧内预测的复杂度。In order to reduce the number of complex RD operations for intra-frame prediction, HEVC's intra-frame prediction mode applies Rough Mode Decision (Rough Mode Decision, RMD) and extracts MPM (most probable mode, MPM) method to obtain a streamlined best candidate mode set, Thereby reducing the number of RD operations. The purpose of RMD is to roughly guess the best intra prediction mode, and its selection process takes into account the HSAD operation value and the number of mode bits, but RMD does not explore the correlation between extracted modes. Therefore, analyzing the regularity between extracted modes can further reduce the complexity of joint intra prediction.
RMD算法RMD algorithm
为了降低编码器进行RDO运算时的运算量,HM4.0首先采用了Hadamard变换的方法,通过RMD选出若干个较佳的候选模式。随后,在针对由这若干个较佳候选模式进行RDO运算来获得最佳模式。In order to reduce the computational load of the encoder when performing RDO operations, HM4.0 first uses the Hadamard transform method, and selects several better candidate modes through RMD. Then, RDO operation is performed on these several better candidate modes to obtain the best mode.
具体而言,在RMD中,使用以下公式来针对4*4和8*8尺寸的预测块获得8个候选模式,针对16*16和32*32尺寸的预测块获得3个候选模式:Specifically, in RMD, the following formulas are used to obtain 8 candidate modes for prediction blocks of 4*4 and 8*8 sizes, and 3 candidate modes for prediction blocks of 16*16 and 32*32 sizes:
J=HSAD(Resmode)+λ·Bmode, (1)J=HSAD(Res mode )+λ·B mode , (1)
其中,J为代价,mode为HEVC规定的最多具有35种的所有帧内预测模式,HSAD(Resmode)表示残差信号哈达玛变换系数绝对和,Bmode表示模式比特数的消耗值,λ表示拉格朗日常量。Among them, J is the cost, mode is all intra-frame prediction modes with up to 35 types specified by HEVC, HSAD (Res mode ) represents the absolute sum of Hadamard transform coefficients of the residual signal, B mode represents the consumption value of the number of mode bits, and λ represents Lagrang daily volume.
因此,RMD算法就是使用公式(1)在全部所支持的预测模式(17或35个)中,选取具有最小代价的3个(针对16*16和32*32尺寸)或8个(针对4*4和8*8尺寸)候选模式。Therefore, the RMD algorithm is to use formula (1) to select 3 (for 16*16 and 32*32 sizes) or 8 (for 4* 4 and 8*8 sizes) candidate patterns.
更具体而言,在RMD算法中,针对全部所支持的预测模式中的每一种模式,计算相关联的代价J,并依据相关联的代价J的降序对各个预测模式进行排序,并选取前3个(针对16*16和32*32尺寸)或8个(针对4*4和8*8尺寸)预测模式作为候选模式,加入候选模式集合中。More specifically, in the RMD algorithm, for each of all supported prediction modes, the associated cost J is calculated, and each prediction mode is sorted according to the descending order of the associated cost J, and the top 3 (for 16*16 and 32*32 sizes) or 8 (for 4*4 and 8*8 sizes) prediction modes are added to the candidate mode set as candidate modes.
由于公式(1)的复杂度在实现上比RDO的复杂度小得多,因此在使用RDO算法决定最佳预测模式之前,使用RMD算法在全部所支持的预测模式中进行一次预选择能够显著地减少帧内预测时间。Since the complexity of formula (1) is much smaller than that of RDO in terms of implementation, before using the RDO algorithm to determine the best prediction mode, using the RMD algorithm to perform a pre-selection among all supported prediction modes can significantly improve Reduced intra prediction time.
RDO算法RDO Algorithm
RDO是在视频编码中帧内预测和帧间预测中普遍使用的算法,其通常基于最小均方误差和(SSE:Sum of Square Error)来确定最佳匹配块。RDO is an algorithm commonly used in intra-frame prediction and inter-frame prediction in video coding, which is usually based on the minimum mean square error (SSE: Sum of Square Error) to determine the best matching block.
本文中为了不混淆关键概念,不对其进行展开描述。In order not to confuse the key concepts in this article, it will not be described in detail.
MPM算法MPM algorithm
MPM算法是在HM3.0中就已经提出的算法,并在JCTVC-D283中进行了进一步改进。The MPM algorithm is an algorithm that has been proposed in HM3.0, and has been further improved in JCTVC-D283.
在涉及MPM算法的各种提案中对MPM的确定有着各种方式。本文使用了JCTVC-D283中的MPM算法。具体而言,当使用RMD算法获得了精简后的最佳模式候选集合之后,将当前预测块的左侧预测块的最佳模式和上方预测块的最佳模式直接作为两个最高概率模式(MPM),并判断MPM是否包含在该候选集合中,如果未包含在该集合中,则加入这两个MPM。换言之,无论RDO之前的模式选择算法如何,都加入当前预测块的左侧预测块的最佳模式和上方预测块的最佳模式。There are various ways of determining the MPM in various proposals related to the MPM algorithm. This article uses the MPM algorithm in JCTVC-D283. Specifically, after using the RMD algorithm to obtain the condensed best mode candidate set, the best mode of the left prediction block of the current prediction block and the best mode of the upper prediction block are directly used as the two highest probability modes (MPM ), and judge whether the MPM is included in the candidate set, if not included in the set, then join the two MPMs. In other words, regardless of the mode selection algorithm before RDO, the best mode of the left prediction block and the best mode of the upper prediction block of the current prediction block are added.
在HM4.0中,联合帧内预测提取帧内预测模式共有两步。第一步,所有的模式经过HSAD运算选出最佳模式候选集合(RMD)。在该最佳模式候选集合中,模式个数由PU尺寸大小不同儿不同。4*4和8*8尺寸块集合中包含8个候选模式,而16*16和32*32尺寸块集合中包含3个。然后,从邻近块中提取的MPM也加入集合中。第二步,将最佳模式集合中每一个模式经过RD优化计算(RDO),将其RD消耗值最小的作为最佳模式进行帧内预测。In HM4.0, there are two steps in joint intra prediction to extract the intra prediction mode. In the first step, all the patterns are selected through HSAD operation to select the best pattern candidate set (RMD). In the best mode candidate set, the number of modes varies with the size of the PU. The 4*4 and 8*8 size block sets contain 8 candidate modes, while the 16*16 and 32*32 size block sets contain 3. Then, MPMs extracted from neighboring blocks are also added to the set. In the second step, each mode in the best mode set is subjected to RD optimization calculation (RDO), and the mode with the smallest RD consumption value is regarded as the best mode for intra-frame prediction.
经过我们观察与分析,在RMD过程选出的最小HSAD模式和第二小HSAD模式表征了块纹理特征:相邻的最小HSAD模式和第二小HSAD模式代表了块是规则纹理区域;不相邻的最小HSAD模式和第二小HSAD模式、DC模式或Planar模式代表了块是不规则纹理区域。在我们提出的算法中,我们利用该特性将最佳模式集合中运算RD的个数自适应地减少,用于降低HEVC帧内预测的复杂度。After our observation and analysis, the smallest HSAD pattern and the second smallest HSAD pattern selected in the RMD process characterize the texture characteristics of the block: the adjacent smallest HSAD pattern and the second smallest HSAD pattern represent the block is a regular texture area; non-adjacent The smallest HSAD mode and the second smallest HSAD mode, DC mode or Planar mode represent blocks that are irregularly textured regions. In our proposed algorithm, we use this feature to adaptively reduce the number of RD operations in the best mode set to reduce the complexity of HEVC intra prediction.
自适应候选模式选择算法Adaptive Candidate Pattern Selection Algorithm
参考图3,示出了根据本发明的一个实施例的帧内预测模式选择流程图。Referring to FIG. 3 , a flow chart of intra prediction mode selection according to an embodiment of the present invention is shown.
在步骤201中,例如RMD算法在所支持的全部预测模式中进行模式选择。具体而言使用公式(1)来针对4*4和8*8尺寸的预测块获得8个候选模式(步骤205),针对16*16和32*32尺寸的预测块获得3个候选模式(步骤207)。In
具体而言,针对相应预测块尺寸所支持的全部预测模式中的每一种模式,计算相关联的代价J,并依据相关联的代价J的降序对各个预测模式进行排序,并选取前3个(针对16*16和32*32尺寸)或8个(针对4*4和8*8尺寸)预测模式作为候选模式,加入候选模式集合中。并且,在候选模式集合中,同样按照代价J的降序对各个候选预测模式进行了排序。Specifically, for each of all prediction modes supported by the corresponding prediction block size, calculate the associated cost J, sort the prediction modes in descending order of the associated cost J, and select the first three (for 16*16 and 32*32 sizes) or 8 (for 4*4 and 8*8 sizes) prediction modes are added to the candidate mode set as candidate modes. Moreover, in the candidate mode set, each candidate prediction mode is also sorted in descending order of the cost J.
针对64*64尺度的预测块,本发明不对其进行RMD模式选择。For a prediction block with a scale of 64*64, the present invention does not select an RMD mode for it.
针对4*4和8*8尺寸的预测块,在步骤209中,判断候选模式集合中的前2个角度模式是否相邻:如果相邻,则进行到步骤211。在步骤211中,在候选模式集合中保留前2个角度模式以及所述集合中其他角度模式中与第1个角度模式最近邻的角度模式,即仅保留3个角度模式。如果在步骤209中判断不相邻,则在候选模式集合中仅保留前2个角度模式(步骤213),即仅保留2个角度模式。For prediction blocks with sizes of 4*4 and 8*8, in
该过程继续进行至步骤215。在步骤215中,判断候选模式集合中前4个候选模式中是否存在DC(直流)模式或Planar(平面)模式,如果存在,则在候选模式集合中保留DC模式和所述Planar模式,并且该过程进行至步骤223。如果在步骤215中确定前4个候选模式中不存在DC模式或Planar模式,则直接进行至步骤223。The process continues to step 215 . In step 215, it is judged whether there is a DC (direct current) mode or a Planar (plane) mode in the first 4 candidate modes in the candidate mode set, and if it exists, the DC mode and the Planar mode are reserved in the candidate mode set, and the The process proceeds to step 223 . If it is determined in step 215 that there is no DC mode or Planar mode in the first 4 candidate modes, proceed directly to step 223 .
针对16*16和32*32尺寸的预测块,在步骤209中,判断候选模式集合中的第1个模式是否为DC模式或Planar模式,如果是,则在所述集合中保留DC模式和所述Planar模式,并直接进行到步骤225。如果在步骤209中确定候选模式集合中的第1个模式不是DC模式或Planar模式,则进行至步骤223。For prediction blocks of size 16*16 and 32*32, in
在步骤223中,使用MPM算法,将当前预测块的左侧预测块的最佳模式和上方预测块的最佳模式直接作为两个最高概率模式(MPM)加入候选模式集合中。当然,如果在候选模式集合中已经包含了这两个MPM,则可以略过该加入操作。In
在步骤225中,对候选模式集合中的各个模式应用率失真优化(RDO)来获得最佳帧内预测模式。本领域技术人员公知的是,最佳帧内预测模式是获得最小率失真(RD)的预测模式。In step 225, rate-distortion optimization (RDO) is applied to each mode in the set of candidate modes to obtain the best intra prediction mode. It is known to those skilled in the art that the best intra prediction mode is the prediction mode that obtains the smallest rate-distortion (RD).
在确定了当前块的最佳帧内预测模式之后,编码器可以依据该最佳帧内预测模式对当前帧执行帧内预测,如上所述,并最终获得编码比特流。执行帧内预测的具体过程不属于本发明关注的重点,因此在本文中不再赘述。After determining the best intra-frame prediction mode of the current block, the encoder can perform intra-frame prediction on the current frame according to the best intra-frame prediction mode, as described above, and finally obtain an encoded bit stream. The specific process of performing intra prediction does not belong to the focus of the present invention, so it will not be repeated here.
在图3的方法中,针对4*4和8*8尺寸的预测块,将候选模式数量减小为2-5个,而针对16*16和32*32尺寸的预测块则将将候选模式数量减小为2-5个,从而明显地减少了参与RDO模式选择的候选模式的数量。In the method shown in Figure 3, for prediction blocks of size 4*4 and 8*8, the number of candidate modes is reduced to 2-5, while for prediction blocks of size 16*16 and 32*32, the number of candidate modes is reduced to The number is reduced to 2-5, thereby significantly reducing the number of candidate modes participating in RDO mode selection.
本发明的实验结果对比是基于HM4.0代码平台,测试环境是根据提案JCTVC-F900的要求设定的。由于我们的实验着重于帧内预测,所以我们采用HE和LC测试条件的全I帧编码。在HE和LC两种测试环境下,表2和表3分别表示与缺省的HM4.0相比的Y、U、V三分量的BD-rate和编码时间。由实验结果得出,本文的方案在BD-rate只增加0.64%和1.05%的情况下编码时间减少15%和20%。The comparison of the experimental results of the present invention is based on the HM4.0 code platform, and the test environment is set according to the requirements of the proposal JCTVC-F900. Since our experiments focus on intra-frame prediction, we employ full I-frame encoding for both HE and LC test conditions. Under the HE and LC test environments, Table 2 and Table 3 respectively represent the BD-rate and encoding time of the three components of Y, U, and V compared with the default HM4.0. According to the experimental results, the scheme in this paper reduces the encoding time by 15% and 20% when the BD-rate only increases by 0.64% and 1.05%.
表2.高效率全I帧测试条件下BD-rates(%)和运行时间Table 2. BD-rates (%) and running time under high-efficiency full I-frame test conditions
表3.低复杂度全I帧测试条件下BD-rates(%)和运行时间Table 3. BD-rates (%) and running time under low-complexity full I-frame test conditions
本发明所公开的自适应快速帧内预测模式决策方法可以用软件、硬件、固件等来实现。The adaptive fast intra-frame prediction mode decision-making method disclosed in the present invention can be realized by software, hardware, firmware and the like.
当用硬件实现时,视频编码器可以用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件或者设计为执行本文所述功能的其任意组合,来实现或执行。通用处理器可以是微处理器,但是可替换地,该处理器也可以是任何常规的处理器、控制器、微控制器或者状态机。处理器也可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器的组合、一个或多个微处理器与DSP内核的组合或者任何其它此种结构。另外,至少一个处理器可以包括可操作以执行上述的一个或多个步骤和/或操作的一个或多个模块。When implemented in hardware, video encoders can be implemented using general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or other programmable logic devices, discrete gates, or transistor logic devices, discrete hardware components, or any combination thereof designed to perform the functions described herein, may be implemented or performed. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, eg, a DSP and a microprocessor, multiple microprocessors, one or more microprocessors with a DSP core, or any other such architecture. Additionally, at least one processor may comprise one or more modules operable to perform one or more of the steps and/or operations described above.
当用ASIC、FPGA等硬件电路来实现视频编码器时,其可以包括被配置为执行各种功能的各种电路块。本领域技术人员可以根据施加在整个系统上的各种约束条件来以各种方式设计和实现这些电路,来实现本发明所公开的各种功能。When a video encoder is implemented with a hardware circuit such as an ASIC, FPGA, it may include various circuit blocks configured to perform various functions. Those skilled in the art can design and implement these circuits in various ways according to various constraints imposed on the entire system, so as to realize various functions disclosed in the present invention.
尽管前述公开文件论述了示例性方案和/或实施例,但应注意,在不背离由权利要求书定义的描述的方案和/或实施例的范围的情况下,可以在此做出许多变化和修改。而且,尽管以单数形式描述或要求的所述方案和/或实施例的要素,但也可以设想复数的情况,除非明确表示了限于单数。另外,任意方案和/或实施例的全部或部分都可以与任意其它方案和/或实施例的全部或部分结合使用,除非表明了有所不同。Although the foregoing disclosures discuss exemplary aspects and/or embodiments, it should be noted that many changes and/or changes may be made therein without departing from the scope of the described aspects and/or embodiments as defined by the claims. Revise. Furthermore, although elements of the described aspects and/or embodiments are described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. In addition, all or part of any aspect and/or embodiment can be used in combination with all or part of any other aspect and/or embodiment, unless a difference is indicated.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210138816.1A CN102665079B (en) | 2012-05-08 | 2012-05-08 | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210138816.1A CN102665079B (en) | 2012-05-08 | 2012-05-08 | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102665079A true CN102665079A (en) | 2012-09-12 |
CN102665079B CN102665079B (en) | 2014-11-26 |
Family
ID=46774478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210138816.1A Expired - Fee Related CN102665079B (en) | 2012-05-08 | 2012-05-08 | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102665079B (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102843559A (en) * | 2012-09-12 | 2012-12-26 | 清华大学 | Method and device for quickly selecting HEVC intra prediction mode on basis of texture characteristics |
CN102917225A (en) * | 2012-10-25 | 2013-02-06 | 电子科技大学 | Method for quickly selecting HEVC (high-efficiency video coding) inframe coding units |
CN103248893A (en) * | 2013-05-10 | 2013-08-14 | 四川大学 | Method for quick inter-frame transcoding from H. 264/AVC standard to HEVC standard and transcoder thereof |
CN103248895A (en) * | 2013-05-14 | 2013-08-14 | 芯原微电子(北京)有限公司 | Quick mode estimation method used for HEVC intra-frame coding |
CN103297781A (en) * | 2013-06-07 | 2013-09-11 | 安科智慧城市技术(中国)有限公司 | High efficiency video coding (HEVC) intraframe coding method, device and system based on texture direction |
CN103338371A (en) * | 2013-06-07 | 2013-10-02 | 东华理工大学 | Fast and efficient video coding intra mode determining method |
CN103442228A (en) * | 2013-08-19 | 2013-12-11 | 四川大学 | Quick frame inner transcoding method from H.264/AVC standard to HEVC standard and transcoder thereof |
WO2013182124A1 (en) * | 2012-09-28 | 2013-12-12 | 中兴通讯股份有限公司 | Coding method and device applied to hevc-based 3dvc |
CN103596004A (en) * | 2013-11-19 | 2014-02-19 | 北京邮电大学 | Intra-frame prediction method and device based on mathematical statistics and classification training in HEVC |
GB2506590A (en) * | 2012-09-28 | 2014-04-09 | Canon Kk | Adaptive coding mode selection for multi-layer video coding |
CN103888763A (en) * | 2014-03-24 | 2014-06-25 | 北京工业大学 | Intra-frame coding method based on HEVC |
CN103888774A (en) * | 2012-12-21 | 2014-06-25 | 联芯科技有限公司 | Parsing method and system of intra-frame prediction mode |
CN103929652A (en) * | 2014-04-30 | 2014-07-16 | 西安电子科技大学 | Fast Mode Selection Method for Intra Prediction Based on Autoregressive Model in Video Standards |
CN103997646A (en) * | 2014-05-13 | 2014-08-20 | 北京航空航天大学 | Rapid intra-frame prediction mode selection method in high-definition video coding |
CN104113760A (en) * | 2013-04-19 | 2014-10-22 | 中兴通讯股份有限公司 | Video coding and decoding methods, video coder and decoder and electronic apparatus |
CN104539949A (en) * | 2014-12-12 | 2015-04-22 | 北方工业大学 | HEVC screen coding quick slicing based on edge directions |
CN104581152A (en) * | 2014-12-25 | 2015-04-29 | 同济大学 | HEVC intra-frame prediction mode decision accelerating method |
CN104581181A (en) * | 2013-10-11 | 2015-04-29 | 中国科学院深圳先进技术研究院 | Intra-frame coding method based on candidate mode list (CML) optimization |
CN104618726A (en) * | 2014-12-31 | 2015-05-13 | 华侨大学 | PU (Prediction Unit) texture feature based rapid mode decision algorithm in HEVC (High Efficiency Video Coding) frame |
CN104954800A (en) * | 2014-03-28 | 2015-09-30 | 炬芯(珠海)科技有限公司 | Method for rapidly determining intra-frame prediction mode of video code and device thereof |
CN105208387A (en) * | 2015-10-16 | 2015-12-30 | 浙江工业大学 | HEVC intra-frame prediction mode fast selection method |
CN105284110A (en) * | 2013-07-31 | 2016-01-27 | 松下电器(美国)知识产权公司 | Image coding method, and image coding device |
CN105409215A (en) * | 2013-01-11 | 2016-03-16 | 华为技术有限公司 | Method and apparatus of depth prediction mode selection |
CN105812825A (en) * | 2016-05-10 | 2016-07-27 | 中山大学 | Image coding method based on grouping |
CN106028047A (en) * | 2016-05-24 | 2016-10-12 | 西安电子科技大学 | Hadamard transform-based fast intra-prediction mode selection and PU partition method |
CN106993192A (en) * | 2017-04-14 | 2017-07-28 | 合肥工业大学 | Angle Prediction Circuit and Prediction Method Applied to Intra-frame Prediction in Video Coding and Decoding |
CN107396130A (en) * | 2017-07-28 | 2017-11-24 | 天津大学 | HEVC fast intra mode decision making algorithms based on DCT |
CN107810632A (en) * | 2015-05-06 | 2018-03-16 | Ng编译码器股份有限公司 | The intra-prediction process device of intra mode decision with block segmentation and the refinement for reducing cost |
TWI619380B (en) * | 2016-03-18 | 2018-03-21 | 聯發科技股份有限公司 | Method and apparatus of intra prediction in image and video processing |
WO2018145600A1 (en) * | 2017-02-07 | 2018-08-16 | Mediatek Inc. | Adaptive prediction candidate positions for video coding |
CN108600754A (en) * | 2018-05-09 | 2018-09-28 | 哈尔滨工业大学 | A kind of fast prediction direction decision-making technique for efficient video coding |
CN109845259A (en) * | 2016-10-21 | 2019-06-04 | 奥兰治 | Code and decode method, the equipment for coding and decoding image parameter and its corresponding computer program of image parameter |
CN110049339A (en) * | 2018-01-16 | 2019-07-23 | 腾讯科技(深圳)有限公司 | Prediction direction choosing method, device and storage medium in image coding |
CN110708546A (en) * | 2019-09-20 | 2020-01-17 | 中山大学 | Intra-frame mode selection and division method, system and storage medium for multifunctional video coding |
CN111757105A (en) * | 2020-06-30 | 2020-10-09 | 北京百度网讯科技有限公司 | Image encoding processing method, apparatus, device and medium |
CN116347071A (en) * | 2023-02-24 | 2023-06-27 | 阿里巴巴(中国)有限公司 | Prediction mode determination method, device, electronic equipment and computer storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1741418A (en) * | 2005-09-14 | 2006-03-01 | 南京大学 | Adaptive Reference Frame Selection Method Based on Mode Inheritance in Multi-frame Motion Estimation |
CN101731012A (en) * | 2007-04-12 | 2010-06-09 | 汤姆森特许公司 | Method and apparatus for fast geometric pattern determination in video encoders |
CN101938657A (en) * | 2010-10-07 | 2011-01-05 | 西安电子科技大学 | Coding Unit Adaptive Partitioning Method in High Efficiency Video Coding |
-
2012
- 2012-05-08 CN CN201210138816.1A patent/CN102665079B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1741418A (en) * | 2005-09-14 | 2006-03-01 | 南京大学 | Adaptive Reference Frame Selection Method Based on Mode Inheritance in Multi-frame Motion Estimation |
CN101731012A (en) * | 2007-04-12 | 2010-06-09 | 汤姆森特许公司 | Method and apparatus for fast geometric pattern determination in video encoders |
CN101938657A (en) * | 2010-10-07 | 2011-01-05 | 西安电子科技大学 | Coding Unit Adaptive Partitioning Method in High Efficiency Video Coding |
Non-Patent Citations (1)
Title |
---|
LIANG ZHAO 等: "Fast Mode Decision Algorithm for Intra Prediction in", 《IEEE CONFERENCE PUBLICATIONS》, 31 December 2011 (2011-12-31), pages 1 - 4 * |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102843559A (en) * | 2012-09-12 | 2012-12-26 | 清华大学 | Method and device for quickly selecting HEVC intra prediction mode on basis of texture characteristics |
US9942544B2 (en) | 2012-09-28 | 2018-04-10 | Canon Kabushiki Kaisha | Method and device for deriving a set of enabled coding modes |
CN103716607B (en) * | 2012-09-28 | 2017-02-08 | 中兴通讯股份有限公司 | Encoding method and apparatus applied to high efficiency video coding-based 3-Dimension video coding (HEVC-based 3DVC) |
GB2506590B (en) * | 2012-09-28 | 2016-05-04 | Canon Kk | Method and device for deriving a set of enabled coding modes |
WO2013182124A1 (en) * | 2012-09-28 | 2013-12-12 | 中兴通讯股份有限公司 | Coding method and device applied to hevc-based 3dvc |
GB2506590A (en) * | 2012-09-28 | 2014-04-09 | Canon Kk | Adaptive coding mode selection for multi-layer video coding |
CN102917225A (en) * | 2012-10-25 | 2013-02-06 | 电子科技大学 | Method for quickly selecting HEVC (high-efficiency video coding) inframe coding units |
CN102917225B (en) * | 2012-10-25 | 2015-10-28 | 电子科技大学 | HEVC intraframe coding unit fast selecting method |
CN103888774A (en) * | 2012-12-21 | 2014-06-25 | 联芯科技有限公司 | Parsing method and system of intra-frame prediction mode |
CN103888774B (en) * | 2012-12-21 | 2017-03-08 | 联芯科技有限公司 | The analytic method of intra prediction mode and system |
US10306266B2 (en) | 2013-01-11 | 2019-05-28 | Futurewei Technologies, Inc. | Method and apparatus of depth prediction mode selection |
CN105409215B (en) * | 2013-01-11 | 2018-10-09 | 华为技术有限公司 | depth prediction mode selecting method and device |
CN105409215A (en) * | 2013-01-11 | 2016-03-16 | 华为技术有限公司 | Method and apparatus of depth prediction mode selection |
CN104113760A (en) * | 2013-04-19 | 2014-10-22 | 中兴通讯股份有限公司 | Video coding and decoding methods, video coder and decoder and electronic apparatus |
CN103248893B (en) * | 2013-05-10 | 2015-12-23 | 四川大学 | From H.264/AVC standard to code-transferring method and transcoder thereof the fast frame of HEVC standard |
CN103248893A (en) * | 2013-05-10 | 2013-08-14 | 四川大学 | Method for quick inter-frame transcoding from H. 264/AVC standard to HEVC standard and transcoder thereof |
CN103248895A (en) * | 2013-05-14 | 2013-08-14 | 芯原微电子(北京)有限公司 | Quick mode estimation method used for HEVC intra-frame coding |
CN103248895B (en) * | 2013-05-14 | 2016-06-08 | 芯原微电子(北京)有限公司 | A kind of quick mode method of estimation for HEVC intraframe coding |
CN103297781A (en) * | 2013-06-07 | 2013-09-11 | 安科智慧城市技术(中国)有限公司 | High efficiency video coding (HEVC) intraframe coding method, device and system based on texture direction |
CN103338371A (en) * | 2013-06-07 | 2013-10-02 | 东华理工大学 | Fast and efficient video coding intra mode determining method |
CN103338371B (en) * | 2013-06-07 | 2016-11-09 | 东华理工大学 | A Fast and Efficient Video Coding Intra Mode Judgment Method |
CN103297781B (en) * | 2013-06-07 | 2016-02-17 | 安科智慧城市技术(中国)有限公司 | A kind of HEVC inner frame coding method based on grain direction, device and system |
CN105284110B (en) * | 2013-07-31 | 2019-04-23 | 太阳专利托管公司 | Image encoding method and picture coding device |
CN105284110A (en) * | 2013-07-31 | 2016-01-27 | 松下电器(美国)知识产权公司 | Image coding method, and image coding device |
CN103442228A (en) * | 2013-08-19 | 2013-12-11 | 四川大学 | Quick frame inner transcoding method from H.264/AVC standard to HEVC standard and transcoder thereof |
CN103442228B (en) * | 2013-08-19 | 2016-05-25 | 四川大学 | Code-transferring method and transcoder thereof in from standard H.264/AVC to the fast frame of HEVC standard |
CN104581181A (en) * | 2013-10-11 | 2015-04-29 | 中国科学院深圳先进技术研究院 | Intra-frame coding method based on candidate mode list (CML) optimization |
CN104581181B (en) * | 2013-10-11 | 2017-12-05 | 中国科学院深圳先进技术研究院 | A kind of inner frame coding method based on alternative mode list optimization |
CN103596004A (en) * | 2013-11-19 | 2014-02-19 | 北京邮电大学 | Intra-frame prediction method and device based on mathematical statistics and classification training in HEVC |
CN103888763B (en) * | 2014-03-24 | 2017-04-26 | 北京工业大学 | Intra-frame coding method based on HEVC |
CN103888763A (en) * | 2014-03-24 | 2014-06-25 | 北京工业大学 | Intra-frame coding method based on HEVC |
CN104954800A (en) * | 2014-03-28 | 2015-09-30 | 炬芯(珠海)科技有限公司 | Method for rapidly determining intra-frame prediction mode of video code and device thereof |
CN104954800B (en) * | 2014-03-28 | 2018-01-16 | 炬芯(珠海)科技有限公司 | A kind of fast determination method and device of the intra prediction mode of Video coding |
CN103929652B (en) * | 2014-04-30 | 2017-04-19 | 西安电子科技大学 | Intra-frame prediction fast mode selecting method based on autoregressive model in video standard |
CN103929652A (en) * | 2014-04-30 | 2014-07-16 | 西安电子科技大学 | Fast Mode Selection Method for Intra Prediction Based on Autoregressive Model in Video Standards |
CN103997646A (en) * | 2014-05-13 | 2014-08-20 | 北京航空航天大学 | Rapid intra-frame prediction mode selection method in high-definition video coding |
CN103997646B (en) * | 2014-05-13 | 2018-05-01 | 北京航空航天大学 | Fast intra-mode prediction mode selecting method in a kind of HD video coding |
CN104539949B (en) * | 2014-12-12 | 2018-02-06 | 北方工业大学 | The method and device of quick partitioning based on edge direction in HEVC screen codings |
CN104539949A (en) * | 2014-12-12 | 2015-04-22 | 北方工业大学 | HEVC screen coding quick slicing based on edge directions |
CN104581152A (en) * | 2014-12-25 | 2015-04-29 | 同济大学 | HEVC intra-frame prediction mode decision accelerating method |
CN104618726B (en) * | 2014-12-31 | 2017-10-20 | 华侨大学 | A kind of HEVC frame in fast mode decision algorithms based on PU texture features |
CN104618726A (en) * | 2014-12-31 | 2015-05-13 | 华侨大学 | PU (Prediction Unit) texture feature based rapid mode decision algorithm in HEVC (High Efficiency Video Coding) frame |
CN107810632B (en) * | 2015-05-06 | 2020-06-23 | Ng编译码器股份有限公司 | Intra prediction processor with reduced cost block segmentation and refined intra mode selection |
CN107810632A (en) * | 2015-05-06 | 2018-03-16 | Ng编译码器股份有限公司 | The intra-prediction process device of intra mode decision with block segmentation and the refinement for reducing cost |
CN105208387B (en) * | 2015-10-16 | 2018-03-13 | 浙江工业大学 | A kind of HEVC Adaptive Mode Selection Method for Intra-Prediction |
CN105208387A (en) * | 2015-10-16 | 2015-12-30 | 浙江工业大学 | HEVC intra-frame prediction mode fast selection method |
TWI619380B (en) * | 2016-03-18 | 2018-03-21 | 聯發科技股份有限公司 | Method and apparatus of intra prediction in image and video processing |
CN105812825A (en) * | 2016-05-10 | 2016-07-27 | 中山大学 | Image coding method based on grouping |
CN105812825B (en) * | 2016-05-10 | 2019-02-26 | 中山大学 | A packet-based image coding method |
CN106028047A (en) * | 2016-05-24 | 2016-10-12 | 西安电子科技大学 | Hadamard transform-based fast intra-prediction mode selection and PU partition method |
CN106028047B (en) * | 2016-05-24 | 2019-02-26 | 西安电子科技大学 | A Fast Mode Selection and PU Partitioning Method for Intra Prediction Based on Hadamard Transform |
CN109845259A (en) * | 2016-10-21 | 2019-06-04 | 奥兰治 | Code and decode method, the equipment for coding and decoding image parameter and its corresponding computer program of image parameter |
CN109845259B (en) * | 2016-10-21 | 2022-05-17 | 奥兰治 | Method for encoding and decoding image parameters, apparatus for encoding and decoding image parameters |
WO2018145600A1 (en) * | 2017-02-07 | 2018-08-16 | Mediatek Inc. | Adaptive prediction candidate positions for video coding |
US11039163B2 (en) | 2017-02-07 | 2021-06-15 | Mediatek Inc. | Adapting merge candidate positions and numbers according to size and/or shape of prediction block |
US10484703B2 (en) | 2017-02-07 | 2019-11-19 | Mediatek Inc. | Adapting merge candidate positions and numbers according to size and/or shape of prediction block |
TWI674793B (en) * | 2017-02-07 | 2019-10-11 | 聯發科技股份有限公司 | Adaptive prediction candidate positions for video coding |
CN106993192A (en) * | 2017-04-14 | 2017-07-28 | 合肥工业大学 | Angle Prediction Circuit and Prediction Method Applied to Intra-frame Prediction in Video Coding and Decoding |
CN107396130A (en) * | 2017-07-28 | 2017-11-24 | 天津大学 | HEVC fast intra mode decision making algorithms based on DCT |
US11395002B2 (en) | 2018-01-16 | 2022-07-19 | Tencent Technology (Shenzhen) Company Limited | Prediction direction selection method and apparatus in image encoding, and storage medium |
CN110049339A (en) * | 2018-01-16 | 2019-07-23 | 腾讯科技(深圳)有限公司 | Prediction direction choosing method, device and storage medium in image coding |
WO2019141007A1 (en) * | 2018-01-16 | 2019-07-25 | 腾讯科技(深圳)有限公司 | Method and device for selecting prediction direction in image encoding, and storage medium |
CN110049339B (en) * | 2018-01-16 | 2023-02-17 | 腾讯科技(深圳)有限公司 | Prediction direction selection method and device in image coding and storage medium |
CN108600754A (en) * | 2018-05-09 | 2018-09-28 | 哈尔滨工业大学 | A kind of fast prediction direction decision-making technique for efficient video coding |
CN110708546A (en) * | 2019-09-20 | 2020-01-17 | 中山大学 | Intra-frame mode selection and division method, system and storage medium for multifunctional video coding |
CN110708546B (en) * | 2019-09-20 | 2021-12-07 | 中山大学 | Intra-frame mode selection and division method, system and storage medium for multifunctional video coding |
CN111757105A (en) * | 2020-06-30 | 2020-10-09 | 北京百度网讯科技有限公司 | Image encoding processing method, apparatus, device and medium |
US20210297664A1 (en) * | 2020-06-30 | 2021-09-23 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method for image encoding, electronic device and storage medium |
US11582449B2 (en) * | 2020-06-30 | 2023-02-14 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method for image encoding, electronic device and storage medium |
CN111757105B (en) * | 2020-06-30 | 2023-07-04 | 北京百度网讯科技有限公司 | Image coding processing method, device, equipment and medium |
CN116347071A (en) * | 2023-02-24 | 2023-06-27 | 阿里巴巴(中国)有限公司 | Prediction mode determination method, device, electronic equipment and computer storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN102665079B (en) | 2014-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102665079A (en) | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) | |
CN102665078A (en) | Intra prediction mode decision based on direction vector for HEVC (High Efficiency Video Coding) | |
US9053544B2 (en) | Methods and apparatuses for encoding/decoding high resolution images | |
CN103997646B (en) | Fast intra-mode prediction mode selecting method in a kind of HD video coding | |
CN103281541B (en) | Based on the infra-frame prediction wedge shape method of partition of depth image | |
CN103039073B (en) | The method of coding/decoding high-definition picture and the device of execution the method | |
CN101815215B (en) | Method and apparatus for coding mode selection | |
WO2013042888A2 (en) | Method for inducing a merge candidate block and device using same | |
CN104052994A (en) | Hierarchical Adaptive HEVC Intra Prediction Mode Fast Decision Method | |
Tsai et al. | Effective subblock-based and pixel-based fast direction detections for H. 264 intra prediction | |
CN104539949B (en) | The method and device of quick partitioning based on edge direction in HEVC screen codings | |
CN102685477B (en) | Method and device for obtaining image blocks for merging mode | |
US9332275B2 (en) | Methods, apparatuses, and programs for encoding and decoding picture | |
CN105721878A (en) | Image Processing Device And Method For Intra-Frame Predication In Hevc Video Coding | |
TW200952499A (en) | Apparatus and method for computationally efficient intra prediction in a video coder | |
CN110351552B (en) | A Fast Coding Method in Video Coding | |
CN107113438A (en) | Intra-frame encoding mode | |
US20150208094A1 (en) | Apparatus and method for determining dct size based on transform depth | |
CN105681808B (en) | A kind of high-speed decision method of SCC interframe encodes unit mode | |
CN103248895A (en) | Quick mode estimation method used for HEVC intra-frame coding | |
CN101304529A (en) | Method and device for selecting macroblock mode | |
CN103533355A (en) | Quick coding method for HEVC (high efficiency video coding) | |
CN104954787B (en) | HEVC inter-frame forecast mode selection methods and device | |
CN104581152A (en) | HEVC intra-frame prediction mode decision accelerating method | |
CN103581682B (en) | A Fast Mode Decision Algorithm for HEVC Intra-Frame Coding and Its Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141126 Termination date: 20150508 |
|
EXPY | Termination of patent right or utility model |