CN102662015B - Biological sample purification method based on inorganic salt promoted phase transition and separation of nano-gold - Google Patents
Biological sample purification method based on inorganic salt promoted phase transition and separation of nano-gold Download PDFInfo
- Publication number
- CN102662015B CN102662015B CN2012101058284A CN201210105828A CN102662015B CN 102662015 B CN102662015 B CN 102662015B CN 2012101058284 A CN2012101058284 A CN 2012101058284A CN 201210105828 A CN201210105828 A CN 201210105828A CN 102662015 B CN102662015 B CN 102662015B
- Authority
- CN
- China
- Prior art keywords
- gold
- inorganic salt
- nano
- separation
- biological sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012472 biological sample Substances 0.000 title claims abstract description 38
- 239000010931 gold Substances 0.000 title claims abstract description 37
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 37
- 238000000926 separation method Methods 0.000 title claims abstract description 24
- 229910017053 inorganic salt Inorganic materials 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000000746 purification Methods 0.000 title claims abstract description 10
- 230000007704 transition Effects 0.000 title claims description 4
- 239000000523 sample Substances 0.000 claims abstract description 24
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- 239000012071 phase Substances 0.000 claims abstract description 14
- 230000008859 change Effects 0.000 claims abstract description 10
- 239000012074 organic phase Substances 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 16
- 239000002105 nanoparticle Substances 0.000 claims description 16
- 235000002639 sodium chloride Nutrition 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 238000000338 in vitro Methods 0.000 claims description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 8
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 8
- 239000011780 sodium chloride Substances 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000001737 promoting effect Effects 0.000 claims description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 2
- 210000001124 body fluid Anatomy 0.000 claims description 2
- 239000010839 body fluid Substances 0.000 claims description 2
- 238000004811 liquid chromatography Methods 0.000 claims description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 230000000813 microbial effect Effects 0.000 claims description 2
- 239000000419 plant extract Substances 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- -1 tissue homogenates Substances 0.000 claims description 2
- 241000894007 species Species 0.000 claims 2
- 235000011147 magnesium chloride Nutrition 0.000 claims 1
- 238000000527 sonication Methods 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 11
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 8
- 229960001985 dextromethorphan Drugs 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000036267 drug metabolism Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000001868 liquid chromatography-fluorescence detection Methods 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229940075887 saccharomyces cerevisiae extract Drugs 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 102000003849 Cytochrome P450 Human genes 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011953 bioanalysis Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- MKXZASYAUGDDCJ-CGTJXYLNSA-N levomethorphan Chemical compound C([C@H]12)CCC[C@@]11CCN(C)[C@@H]2CC2=CC=C(OC)C=C21 MKXZASYAUGDDCJ-CGTJXYLNSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000001853 liver microsome Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011034 membrane dialysis Methods 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
基于无机盐促相变分离纳米金的生物样品的净化方法,包括以下步骤:(1)按含纳米金的生物样品的体积:亲水性有机溶剂的体积=1:(0.5-10)比例向生物样品中加入亲水性有机溶剂混匀得混合样品;(2)按含纳米金的生物样品的体积:无机盐的质量=1:(0.05-5)的比例向混合样品中加入无机盐,超声溶解1-3分钟,再用涡旋震荡器震荡1-3分钟;(3)在温度-20~20℃静置,或离心分层后,取上层有机相清液。本发明无需使用复杂试剂和分离设备,低耗环保,简便快速,适应性强,重复性好,可同时实现生物样品中纳米金的分离与基质的充分净化。
The method for purifying biological samples based on inorganic salt-promoted phase change separation of nano-gold comprises the following steps: (1) according to the volume of biological samples containing nano-gold: the volume of hydrophilic organic solvent = 1: (0.5-10) to the Add a hydrophilic organic solvent to the biological sample and mix to obtain a mixed sample; (2) add the inorganic salt to the mixed sample according to the volume of the biological sample containing nano-gold: the mass of the inorganic salt = 1: (0.05-5), Sonicate for 1-3 minutes, then vortex for 1-3 minutes; (3) Stand still at a temperature of -20 to 20°C, or centrifuge to separate layers, and take the upper organic phase clear liquid. The invention does not need complex reagents and separation equipment, is low-consumption and environmentally friendly, is simple and fast, has strong adaptability and good repeatability, and can simultaneously realize the separation of nano gold in biological samples and the sufficient purification of substrates.
Description
技术领域 technical field
本发明涉及一种生物样品的净化方法,尤其是涉及一种基于无机盐促相变分离纳米金的生物样品的净化方法。 The invention relates to a method for purifying biological samples, in particular to a method for purifying biological samples based on inorganic salts promoting phase change to separate nano gold.
背景技术 Background technique
近几年来,纳米金由于其独特的物理化学特性而在生物医药领域中被广泛应用。在生物-纳米分析技术领域,基于纳米金分散/集聚所致溶液颜色变化的均相生物传感技术仍是研究热点。但是,由于纳米粒子状态对溶液理化性质的高度依赖性及复杂生物样品基质易对目标分子检测信号产生严重干扰,因此,如何实现繁杂生物样品基质中纳米粒子的快速分离和目标分子的直接、准确检测,是当前纳米医学及生物分析领域的一个重要前沿课题。 In recent years, gold nanoparticles have been widely used in the field of biomedicine due to their unique physical and chemical properties. In the field of bio-nano analysis technology, the homogeneous biosensing technology based on the color change of the solution caused by the dispersion/aggregation of gold nanoparticles is still a research hotspot. However, due to the high dependence of the state of nanoparticles on the physical and chemical properties of the solution and the complex biological sample matrix is likely to seriously interfere with the detection signal of target molecules, how to achieve rapid separation of nanoparticles in complex biological sample matrices and direct and accurate detection of target molecules Detection is an important frontier topic in the field of nanomedicine and bioanalysis.
目前,分离纳米粒子一般采用高速或梯度离心、膜透析或超滤、电泳、排阻色谱、纳米表面修饰、溶剂挥发、有机试剂相转换等方法,其存在的缺点是操作麻烦,耗时费力;所用试剂成本较高,所用装置复杂且能耗高,经济效益较低。 At present, high-speed or gradient centrifugation, membrane dialysis or ultrafiltration, electrophoresis, size-exclusion chromatography, nano-surface modification, solvent volatilization, and organic reagent phase conversion are generally used to separate nanoparticles. The disadvantages are that the operation is troublesome, time-consuming and laborious; The cost of the reagent used is high, the device used is complex and consumes high energy, and the economic benefit is low.
最近,研究发现采用无机盐电解质可以选择性沉淀出胶体金混合制备液中不同形状的纳米金粒子(Chem. Commun., 2011, 47 (14): 4180-4182),然而该方法不能有效排除复杂生物样品中杂质对目标物的检测干扰,也难以满足生物样品分析中同时面临的纳米金分离和待测物提纯等诸多前处理要求,因而无法直接运用更有效的仪器手段如色谱对目标组分做准确的测定。 Recently, studies have found that the use of inorganic salt electrolytes can selectively precipitate gold nanoparticles of different shapes in the colloidal gold mixed preparation solution ( Chem. Commun ., 2011, 47 (14): 4180-4182 ), however, this method cannot effectively exclude complex Impurities in biological samples interfere with the detection of target substances, and it is also difficult to meet the pretreatment requirements of nano-gold separation and analyte purification in the analysis of biological samples, so it is impossible to directly use more effective instruments such as chromatography to detect target components. Make accurate measurements.
发明内容 Contents of the invention
本发明所要解决的技术问题是,提供一种操作简便,成本低,可同时实现纳米金分离和待测物提纯,从而准确测定目标组分的基于无机盐促相变分离纳米金的生物样品的净化方法。 The technical problem to be solved by the present invention is to provide a biological sample based on inorganic salt-promoted phase change separation of nano-gold that is easy to operate, low in cost, and can simultaneously realize the separation of nano-gold and the purification of the analyte, thereby accurately measuring the target component. Purification method.
本发明解决其技术问题采用的技术方案是:基于无机盐促相变分离纳米金的生物样品的净化方法,包括以下步骤: The technical solution adopted by the present invention to solve the technical problem is: a method for purifying biological samples based on inorganic salt-promoted phase transition separation of nano-gold, comprising the following steps:
(1)按含纳米金的生物样品的体积:亲水性有机溶剂的体积=1:(0.5-10)(优选1:0.8-2,更优选1:1)比例向生物样品中加入亲水性有机溶剂混匀,得混合样品; (1) According to the volume of the biological sample containing nano-gold: the volume of the hydrophilic organic solvent = 1: (0.5-10) (preferably 1:0.8-2, more preferably 1:1) ratio, add hydrophilic to the biological sample Mix with a neutral organic solvent to obtain a mixed sample;
所述含纳米金的生物样品,包括但不限于动物和人的体液、组织匀浆、植物提取液、微生物提取液、体外生物样品,所述体外生物样品包括细胞、亚细胞系统、体外重组酶及抗原-抗体反应体系; The biological samples containing gold nanoparticles include but not limited to animal and human body fluids, tissue homogenates, plant extracts, microbial extracts, in vitro biological samples, and the in vitro biological samples include cells, subcellular systems, and in vitro recombinant enzymes. And antigen-antibody reaction system;
(2)按含纳米金的生物样品的体积:无机盐的质量=1:(0.05-5)(优选1:0.08-2,更优选1:0.1)的比例向混合样品中加入无机盐,超声溶解1-3分钟,再用涡旋震荡器震荡1-3分钟; (2) According to the volume of the biological sample containing nano-gold: the mass of the inorganic salt = 1: (0.05-5) (preferably 1:0.08-2, more preferably 1:0.1), add the inorganic salt to the mixed sample, and ultrasonically Dissolve for 1-3 minutes, then shake with a vortex shaker for 1-3 minutes;
(3)在温度-20~20℃(优选0-10℃,更优选4℃)下静置8-15分钟,或在2500-12000转/分离心4-10分钟后,取上层有机相清液,直接用于液相色谱进样分析,含纳米金的下层液移至新离心管中用纯水超声复溶。 (3) Stand at a temperature of -20-20°C (preferably 0-10°C, more preferably 4°C) for 8-15 minutes, or centrifuge at 2500-12000 rpm for 4-10 minutes, then take the upper organic phase to clear The solution was directly used for liquid chromatography injection analysis, and the lower layer containing gold nanoparticles was transferred to a new centrifuge tube and reconstituted with pure water ultrasonically.
进一步,所述亲水性有机溶剂可为乙腈或丙酮等亲水性有机溶剂,优选乙腈。 Further, the hydrophilic organic solvent may be acetonitrile or acetone and other hydrophilic organic solvents, preferably acetonitrile.
进一步,所述无机盐可为氯化钠(对≤5 nm的粒子金聚沉效果较好)、硫酸镁(对85-100 nm的粒子金聚沉效果较好)、硫酸钠、氯化镁中的一种或几种的混合物,优选氯化钠与硫酸镁的混合物,更优选质量比1:1的氯化钠与硫酸镁的混合物。 Further, the inorganic salt can be sodium chloride (better for gold coagulation effect of ≤ 5 nm particles), magnesium sulfate (better for gold coagulation effect of 85-100 nm particles), sodium sulfate, magnesium chloride One or more mixtures, preferably a mixture of sodium chloride and magnesium sulfate, more preferably a mixture of sodium chloride and magnesium sulfate with a mass ratio of 1:1.
本发明先将含纳米金的生物样品溶液与乙腈或丙酮等亲水性有机溶剂互溶,使生物样品基质稀释和变性,有利于纳米粒子与样品的分离和待测目标物在溶剂中的分散,然后引入无机盐电解质,利用其诱导胶体金聚沉和盐析分相萃取的双重效应,再经低温静置或离心,将水溶液(含纳米金)和亲水性有机溶剂(含目标组分)从单相互溶体系中分离成上下两相。由于低温会加快水-乙腈体系分相,短时间静置即可达到完全分离。 In the present invention, the biological sample solution containing nano-gold is miscible with hydrophilic organic solvents such as acetonitrile or acetone, so that the biological sample matrix is diluted and denatured, which is beneficial to the separation of nanoparticles and samples and the dispersion of the target object to be measured in the solvent. Then introduce an inorganic salt electrolyte, use its dual effects of inducing colloidal gold coagulation and salting out phase separation extraction, and then stand at low temperature or centrifuge to separate the aqueous solution (containing nano-gold) and hydrophilic organic solvent (containing the target component) It is separated into upper and lower phases from a single miscible system. Since the low temperature will accelerate the phase separation of the water-acetonitrile system, complete separation can be achieved by standing still for a short time.
其中混合样品中的纳米粒子聚沉入下层水相,按紫外-可见光谱吸光度数值计算聚沉去除率可达98%,下层聚集纳米金可经纯水重溶解,通过电镜观察发现复溶后其尺寸形态无显著变化;待测组分则富集于上层有机相,分离提纯后的有机溶剂(即上层清液)可直接用于色谱分析(提取回收率达95%以上)。 Among them, the nanoparticles in the mixed sample coagulate and sink into the lower water phase, and the coagulation removal rate can reach 98% according to the absorbance value of the ultraviolet-visible spectrum. There is no significant change in size and shape; the components to be tested are enriched in the upper organic phase, and the separated and purified organic solvent (that is, the supernatant) can be directly used for chromatographic analysis (the extraction recovery rate is over 95%).
与现有技术相比,本发明具有以下优点:所用亲水性有机溶剂、无机盐便宜易得,成本低;无需使用复杂的分离设备,低耗环保;简便快速、适应性强、重复性好,可同时实现从均一样品溶液中快速分离胶体金、富集提取目标化合物,能广泛用于血液、组织匀浆、酶、重组蛋白、细胞提取液等各种生物样品中纳米金的分离和基质的净化。 Compared with the prior art, the present invention has the following advantages: the hydrophilic organic solvents and inorganic salts used are cheap and easy to obtain, and the cost is low; there is no need to use complicated separation equipment, low consumption and environmental protection; simple and fast, strong adaptability and good repeatability , can simultaneously realize rapid separation of colloidal gold, enrichment and extraction of target compounds from homogeneous sample solutions, and can be widely used in the separation and matrix of nano-gold in various biological samples such as blood, tissue homogenate, enzymes, recombinant proteins, and cell extracts purification.
附图说明 Description of drawings
图1 是本发明实施例2所得下层水相的电镜图; Fig. 1 is the electron micrograph of embodiment of the present invention 2 gained lower floor aqueous phases;
图2 是本发明实施例2所得上层净化清液直接进样的高效液相色谱图。 Fig. 2 is the high-efficiency liquid phase chromatogram of direct sample injection of the supernatant purified supernatant obtained in Example 2 of the present invention.
具体实施方式 Detailed ways
以下结合实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with embodiment.
实施例1 Example 1
本实施例包括以下步骤: This embodiment includes the following steps:
(1)取体外药物代谢酶反应体系样品200微升,向样品中加入200微升冰乙腈,涡旋震荡2分钟,得混合样品; (1) Take 200 microliters of the in vitro drug metabolism enzyme reaction system sample, add 200 microliters of glacial acetonitrile to the sample, and vortex for 2 minutes to obtain a mixed sample;
所述体外药物代谢酶反应体系样品的配制(以细胞色素P450中的CYP2D6为酶反应代表): Preparation of samples of the in vitro drug metabolism enzyme reaction system (represented by CYP2D6 in cytochrome P450):
在135微升磷酸盐缓冲液(100 mmol/L,pH7.4)中依次加入5微升解冻后的人肝微粒体(蛋白浓度为20 mg/mL),10 微升特异性底物药物右美沙芬(0.4 mmol/L,由磷酸盐缓冲液配制),10微升纳米金水溶液(10 nm,1 mg/mL),混匀,在37℃预孵育5分钟;然后再加入40微升NADPH溶液(50 mmol/L,由磷酸盐缓冲液临时配制),在37℃反应10分钟; In 135 microliters of phosphate buffer (100 mmol/L, pH 7.4), 5 microliters of thawed human liver microsomes (protein concentration: 20 mg/mL) and 10 microliters of specific substrate drugs were added sequentially. Methorphan (0.4 mmol/L, prepared by phosphate buffer), 10 microliters of nano-gold aqueous solution (10 nm, 1 mg/mL), mixed well, pre-incubated at 37°C for 5 minutes; then added 40 microliters of NADPH Solution (50 mmol/L, temporarily prepared from phosphate buffer), react at 37°C for 10 minutes;
(2)向混合样品中加入0.02 g氯化钠与硫酸镁的混合物(氯化钠的质量:硫酸镁的质量=1:1),超声溶解2分钟,再用涡旋震荡器震荡1分钟; (2) Add 0.02 g of a mixture of sodium chloride and magnesium sulfate to the mixed sample (mass of sodium chloride: mass of magnesium sulfate = 1:1), ultrasonically dissolve for 2 minutes, and then shake for 1 minute with a vortex shaker;
(3)置于4℃的冰箱中静置10分钟,分相后获得上层有机溶液160微升,取10微升上清液直接进样,对右美沙芬及其代谢产物去甲右美沙芬进行高效液相色谱-荧光检测分析。 (3) Put it in a refrigerator at 4°C for 10 minutes, obtain 160 microliters of the upper layer organic solution after phase separation, take 10 microliters of the supernatant and inject directly into the sample, and detect dextromethorphan and its metabolite nordextromethorphan Perform high-performance liquid chromatography-fluorescence detection analysis.
结果表明纳米粒子和样品基质分离完全,重复进样(30次)不影响色谱柱分离的基线背景、保留时间、峰形和信号强度,经此处理后两个目标物的回收率均为97%。 The results show that the nanoparticles and the sample matrix are completely separated, and repeated injections (30 times) do not affect the baseline background, retention time, peak shape and signal intensity of the chromatographic column separation. After this treatment, the recoveries of the two targets are both 97%. .
实施例2 Example 2
本实施例包括以下步骤: This embodiment includes the following steps:
(1)取200微升含胶体金(100 nm,0.05 mg/mL)的人体血清样品,向样品中加入200微升冰乙腈,涡旋震荡2分钟,得混合样品; (1) Take 200 microliters of human serum samples containing colloidal gold (100 nm, 0.05 mg/mL), add 200 microliters of glacial acetonitrile to the samples, and vortex for 2 minutes to obtain mixed samples;
所述人体血清中加有右美沙芬药物及其代谢物去甲右美沙芬,所述右美沙芬药物的浓度为0.05mmol/L,所述去甲右美沙芬的浓度为8 mmol/L; Add dextromethorphan medicine and its metabolite nordextromethorphan in described human serum, the concentration of described dextromethorphan medicine is 0.05mmol/L, the concentration of described nordextromethorphan is 8 mmol/L;
(2)向混合样品中加入0.02 g硫酸镁,超声溶解2分钟,涡旋震荡1分钟; (2) Add 0.02 g of magnesium sulfate to the mixed sample, ultrasonically dissolve for 2 minutes, and vortex for 1 minute;
(3)在转速3000转/分下离心5分钟,分相后获得上层有机溶液160微升,取10微升上清液直接进样,对右美沙芬及其代谢产物去甲右美沙芬进行高效液相色谱-荧光测定分析。 (3) Centrifuge at a speed of 3000 rpm for 5 minutes, obtain 160 microliters of the upper layer organic solution after phase separation, take 10 microliters of the supernatant and directly inject the sample, and carry out dextromethorphan and its metabolite nordextromethorphan HPLC-fluorometric analysis.
结果表明纳米粒子和样品基质分离完全,重复进样(30次)不影响色谱柱分离的基线背景、保留时间、峰形和信号强度,目标物右美沙芬的回收率为96%,目标物去甲右美沙芬的回收率为98%。 The results showed that the nanoparticles and the sample matrix were completely separated, repeated injections (30 times) did not affect the baseline background, retention time, peak shape and signal intensity of the chromatographic column separation, the recovery rate of the target dextromethorphan was 96%, and the target was removed. The recovery rate of dextromethorphan was 98%.
实施例3 Example 3
本实施例包括以下步骤: This embodiment includes the following steps:
(1)取酿酒酵母提取液样品200微升,向样品中加入200微升丙酮,涡旋震荡2分钟,得混合样品; (1) Take 200 microliters of Saccharomyces cerevisiae extract sample, add 200 microliters of acetone to the sample, and vortex for 2 minutes to obtain a mixed sample;
所述酿酒酵母提取液样品的配制:在140微升酿酒酵母微粒体磷酸盐缓冲液(蛋白浓度20 mg/mL,100 mmol/L,pH7.4)中依次加入10 微升特异性底物药物右美沙芬(0.4 mmol/L,由磷酸盐缓冲液配制),10微升纳米金水溶液(10 nm,1 mg/mL),混匀,在37℃预孵育5分钟;然后再加入40微升NADPH溶液(50 mmol/L,由磷酸盐缓冲液临时配制),在37℃反应10分钟; Preparation of the Saccharomyces cerevisiae extract sample: 10 microliters of specific substrate drugs were sequentially added to 140 microliters of Saccharomyces cerevisiae microsomal phosphate buffer (protein concentration 20 mg/mL, 100 mmol/L, pH 7.4) Dextromethorphan (0.4 mmol/L, prepared by phosphate buffer), 10 microliters of nano-gold aqueous solution (10 nm, 1 mg/mL), mix well, and pre-incubate at 37°C for 5 minutes; then add 40 microliters NADPH solution (50 mmol/L, temporarily prepared from phosphate buffer), react at 37°C for 10 minutes;
(2)向混合样品中加入0.06 g氯化钠,超声溶解2分钟,再用涡旋震荡器震荡1分钟; (2) Add 0.06 g of sodium chloride to the mixed sample, ultrasonically dissolve it for 2 minutes, and shake it with a vortex shaker for 1 minute;
(3)置于4℃的冰箱中,静置10分钟,分相后获得上层有机溶液140微升,取10微升上清液直接进样,对右美沙芬及其代谢产物去甲右美沙芬进行高效液相色谱-荧光检测分析。 (3) Put it in a refrigerator at 4°C and let it stand for 10 minutes. After phase separation, 140 microliters of the upper organic solution was obtained. Take 10 microliters of the supernatant and inject it directly. Fen was analyzed by high performance liquid chromatography-fluorescence detection.
结果表明纳米粒子和样品基质分离完全,重复进样(30次)不影响色谱柱分离的基线背景、保留时间和峰形和信号强度,目标物右美沙芬及其代谢产物去甲右美沙芬的回收率均为96%。 The results showed that the nanoparticles and the sample matrix were completely separated, repeated injections (30 times) did not affect the baseline background, retention time, peak shape and signal intensity of the column separation, the target dextromethorphan and its metabolite nordextromethorphan The recoveries were all 96%.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101058284A CN102662015B (en) | 2012-04-12 | 2012-04-12 | Biological sample purification method based on inorganic salt promoted phase transition and separation of nano-gold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101058284A CN102662015B (en) | 2012-04-12 | 2012-04-12 | Biological sample purification method based on inorganic salt promoted phase transition and separation of nano-gold |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102662015A CN102662015A (en) | 2012-09-12 |
CN102662015B true CN102662015B (en) | 2013-11-20 |
Family
ID=46771547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101058284A Expired - Fee Related CN102662015B (en) | 2012-04-12 | 2012-04-12 | Biological sample purification method based on inorganic salt promoted phase transition and separation of nano-gold |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102662015B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111001184A (en) * | 2019-12-25 | 2020-04-14 | 中国科学院长春应用化学研究所 | Method for efficiently inducing water-organic solvent mixed solution phase separation by inorganic salt |
CN116099234A (en) * | 2022-11-11 | 2023-05-12 | 湖南师范大学 | Method for separating acetonitrile-water with low energy consumption |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5772888A (en) * | 1995-07-27 | 1998-06-30 | Massachusetts Institute Of Technology | Separation and/or concentration of an analyte from a mixture using a two-phase aqueous micellar system |
US6437101B1 (en) * | 1999-05-07 | 2002-08-20 | Akzo Nobel N.V. | Methods for protein purification using aqueous two-phase extraction |
CN1589246A (en) * | 2001-09-20 | 2005-03-02 | 江崎格力高株式会社 | Method for extracting and method for purifying effective substance |
CN101915818A (en) * | 2010-08-13 | 2010-12-15 | 东北农业大学 | A kind of LC-MS/MS method for determination of milbexime content in animal plasma |
CN102353571A (en) * | 2011-09-20 | 2012-02-15 | 苏州东奇生物科技有限公司 | Viscous biological sample purifier and pre-processing method of viscous biological sample |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011159537A2 (en) * | 2010-06-15 | 2011-12-22 | The Regents Of The University Of California | Method and device for analyte detection |
-
2012
- 2012-04-12 CN CN2012101058284A patent/CN102662015B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5772888A (en) * | 1995-07-27 | 1998-06-30 | Massachusetts Institute Of Technology | Separation and/or concentration of an analyte from a mixture using a two-phase aqueous micellar system |
US6437101B1 (en) * | 1999-05-07 | 2002-08-20 | Akzo Nobel N.V. | Methods for protein purification using aqueous two-phase extraction |
CN1589246A (en) * | 2001-09-20 | 2005-03-02 | 江崎格力高株式会社 | Method for extracting and method for purifying effective substance |
CN101915818A (en) * | 2010-08-13 | 2010-12-15 | 东北农业大学 | A kind of LC-MS/MS method for determination of milbexime content in animal plasma |
CN102353571A (en) * | 2011-09-20 | 2012-02-15 | 苏州东奇生物科技有限公司 | Viscous biological sample purifier and pre-processing method of viscous biological sample |
Non-Patent Citations (12)
Title |
---|
Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking for biological sample clean-up and the enrichment of hydrophobic compounds (porphyrins) in capillary electrophoresis;Qi Li et al;《Electrophoresis》;20061130;第27卷(第21期);第4219-4229页 * |
Jun Zhang et al.Salting-out assisted liquid/liquid extraction with acetonitrile: a new high throughput sample preparation technique for good laboratory practice bioanalysis using liquid chromatography–mass spectrometry.《Biomedical Chromatography》.2009,第23卷(第4期), |
Nucleotide-Mediated Size Fractionation of Gold Nanoparticles in Aqueous Solutions;Wenting Zhao et al;《Langmuir》;20100518;第26卷(第10期);第7405-7409页 * |
Qi Li et al.Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking for biological sample clean-up and the enrichment of hydrophobic compounds (porphyrins) in capillary electrophoresis.《Electrophoresis》.2006,第27卷(第21期),第4219–4229页. |
Salting-out assisted liquid/liquid extraction with acetonitrile: a new high throughput sample preparation technique for good laboratory practice bioanalysis using liquid chromatography–mass spectrometry;Jun Zhang et al;《Biomedical Chromatography》;20090430;第23卷(第4期);第419-425页 * |
Shape separation of colloidal gold nanoparticles through salt-triggered selective precipitation;Zhirui Guo et al;《Chemical Communications》;20111231;第47卷(第14期);第4180-4182页 * |
Wenting Zhao et al.Nucleotide-Mediated Size Fractionation of Gold Nanoparticles in Aqueous Solutions.《Langmuir》.2010,第26卷(第10期), |
Zhirui Guo et al.Shape separation of colloidal gold nanoparticles through salt-triggered selective precipitation.《Chemical Communications》.2011,第47卷(第14期), |
李章万等.色谱分析中生物样品的前处理方法.《药物分析杂志》.1996,第16卷(第1期), |
生物样品中6种抗凝血鼠药的测定;蔡增轩等;《中国卫生检验杂志》;20081031;第18卷(第10期);第2006-2008,2145页 * |
色谱分析中生物样品的前处理方法;李章万等;《药物分析杂志》;19960131;第16卷(第1期);第55-59页 * |
蔡增轩等.生物样品中6种抗凝血鼠药的测定.《中国卫生检验杂志》.2008,第18卷(第10期), |
Also Published As
Publication number | Publication date |
---|---|
CN102662015A (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103454360B (en) | Ultrafiltration and UPLC-MS/MS (ultra-high performance liquid chromatography tandem mass spectrometry) method for measuring concentration of free docetaxel in human plasma | |
CN107043766A (en) | A kind of nucleic acid magnetic bead extracts reagent of instant | |
US11835502B2 (en) | Analysis method for extracellular vesicles, using size exclusion chromatography, and use for same | |
Glatz | On‐capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis | |
CN105092765B (en) | A kind of detection method of lucidum spore powder material effective component | |
CN105891285B (en) | The integrated chip and its application of high-selectivity enrichment and detection tetrabromobisphenol A | |
CN102146112A (en) | Method for extracting desoxyribonucleic acid from formalin fixed and paraffin embedded tissues | |
CN103710338A (en) | Kit for extracting DNA (deoxyribonucleic acid) from white cells in human whole blood | |
CN106153770A (en) | A kind of Solid-Phase Extraction liquid chromatography mass detection method of aquatic products glyphosate | |
CN112834631A (en) | A single-cell single-tube sample preparation and single-cell proteomic analysis method | |
Zhang et al. | High selective and sensitive capillary electrophoresis-based electrochemical immunoassay enhanced by gold nanoparticles | |
CN109331795A (en) | A kind of magnetic nanocomposite material and its preparation and application | |
CN102662015B (en) | Biological sample purification method based on inorganic salt promoted phase transition and separation of nano-gold | |
WO2005010485A3 (en) | Methods for detecting and analyzing n-glycolylneuraminic acid (neu5gc) in biological materials | |
CN102798656B (en) | Method for separating 3-hydroxyl glutaric acid monoester enantiomer by high-performance capillary electrophoresis | |
CN117099774B (en) | Preservation and detection methods of nicotinic acid metabolite blood sample, kit and application of nicotinic acid metabolite blood sample | |
Chen et al. | Electrophoretic analysis of polyamines in exhaled breath condensate based on gold-nanoparticles microextraction coupled with field-amplified sample stacking | |
CN110779780A (en) | Pretreatment method for quantitative detection of fat-soluble vitamins | |
CN107505422B (en) | Method for separating and detecting five compounds of adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine and deoxynucleotide at one time | |
CN105671030A (en) | Efficient plasma cell dissociation DNA extraction method based on paramagnetic particle method | |
Li et al. | Specific extraction of nucleic acids employing pillar [6] arene-functionalized nanochannel platforms | |
Chen et al. | Baseline separation of amino acid biomarkers of hepatocellular carcinoma by polyvinylpyrrolidone-filled capillary electrophoresis with light-emitting diode-induced fluorescence in the presence of mixed micelles | |
CN116908252A (en) | An electrochemical detection method for recombinant glycoproteins | |
CN104458390A (en) | Solid-phase microextraction method based on salt assist-graphene oxide dispersion | |
CN102539545A (en) | Method for testing branched chain amino acid content of blood |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131120 Termination date: 20170412 |