CN102660273A - Preparation method of rare earth doped nano zirconia up-conversion phosphor powder - Google Patents
Preparation method of rare earth doped nano zirconia up-conversion phosphor powder Download PDFInfo
- Publication number
- CN102660273A CN102660273A CN2012101263202A CN201210126320A CN102660273A CN 102660273 A CN102660273 A CN 102660273A CN 2012101263202 A CN2012101263202 A CN 2012101263202A CN 201210126320 A CN201210126320 A CN 201210126320A CN 102660273 A CN102660273 A CN 102660273A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- doped nano
- zirconia
- preparation
- phosphor powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明提供的是一种稀土掺杂纳米氧化锆上转换荧光粉的制备方法。按照Er(NO3)3与Zr(NO3)4的摩尔比为0.05-0.2∶1的比例将Zr(NO3)4和Zr(NO3)3分别溶解于去离子水中,搅拌至澄清得到混合溶液,加入与所述混合溶液中阳离子比例为4∶1的柠檬酸,再加入氨水调节溶液pH值至6.5-7.5,搅拌形成溶胶;将所述溶胶在130℃下干燥形成干凝胶,再于800℃下烧结得到白色的前驱荧光粉,最后将前驱荧光粉于1100℃-1400℃条件下煅烧得到稀土掺杂纳米氧化锆上转换荧光粉。本发明是一种有效减弱高掺杂稀土离子浓度猝灭效应的方案,具有合成过程简单、成本低廉、成品发光效率高等优点。
The invention provides a preparation method of rare earth-doped nano zirconia up-conversion fluorescent powder. Dissolve Zr(NO 3 ) 4 and Zr(NO 3 ) 3 in deionized water respectively according to the molar ratio of Er(NO 3 ) 3 to Zr(NO 3 ) 4 at a ratio of 0.05-0.2:1, and stir until clear to obtain Mix the solution, add citric acid with a cation ratio of 4:1 in the mixed solution, then add ammonia water to adjust the pH value of the solution to 6.5-7.5, stir to form a sol; dry the sol at 130°C to form a xerogel, Then sintering at 800°C to obtain white precursor phosphor powder, and finally calcining the precursor phosphor powder at 1100°C-1400°C to obtain rare earth-doped nano zirconia up-conversion phosphor powder. The invention is a scheme for effectively weakening the concentration quenching effect of highly doped rare earth ions, and has the advantages of simple synthesis process, low cost, high luminous efficiency of finished products, and the like.
Description
技术领域 technical field
本发明涉及的是一种稀土掺杂纳米发光材料的制备方法。 The invention relates to a preparation method of a rare earth-doped nano-luminescent material. the
背景技术 Background technique
由于激光具有很高的能量密度,极好的准直性及单色性,所以自从激光在1960年被发明至今,一直引起人们的广泛关注,利用不同材料、不同方式制作的高性能激光器一直是人们研究的重点。目前利用稀土作为激活离子实现激光输出的技术已经比较成熟,包括Er、Nd等离子掺杂LiYF4、NaYF4、YAlO3和Y3Al5O12等晶体发射的1000nm附近,1310nm附近和1550nm附近的激光输出。当前稀土激光器的发展有两个大体方向:一是向对人眼安全且在大气及光纤中损耗更少的红外长波领域发展;一是向能量更高的短波领域发展。其中,红外长波的研究属于起步阶段,各种检测设备成本很高,极大的限制了该方向的发展。而另一方面,由于目前近红外的半导体激光器性能相当稳定,出光功率较高,成本也相对较低,所以利用已经比较成熟的近红外的半导体激光激发稀土掺杂材料产生可见光的方法具有很大潜力。由于这种方法是利用近红外的低能量光子来激发可见波段的高能量光子,所以称为上转换(upconversion)发光。 Since the laser has a high energy density, excellent collimation and monochromaticity, since the laser was invented in 1960, it has attracted widespread attention. High-performance lasers made of different materials and methods have always been The focus of people's research. At present, the technology of using rare earths as active ions to achieve laser output is relatively mature, including Er, Nd plasma doped LiYF 4 , NaYF 4 , YAlO 3 and Y 3 Al 5 O 12 crystals emitting near 1000nm, near 1310nm and near 1550nm Laser output. The current development of rare earth lasers has two general directions: one is to develop into the infrared long-wave field that is safe for human eyes and has less loss in the atmosphere and optical fibers; the other is to develop into the short-wave field with higher energy. Among them, the research on infrared long-wave is in its infancy, and the cost of various detection equipment is very high, which greatly limits the development of this direction. On the other hand, since the performance of the current near-infrared semiconductor laser is quite stable, the output power is high, and the cost is relatively low, the method of using the relatively mature near-infrared semiconductor laser to excite rare earth doped materials to generate visible light has great potential. potential. Since this method uses near-infrared low-energy photons to excite high-energy photons in the visible band, it is called upconversion luminescence.
上转换现象由于在短波全固态激光器、信息处理、立体显示、荧光标签等领域具有重大的应用潜力,所以近几十年来引起了各国研究者的广泛关注。稀土离子,尤其是Er离子具有辐射波段丰富、激发态能级寿命长等优点,很适于作为上转换荧光材料的发光中心。 Up-conversion phenomenon has attracted extensive attention of researchers from various countries in recent decades due to its great application potential in the fields of short-wavelength all-solid-state lasers, information processing, stereoscopic displays, and fluorescent labels. Rare earth ions, especially Er ions, have the advantages of rich radiation bands and long lifetimes of excited state levels, and are very suitable as luminescent centers for upconversion fluorescent materials. the
稀土离子掺杂材料上转换荧光的各种应用都需要较高的发光效率作为基础,而目前各种稀土掺杂发光材料的效率都不是很高,极大限制了上转换荧光的实用化。所以稀土离子掺杂材料上转换发光的一个主要研究方向就是如何提高材料的上转换效率。 Various applications of rare earth ion-doped materials for upconversion fluorescence require high luminous efficiency as a basis, but the efficiency of various rare earth doped luminescent materials is not very high, which greatly limits the practical application of upconversion fluorescence. Therefore, one of the main research directions of upconversion luminescence of rare earth ion doped materials is how to improve the upconversion efficiency of materials. the
在所有影响上转换效率的因素中,基质的选择是最重要的因素之一。实际上,相当多的材料都可以作为基质实现上转换发光现象,但其中很多材料由于自身的声子能量较高,从而其上转换效率较低,实用价值不大。 Among all the factors affecting the upconversion efficiency, the choice of substrate is one of the most important factors. In fact, quite a lot of materials can be used as substrates to achieve upconversion luminescence, but many of them have low upconversion efficiency due to their high phonon energy, and have little practical value. the
稀土掺杂纳米晶体粉末基质由于同时具有稀土材料和纳米材料的优势,引起人们的广泛关注,常见的粉末基质以氧化物为主,有ZnO、Gd2O3、ZrO2、Y2O3、Lu2O3和TiO2等。其中二氧化锆由于具有矿藏丰富、耐热、耐腐蚀、可塑性强、声子能量低(约470cm-1)等优点,使其成为非常有潜力的上转换基质材料。 Rare earth-doped nanocrystalline powder matrix has attracted widespread attention due to the advantages of both rare earth materials and nanomaterials. Common powder matrixes are mainly oxides, including ZnO, Gd 2 O 3 , ZrO 2 , Y 2 O 3 , Lu 2 O 3 and TiO 2 etc. Among them, zirconia has the advantages of rich mineral resources, heat resistance, corrosion resistance, strong plasticity, and low phonon energy (about 470 cm -1 ), making it a very potential up-conversion matrix material.
此外,稀土离子的上转换强度通常随掺杂浓度的增加而增大。但是当掺杂浓度过大时,由于稀土离子间的距离缩短,相互作用增强,导致处于高能级的稀土离子很容易将其能量通 过表面缺陷传递给基质材料,从而降低荧光发射强度,这就是浓度猝灭现象。为了实现高效的上转换辐射,如何在较高掺杂浓度的条件下减弱浓度猝灭效应成为人们关注的热点。 In addition, the upconversion intensity of rare earth ions generally increases with the increase of doping concentration. But when the doping concentration is too high, because the distance between rare earth ions is shortened and the interaction is enhanced, the rare earth ions at a high energy level can easily transfer their energy to the host material through surface defects, thereby reducing the fluorescence emission intensity, which is concentration quenching phenomenon. In order to achieve high-efficiency upconversion radiation, how to weaken the concentration quenching effect under the condition of higher doping concentration has become a hot spot of concern. the
发明内容 Contents of the invention
本发明的目的在于提供一种能有效降低稀土离子浓度猝灭效应,从而能够通过增加稀土离子的掺杂浓度来提升荧光效率的稀土掺杂纳米氧化锆上转换荧光粉的制备方法。 The purpose of the present invention is to provide a method for preparing rare earth-doped nano-zirconia up-conversion phosphors that can effectively reduce the concentration quenching effect of rare earth ions, thereby improving fluorescence efficiency by increasing the doping concentration of rare earth ions. the
本发明的目的是这样实现的:按照Er(NO3)3与Zr(NO3)4的摩尔比为0.05-0.2∶1的比例将Zr(NO3)4和Zr(NO3)3分别溶解于去离子水中,搅拌至澄清得到混合溶液,加入与所述混合溶液中阳离子比例为4∶1的柠檬酸,再加入氨水调节溶液pH值至6.5-7.5,搅拌形成溶胶;将所述溶胶在130℃下干燥形成干凝胶,再于800℃下烧结得到白色的前驱荧光粉,最后将前驱荧光粉于1100℃-1400℃条件下煅烧得到稀土掺杂纳米氧化锆上转换荧光粉。 The object of the present invention is achieved in this way: Zr(NO 3 ) 4 and Zr(NO 3 ) 3 are dissolved respectively according to the molar ratio of Er(NO 3 ) 3 and Zr( NO 3 ) 4 at a ratio of 0.05-0.2:1 In deionized water, stir until clarification to obtain a mixed solution, add citric acid with a cation ratio of 4:1 in the mixed solution, then add ammonia water to adjust the pH value of the solution to 6.5-7.5, stir to form a sol; put the sol in Dried at 130°C to form a xerogel, then sintered at 800°C to obtain a white precursor phosphor, and finally calcined the precursor phosphor at 1100°C-1400°C to obtain a rare earth-doped nano-zirconia up-conversion phosphor.
本发明的实现原理为:根据稀土离子发光理论,稀土离子发射的荧光强度与其表面缺陷的多少密切相关,表面缺陷越少,荧光效率就越高。通过将常规方法合成的稀土掺杂上转换荧光粉二次煅烧,可以有效减少纳米晶的表面缺陷,具体来讲,经过二次高温煅烧能够更加有效的去除纳米晶表面吸附的O-H键和C-O键基团,此外纳米晶的晶粒尺寸也随着烧结温度的升高而增大,这也相当于降低了纳米晶的比表面积,从而减少纳米晶的表面缺陷。 The realization principle of the present invention is: according to the luminescence theory of rare earth ions, the fluorescence intensity emitted by rare earth ions is closely related to the number of surface defects, and the fewer surface defects, the higher the fluorescence efficiency. By calcining the rare earth-doped up-conversion phosphors synthesized by conventional methods, the surface defects of nanocrystals can be effectively reduced. Specifically, O-H bonds and C-O bonds adsorbed on the surface of nanocrystals can be removed more effectively after secondary high-temperature calcinations. In addition, the grain size of nanocrystals also increases with the increase of sintering temperature, which is equivalent to reducing the specific surface area of nanocrystals, thereby reducing the surface defects of nanocrystals. the
本发明的有益效果主要体现在:1、制备过程简单。2、成本低廉。3、成品荧光效率高。 The beneficial effects of the present invention are mainly reflected in: 1. The preparation process is simple. 2. Low cost. 3. The fluorescence efficiency of the finished product is high. the
附图说明 Description of drawings
图1为稀土掺杂氧化锆纳米晶高效荧光粉的制备流程; Figure 1 is the preparation process of rare earth-doped zirconia nanocrystalline high-efficiency phosphor;
图2为5mol%Er3+:ZrO2通过常规溶胶凝胶方法合成(5Er800)和在1300摄氏度条件下二次煅烧(5Er1300)的上转换光谱对比; Fig. 2 is 5mol%Er 3+ : ZrO 2 is synthesized by conventional sol-gel method (5Er800) and is calcined (5Er1300) under the condition of 1300 degrees Celsius for the second time up-conversion spectral comparison;
图3为10mol%Er3+:ZrO2通过常规溶胶凝胶方法合成(10Er800)和在1300摄氏度条件下二次煅烧(10Er1300)的XRD数据对比; Figure 3 is a comparison of the XRD data of 10mol% Er 3+ : ZrO 2 synthesized by a conventional sol-gel method (10Er800) and secondary calcined (10Er1300) at 1300 degrees Celsius;
图4为10mol%Er3+:ZrO2通过常规溶胶凝胶方法合成(10Er800)和在1300摄氏度条件下二次煅烧(10Er1300)的上转换光谱对比。 Fig. 4 is a comparison of the up-conversion spectra of 10mol% Er 3+ : ZrO 2 synthesized by conventional sol-gel method (10Er800) and calcined twice at 1300 degrees Celsius (10Er1300).
具体实施方式 Detailed ways
本发明的基本方法为:按照Er(NO3)3与Zr(NO3)4的摩尔比为0.05-0.2∶1的比例选取分析纯级别的Zr(NO3)4和Zr(NO3)3分别溶解于去离子水中,经强力搅拌至溶液澄清,加入与溶液中阳离子比例为4∶1的柠檬酸,再加入氨水调节溶液pH值至7左右,搅拌2小时形成溶胶。将上述溶胶放入干燥箱中在130℃下干燥20小时,形成干凝胶,将样品放入马弗炉中于800℃下烧结2小时得到白色的前驱荧光粉,最后将前驱物于1100℃-1400℃条件下煅烧2小时 得到高效稀土掺杂荧光粉。具体可以通过如下具体实施方式来实现: The basic method of the present invention is: select Zr(NO 3 ) 4 and Zr(NO 3 ) 3 of analytical grade according to the molar ratio of Er(NO 3 ) 3 and Zr(NO 3 ) 4 being 0.05-0.2 : 1 Dissolve in deionized water respectively, stir vigorously until the solution is clear, add citric acid with a ratio of 4:1 to the cations in the solution, then add ammonia water to adjust the pH value of the solution to about 7, and stir for 2 hours to form a sol. Put the above sol in a drying oven and dry at 130°C for 20 hours to form a xerogel. Put the sample in a muffle furnace and sinter at 800°C for 2 hours to obtain a white precursor phosphor. Finally, put the precursor at 1100°C Calcining at -1400°C for 2 hours to obtain high-efficiency rare earth-doped phosphors. Specifically, it can be realized through the following specific implementation methods:
实施方式1:按照配方比例(摩尔比): Embodiment 1: according to formula ratio (mol ratio):
0.05Er(NO3)3∶1Zr(NO3)4合成样品的干凝胶,在800摄氏度条件下烧结2小时获得前驱荧光粉,再将其于1100摄氏度条件下二次煅烧2小时。 The xerogel of the 0.05Er(NO 3 ) 3 : 1Zr(NO 3 ) 4 synthetic sample was sintered at 800°C for 2 hours to obtain the precursor phosphor, and then calcined at 1100°C for 2 hours.
基本配方不变,只改变Er(NO3)3所占的比例,得到如下几种不同的实施方式: The basic formula remains unchanged, only the proportion of Er(NO 3 ) 3 is changed, and several different implementation modes are obtained as follows:
实施方式2:按照配方比例0.1Er(NO3)3∶1Zr(NO3)4制备干凝胶,以下同实施方式1。
Embodiment 2: The xerogel is prepared according to the formula ratio of 0.1Er(NO 3 ) 3 : 1Zr(NO 3 ) 4 , the same as
实施方式3:按照配方比例0.15Er(NO3)3∶1Zr(NO3)4制备干凝胶,以下同实施方式1。
Embodiment 3: The xerogel is prepared according to the formulation ratio of 0.15Er(NO 3 ) 3 : 1Zr(NO 3 ) 4 , the same as
实施方式4:按照配方比例0.2Er(NO3)3∶1Zr(NO3)4制备干凝胶,以下同实施方式1。
Embodiment 4: The xerogel is prepared according to the formulation ratio of 0.2Er(NO 3 ) 3 : 1Zr(NO 3 ) 4 , the same as
实施方式5:按照实施方式1中的配方比例,在1200摄氏度条件下二次煅烧2小时。
Embodiment 5: According to the formula ratio in
实施方式6:按照实施方式2、3、4中的配方比例制备干凝胶,以下同实施方式5。
Embodiment 6: Prepare xerogel according to the formulation ratios in
实施方式7:按照实施方式1中的配方比例,在1300摄氏度条件下二次煅烧2小时。前驱物与二次煅烧后荧光粉的上转换光谱数据如图2所示。
Embodiment 7: According to the formula ratio in
实施方式8:按照实施方式2、3、4中的配方比例制备干凝胶,以下同实施方式7。前驱物与二次煅烧后荧光粉的XRD数据如图3所示,上转换荧光数据如图4所示。
Embodiment 8: Prepare xerogel according to the formula ratio in
实施方式9:按照实施方式1中的配方比例,在1400摄氏度条件下二次煅烧2小时。
Embodiment 9: According to the formula ratio in
实施方式10:按照实施方式2、3、4中的配方比例制备干凝胶,以下同实施方式9。
Embodiment 10: The xerogel is prepared according to the formulation ratios in
以上所述的具体实施例,对本发明的目的、原理、技术方案和有益效果进行了详细说明。所理解的是以上所述仅为本发明的具体实施例而已,而不用于限制本发明。凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The specific embodiments described above have described the purpose, principle, technical solution and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific examples of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention. the
本发明中稀土离子为Er离子,当然还可以选择Yb离子、Tm离子、Ho离子、Eu离子、Tb离子、Nd离子等,并且其掺杂浓度大于5mol.%。 In the present invention, the rare earth ions are Er ions, of course, Yb ions, Tm ions, Ho ions, Eu ions, Tb ions, Nd ions, etc. can also be selected, and the doping concentration is greater than 5 mol.%. the
本发明中经过二次煅烧实现荧光增强的稀土掺杂基质为氧化锆,当然也可以选择其它通过二次煅烧实现荧光增强的稀土掺杂基质,例如氧化钇、氧化镥、氧化铝、氧化钆、氟化钇钠等。 In the present invention, the rare-earth doped matrix that achieves fluorescence enhancement through secondary calcination is zirconia. Of course, other rare-earth doped matrix that achieves fluorescence enhancement through secondary calcination can also be selected, such as yttrium oxide, lutetium oxide, aluminum oxide, gadolinium oxide, Sodium yttrium fluoride, etc. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101263202A CN102660273A (en) | 2012-04-26 | 2012-04-26 | Preparation method of rare earth doped nano zirconia up-conversion phosphor powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101263202A CN102660273A (en) | 2012-04-26 | 2012-04-26 | Preparation method of rare earth doped nano zirconia up-conversion phosphor powder |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102660273A true CN102660273A (en) | 2012-09-12 |
Family
ID=46769858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101263202A Pending CN102660273A (en) | 2012-04-26 | 2012-04-26 | Preparation method of rare earth doped nano zirconia up-conversion phosphor powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102660273A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103774221A (en) * | 2014-02-20 | 2014-05-07 | 宁波大学 | Thulium-doped sodium yttrium fluoride laser crystal and preparation method thereof |
CN110669520A (en) * | 2019-06-04 | 2020-01-10 | 中国计量大学 | Up-conversion luminescence nanocrystalline and preparation method and application thereof |
CN112340773A (en) * | 2019-08-09 | 2021-02-09 | 北京化工大学 | Preparation method of nano zirconia luminescent material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0019880A1 (en) * | 1979-05-25 | 1980-12-10 | Fuji Photo Film Co., Ltd. | Phosphor and process for preparing the same |
KR20050080854A (en) * | 2004-02-11 | 2005-08-18 | 한국화학연구원 | Novel zirconate phosphor compositions |
CN101033396A (en) * | 2007-04-11 | 2007-09-12 | 山东大学 | Fluorescent material capable of emitting strong red light and preparing method thereof |
CN101177611A (en) * | 2007-12-07 | 2008-05-14 | 哈尔滨工业大学 | High luminous intensity up-conversion fluorescent nanocrystalline oxide and preparation method thereof |
KR20120002222A (en) * | 2010-06-30 | 2012-01-05 | 재단법인 대구테크노파크 | Upconversion Oxide Phosphor Composition for Solar Cell and Manufacturing Method of High Efficiency Solar Cell Using the Same |
-
2012
- 2012-04-26 CN CN2012101263202A patent/CN102660273A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0019880A1 (en) * | 1979-05-25 | 1980-12-10 | Fuji Photo Film Co., Ltd. | Phosphor and process for preparing the same |
KR20050080854A (en) * | 2004-02-11 | 2005-08-18 | 한국화학연구원 | Novel zirconate phosphor compositions |
CN101033396A (en) * | 2007-04-11 | 2007-09-12 | 山东大学 | Fluorescent material capable of emitting strong red light and preparing method thereof |
CN101177611A (en) * | 2007-12-07 | 2008-05-14 | 哈尔滨工业大学 | High luminous intensity up-conversion fluorescent nanocrystalline oxide and preparation method thereof |
KR20120002222A (en) * | 2010-06-30 | 2012-01-05 | 재단법인 대구테크노파크 | Upconversion Oxide Phosphor Composition for Solar Cell and Manufacturing Method of High Efficiency Solar Cell Using the Same |
Non-Patent Citations (5)
Title |
---|
《Chemical Physics Letters》 20040221 Amitava Patra Effect of crystal structure and concentration on luminescence in Er3�:ZrO2 nanocrystals 第387卷, 第1-3期 * |
AMITAVA PATRA: "Effect of crystal structure and concentration on luminescence in Er3þ:ZrO2 nanocrystals", 《CHEMICAL PHYSICS LETTERS》 * |
AMITAVA PATRA: "Effect of crystal structure and concentration on luminescence in Er3þ:ZrO2 nanocrystals", 《CHEMICAL PHYSICS LETTERS》, vol. 387, no. 13, 21 February 2004 (2004-02-21) * |
C. URLACHER 等: "Study of erbium doped ZrO2 waveguides elaborated by a sol±gel process", 《OPTICAL MATERIALS》 * |
刘金霞: "退火温度对纳米晶ZrO2 发光和ZrO2 :Pr3+ 能量传递的影响", 《人工晶体学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103774221A (en) * | 2014-02-20 | 2014-05-07 | 宁波大学 | Thulium-doped sodium yttrium fluoride laser crystal and preparation method thereof |
CN110669520A (en) * | 2019-06-04 | 2020-01-10 | 中国计量大学 | Up-conversion luminescence nanocrystalline and preparation method and application thereof |
CN110669520B (en) * | 2019-06-04 | 2022-02-22 | 中国计量大学 | Up-conversion luminescence nanocrystalline and preparation method and application thereof |
CN112340773A (en) * | 2019-08-09 | 2021-02-09 | 北京化工大学 | Preparation method of nano zirconia luminescent material |
CN112340773B (en) * | 2019-08-09 | 2022-10-21 | 北京化工大学 | A kind of preparation method of nanometer zirconia light-emitting material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102391310B1 (en) | Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder | |
Zhang et al. | Photoluminescence and cathode-luminescence of Eu 3+-doped NaLnTiO 4 (Ln= Gd and Y) phosphors | |
CN101724397B (en) | Rare-earth doped bismuth titanate up-conversion luminescence nanometer crystal material | |
CN101177611A (en) | High luminous intensity up-conversion fluorescent nanocrystalline oxide and preparation method thereof | |
CN102942929B (en) | Ytterbium ion Yb<3+> activated borotungstate upconversion luminescent material and preparation method thereof | |
CN102585828B (en) | Yb3+-doped vanadate up-conversion fluorescent material and preparation method thereof | |
CN102660273A (en) | Preparation method of rare earth doped nano zirconia up-conversion phosphor powder | |
CN104946253B (en) | A double rare earth element doped zirconia luminescent powder | |
CN103275713A (en) | Rare earth molybdate red phosphor, and preparation method and application thereof | |
CN103468251B (en) | A kind of LED silicate green fluorescent powder and preparation method thereof | |
CN106701074B (en) | A kind of metatitanic acid alkali red up-conversion luminescent material and preparation method thereof | |
CN104031644B (en) | Molybdate up-conversion luminescent material, preparation method and application thereof | |
CN106929016B (en) | Silicate fluorescent powder with adjustable blue to green color and preparation method thereof | |
CN102660286B (en) | Vanadate up-conversion light-emitting material activated by erbium ions Er<3+> and preparation method thereof | |
CN102604631B (en) | Up-conversion fluorescent material and preparation method thereof | |
CN107523298B (en) | Yttrium cerium composite oxide based up-conversion luminescent material and preparation method thereof | |
CN102199427A (en) | Fluorescent material with molybdate and tungstate as matrixes as well as preparation method and application thereof | |
CN102585811B (en) | Fluoroaluminate near-infrared quantum cutting material, and preparation method and application thereof | |
CN104804736A (en) | Long-lasting phosphor material using defects as luminescence centers and preparation method of long-lasting phosphor material | |
CN103113893B (en) | A kind of Yb 3+boron tungstate up-conversion luminescent material activated and preparation method thereof | |
CN108504357A (en) | A kind of titanium aluminate-base up-conversion luminescent material, preparation method and application | |
CN103421508B (en) | Fluorescent powder for solar cell and preparation method thereof | |
CN102660265B (en) | A kind of Eu2+ activated borate yellow fluorescent powder and preparation method thereof | |
CN103059856B (en) | A molybdenum borate up-conversion luminescent material activated by ytterbium ion Yb3+ and its preparation method | |
CN104974756A (en) | Cerium and terbium mono-doped/codoped yttrium sodium phosphate fluorescent powder, and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120912 |