CN102655152B - Storage device, its manufacturing method and operating method - Google Patents
Storage device, its manufacturing method and operating method Download PDFInfo
- Publication number
- CN102655152B CN102655152B CN201110053420.2A CN201110053420A CN102655152B CN 102655152 B CN102655152 B CN 102655152B CN 201110053420 A CN201110053420 A CN 201110053420A CN 102655152 B CN102655152 B CN 102655152B
- Authority
- CN
- China
- Prior art keywords
- line
- channel
- storage device
- substrate
- stacked structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 title abstract description 27
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 238000011017 operating method Methods 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 21
- 239000004020 conductor Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 238000009413 insulation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- SEOYNUHKXVGWFU-UHFFFAOYSA-N mu-oxidobis(oxidonitrogen) Chemical compound O=NON=O SEOYNUHKXVGWFU-UHFFFAOYSA-N 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明公开一种存储装置、其制造方法与操作方法。存储装置包括基底、堆叠结构、沟道元件、介电元件、源极元件与位线。堆叠结构配置于基底上。堆叠结构各包括串列选择线、字线、接地选择线与绝缘线。串列选择线、字线与接地选择线通过绝缘线互相分开。沟道元件配置于堆叠结构之间。介电元件配置于沟道元件与堆叠结构之间。源极元件配置于基底的上表面与沟道元件的下表面之间。位线配置于沟道元件的上表面上。
The present invention discloses a storage device, a manufacturing method and an operating method thereof. The storage device includes a substrate, a stacking structure, a channel element, a dielectric element, a source element and a bit line. The stacking structure is arranged on the substrate. Each of the stacking structures includes a series selection line, a word line, a ground selection line and an insulating line. The series selection line, the word line and the ground selection line are separated from each other by the insulating line. The channel element is arranged between the stacking structures. The dielectric element is arranged between the channel element and the stacking structure. The source element is arranged between the upper surface of the substrate and the lower surface of the channel element. The bit line is arranged on the upper surface of the channel element.
Description
技术领域 technical field
本发明涉及一种存储装置、其制造方法与操作方法,特别是涉及一种三维垂直栅极存储装置、其制造方法与其操作方法。The present invention relates to a storage device, its manufacturing method and operating method, in particular to a three-dimensional vertical gate storage device, its manufacturing method and its operating method.
背景技术 Background technique
存储装置使用于许多产品之中,例如MP3播放器、数字相机、电脑档案等等的储存元件中。随着应用的增加,对于存储装置的需求也趋向较小的尺寸、较大的存储容量。因应这种需求,需要制造高元件密度的存储装置。Storage devices are used in many products, such as storage elements in MP3 players, digital cameras, computer files, and so on. With the increase of applications, the demand for storage devices also tends to be smaller in size and larger in storage capacity. To meet this demand, it is necessary to manufacture memory devices with high device density.
设计者们开发一种提高存储装置密度的方法是使用三维堆叠存储装置,由此达成更高的存储容量,同时降低每一位元的成本。然而,目前此种存储装置的记忆单元尺寸的微缩极限仍大于50nm,很难有重大的突破。存储装置的效能也可能是受到使用的元件材料而有所限制。One way designers have developed to increase the density of memory devices is to use three-dimensional stacked memory devices, thereby achieving higher memory capacities while reducing the cost per bit. However, at present, the size reduction limit of the memory unit of this storage device is still greater than 50nm, and it is difficult to make a major breakthrough. The performance of the storage device may also be limited by the material used for the components.
发明内容 Contents of the invention
本发明有关于一种存储装置、其制造方法与操作方法。存储装置具有非常小的微缩尺寸与良好的效能。The invention relates to a storage device, its manufacturing method and operating method. Memory devices have very small scaling and good performance.
根据本发明的一方面,提供一种存储装置。存储装置包括基底、堆叠结构、沟道元件、介电元件、源极元件与位线。堆叠结构配置于基底上。堆叠结构各包括串列选择线、字线、接地选择线与绝缘线。串列选择线、字线与接地选择线通过绝缘线互相分开。沟道元件配置于堆叠结构之间。介电元件配置于沟道元件与堆叠结构之间。源极元件配置于基底的上表面与沟道元件的下表面之间。位线配置于沟道元件的上表面上。According to an aspect of the present invention, a storage device is provided. The memory device includes a substrate, a stack structure, a channel element, a dielectric element, a source element and a bit line. The stack structure is configured on the base. Each stack structure includes a string selection line, a word line, a ground selection line and an insulation line. The string selection line, the word line and the ground selection line are separated from each other by insulating lines. The channel elements are disposed between the stacked structures. The dielectric element is disposed between the channel element and the stack structure. The source element is disposed between the upper surface of the substrate and the lower surface of the channel element. The bit line is arranged on the upper surface of the channel element.
根据本发明的另一方面,提供一种存储装置的制造方法。方法包括以下步骤。于基底上配置堆叠结构。堆叠结构各包括串列选择线、字线、接地选择线与绝缘线。串列选择线、字线与接地选择线通过绝缘线互相分开。配置沟道元件于堆叠结构之间。配置介电元件于沟道元件与堆叠结构之间。配置源极元件于基底的上表面与沟道元件的下表面之间。配置位线于沟道元件的上表面上。According to another aspect of the present invention, a method for manufacturing a storage device is provided. The method includes the following steps. A stack structure is configured on the base. Each stack structure includes a string selection line, a word line, a ground selection line and an insulation line. The string selection line, the word line and the ground selection line are separated from each other by insulating lines. Channel elements are disposed between the stacked structures. A dielectric element is disposed between the channel element and the stack structure. The source element is disposed between the upper surface of the substrate and the lower surface of the channel element. Bit lines are disposed on the upper surface of the channel element.
根据本发明的又另一方面,提供一种存储装置的操作方法。方法包括以下步骤。提供存储装置。存储装置包括基底、堆叠结构、沟道元件、介电元件、源极元件与位线。堆叠结构配置于基底上。堆叠结构各包括串列选择线、字线、接地选择线与绝缘线。串列选择线、字线与接地选择线通过绝缘线互相分开。沟道元件包括沟道线。沟道线配置于堆叠结构之间且互相分开。介电元件配置于沟道线与堆叠结构之间。源极元件配置于基底的上表面与沟道线的下表面之间。位线配置于沟道线的上表面上。选择沟道线至少之一开启。According to still another aspect of the present invention, a method for operating a storage device is provided. The method includes the following steps. A storage device is provided. The memory device includes a substrate, a stack structure, a channel element, a dielectric element, a source element and a bit line. The stack structure is configured on the base. Each stack structure includes a string selection line, a word line, a ground selection line and an insulation line. The string selection line, the word line and the ground selection line are separated from each other by insulating lines. The channel elements include channel lines. The channel lines are disposed between the stacked structures and separated from each other. The dielectric element is disposed between the channel line and the stack structure. The source element is disposed between the upper surface of the substrate and the lower surface of the channel line. The bit line is disposed on the upper surface of the channel line. At least one of the channel lines is selected to be turned on.
为让本发明的上述目的、特征、和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下:In order to make the above-mentioned purposes, features, and advantages of the present invention more obvious and easy to understand, the preferred embodiments are specifically cited below, together with the accompanying drawings, and are described in detail as follows:
附图说明 Description of drawings
图1至图13绘示存储装置的制造实施例。1 to 13 illustrate manufacturing embodiments of a memory device.
图14至图19绘示存储装置的另一制造实施例。14 to 19 illustrate another fabrication embodiment of a memory device.
图20绘示实施例中存储装置的立体图。FIG. 20 is a perspective view of a storage device in an embodiment.
图21绘示实施例中存储装置的立体图。FIG. 21 is a perspective view of a storage device in an embodiment.
图22绘示实施例中存储装置的立体图。FIG. 22 is a perspective view of a storage device in an embodiment.
图23绘示实施例中存储装置的立体图。FIG. 23 is a perspective view of a storage device in an embodiment.
图24显示一些实施例中用以解码的波形。Figure 24 shows the waveforms used for decoding in some embodiments.
图25显示实施例中存储装置的配置。Fig. 25 shows the configuration of the storage device in the embodiment.
附图标记说明Explanation of reference signs
2、102、237:基底2, 102, 237: Base
4、154、238、516、518:源极元件4, 154, 238, 516, 518: source components
6:牺牲层6: sacrificial layer
8、104:绝缘层8, 104: insulation layer
10、12、14:图案化的结构10, 12, 14: Patterned structures
16、18:第一开口16, 18: First opening
20、22、140:沟道元件20, 22, 140: Trench elements
24、26、28:第二开口24, 26, 28: Second opening
29A、29B:支撑结构29A, 29B: Support structure
30、30B、54、118、217:绝缘线30, 30B, 54, 118, 217: insulated wire
32:狭缝32: Slit
34、120:介电元件34, 120: Dielectric components
36、128、130:导电材料36, 128, 130: conductive material
40、42、44、46、108、110、208、210、212、214、216、308、310、312、404、406、408、410、412:堆叠结构40, 42, 44, 46, 108, 110, 208, 210, 212, 214, 216, 308, 310, 312, 404, 406, 408, 410, 412: stacked structure
48、112、224、226、228、230、231、320、322、324、416、422、418、420、424、504:串列选择线48, 112, 224, 226, 228, 230, 231, 320, 322, 324, 416, 422, 418, 420, 424, 504: serial selection line
50、114、218、220、314、316、426、428、430、432、506、508:字线50, 114, 218, 220, 314, 316, 426, 428, 430, 432, 506, 508: word line
52、116、222、318、414、510:接地选择线52, 116, 222, 318, 414, 510: grounding selection line
56、58、60、62、142、144、146、148、219、221、223、232、234、236、336、338、444、446、448、512、514:沟道线56, 58, 60, 62, 142, 144, 146, 148, 219, 221, 223, 232, 234, 236, 336, 338, 444, 446, 448, 512, 514: channel line
64、66、134、136、138、240、502:位线64, 66, 134, 136, 138, 240, 502: bit lines
68、156:基底的上表面68, 156: upper surface of substrate
70、72、158:沟道元件的下表面70, 72, 158: Lower surface of channel element
74、76、160:沟道元件的上表面74, 76, 160: upper surface of channel element
106:导电层106: Conductive layer
119:间隙119: gap
122、124、126:介电层122, 124, 126: dielectric layer
132:掩模层132: mask layer
150、152:源极线150, 152: source line
202、204、206、302、304、306、326、402:接触结构202, 204, 206, 302, 304, 306, 326, 402: contact structure
340、342、344、346、450、452:沟道线的侧边340, 342, 344, 346, 450, 452: sides of channel lines
T1:串列选择线的厚度T1: Thickness of the serial selection line
T2:接地选择线的厚度T2: Thickness of the ground selection wire
T3:字线的厚度T3: The thickness of the word line
T4、T5:绝缘线的厚度T4, T5: Thickness of insulated wire
W1:间隙的宽度W1: Width of the gap
具体实施方式 Detailed ways
图1至图13绘示存储装置的制造实施例。请参照图1,在基底2上配置源极元件4。于实施例中,源极元件4可包括源极层或源极线。图1至图13所示的实施例是以源极元件4为覆盖基底2的源极层说明。源极元件4可具有N+导电型。于实施例中,源极元件4绝缘地配置在基底2上。举例来说,源极元件4与基底2通过介电结构(未显示)互相分开。于源极元件4上交错地堆叠牺牲层6与绝缘层8。牺牲层6是通过绝缘层8互相分开。牺牲层6可包括氮化物例如氮化硅。绝缘层8可包括氧化物例如氧化硅。绝缘层8中最底的一个可为埋藏氧化层。1 to 13 illustrate manufacturing embodiments of a memory device. Referring to FIG. 1 , a source element 4 is disposed on a substrate 2 . In an embodiment, the source element 4 may include a source layer or a source line. The embodiments shown in FIGS. 1 to 13 are described with the source element 4 as the source layer covering the substrate 2 . The source element 4 may have an N+ conductivity type. In the embodiment, the source element 4 is disposed on the substrate 2 in an insulating manner. For example, the source element 4 and the substrate 2 are separated from each other by a dielectric structure (not shown). Sacrificial layers 6 and insulating layers 8 are alternately stacked on the source element 4 . The sacrificial layers 6 are separated from each other by an insulating layer 8 . The sacrificial layer 6 may include nitride such as silicon nitride. The insulating layer 8 may include oxide such as silicon oxide. The bottommost one of the insulating layers 8 may be a buried oxide layer.
图案化牺牲层6与绝缘层8以形成如图2所示的图案化的结构10、12、14。第一开口16、18露出源极元件4。请参照图3,在第一开口16、18中配置导电材料以形成沟道元件20、22。于实施例中,源极元件4为单晶材料,且沟道元件20、22是在源极元件4上以选择性外延成长所形成的单晶材料。于实施例中,源极元件4与沟道元件20、22是由单晶硅所构成。在外延之前亦可进行清洗步骤以移除源极元件4上的原生氧化层,以形成品质良好的沟道元件20、22。The sacrificial layer 6 and the insulating layer 8 are patterned to form patterned structures 10 , 12 , 14 as shown in FIG. 2 . The first openings 16 , 18 expose the source element 4 . Referring to FIG. 3 , conductive material is disposed in the first openings 16 , 18 to form channel elements 20 , 22 . In the embodiment, the source element 4 is a single crystal material, and the channel elements 20 and 22 are single crystal materials formed by selective epitaxial growth on the source element 4 . In an embodiment, the source element 4 and the channel elements 20, 22 are made of single crystal silicon. A cleaning step may also be performed before the epitaxy to remove the native oxide layer on the source element 4 to form channel elements 20 , 22 with good quality.
对图案化的结构10、12、14进行图案化工艺以形成如图4所示的第二开口24、26、28与绝缘线30。移除第二开口24、26、28露出的牺牲层6以形成如图5所示的露出沟道元件20、22的狭缝32。于实施例中,可利用热磷酸(H3PO4)移除牺牲层6(例如氮化硅)。使用的蚀刻工艺具有高的选择性,因此不会损坏源极元件4(例如单晶硅)与绝缘线30(例如氧化物)。于实施例中,图5所示的氧化物绝缘线30邻接在支撑结构(例如图6中所示的支撑结构29A例如氧化物)的侧壁上,因此有足够的力量维持结构。请参照图7,其绘示一些实施例中存储装置的俯视图,周期性环绕的氧化物支撑结构29B帮助支撑氧化物绝缘线30B。A patterning process is performed on the patterned structures 10 , 12 , 14 to form second openings 24 , 26 , 28 and insulating lines 30 as shown in FIG. 4 . The sacrificial layer 6 exposed by the second openings 24 , 26 , 28 is removed to form a slit 32 exposing the channel elements 20 , 22 as shown in FIG. 5 . In an embodiment, hot phosphoric acid (H 3 PO 4 ) can be used to remove the sacrificial layer 6 (such as silicon nitride). The etching process used has high selectivity, so the source element 4 (such as monocrystalline silicon) and the insulating line 30 (such as oxide) will not be damaged. In an embodiment, the oxide-insulated line 30 shown in FIG. 5 is adjacent to the sidewall of the support structure (such as the support structure 29A shown in FIG. 6 such as oxide), so there is sufficient strength to maintain the structure. Referring to FIG. 7 , which illustrates a top view of a memory device in some embodiments, the periodically surrounding oxide support structure 29B helps to support the oxide insulating line 30B.
请参照图8,在狭缝32露出的沟道元件20、22上形成介电元件34。于实施例中,举例来说,介电元件34可具有多层结构,例如是ONO复合层或ONONO复合层或BE-SONOS复合层(其结构可参考美国申请案号11/419,977,专利号7414889),或是包括例如由氧化硅与氮化硅交错堆叠形成的ONO结构。介电元件34亦可为单一材料层,包括氮化硅或氧化硅例如二氧化硅、氮氧化硅。介电元件34可以气相沉积例如化学气相沉积的方式形成。请参照图9,在狭缝32中填充导电材料36。此外,导电材料36填充第二开口24、26、28。导电材料36也可延伸至沟道元件20、22上。Referring to FIG. 8 , a dielectric element 34 is formed on the channel elements 20 and 22 exposed by the slit 32 . In an embodiment, for example, the dielectric element 34 may have a multilayer structure, such as an ONO composite layer or an ONONO composite layer or a BE-SONOS composite layer (the structure may refer to US Application No. 11/419,977, Patent No. 7414889 ), or include, for example, an ONO structure formed by interleaved stacking of silicon oxide and silicon nitride. The dielectric element 34 can also be a single material layer, including silicon nitride or silicon oxide such as silicon dioxide, silicon oxynitride. Dielectric element 34 may be formed by vapor deposition, such as chemical vapor deposition. Referring to FIG. 9 , the slot 32 is filled with a conductive material 36 . Furthermore, the electrically conductive material 36 fills the second openings 24 , 26 , 28 . The conductive material 36 may also extend onto the channel elements 20 , 22 .
移除导电材料36位于第二开口24、26、28中的部分,留下填充在狭缝32中的导电材料36以形成如图10所示的堆叠结构40、42、44、46。请参照图10,堆叠结构40、42、44、46分别包括例如串列选择线(SSL)48、字线(WL)50、接地选择线(GSL)52与绝缘线54。串列选择线48、字线50与接地选择线52是通过绝缘线54互相分开。沟道元件20与沟道元件22在图案化之后分别包括如图11所示的沟道线56、58与沟道线60、62。沟道线56与58互相分离。同样地,沟道线60与62互相分离,如图12绘示沿着图11AA线段的剖面图所示。Portions of the conductive material 36 located in the second openings 24 , 26 , 28 are removed, leaving the conductive material 36 filled in the slots 32 to form stack structures 40 , 42 , 44 , 46 as shown in FIG. 10 . Referring to FIG. 10 , the stack structures 40 , 42 , 44 , 46 respectively include, for example, a string select line (SSL) 48 , a word line (WL) 50 , a ground select line (GSL) 52 and an insulating line 54 . The string select line 48 , the word line 50 and the ground select line 52 are separated from each other by an insulating line 54 . After patterning, the channel element 20 and the channel element 22 respectively include channel lines 56 , 58 and channel lines 60 , 62 as shown in FIG. 11 . Channel lines 56 and 58 are separated from each other. Likewise, the channel lines 60 and 62 are separated from each other, as shown in FIG. 12 , which is a cross-sectional view along line AA of FIG. 11 .
请参照图13,形成位线64、66于沟道线56、58、60、62上。于图13所示的存储装置中,串列选择线48、字线50、接地选择线52与位线64、66可包括半导体材料例如多晶硅。串列选择线48、字线50、接地选择线52与位线64、66也可包括金属例如钨,以降低电阻。源极元件4(于此实施例中为覆盖基底2的源极层)配置于基底2的上表面68与沟道元件20、22(包括例如沟道线56、58、60、62)的下表面70、72之间。位线64、66配置于沟道元件20、22(包括例如沟道线56、58、60、62)的上表面74、76上。于实施例中,沟道元件20、22与源极元件4是由单晶硅所构成,具有非常好的导电特性,且之间的电阻低。Referring to FIG. 13 , bit lines 64 , 66 are formed on channel lines 56 , 58 , 60 , and 62 . In the memory device shown in FIG. 13 , the string select line 48 , the word line 50 , the ground select line 52 and the bit lines 64 and 66 may comprise semiconductor materials such as polysilicon. The string select line 48, the word line 50, the ground select line 52, and the bit lines 64, 66 may also include a metal such as tungsten to reduce resistance. The source element 4 (in this embodiment, the source layer covering the substrate 2) is disposed under the upper surface 68 of the substrate 2 and the channel elements 20, 22 (including, for example, channel lines 56, 58, 60, 62). between the surfaces 70,72. Bit lines 64, 66 are disposed on upper surfaces 74, 76 of channel elements 20, 22 (including, for example, channel lines 56, 58, 60, 62). In the embodiment, the channel elements 20 , 22 and the source element 4 are made of single crystal silicon, which has very good conductivity and low resistance between them.
图14至图19绘示存储装置的另一制造实施例。请参照图14,在基底102上交错地堆叠绝缘层104与导电层106。绝缘层104可包括氧化物例如氧化硅。绝缘层104中最底的一个可为埋藏氧化层。导电层106可包括金属或半导体材料例如多晶硅。于实施例中,导电层106是在形成多晶硅层之后进行掺杂(例如P型杂质以提高功函数并抑制栅极注入)所形成。导电层106通过绝缘层104互相分开。图案化绝缘层104与导电层106以形成如图15所示的堆叠结构108、110。请参照图15,堆叠结构108、110各包括例如串列选择线112、字线114、接地选择线116与绝缘线118。串列选择线112、字线114与接地选择线116通过绝缘线118互相分开。堆叠结构108与堆叠结构110之间具有间隙119。于实施例中,间隙119的宽度W1大于60nm。14 to 19 illustrate another fabrication embodiment of a memory device. Referring to FIG. 14 , insulating layers 104 and conductive layers 106 are alternately stacked on the substrate 102 . The insulating layer 104 may include an oxide such as silicon oxide. The bottommost one of the insulating layers 104 may be a buried oxide layer. Conductive layer 106 may include a metal or a semiconductor material such as polysilicon. In an embodiment, the conductive layer 106 is formed by doping (for example, P-type impurities to improve work function and suppress gate implantation) after forming the polysilicon layer. Conductive layers 106 are separated from each other by insulating layer 104 . The insulating layer 104 and the conductive layer 106 are patterned to form stacked structures 108 , 110 as shown in FIG. 15 . Referring to FIG. 15 , each of the stack structures 108 and 110 includes, for example, a string selection line 112 , a word line 114 , a ground selection line 116 and an insulating line 118 . The string select line 112 , the word line 114 and the ground select line 116 are separated from each other by an insulating line 118 . There is a gap 119 between the stack structure 108 and the stack structure 110 . In an embodiment, the width W1 of the gap 119 is greater than 60 nm.
请参照图16,在间隙119露出的基底102与堆叠结构108、110上形成介电元件120。举例来说,介电元件120具有多层结构,例如是ONO复合层或ONONO复合层或BE-SONOS复合层(其结构可参考美国申请案号11/419,977,专利号7414889)。于实施例中,介电元件120具有ONO结构,其中介电层122为氧化硅,介电层124为氮化硅,介电层126为氧化硅。于其他实施例中,介电元件120为单一材料层(未显示),包括氮化硅或氧化硅例如二氧化硅、氮氧化硅。Referring to FIG. 16 , a dielectric element 120 is formed on the substrate 102 and the stacked structures 108 and 110 exposed by the gap 119 . For example, the dielectric element 120 has a multi-layer structure, such as an ONO composite layer or an ONONO composite layer or a BE-SONOS composite layer (for the structure, please refer to US Application No. 11/419,977, Patent No. 7414889). In an embodiment, the dielectric element 120 has an ONO structure, wherein the dielectric layer 122 is silicon oxide, the dielectric layer 124 is silicon nitride, and the dielectric layer 126 is silicon oxide. In other embodiments, the dielectric element 120 is a single material layer (not shown), including silicon nitride or silicon oxide such as silicon dioxide, silicon oxynitride.
请参照图17,以导电材料128填充间隙119。导电材料128可延伸至堆叠结构108、110上。于实施例中,是对导电材料128(例如多晶硅)延伸至堆叠结构108、110上的部分进行掺杂(例如掺杂N型杂质),以形成掺杂的(例如N+)导电材料130。于掺杂的导电材料130上形成图案化的掩模层132,移除掺杂的导电材料130未被掩模层132遮蔽的部分以形成例如图18所示的位线134、136、138。并移除导电材料128未被掩模层132遮蔽的上部分以形成如图18所示的沟道元件140,其包括例如沟道线142、144、146、148。导电材料128留下的底部分形成如图18所示的源极元件154,包括例如源极线150、152。移除掩模层132以形成如图19所示的存储装置。Referring to FIG. 17 , the gap 119 is filled with a conductive material 128 . The conductive material 128 may extend onto the stacked structures 108 , 110 . In an embodiment, the portion of the conductive material 128 (such as polysilicon) extending to the stacked structures 108 and 110 is doped (such as doped with N-type impurities) to form a doped (such as N+) conductive material 130 . A patterned mask layer 132 is formed on the doped conductive material 130 , and portions of the doped conductive material 130 not covered by the mask layer 132 are removed to form bit lines 134 , 136 , 138 as shown in FIG. 18 . And remove the upper portion of the conductive material 128 not covered by the mask layer 132 to form the channel element 140 as shown in FIG. 18 , which includes channel lines 142 , 144 , 146 , 148 for example. The bottom portion left of the conductive material 128 forms a source element 154 as shown in FIG. 18 , including, for example, source lines 150 , 152 . The mask layer 132 is removed to form the memory device as shown in FIG. 19 .
请参照图19,源极元件154(其包括源极线150、152)配置于基底102的上表面156与沟道元件140(包括沟道线142、144、146、148)的下表面158之间。位线134、136、138配置于沟道元件140的上表面160上。源极元件154与基底102通过介电元件120互相分开。基底102可用作底部栅极(bottomgate),以降低源极元件154的电阻。举例来说,源极元件154中位于堆叠结构110同一侧边上、且互相分开的沟道线144、146、148下方的源极线152单一或连续地延伸。举例来说,位于堆叠结构110相对侧边上的沟道线142与144下方的源极线150与152互相分开。沟道线142、144、146、148的长边(往Y方向延伸)垂直于源极线150、152的长边(往Z方向延伸)。19, the source element 154 (which includes source lines 150, 152) is disposed between the upper surface 156 of the substrate 102 and the lower surface 158 of the channel element 140 (including channel lines 142, 144, 146, 148). between. The bit lines 134 , 136 , 138 are disposed on the upper surface 160 of the channel element 140 . The source element 154 is separated from the substrate 102 by a dielectric element 120 . The substrate 102 can be used as a bottom gate to reduce the resistance of the source element 154 . For example, the source lines 152 of the source element 154 located on the same side of the stack structure 110 and below the channel lines 144 , 146 , 148 separated from each other extend singly or continuously. For example, the source lines 150 and 152 below the channel lines 142 and 144 on opposite sides of the stack structure 110 are separated from each other. The long sides of the channel lines 142 , 144 , 146 , 148 (extending in the Y direction) are perpendicular to the long sides of the source lines 150 , 152 (extending in the Z direction).
请参照图19,在实施例中,串列选择线112、字线114与接地选择线116具有第一导电型(例如P型);位线134、136、138、源极元件154(包括源极线150、152)与沟道元件140(包括例如沟道线142、144、146、148)具有相反于第一导电型的第二导电型(例如N型)。于实施例中,沟道元件140的掺杂浓度小于源极元件154的掺杂浓度。沟道元件140的掺杂浓度也可小于位线134、136、138的掺杂浓度。于一些实施例中,位线134、136、138与沟道元件140分别具有相反的第一导电型与第二导电型,而形成PN二极管。19, in an embodiment, the string selection line 112, the word line 114 and the ground selection line 116 have a first conductivity type (for example, P type); the bit lines 134, 136, 138, source elements 154 (including source Pole lines 150 , 152 ) and channel elements 140 (including, for example, channel lines 142 , 144 , 146 , 148 ) have a second conductivity type (eg, N-type) opposite to the first conductivity type. In an embodiment, the doping concentration of the channel element 140 is less than the doping concentration of the source element 154 . The doping concentration of the channel element 140 may also be less than the doping concentration of the bitlines 134 , 136 , 138 . In some embodiments, the bit lines 134 , 136 , 138 and the channel element 140 have opposite first and second conductivity types respectively, forming a PN diode.
请参照图19,在实施例中,串列选择线112、字线114、接地选择线116皆为P+型。串列选择线112、字线114、接地选择线116也可皆为N-型。于另一实施例中,串列选择线112与字线114皆为N-型,接地选择线116则为N+型。于其他实施例中,串列选择线112为P型,接地选择线116为N+型,字线114中邻近串列选择线112的一个为N型,邻近接地选择线116的一个则为P型。Please refer to FIG. 19 , in an embodiment, the string selection line 112 , the word line 114 , and the ground selection line 116 are all P+ type. The string selection line 112, the word line 114, and the ground selection line 116 can all be N-type. In another embodiment, both the string selection line 112 and the word line 114 are N-type, and the ground selection line 116 is N+ type. In other embodiments, the string selection line 112 is P type, the ground selection line 116 is N+ type, one of the word lines 114 adjacent to the string selection line 112 is N type, and the one adjacent to the ground selection line 116 is P type. .
请参照图19,在实施例中,串列选择线112与接地选择线116具有大的厚度T1、T2(亦即对应的沟道的长度),等于、较常大于字线114的厚度T3,由此帮助得到优异的切换功效、低漏电流与高的隧穿能力。于实施例中,厚度T1、T2为,厚度T3为。绝缘线118中最底部的一个其厚度T4可为,其他个的厚度T5可为 Please refer to FIG. 19 , in an embodiment, the serial selection line 112 and the ground selection line 116 have a large thickness T1, T2 (that is, the length of the corresponding channel), which is equal to, and usually greater than, the thickness T3 of the word line 114, This helps to obtain excellent switching efficiency, low leakage current and high tunneling capability. In the embodiment, the thickness T1, T2 is , the thickness T3 is . The thickness T4 of the bottommost one of the insulated wires 118 may be , the other thickness T5 can be
请参照图19,存储装置为三维垂直栅极存储装置(3D vertical gatememory device),例如包括与非栅(NAND)型快闪存储器或反熔丝存储器等等。存储装置在X方向与Z方向上的结构(半间距(half pitch))的尺寸可微缩至30nm以下,因此具有非常高的元件密度。Referring to FIG. 19 , the storage device is a three-dimensional vertical gate memory device (3D vertical gate memory device), such as a NAND flash memory or an antifuse memory, and the like. The size of the structure (half pitch) of the memory device in the X direction and the Z direction can be shrunk to less than 30nm, so it has a very high device density.
图20绘示实施例中存储装置的立体图。图20未绘示例如绝缘线217介于沟道线219、221、223之间的部分,换句话说,绝缘线217应该为如串列选择线224、226、228、230、字线218、220,并且与接地选择线222为连续的。请参照图20,举例来说,在实施例中,串列选择线224、226、228、230、字线218、220与接地选择线222具有P+导电型;源极元件238与位线240具有N+导电型;沟道线219、221、223、232、234、236具有N导电型。操作存储装置的方法包括以共用的接触结构202、204、206施加偏压于堆叠结构208、210、212、214、216的字线218、220与接地选择线222。举例来说,字线218被施加偏压VPGM或VREAD,字线220被施加偏压VPASS,(当写入时)接地选择线222被施加0伏,或者(当读取时)接地选择线222被施加偏压Vcc。因此解码字线218、220是容易的。于实施例中,串列选择线224、226、228、230分开地解码。选择的沟道线232通过施加正偏压(+Vcc,例如+3.3V)于相对两侧边上的堆叠结构210、212的串列选择线226、228而开启。为了避免干扰其他未被选择的邻近的沟道线234、236,未被选择的沟道线234、236的侧边上的堆叠结构208、214的串列选择线224、230可被施加负偏压(-Vcc,例如-3.3V),以关闭邻近的串列选择线晶体管。远侧的串列选择线231可简单地施加0伏或接地。在读取时可施加正偏压(例如+Vcc,例如+5V)于作为底部栅极的基底237,以降低源极元件238的电阻。FIG. 20 is a perspective view of a storage device in an embodiment. FIG. 20 does not illustrate the part where the insulating line 217 is interposed between the channel lines 219, 221, and 223. 220 and is continuous with ground select line 222. Please refer to FIG. 20 , for example, in an embodiment, the string selection lines 224, 226, 228, 230, the word lines 218, 220 and the ground selection line 222 have P+ conductivity; the source element 238 and the bit line 240 have N+ conductivity type; channel lines 219 , 221 , 223 , 232 , 234 , 236 have N conductivity type. The method of operating the memory device includes applying bias voltages to the word lines 218 , 220 and the ground select line 222 of the stack structures 208 , 210 , 212 , 214 , 216 through the shared contact structures 202 , 204 , 206 . For example, word line 218 is biased at VPGM or V READ , word line 220 is biased at V PASS , and ground select line 222 is biased at 0 volts (when writing) or ground (when reading) Select line 222 is biased at V cc . Decoding the word lines 218, 220 is thus easy. In an embodiment, the string select lines 224, 226, 228, 230 are decoded separately. The selected channel line 232 is turned on by applying a positive bias (+V cc , eg, +3.3V) to the string select lines 226 , 228 of the stack structures 210 , 212 on opposite sides. To avoid disturbing other unselected adjacent channel lines 234, 236, the tandem select lines 224, 230 of the stack structures 208, 214 on the sides of the unselected channel lines 234, 236 may be negatively biased. voltage (-V cc , eg -3.3V) to turn off the adjacent string select line transistors. The far side string select line 231 can simply be applied with 0 volts or ground. A positive bias (eg, +V cc , eg, +5V) can be applied to the substrate 237 as the bottom gate during reading to reduce the resistance of the source element 238 .
图21绘示实施例中存储装置的立体图。图21的存储装置元件所具有的导电类型类似图20的存储装置元件所具有的导电类型,因此在此不赘述。请参照图21,操作存储装置的方法包括以共用的接触结构302、304、306施加偏压于堆叠结构308、310、312的字线314、316与接地选择线318。举例来说,字线314被施加偏压VPGM或VREAD,字线136被施加偏压VPASS,(当写入时)接地选择线318被施加0伏,或者(当读取时)接地选择线318被施加偏压Vcc。选择的沟道线336是以接触结构326施加正偏压(例如+3.3V)于相对两侧边340、342上的堆叠结构308、310的串列选择线320、322而开启。未被选择而关闭的例如沟道线338的相对侧边344、346上的堆叠结构310、312的串列选择线322、324施加0伏或接地。开启用的正偏压与关闭用的0偏压分别施加在例如单一串列选择线322中邻近开启的沟道线336的部分与关闭的沟道线338的部分。FIG. 21 is a perspective view of a storage device in an embodiment. The conductivity type of the memory device element in FIG. 21 is similar to that of the memory device element in FIG. 20 , so details will not be described here. Referring to FIG. 21 , the method for operating the memory device includes applying bias voltages to the word lines 314 , 316 and the ground selection line 318 of the stack structures 308 , 310 , 312 through the common contact structures 302 , 304 , 306 . For example, word line 314 is biased at VPGM or V READ , word line 136 is biased at V PASS , and ground select line 318 is biased at 0 volts (when writing) or ground (when reading) Select line 318 is biased at V cc . The selected channel line 336 is turned on by applying a positive bias (eg, +3.3V) to the string select lines 320 , 322 of the stack structures 308 , 310 on opposite sides 340 , 342 by the contact structure 326 . String select lines 322 , 324 of stack structures 310 , 312 on opposite sides 344 , 346 of channel line 338 that are not selected to be turned off apply 0 volts or ground. The positive bias for turning on and the zero bias for turning off are respectively applied to, for example, the portion of the single string select line 322 adjacent to the turned-on channel line 336 and the turned-off channel line 338 .
图22绘示实施例中存储装置的立体图。图22的存储装置元件所具有的导电类型类似图20的存储装置元件所具有的导电类型,因此在此不赘述。请参照图22,操作存储装置的方法包括以共用的接触结构402施加偏压于堆叠结构404、406、408、410、412的接地选择线414。于实施例中,是将字线426、428、430、432分成一组例如奇数列的字线428、432与一组偶数列的字线426、430,且不同列的组合为个别施加电压。举例来说,奇数列的字线428、432施加写入电压VPGM或读取电压VREAD,偶数列的字线426、430则施加0伏或接地。于实施例中,接地选择线414被施加正偏压(例如+3.3V)。选择的沟道线446是通过施加正偏压(例如+3.3V)于相对两侧边450、452上的堆叠结构406、408的串列选择线418、420而开启。其中堆叠结构406的字线428被施加写入电压VPGM或读取电压VREAD,堆叠结构408的字线430被施加0伏。因此只有选择到侧边450上的ONONO结构编程或读取。因此可达到物理性的两位元/单元(physically two-bit/cell)。未被选择的沟道线444、448的侧边上的堆叠结构404、410的串列选择线416、422可被施加负偏压(例如-3.3V)。远侧的串列选择线424可施加0伏或接地。FIG. 22 is a perspective view of a storage device in an embodiment. The conductivity type of the memory device element in FIG. 22 is similar to the conductivity type of the memory device element in FIG. 20 , so details will not be described here. Referring to FIG. 22 , the method for operating the memory device includes applying a bias voltage to the ground selection line 414 of the stack structures 404 , 406 , 408 , 410 , 412 through the common contact structure 402 . In an embodiment, the word lines 426 , 428 , 430 , 432 are divided into a group of word lines 428 , 432 of odd columns and a group of word lines 426 , 430 of even columns, and the combinations of different columns are individually applied voltages. For example, the word lines 428 and 432 of the odd columns are applied with the write voltage VPGM or the read voltage V READ , and the word lines 426 and 430 of the even columns are applied with 0V or ground. In an embodiment, the ground select line 414 is positively biased (eg, +3.3V). The selected channel line 446 is turned on by applying a positive bias (eg, +3.3V) to the string select lines 418 , 420 of the stack structures 406 , 408 on opposite sides 450 , 452 . The word line 428 of the stack structure 406 is applied with the write voltage VPGM or the read voltage V READ , and the word line 430 of the stack structure 408 is applied with 0V. Therefore only select ONONO structures on side 450 are programmed or read. Therefore, a physically two-bit/cell can be achieved. The string select lines 416 , 422 of the stack structures 404 , 410 on the sides of the unselected channel lines 444 , 448 may be negatively biased (eg, -3.3V). The far side string select line 424 can be applied with 0 volts or ground.
图23绘示实施例中存储装置的立体图。图23的存储装置元件的导电类型类似图20的存储装置的导电类型,不同处在于位线502具有P+导电型。位线502与沟道线512(或沟道线514)(N导电型)形成二极管。于实施例中,串列选择线504被施加正偏压(例如+3.3V)。字线506被施加偏压VPGM或VREAD,字线508被施加偏压VPASS,(当写入时)接地选择线510被施加0伏,或者(当读取时)接地选择线510被施加偏压Vcc。于实施例中,在读取的过程中,选择的沟道线512下方的源极元件516施加0伏或接地。未被选择而关闭的例如沟道线514其下方的源极元件518为浮动或施加正的偏压(例如+Vcc)。由于由位线502与沟道线512(或沟道线514)形成的二极管不允许逆向电流,因此未被选择的源极元件518是无法被读取的。图24显示一些实施例中建议用以解码的波形。请参照图24,在T1期间,是通过GSL与未选择的SL(unselected SL)上的Vcc执行源极线自举(source line self-boosting)。Vch在存储单元(cell)C与D举起。在T2期间,是通过SSL与未选择的BL上的Vcc执行位线自举。Vch在存储单元B举起。由于在BL的PN二极管,存储单元C举起的Vch并未漏出。在T3期间,编程(programming)存储单元A起始。反转沟道(inversion channel)在T1与T2期间已经形成,即使SSL/GSL关闭,其仍可编程。此外,存储单元E为Vpass干扰,若Vpass小于10V时,其并不会造成严重的影响。FIG. 23 is a perspective view of a storage device in an embodiment. The conductivity type of the memory device element of FIG. 23 is similar to that of the memory device of FIG. 20 except that the bit line 502 has a P+ conductivity type. The bit line 502 and the channel line 512 (or channel line 514 ) (N conductivity type) form a diode. In an embodiment, the string select line 504 is positively biased (eg, +3.3V). Word line 506 is biased at VPGM or V READ , word line 508 is biased at V PASS , (when writing) ground select line 510 is biased at 0 volts, or (when reading) ground select line 510 is biased A bias voltage V cc is applied. In an embodiment, the source element 516 below the selected channel line 512 is applied with zero volts or ground during readout. The source element 518 below the channel line 514 that is not selected to be turned off, for example, is floating or positively biased (eg, +V cc ). Since the diode formed by bit line 502 and channel line 512 (or channel line 514 ) does not allow reverse current flow, unselected source elements 518 cannot be read. Figure 24 shows waveforms suggested for decoding in some embodiments. Please refer to FIG. 24 , during T1, source line self-boosting is performed through GSL and Vcc on the unselected SL (unselected SL). Vch is raised in memory cells (cells) C and D. During T2, bit line bootstrapping is performed via SSL with Vcc on unselected BLs. Vch is raised at memory cell B. Due to the PN diode at BL, the Vch raised by memory cell C is not leaked. During T3, programming memory cell A is initiated. The inversion channel has been formed during T1 and T2, and it is still programmable even if SSL/GSL is turned off. In addition, the memory cell E is disturbed by Vpass, and if Vpass is less than 10V, it will not cause serious impact.
图25显示实施例中存储装置的配置。底扩散源极线必须周期性地连接至金属源极线以降低源极电阻。源极线可如建议的布局展开(fan-out)。或者,源极线可分成偶数/奇数对,以使得阵列具有弹性的选择性。源极线接触(contact)可促使侧壁ONONO自对准接触(self-aligned contact;SAC)。扩散位线为周期性地连接至金属位线以降低电阻。每个层次的字线可被共用或分成偶数/奇阵列,并连接至字线解码器。顶SSL栅极连接至SSL解码器。Fig. 25 shows the configuration of the storage device in the embodiment. The bottom diffused source line must be periodically connected to the metal source line to reduce the source resistance. The source lines can be fan-out as suggested layout. Alternatively, the source lines can be divided into even/odd pairs to allow flexible selectivity of the array. The source line contact (contact) can promote the sidewall ONONO self-aligned contact (self-aligned contact; SAC). The diffused bit lines are periodically connected to the metal bit lines to reduce resistance. The word lines of each level can be shared or divided into even/odd arrays and connected to word line decoders. The top SSL gate is connected to the SSL decoder.
虽然本发明已以优选实施例披露如上,然其并非用以限定本发明,任何本领域一般技术人员,在不脱离本发明的精神和范围内,当可做些许更动与润饰,因此本发明的保护范围当视权利要求所界定为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110053420.2A CN102655152B (en) | 2011-03-04 | 2011-03-04 | Storage device, its manufacturing method and operating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110053420.2A CN102655152B (en) | 2011-03-04 | 2011-03-04 | Storage device, its manufacturing method and operating method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102655152A CN102655152A (en) | 2012-09-05 |
CN102655152B true CN102655152B (en) | 2014-07-16 |
Family
ID=46730749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110053420.2A Active CN102655152B (en) | 2011-03-04 | 2011-03-04 | Storage device, its manufacturing method and operating method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102655152B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI496249B (en) * | 2013-01-09 | 2015-08-11 | Macronix Int Co Ltd | 3d nand flash memory |
CN105185748B (en) * | 2014-06-10 | 2018-05-08 | 旺宏电子股份有限公司 | multi-layer memory array and manufacturing method thereof |
EP3029736A1 (en) * | 2014-12-05 | 2016-06-08 | IMEC vzw | Vertical, three-dimensional semiconductor device |
US10170194B1 (en) * | 2017-08-31 | 2019-01-01 | Micron Technology, Inc. | Asymmetrical multi-gate string driver for memory device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937919A (en) * | 2009-06-30 | 2011-01-05 | 海力士半导体有限公司 | Three-dimensional non-volatile memory device and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101487966B1 (en) * | 2008-11-25 | 2015-02-03 | 삼성전자주식회사 | Three dimensional semiconductor memory device |
-
2011
- 2011-03-04 CN CN201110053420.2A patent/CN102655152B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937919A (en) * | 2009-06-30 | 2011-01-05 | 海力士半导体有限公司 | Three-dimensional non-volatile memory device and manufacturing method thereof |
Non-Patent Citations (2)
Title |
---|
Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory;Tanaka, H. et al;《VLSI Technology, 2007 IEEE Symposium on》;20070612;第14-15页 * |
Tanaka, H. et al.Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory.《VLSI Technology, 2007 IEEE Symposium on》.2007,第14-15页. |
Also Published As
Publication number | Publication date |
---|---|
CN102655152A (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46522E1 (en) | Memory device, manufacturing method and operating method of the same | |
US10483323B2 (en) | Three-dimensional semiconductor device | |
US9343152B2 (en) | Cell array with a manufacturable select gate for a nonvolatile semiconductor memory device | |
TWI453897B (en) | Memory device, manufacturing method and operating method of the same | |
CN108573979B (en) | Semiconductor device | |
US8432719B2 (en) | Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride | |
US10056150B2 (en) | Non-volatile semiconductor memory device | |
CN107293550B (en) | memory element and manufacturing method thereof | |
US9698156B2 (en) | Vertical thin-channel memory | |
TWI427744B (en) | Three-dimensional array memory architecture with diodes in memory strings | |
TWI611607B (en) | Three dimensional memory device | |
CN102194821B (en) | Three-dimensional memory array with improved string select line and bit line contact layout | |
CN110931488B (en) | semiconductor memory | |
KR20090037690A (en) | Nonvolatile Memory Device, Operation Method and Manufacturing Method Thereof | |
CN101241914A (en) | non-volatile semiconductor storage device | |
TW201523882A (en) | Structure and manufacturing method of stacked memory array for junctionless cell transistors | |
JP2007273859A (en) | Semiconductor device and manufacturing method therefor | |
CN102655152B (en) | Storage device, its manufacturing method and operating method | |
CN1828900B (en) | Semiconductor device having transistor with vertical gate electrode and method of fabricating the same | |
KR101073640B1 (en) | High-density vertical-type semiconductor memory cell string, cell string array and fabricating method thereof | |
US9356105B1 (en) | Ring gate transistor design for flash memory | |
CN114335185A (en) | Split-gate dual-bit nonvolatile memory cell with erase gate disposed over wordline gate and method of making the same | |
CN104934432A (en) | Nonvolatile memory devices having single-layered floating gates | |
CN106158021B (en) | Three-dimensional NAND memory with decoder and local word line driver | |
US11538829B2 (en) | Memory device with first switch and word line switches comprising a common control electrode and manufacturing method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |