CN102651408A - A solar substrate for improved burst strength - Google Patents
A solar substrate for improved burst strength Download PDFInfo
- Publication number
- CN102651408A CN102651408A CN2011100458976A CN201110045897A CN102651408A CN 102651408 A CN102651408 A CN 102651408A CN 2011100458976 A CN2011100458976 A CN 2011100458976A CN 201110045897 A CN201110045897 A CN 201110045897A CN 102651408 A CN102651408 A CN 102651408A
- Authority
- CN
- China
- Prior art keywords
- substrate
- solar substrate
- solar
- present
- nanoneedles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 143
- 239000002061 nanopillar Substances 0.000 claims description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 239000010703 silicon Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 claims description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052596 spinel Inorganic materials 0.000 claims description 2
- 239000011029 spinel Substances 0.000 claims description 2
- 229910002601 GaN Inorganic materials 0.000 claims 1
- 229910005540 GaP Inorganic materials 0.000 claims 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- ZUSQJEHVTIBRNR-UHFFFAOYSA-N aluminum;lithium;oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[Al+3] ZUSQJEHVTIBRNR-UHFFFAOYSA-N 0.000 claims 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims 1
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 229910010271 silicon carbide Inorganic materials 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 29
- 235000012431 wafers Nutrition 0.000 description 17
- 239000002086 nanomaterial Substances 0.000 description 11
- 230000035882 stress Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域 technical field
本发明关于一种太阳能基板,且特别是有关于一种用以提高破裂强度(fracture strength)的太阳能基板。 The present invention relates to a solar substrate, and more particularly to a solar substrate for improving fracture strength.
背景技术 Background technique
一般来说,习知的太阳能电池大多以硅等半导体晶圆作为基板。然而,由于硅等半导体晶圆属于硬脆性材料,因此容易受外力的冲击,尤其是太阳能电池组装过程所引发的外力冲击,而造成硅等半导体晶圆的破裂。除了太阳能电池之外,硅晶圆大量应用在许多半导体组件的制造上。另外,由于半导体组件的需求的增加而导致硅原料的吃紧,因此如何避免硅原料不当的浪费(例如因受外力的冲击而破裂)及提高制程的良率,实为亟待解决的问题。以太阳能电池为例,若太阳能电池能够制作在具有高破裂强度的基板上,则可降低太阳能电池在后续组装过程中发生基板破裂的可能性。 Generally speaking, conventional solar cells mostly use semiconductor wafers such as silicon as substrates. However, since silicon and other semiconductor wafers are hard and brittle materials, they are easily impacted by external forces, especially those caused by the solar cell assembly process, resulting in cracking of silicon and other semiconductor wafers. In addition to solar cells, silicon wafers are widely used in the manufacture of many semiconductor components. In addition, due to the shortage of silicon raw materials due to the increase in demand for semiconductor components, how to avoid undue waste of silicon raw materials (such as cracking due to external impact) and improve the yield of the process is an urgent problem to be solved. Taking a solar cell as an example, if the solar cell can be fabricated on a substrate with high rupture strength, the possibility of substrate cracking during the subsequent assembly process of the solar cell can be reduced.
请参阅图1A及图1B。图1A至图1B习知的硅晶圆试片于测试破裂强度的过程中拍摄的图片。硅晶圆试片由单晶硅所制成。在试片受力的过程中,应力会集中在试片局部的区域,并且当应力逐渐增加时,这些区域上(尤其是受张力的区域)会开始产生裂痕。随着荷重的增加,裂痕延伸(crack propagation)的现象趋于明显,最后则导致试片断成数块,如图1B所示。 Please refer to FIG. 1A and FIG. 1B . 1A to FIG. 1B are pictures taken during the process of testing the rupture strength of a conventional silicon wafer test piece. Silicon wafer coupons are made of single crystal silicon. When the test piece is stressed, the stress will be concentrated in the local area of the test piece, and when the stress gradually increases, cracks will start to appear in these areas (especially the tensioned area). As the load increases, the phenomenon of crack propagation (crack propagation) tends to be obvious, and finally the test piece is broken into several pieces, as shown in Figure 1B.
由于习知的硅晶圆试片在受力时会发生应力集中在试片局部的区域的现象,因此若能使得硅晶圆试片在受力时,应力平均地分布在整个试片上,则硅晶圆试片的破裂强度势必能获得提升。因此,本发明的主要目的在于提供一种太阳能基板,以解决上述问题。 Because the known silicon wafer test piece can produce the phenomenon that the stress concentrates on the local area of the test piece when it is stressed, if the silicon wafer test piece can be made to distribute the stress evenly on the whole test piece when it is stressed, then The rupture strength of the silicon wafer test piece is bound to be improved. Therefore, the main purpose of the present invention is to provide a solar substrate to solve the above problems.
发明内容 Contents of the invention
本发明的一目的在于提供一种用以提升破裂强度的太阳能基板,于其上表面形成第一凸起结构与第一凹陷区域,以提升太阳能基板的破裂强度。 An object of the present invention is to provide a solar substrate for improving the rupture strength, wherein a first protruding structure and a first recessed region are formed on the upper surface thereof, so as to enhance the rupture strength of the solar substrate.
根据本发明的一具体实施例,本发明提供一种具有高破裂强度的太阳能基板,其包含有一上表面、复数个第一凸起结构以及复数个第一凹陷区域。该等第一凸起结构形成于上表面。每一第一凹陷区域形成于该等第一凸起结构的周围。本发明藉由第一凸起结构与第一凹陷区域的组合,使得太阳能基板的破裂强度被提升,藉以抵抗高张力的绕曲。此外,上表面为太阳能基板的受张力面。另外,太阳能基板非晶基板、单晶基板或多晶基板,详细来说,单晶基板单晶硅基板。并且,第一凸起结构可以是复数个纳米柱或复数个纳米针,其中两相邻的纳米柱或纳米针各别的顶端间的间距在数十纳米至数百纳米之间。 According to a specific embodiment of the present invention, the present invention provides a solar substrate with high rupture strength, which includes an upper surface, a plurality of first protruding structures, and a plurality of first recessed regions. The first protruding structures are formed on the upper surface. Each first recessed area is formed around the first protruding structures. In the present invention, through the combination of the first protruding structure and the first concave region, the rupture strength of the solar substrate is improved, so as to resist high tension bending. In addition, the upper surface is the tension surface of the solar substrate. In addition, the solar substrate is an amorphous substrate, a single crystal substrate or a polycrystalline substrate, specifically, a single crystal substrate and a single crystal silicon substrate. Moreover, the first protruding structure may be a plurality of nanopillars or a plurality of nanoneedles, wherein the distance between the tops of two adjacent nanopillars or nanoneedles is between tens of nanometers and hundreds of nanometers.
根据本发明的另一具体实施例,本发明的具有高破裂强度的太阳能基板更具有一下表面,所述下表面具有复数个第二凸起结构与复数个第二凹陷区域,每一第二凹陷区域形成于该等第二凸起结构的周围。 According to another specific embodiment of the present invention, the solar substrate with high rupture strength of the present invention further has a lower surface, and the lower surface has a plurality of second raised structures and a plurality of second depressed regions, and each second depressed Regions are formed around the second protruding structures.
综上所述,本发明提供一种用以提升破裂强度的太阳能基板,该基板具有第一凸起结构与第一凹陷区域的组合,使得基板可以承受的应力强度得以提升,同时也提升了太阳能基板的破裂强度,此举可降低太阳能基板在后续制作太阳能电池过程中发生破裂的可能性。 To sum up, the present invention provides a solar substrate for improving the rupture strength. The substrate has a combination of a first raised structure and a first recessed area, so that the stress intensity that the substrate can withstand is improved, and the solar energy is also improved. The rupture strength of the substrate, which can reduce the possibility of the solar substrate cracking in the subsequent process of making solar cells.
关于本发明的优点与精神可以藉由以下的发明详述及所附图式得到进一步的了解。 The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.
附图说明 Description of drawings
图1A及图1B为习知的硅晶圆试片在测试破裂强度的过程中拍摄的图片。 FIG. 1A and FIG. 1B are pictures taken during the process of testing the rupture strength of a conventional silicon wafer test piece.
图2A绘示根据本发明的一具体实施例的太阳能基板的剖面图。 FIG. 2A shows a cross-sectional view of a solar substrate according to an embodiment of the present invention.
图2B绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 FIG. 2B is a cross-sectional view of a solar substrate according to another embodiment of the present invention.
图2C绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 FIG. 2C is a cross-sectional view of a solar substrate according to another embodiment of the present invention.
图2D绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 FIG. 2D is a cross-sectional view of a solar substrate according to another embodiment of the present invention.
图3根据本发明的太阳能基板的第一凸起结构的外观图片。 Fig. 3 is a picture of the appearance of the first protrusion structure of the solar substrate according to the present invention.
图4A及图4B根据本发明的太阳能基板在测试破裂强度的过程中拍摄的图片。 FIG. 4A and FIG. 4B are pictures taken during the test of the rupture strength of the solar substrate according to the present invention.
图5A及图5B根据本发明的太阳能基板在破裂强度测试中的测试数据。 5A and 5B are the test data of the solar substrate according to the present invention in the rupture strength test.
图6A绘示根据本发明的太阳能基板于弯曲时的剖面图。 FIG. 6A shows a cross-sectional view of a solar substrate according to the present invention when it is bent.
图6B说明凸起结构对于太阳能基板所能承受的最大应力的实际数据。 FIG. 6B illustrates actual data of the maximum stress that a raised structure can withstand for a solar substrate.
附图标记说明: Explanation of reference signs:
1:太阳能基板 1: Solar substrate
10a:上表面 10b:下表面
10a:
102:第一凸起结构 122:第二凸起结构 102: The first raised structure 122: The second raised structure
104:第一凹陷区域 124:第二凹陷区域 104: The first sunken area 124: The second sunken area
102a:纳米针 102b:纳米柱 102a: Nanoneedles 102b: Nanocolumns
102a’:纳米针群体 102b’:纳米柱群体。
102a':
具体实施方式 Detailed ways
请参见图2A,图2A绘示根据本发明的一具体实施例的太阳能基板的剖面图。如图所示,本发明太阳能基板1包含一上表面10a、复数个第一凸起结构102以及复数个第一凹陷区域104。每一第一凸起结构102形成于上表面10a。每一第一凹陷区域104形成于该等第一凸起结构102的周围。以下分别就上述组件作详细的说明。
Please refer to FIG. 2A . FIG. 2A is a cross-sectional view of a solar substrate according to a specific embodiment of the present invention. As shown in the figure, the
本发明太阳能基板1一非晶基板、一单晶基板或一多晶基板。在实务中,太阳能基板1常以硅等半导体晶圆作为基础,也就是说,太阳能基板1可为非晶硅基板、单晶硅基板、多晶硅基板。在此,本发明并不以硅材的太阳能基板1为限,只要太阳能基板1可应用于太阳能电池的半导体制程并可进行后续的加工处理,都应属于本发明的目的。举例来说,本发明太阳能基板1可以由玻璃(SiO2)、硅(Si)、锗(Ge)、碳(C)、铝(Al)、氮化镓(GaN)、砷化镓(GaAs)、磷化镓(GaP)、氮化铝(AlN)、蓝宝石(sapphire)、尖晶石(spinnel)、三氧化二铝(Al2O3)、碳化硅(SiC)、氧化锌(ZnO)、氧化镁(MgO)、二氧化锂铝(LiAlO2)、二氧化锂镓(LiGaO2)或四氧化镁二铝(MgAl2O4)所制成,但不以此为限。此外,本发明太阳能基板1可以是一P型半导体层,一N型半导体层可以形成于太阳能基板1上,藉以后续制作一太阳能电池。
The
此外,太阳能基板1的上表面10a可进一步定义为太阳能基板1的受张力面。在此,当压力施加于太阳能基板1一侧表面上时,直接承受压力的表面为受压力面,所述受压力面因压力而向内缩形变;相对的,太阳能基板1上受压力面的背面即为受张力面,所述受张力面因压力而向外伸展形变。于实务中,由于本发明藉由太阳能基板1的结构,使其搭配后续制作太阳能电池时,可提高太阳能电池的破裂强度。因此,在此本发明对上表面10a并不特别限定,只要能够提高太阳能基板1的破裂强度,该太阳能基板1的任一适当表面皆可为上表面10a。
In addition, the
请参见图2B,图2B绘示根据本发明的另一具体实施例的太阳能基板的剖面图。如图所示,本发明太阳能基板1另具有一下表面10b、复数个第二凸起结构122以及复数个凹陷区域124。每一第二凹陷区域124形成于该等第二凸起结构122的周围。本发明太阳能基板1的下表面10b可进一步定义为太阳能基板1的受压力面。于实务中,第一凸起结构102与第二凸起结构122可使用相同制程,使得太阳能基板1两侧的表面上的结构厚度大致相等。
Please refer to FIG. 2B , which is a cross-sectional view of a solar panel according to another embodiment of the present invention. As shown in the figure, the
从微观的角度来看,第一凸起结构102的中更包含许多的纳米结构,而这些纳米结构搭配凹陷区域104,可提升太阳能基板1的破裂强度。
From a microscopic point of view, the first
请参阅图2A至图2D。图2C绘示根据本发明的另一具体实施例的太阳能基板的剖面图。图2D绘示根据本发明的另一具体实施例的太阳能基板的剖面图。如图所示,本发明太阳能基板1的上表面10a中,第一凸起结构102可以是复数个纳米结构,而所述纳米结构外形可以形成如图2A中的纳米针(nanotip)102a或如图2C中的纳米柱(nanorod或nanopillar)102b。值得注意的是,本发明太阳能基板1具有一上表面10a,而纳米针102a或纳米柱102b由太阳能基板1的上表面10a向下蚀刻而形成。前述的蚀刻可为任何适用于太阳能电池的基板的蚀刻制程,举例来说,所述蚀刻制程可为电化学蚀刻制程。然而,太阳能基板1的上表面10a经蚀刻并不限定只能产生纳米针102a或只能产生纳米柱102b;相反的,纳米针102a与纳米柱102b更可同时出现在上表面10a。
Please refer to Figure 2A to Figure 2D. FIG. 2C is a cross-sectional view of a solar substrate according to another embodiment of the present invention. FIG. 2D is a cross-sectional view of a solar substrate according to another embodiment of the present invention. As shown in the figure, in the
另外,纳米针102a与纳米柱102b除了可单独形成于太阳能基板1的上表面10a上外,复数个纳米针102a或复数个纳米柱102b亦可以彼此相连以构成一纳米针群体102a’或者纳米柱群体102b’。其中,两个相邻的纳米针102a与纳米柱102b各别的顶端间的间距可以在数十纳米至数百纳米之间,而每一个纳米针102a与纳米柱102b可以具有一微米等级的高度。在此,可定义两个相邻的纳米针102a或纳米柱102b顶端间的间距对比于纳米针102a或纳米柱102b的高度为一深宽比R1,所述深宽比R1可以由蚀刻制程的蚀刻参数所决定,例如蚀刻时间及蚀刻温度等。据实验结果,深宽比R1可大于1.5。于一较佳具体实施例中,深宽比R1可以介于2~4的范围内。
In addition, besides the nanoneedles 102a and the
换言之,本发明太阳能基板1本身在其上表面10a形成复数个纳米针102a或纳米柱102b,因此纳米针102a或纳米柱102b可与太阳能基板1为同质材料。于一具体实施例中,若太阳能基板1为一单晶硅基板,则单晶硅基板的上表面10a可以具有[100]或[111]的结晶取向。藉由纳米针102a或纳米柱102b的形成,太阳能基板1本身的破裂强度获得提升。值得一提的是,若太阳能基板1由多层不同材料组合而成,纳米针102a或纳米柱102b更可为其它适用于太阳能电池1的基板的任何适当的材料。
In other words, the
另一方面,同样可从微观的角度来看形成于太阳能基板10两侧表面的纳米结构。请参阅图2B及图2D。如图所示,本发明太阳能基板1的下表面10b中,第二凸起结构122可以是复数个纳米结构,而所述纳米结构外形可以形成相同于图2A中的纳米针(nanotip)102a或如图2C中的纳米柱(nanorod或nanopillar)102b,在此不加以赘述。在此,相较于图2A与图2C,图2B与图2D所揭露的两侧表面皆具有纳米结构的实施例能更进一步提升本发明太阳能基板1的破裂强度约百分之15。换言之,若太阳能基板1的两侧表面皆具有纳米结构,则所述基板1的表面能够承受更大的外力而不致破裂。
On the other hand, the nanostructures formed on both sides of the solar substrate 10 can also be viewed from a microscopic point of view. Please refer to Figure 2B and Figure 2D. As shown in the figure, in the
另外,请参阅图3。图3根据本发明太阳能基板的第一凸起结构的外观图片。本发明的复数个第一凸起结构102可以是纳米针102a与纳米柱102b密集地形成于太阳能基板1的上表面10a上。需注意的是,纳米针102a与纳米柱102b可以规则地或不规则地形成于太阳能基板1的上表面10a上。于实际应用中,纳米针102a与纳米柱102b可经由前述的电化学蚀刻制程而形成。
Also, see Figure 3. Fig. 3 is a picture of the appearance of the first protrusion structure of the solar substrate according to the present invention. The plurality of first protruding
再者,本发明太阳能基板1可另包含有一第一微米结构层以及一第二微米结构层(未显示于图中),该第一微米结构层可以形成于上表面10a与第一凸起结构102之间,而该第二微米结构层是形成于下表面10b与第二凸起结构122之间。
Moreover, the
本发明太阳能基板1的破裂强度可以透过三点弯曲强度(three-point bending strength)的测试来得知。请参阅图4A及图4B。图4A及图4B根据本发明太阳能基板1于测试破裂强度的过程中拍摄的图片。于此测试过程中,试片以一单晶硅晶圆的试片为例说明,并且受测试的单晶硅晶圆的表面具有[100]或[111]的结晶取向。
The rupture strength of the
如图4A至图4B所示,当试片所承受的荷重超过极限时,试片会发生粉碎性的破裂。这个现象说明试片是在吸收大量的能量后才发生破裂。如同比较防弹玻璃和一般的玻璃的破裂情形可推测得知,图4A至图4B中的试片所具有的破裂强度确实大于图1A至图1B中的试片。 As shown in FIGS. 4A to 4B , when the load on the test piece exceeds the limit, the test piece will be crushed and broken. This phenomenon indicates that the specimen ruptured after absorbing a large amount of energy. As can be inferred from the comparison of the breakage of bulletproof glass and ordinary glass, the test pieces in FIGS. 4A to 4B have a greater breaking strength than the test pieces in FIGS. 1A to 1B .
请参阅图5A及图5B。图5A及图5B根据本发明太阳能基板于破裂强度测试中的测试数据。本发明以测试分别具有[100]及[111]的结晶取向的太阳能基板为例说明。需注意的是,由于试片在承受荷重时,通常是在受张力面产生裂痕并向其它地方延伸,故本发明针对纳米结构形成于受张力面的基板测试其破裂强度。 Please refer to FIG. 5A and FIG. 5B . 5A and 5B are the test data of the solar substrate in the burst strength test according to the present invention. The present invention is illustrated by taking solar substrates with [100] and [111] crystallographic orientations as an example. It should be noted that when the test piece bears a load, cracks usually appear on the tensioned surface and extend to other places. Therefore, the present invention tests the rupture strength of the substrate with nanostructures formed on the tensioned surface.
如图5A及图5B所示,无论结晶取向为[100]或[111]的硅晶圆,所测得的破裂强度皆获得大幅地提升,证明图4A至图4B中试片的粉碎性破裂确实代表根据本发明的太阳能基板较习知的单晶硅晶圆具有较大的破裂强度。另外,两种表面类型的硅晶圆大致上具有相同的杨氏系数,说明根据本发明太阳能基板毋须改变材料的本质,仅对硅晶圆做表面处理形成纳米结构即可提升其破裂强度。 As shown in Figure 5A and Figure 5B, regardless of the crystal orientation of the silicon wafer [100] or [111], the measured fracture strength has been greatly improved, which proves the shattering fracture of the test piece in Figure 4A to Figure 4B Indeed, it means that the solar substrate according to the present invention has greater rupture strength than the conventional single crystal silicon wafer. In addition, the two surface types of silicon wafers have approximately the same Young's modulus, indicating that the solar substrate according to the present invention does not need to change the nature of the material, and only the surface treatment of the silicon wafer to form nanostructures can improve its rupture strength.
本发明太阳能基板的上表面或下表面形成第一凸起结构或第二凸起结构与第一凹陷区域或第二凹陷区域,进而使本发明太阳能基板的破裂强度能够被大幅地提升的可能原因在于,当太阳能基板承受荷重时,应力可以平均地分布在所述凹陷区域之中,而不是像传统上分布在局部的区域。 The possible reason why the rupture strength of the solar substrate of the present invention can be greatly improved by forming the first protruding structure or the second protruding structure and the first concave region or the second concave region on the upper or lower surface of the solar substrate of the present invention That is, when the solar substrate bears a load, the stress can be evenly distributed in the recessed area, instead of being distributed in a local area as traditionally.
举例来说,传统6吋200微米厚的太阳能基板,一般都无法弯曲,然而本发明藉由第一或第二凸起结构与第一或第二凹陷区域的设计,使得本发明太阳能基板可以产生一定程度的形变。请参阅图6A。图6A绘示根据本发明的太阳能基板于弯曲时的剖面图。如图6A所示,当本发明太阳能基板受外力时,由于第一或第二凸起结构与第一或第二凹陷区域可以分散所受的应力,进而使本发明太阳能基板可弯曲变形。此外,本发明更可整合太阳能电池制程,使得太阳能电池具有更大的产业利用价值。 For example, the traditional solar substrate with a thickness of 6 inches and 200 microns generally cannot be bent. However, the present invention enables the solar substrate of the present invention to produce a certain degree of deformation. See Figure 6A. FIG. 6A shows a cross-sectional view of a solar substrate according to the present invention when it is bent. As shown in FIG. 6A , when the solar substrate of the present invention is subjected to an external force, since the first or second protruding structure and the first or second concave region can disperse the stress received, the solar substrate of the present invention can be bent and deformed. In addition, the invention can further integrate the solar cell manufacturing process, so that the solar cell has greater industrial utilization value.
请参阅图6B。图6B说明凸起结构对于太阳能基板所能承受的最大应力的实际数据。如图6B所示,类型一表示太阳能基板为单晶硅且不具有第一凸起结构;类型二表示太阳能基板为单晶硅且受张力面与受压力面皆具有第一及第二凸起结构;类型三表示太阳能基板为单晶硅且受压力面具有第二凸起结构;类型四表示太阳能基板为单晶硅且受张力面具有第一凸起结构。从上述图表可得知,当太阳能基板的受张力面具有第一凸起结构时,太阳能基板所能承受的应力强度可被大幅提升,而当太阳能基板的受张力面以及受压力面都具有第一及第二凸起结构时,更能减少外界应力对太阳能基板所产生的负面影响。
See Figure 6B. FIG. 6B illustrates actual data of the maximum stress that a raised structure can withstand for a solar substrate. As shown in Figure 6B,
综上所述,根据本发明的太阳能基板相较于习知的太阳能基板能够承受较大的负载及具有优异的破裂强度。因此,相较于先前技术,根据本发明太阳能基板具有高度的破裂强度,因此较能抵抗外力的冲击而不致发生破裂。藉此,根据本发明的太阳能基板能够充分地提高制程的良率,并避免其中因为不当的撞击而造成不必要的原料浪费。 To sum up, the solar substrate according to the present invention can bear a larger load and has excellent rupture strength compared with conventional solar substrates. Therefore, compared with the prior art, the solar substrate according to the present invention has a high bursting strength, so it is more resistant to the impact of external force without cracking. Thereby, the solar substrate according to the present invention can fully improve the yield rate of the manufacturing process, and avoid unnecessary waste of raw materials due to improper impact.
藉由以上较佳具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。 Through the above detailed description of the preferred embodiments, it is hoped that the features and spirit of the present invention can be described more clearly, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the claimed patent scope of the present invention. Therefore, the scope of the claimed scope of the present invention should be interpreted in the broadest way based on the above description, so as to cover all possible changes and equivalent arrangements.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100458976A CN102651408A (en) | 2011-02-25 | 2011-02-25 | A solar substrate for improved burst strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100458976A CN102651408A (en) | 2011-02-25 | 2011-02-25 | A solar substrate for improved burst strength |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102651408A true CN102651408A (en) | 2012-08-29 |
Family
ID=46693367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100458976A Pending CN102651408A (en) | 2011-02-25 | 2011-02-25 | A solar substrate for improved burst strength |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102651408A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0933822A2 (en) * | 1998-01-20 | 1999-08-04 | Sharp Kabushiki Kaisha | Substrate for forming high-strenght thin semiconductor element and method for manufacturing high-strength thin semiconductor element |
US20010029977A1 (en) * | 2000-01-21 | 2001-10-18 | Murata Manufacturing Co., Ltd. | Conductive paste and solar cell using the same |
TW201007892A (en) * | 2008-08-06 | 2010-02-16 | Jer-Liang Yeh | Substrate with high fracture strength |
-
2011
- 2011-02-25 CN CN2011100458976A patent/CN102651408A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0933822A2 (en) * | 1998-01-20 | 1999-08-04 | Sharp Kabushiki Kaisha | Substrate for forming high-strenght thin semiconductor element and method for manufacturing high-strength thin semiconductor element |
US20010029977A1 (en) * | 2000-01-21 | 2001-10-18 | Murata Manufacturing Co., Ltd. | Conductive paste and solar cell using the same |
TW201007892A (en) * | 2008-08-06 | 2010-02-16 | Jer-Liang Yeh | Substrate with high fracture strength |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10658545B2 (en) | Light emitting device in which light emitting element and light transmissive member are directly bonded | |
TW201007892A (en) | Substrate with high fracture strength | |
EP2835836B1 (en) | Optical substrate, semiconductor light-emitting element, and method for producing semiconductor light-emitting element | |
US8716042B2 (en) | Semiconductor template substrate, light-emitting device using a semiconductor template substrate, and manufacturing method therefor | |
US8916399B2 (en) | Method of manufacturing light emitting device including light emitting element and wavelength converting member | |
US10204838B2 (en) | Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor | |
EP2615628B1 (en) | Method of growing nitride semiconductor layer | |
US20100178749A1 (en) | Method of fabricating epitaxially grown layers on a composite structure | |
KR20150123293A (en) | Nitride semiconductor component and method for the production thereof | |
CN101427391A (en) | Nitride semiconductor component and process for producing the same | |
CN101842508A (en) | Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method | |
CN101593675B (en) | Method for growing active area epitaxial wafer of nanometer folded structure | |
CN104319324A (en) | Patterned substrate and processing method therefor | |
CN103011066B (en) | Chip | |
CN102104060A (en) | Semiconductor structure and forming method thereof | |
CN102651408A (en) | A solar substrate for improved burst strength | |
EP1727177A1 (en) | Process for producing layered member and layered member | |
CN102064186A (en) | Semiconductor structure and forming method thereof | |
TWI449189B (en) | Solar substrate for improving fracture strength | |
Kivambe et al. | Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime | |
US20150004366A1 (en) | Substrate with high fracture strength | |
CN215342638U (en) | LED chip structure and display module | |
CN210379105U (en) | Flip LED chip for backlight display | |
TWI474381B (en) | Preparation method of epitaxial substrate | |
KR101296263B1 (en) | Laser lift off methods using various seperation film materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120829 |