CN102651362A - Series integrated photoelectric module and producing method thereof - Google Patents
Series integrated photoelectric module and producing method thereof Download PDFInfo
- Publication number
- CN102651362A CN102651362A CN2011103112541A CN201110311254A CN102651362A CN 102651362 A CN102651362 A CN 102651362A CN 2011103112541 A CN2011103112541 A CN 2011103112541A CN 201110311254 A CN201110311254 A CN 201110311254A CN 102651362 A CN102651362 A CN 102651362A
- Authority
- CN
- China
- Prior art keywords
- layer
- unit cell
- lower electrode
- separation groove
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000000926 separation method Methods 0.000 claims abstract description 119
- 238000006243 chemical reaction Methods 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000004065 semiconductor Substances 0.000 claims description 55
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 238000009413 insulation Methods 0.000 claims description 12
- 230000000149 penetrating effect Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 6
- 239000010408 film Substances 0.000 description 49
- 239000010409 thin film Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002035 prolonged effect Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 ITO Chemical compound 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/93—Interconnections
- H10F77/933—Interconnections for devices having potential barriers
- H10F77/935—Interconnections for devices having potential barriers for photovoltaic devices or modules
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/161—Photovoltaic cells having only PN heterojunction potential barriers comprising multiple PN heterojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/172—Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
- H10F19/35—Structures for the connecting of adjacent photovoltaic cells, e.g. interconnections or insulating spacers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/90—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
- H10F19/902—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种串联型集成光电模块,该模块包括:基板上分别层压形成下部电极、光电转换层以及上部电极的第一电池和第二电池,所述光电转换层包括第一单元电池层、第二单元电池层以及位于所述第一单元电池层和所述第二单元电池层之间的中间反射膜,所述第一电池的下部电极和所述第二电池的下部电极被下部电极分离槽隔开,所述第一电池的下部电极上的光电转换层上相互隔开形成了用来连接所述第二电池上部电极和所述第一电池的下部电极的多个贯通孔。
The invention relates to a tandem integrated photoelectric module, which comprises: a first cell and a second cell respectively laminated on a substrate to form a lower electrode, a photoelectric conversion layer and an upper electrode, and the photoelectric conversion layer includes a first unit cell layer , a second unit cell layer, and an intermediate reflection film between the first unit cell layer and the second unit cell layer, the lower electrode of the first cell and the lower electrode of the second cell are covered by the lower electrode The separation groove is separated, and the photoelectric conversion layer on the lower electrode of the first battery is separated from each other to form a plurality of through holes for connecting the upper electrode of the second battery and the lower electrode of the first battery.
Description
技术领域 technical field
本发明涉及一种串联型集成光电模块及其制造方法。The invention relates to a serial integrated photoelectric module and a manufacturing method thereof.
背景技术 Background technique
目前,伴随着现有能源如石油、煤炭等将会枯竭的预测,人们越来越关注替代这些现有能源的可替代能源。其中,太阳能因其资源丰富且不污染环境而特别受到瞩目。At present, with the prediction that existing energy sources such as oil and coal will be exhausted, people are paying more and more attention to alternative energy sources to replace these existing energy sources. Among them, solar energy has attracted special attention because of its abundant resources and non-polluting environment.
将太阳能转换为电能的光电模块和二极管一样,具有p型半导体和n型半导体的接合结构。当光照射到光电模块时,光和光电模块中构成半导体的物质之间产生相互作用,产生带(-)电荷的电子和带(+)电荷的空穴,电荷的流动产生电流。Like diodes, photovoltaic modules that convert solar energy into electricity have a junction structure of p-type semiconductors and n-type semiconductors. When light hits the photoelectric module, there is an interaction between the light and the material that constitutes the semiconductor in the photoelectric module, generating electrons with (-) charges and holes with (+) charges, and the flow of charges generates current.
光电模块根据半导体的厚度分为块型(bulk)和薄膜型(thin film),薄膜光电模块包括厚度在数十μm至数μm以下的光电转换物质。Photoelectric modules are divided into bulk type and thin film type according to the thickness of the semiconductor. Thin film photovoltaic modules include photoelectric conversion materials with a thickness of tens of μm to less than several μm.
目前,块型硅光电元件广泛应用于地面电力领域。但是,最近随着块型硅光电模块的需求激增,出现原料供应紧张,价格不断上涨。At present, bulk silicon photoelectric components are widely used in the field of ground power. However, with the recent surge in demand for bulk silicon photovoltaic modules, there has been tight supply of raw materials and rising prices.
因此,最近出现了具有高能源转换效率的同时,还可以以低廉的价格批量生产的集成型薄膜光电模块的需求。但是,单一接合(single-junction)薄膜光电模块在其性能上存在局限性,所以开发层压多个单元电池形成的双重接合薄膜光电模块或三重接合薄膜光电模块,追求高稳定化的效率(stabilized efficiency)。双重接合或三重接合薄膜光电模块被称之为串联型光电模块。Therefore, there has recently been a demand for an integrated thin-film photovoltaic module that can be mass-produced at a low price while having high energy conversion efficiency. However, single-junction thin-film photovoltaic modules have limitations in their performance, so double-junction thin-film photovoltaic modules or triple-junction thin-film photovoltaic modules formed by laminating multiple unit cells have been developed in pursuit of highly stabilized efficiency (stabilized efficiency). Double-junction or triple-junction thin film photovoltaic modules are called tandem photovoltaic modules.
与此同时,减少薄膜光电模块的无效区域,提高其效率为目的,业内正在开展光电模块的集成化技术研究。At the same time, for the purpose of reducing the ineffective area of thin-film photovoltaic modules and improving their efficiency, the industry is conducting research on the integration technology of photovoltaic modules.
发明内容 Contents of the invention
本发明已经充分考虑到了现有技术上存在的问题以及技术必要性,其目的在于提供一种能够最大限度降低光电模块的漏电和无效区域而提高效率的高效率的串联型集成光电模块及其制造方法。The present invention has fully considered the problems existing in the prior art and the technical necessity, and its purpose is to provide a high-efficiency serial integrated photoelectric module and its manufacture that can minimize the leakage and ineffective areas of the photoelectric module and improve efficiency. method.
本发明要解决的技术课题不局限于以上涉及到的技术课题,在本发明中没有涉及到的其它技术课题,属于本技术领域的技术人员可以从本发明中记载的内容明确地理解。The technical issues to be solved in the present invention are not limited to the technical issues involved in the above, and other technical issues not involved in the present invention can be clearly understood by those skilled in the art from the contents described in the present invention.
根据本发明一个实施例的串联型集成光电模块包括,基板上依次层压下部电极、光电转换层以及上部电极而形成的第一电池和第二电池,所述光电转换层包括第一单元电池层、第二单元电池层以及位于所述第一单元电池层和所述第二单元电池层之间的中间反射膜,所述第一电池的下部电极和所述第二电池的下部电极被下部电极分离槽隔开,所述第一电池的下部电极上的光电转换层上相互隔开形成有用来连接所述第二电池上部电极和所述第一电池的下部电极的多个贯通孔。A tandem integrated photoelectric module according to an embodiment of the present invention includes a first cell and a second cell formed by sequentially laminating a lower electrode, a photoelectric conversion layer, and an upper electrode on a substrate, and the photoelectric conversion layer includes a first unit cell layer , a second unit cell layer, and an intermediate reflection film between the first unit cell layer and the second unit cell layer, the lower electrode of the first cell and the lower electrode of the second cell are covered by the lower electrode The separation grooves are separated, and the photoelectric conversion layer on the lower electrode of the first battery is separated from each other to form a plurality of through holes for connecting the upper electrode of the second battery and the lower electrode of the first battery.
根据本发明另一个实施例的串联型集成光电模块的制造方法包括,基板上形成下部电极层的步骤;将所述下部电极层分割成第一电池的下部电极层以及第二电池的下部电极层的下部电极分离槽的形成步骤;所述第一电池和第二电池的下部电极层上形成包括第一单元电池层、中间反射膜以及第二单元电池层的光电转换层的步骤;贯通所述第二电池的下部电极层上的光电转换层的相互隔开的多个贯通孔的形成步骤;所述贯通孔的内部和光电转换层上形成上部电极层的步骤;隔开所述上部电极层和所述光电转换层的上部分离槽的一部分经过所述下部电极分离槽之上的步骤。According to another embodiment of the present invention, the manufacturing method of the tandem integrated photoelectric module includes the steps of forming a lower electrode layer on the substrate; dividing the lower electrode layer into the lower electrode layer of the first cell and the lower electrode layer of the second cell The step of forming the lower electrode separation groove; the step of forming the photoelectric conversion layer including the first unit cell layer, the intermediate reflection film and the second unit cell layer on the lower electrode layers of the first battery and the second battery; penetrating through the A step of forming a plurality of through holes spaced apart from each other in the photoelectric conversion layer on the lower electrode layer of the second battery; a step of forming an upper electrode layer inside the through holes and on the photoelectric conversion layer; separating the upper electrode layer A part of the upper separation groove of the photoelectric conversion layer passes through the step above the lower electrode separation groove.
根据本发明,通过点接触将光电模块内的单元电池串联起来,降低光电模块内的无效区域,可以提高模块的效率。另外,根据本发明,降低串联型光电模块的漏电,也可以提高效率。另外,根据本发明,可以提供串联型集成光电模块及其制造方法。According to the present invention, the unit cells in the photoelectric module are connected in series through point contact, the invalid area in the photoelectric module is reduced, and the efficiency of the module can be improved. In addition, according to the present invention, the leakage current of the tandem photoelectric module can be reduced, and the efficiency can also be improved. In addition, according to the present invention, a tandem type integrated photoelectric module and a method for manufacturing the same can be provided.
附图说明 Description of drawings
图1为根据本发明的一个实施例的包括通过点接触串联连接的光电电池的串联型集成光电模块的示意图;1 is a schematic diagram of a series-type integrated photovoltaic module including photovoltaic cells connected in series by point contacts according to an embodiment of the present invention;
图2a和图2b是沿着图1的a-a′线和b-b′线的截面图;Fig. 2 a and Fig. 2 b are the sectional views along a-a' line and b-b' line of Fig. 1;
图3a至图3i表示根据本发明一个实施例的串联型集成光电模块的制造过程;3a to 3i show the manufacturing process of a series-type integrated photoelectric module according to an embodiment of the present invention;
图4a和图4b表示通过均化器前后激光光束的强度分布及其相关的图案面;Figure 4a and Figure 4b represent the intensity distribution of the laser beam and its associated pattern surface before and after passing through the homogenizer;
图4c表示通过均化器的激光光束所形成的图案截面;Figure 4c shows the cross-section of the pattern formed by the laser beam passing through the homogenizer;
图5为根据本发明一个实施例的图1的虚线四角形部分(A)的放大图;5 is an enlarged view of the dotted quadrangular portion (A) of FIG. 1 according to an embodiment of the present invention;
图6a和图6b为根据本发明另一个实施例的图1虚线四角形部分(A)的放大图;6a and 6b are enlarged views of the dotted quadrangular portion (A) of FIG. 1 according to another embodiment of the present invention;
图7a和图7b为沿着图6a的c-c′线和图6b的d-d′线的截面图;Fig. 7 a and Fig. 7 b are the sectional views along the c-c ' line of Fig. 6 a and the d-d ' line of Fig. 6 b;
图8a至图8c为围绕住根据本发明实施例的贯通孔的第二线的形状示意图。8a to 8c are schematic diagrams of the shape of the second line surrounding the through hole according to the embodiment of the present invention.
附图标号说明Explanation of reference numbers
100:基板100: Substrate
200:下部电极200: lower electrode
220:第一线220: Frontline
300:光电转换层300: photoelectric conversion layer
310:第一单元电池层310: first cell layer
320:中间反射膜320: Intermediate reflective film
330:第二单元电池层330: second cell layer
400:上部电极400: upper electrode
420:第二线420: second line
具体实施方式 Detailed ways
以下,参照附图详细说明本发明的优选实施例。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
但是,本发明的实施方式可以变更为其它多种方式,本发明的范围并不局限于以下说明的实施例。为了更加清楚地说明,附图中的要素形象和尺寸等都可以放大,对于附图中的引号以及相同的构成要素,即使标注在不同的附图上,也尽可能按相同的引号标注。说明本发明时,认为相关的公知功能或构成相关的具体说明有可能混淆本发明的要旨时,会省略详细的说明。However, the embodiment of the present invention can be changed into other various forms, and the scope of the present invention is not limited to the examples described below. For a clearer description, the image and size of the elements in the drawings can be enlarged. For the quotation marks in the drawings and the same constituent elements, even if they are marked on different drawings, they should be labeled with the same quotation marks as much as possible. When describing the present invention, if it is considered that specific descriptions related to known functions or configurations may obscure the gist of the present invention, detailed descriptions will be omitted.
图1为根据本发明的一个实施例的包括通过点接触(point contact)串联连接的光电电池的光电模块示意图。图1和以下的附图中,虽然将下部电极分离槽P1、绝缘槽P2、贯通孔P3以及上部分离槽P4的形状显示在光电模块的上部表面,但这只是出于说明的便利,在上部表面有可能观察不到所述形状。1 is a schematic diagram of a photovoltaic module including photovoltaic cells connected in series by point contacts according to an embodiment of the present invention. In Fig. 1 and the following drawings, although the shapes of the lower electrode separation groove P1, the insulating groove P2, the through hole P3 and the upper separation groove P4 are shown on the upper surface of the photoelectric module, this is only for the convenience of illustration, and the upper part The shape may not be observed on the surface.
根据本发明一个实施例的光电模块包括,基板100、下部电极200、光电转换层300以及上部电极400。A photoelectric module according to an embodiment of the present invention includes a
在此,所述光电转换层300可以包括多个单元电池层。例如,所述光电转换层300可以包括层压的两个或三个单元电池层。所述层压的各个单元电池层是执行光电转换的基本单元层。Here, the
所述层压的单元电池层之间可以插入中间反射膜,以便加强内部反射,最大限度地提高光捕捉效果。例如,所述光电转换层300包括两个单元电池层310,330时,所述两个单元电池层之间可以插入中间反射膜320。所述中间反射膜320位于两个单元电池层之间,所以能包括透光性物质。所述透光性物质可以包括ZnO、ITO、SiO或SnO2中的至少一个。An intermediate reflective film may be inserted between the laminated unit cell layers to enhance internal reflection and maximize light capture. For example, when the
所述光电转换层300包括多个单元电池层的情况下,相互串联连接的各个光电电池UC1,UC2可以是多个单元电池310,330层压的形态。所述光电电池UC1,UC2的开路电压是所述所层压单元电池310,330的开路电压之和,所述单元电池UC1,UC2的短路电流为所述所层压单元电池的短路电流中的最小值。When the
如图1所示,为了防止各个光电电池的下部电极200之间的短路,下部电极分离槽P1是贯通下部电极200而形成。例如,所述下部电极分离槽P1可以沿着直线型的第一线220形成。As shown in FIG. 1 , in order to prevent a short circuit between the
贯通光电转换层300的贯通孔P3不是以直线形态,而是具有规定宽度的点状,在所述下部电极分离槽P1的一侧隔开形成多个。相邻的光电电池UC1以及UC2通过所述贯通孔P3串联连接。即,第一电池UC1的下部电极200和第二电池UC2的上部电极400通过点状的所述贯通孔P3相连,使第一电池UC1和第二电池UC2串联连接。The through-holes P3 penetrating the
这些事项可以在图2a的沿着图1光电模块的a-a′线的截面图中确认。如图2a所示,相邻的电池UC1,UC2通过所述相互隔开的贯通孔P3形成的部分串联连接起来。These matters can be confirmed in the sectional view of FIG. 2a along the line a-a' of the photovoltaic module of FIG. 1 . As shown in FIG. 2 a , adjacent batteries UC1 and UC2 are connected in series through the portions formed by the mutually spaced through holes P3 .
本说明书中例示的所述贯通孔P3是点状,但这只是例示,如果所述多个贯通孔P3相互隔开形成时,仍属于本发明范畴。例如,所述贯通孔P3可以是按一个方向延长的分段的直线形状。The through-holes P3 exemplified in this specification are dot-shaped, but this is just an example, and if the plurality of through-holes P3 are formed separately from each other, it still belongs to the scope of the present invention. For example, the through hole P3 may be a segmented linear shape extending in one direction.
如前所述,根据本发明实施例的光电模块可以包括,下部电极200、光电转换层300以及上部电极400、还可以包括相互串联连接的多个电池UC1,UC2。As mentioned above, the photoelectric module according to the embodiment of the present invention may include the
所述分离槽P4是贯通所述光电转换层300和所述上部电极400而形成,由此区分光电电池UC1,UC2。除了按规定的形状围绕住点状的贯通孔P3之外,所述上部分离槽P4按照与下部电极分离槽P1路径重叠的方式形成。例如,所述上部分离槽P4可以沿着第二线420形成。The separation groove P4 is formed through the
为了便于理解本发明,沿着图1的光电模块的b-b′线的截面图显示在图2b中。如图1所示,在所述上部分离槽P4经过所述下部电极分离槽P1之上的部分,所述上部分离槽P4延长至基板100的上面。相反,如图2b所示,在所述上部分离槽P4不经过所述下部电极分离槽P1之上的部分,所述上部分离槽P4只延长至所述下部电极200的上部表面。这是因为,虽然所述上部分离槽P4是贯通光电转换层300和上部电极400而形成,但是形成所述下部电极分离槽P1的部分,下部电极200已经被所述下部电极分离槽P1去除。In order to facilitate the understanding of the present invention, a cross-sectional view along line b-b' of the photovoltaic module of FIG. 1 is shown in FIG. 2b. As shown in FIG. 1 , the upper separation groove P4 extends to the upper surface of the
如上所述,下部电极分离槽P1形成的第一线220和上部分离槽P4形成的第二线420除了特定区域之外会重叠,所以根据本发明实施例的光电模块的无效区域会减少。另外,用于将光电模块内的单元电池串联起来的贯通孔P3以点接触的形态隔开规定的距离形成,所以能减少光电模块的无效区域。因此,面积不变的情况下,有效区域的面积会增加,可以取得电流值的相对上升。As described above, the first line 220 formed by the lower electrode separation groove P1 and the second line 420 formed by the upper separation groove P4 overlap except for a certain area, so the ineffective area of the photovoltaic module according to the embodiment of the present invention is reduced. In addition, the through-holes P3 for connecting the unit cells in the photovoltaic module in series are formed at predetermined distances in point contact, so that the ineffective area of the photovoltaic module can be reduced. Therefore, when the area remains the same, the area of the effective region increases, and a relative increase in the current value can be obtained.
另外,根据本发明的实施例,即使中间反射膜320为导电性物质,也可以防止通过中间反射膜320产生的漏电。这是因为中间反射膜320上形成了图1、图2a以及图2b上标注为P2的绝缘槽,使所述贯通孔P3与中间反射膜320之间绝缘而达到此目的。In addition, according to the embodiment of the present invention, even if the intermediate
从上部电极400一侧观察所述光电模块时,所述绝缘槽P2的截面宽度大于所述贯通孔P3的截面宽度,所述贯通孔P3通过所述绝缘槽P2的内部。因此,通过所述绝缘槽P2可以防止所述贯通孔P3与所述中间反射膜320接触。由此,可以预防上部电极400的物质通过所述贯通孔P3接触到所述中间反射膜320而产生的漏电。When viewing the photoelectric module from the side of the
下面参照图3a至图3i详细说明根据本发明一个实施例的包括通过点接触串联连接的光电电池的光电模块的制造过程。图3a至图3i表示三个光电电池,但是本发明的光电模块可以包括更多数量的电池。The manufacturing process of a photovoltaic module including photovoltaic cells connected in series through point contacts according to an embodiment of the present invention will be described in detail below with reference to FIGS. 3 a to 3 i. Figures 3a to 3i represent three photovoltaic cells, but the photovoltaic module of the invention may comprise a greater number of cells.
如图3a所示,准备基板100。所述基板100可以是绝缘性透明基板。根据本发明实施例的光电模块通过从上部电极400一侧照射的光进行光电转换时,所述基板100可以是不透明的绝缘性基板。另外,所述基板100可以是柔性基板。As shown in FIG. 3a, a
如图3b所示,所述基板100上形成有所述下部电极200。所述下部电极200可以是包括氧化锡(SnO2)、氧化锌(ZnO)或氧化铟锡(ITO)等的透明电极。根据本发明实施例的光电模块通过从上部电极400一侧照射的光进行光电转换时,所述下部电极200可以是不透明的电极。As shown in FIG. 3 b , the
如图3c所示,激光在大气中照射到下部电极200一侧或基板100一侧,对下部电极200进行划线(scribe)。由此,例如贯通下部电极200的下部电极分离槽P1沿着直线型的第一线220形成。即,下部电极200之间通过下部电极分离槽P1被隔开,所以能防止下部电极200之间的短路。As shown in FIG. 3 c , the laser is irradiated in the air to the side of the
如图3d所示,所述下部电极200上形成第一单元电池层310以及中间反射膜320。此时,所述第一单元电池层310以及所述中间反射膜320可以形成在下部电极分离槽P1之内。As shown in FIG. 3 d , a first
所述第一单元电池层310和后续要形成的所述中间反射膜320上的第二单元电池层330可以包括,将照射的光能转换成电能的任何物质。例如,所述第一和第二单元电池层310,330可以包括,可以形成非晶硅类、化合物类、有机物类以及染料敏化太阳能电池等薄膜光电模块的光电转换物质。The first
所述中间反射膜320在所述第一单元电池层和后续要形成的第二单元电池层中,将一部分通过光首先照射到的单元电池层的光反射到所述光首先照射到的单元电池层,一部分则会通过剩下的单元电池层。由此,光首先照射到的单元电池层吸收的光量增加,所述单元电池层上发生的电流会增加。In the first unit cell layer and the second unit cell layer to be formed later, the
如图3e所示,贯通所述中间反射膜320和所述第一单元电池层310的绝缘槽P2可以相互隔开形成。根据本发明的实施例,所述绝缘槽P2可以通过中间反射膜320形成。通过这样的绝缘槽P2可以防止后续要形成的贯通孔P3与所述中间反射膜320接触。As shown in FIG. 3 e , the insulating grooves P2 penetrating through the
如图3f所示,所述中间反射膜320上形成第二单元电池层330。此时,所述绝缘槽P2内可以填充所述第二单元电池层330物质。As shown in FIG. 3 f , a second
此时,所述第一和第二单元电池层中距离光照射较近的单元电池层的光学能隙可以大于剩下的单元电池层的光学能隙。例如,光通过基板100照射时,第一单元电池层的光学能隙大于第二单元电池层的光学能隙。这是因为,能量密度高的短波长的光透射距离短,光学能隙越大的物质,越能吸收短波长的光。At this time, the optical energy gap of the unit cell layer closer to light irradiation among the first and second unit cell layers may be larger than the optical energy gap of the remaining unit cell layers. For example, when light is irradiated through the
所述第一单元电池层和所述第二单元电池层包括非晶硅类光电转换物质时,根据本发明的其它实施例,所述绝缘槽P2可以贯通所述中间反射膜之外的其它层而形成。When the first unit cell layer and the second unit cell layer include an amorphous silicon-based photoelectric conversion material, according to other embodiments of the present invention, the insulating groove P2 may penetrate through other layers other than the intermediate reflection film And formed.
即,所述第一单元电池层和所述第二单元电池层分别包括,按下面的顺序层压的p型半导体层、纯半导体层以及n型半导体层。根据实施例,所述第一和第二单元电池层可以包括,分别按下面的顺序依次层压的n型半导体层、纯半导体层以及p型半导体层。That is, the first unit cell layer and the second unit cell layer respectively include a p-type semiconductor layer, a pure semiconductor layer, and an n-type semiconductor layer laminated in the following order. According to an embodiment, the first and second unit cell layers may include an n-type semiconductor layer, a pure semiconductor layer, and a p-type semiconductor layer respectively sequentially laminated in the following order.
此时,所述绝缘槽P2除了所述中间反射膜320之外,还可以贯通与所述中间反射膜相接的p型半导体层形成。所述单元电池层上依次层压p型半导体层、纯半导体层以及n型半导体层时,所述绝缘槽P2按照可以贯通中间反射膜320以及第二单元电池层的p型半导体层的方式形成。此时,根据实施例所述绝缘槽P2还可以贯通第一单元电池层310。In this case, the insulating groove P2 may be formed through the p-type semiconductor layer in contact with the intermediate reflection film in addition to the
所述单元电池层上依次层压n型半导体层、纯半导体层以及p型半导体层时,所述绝缘槽P2按照可以贯通第一单元电池层的p型半导体层以及中间反射膜320的方式形成。此时,根据实施例所述绝缘槽P2还可以贯通第一单元电池层的n型半导体层以及纯半导体层。When an n-type semiconductor layer, a pure semiconductor layer and a p-type semiconductor layer are sequentially laminated on the unit cell layer, the insulating groove P2 is formed in a manner that can penetrate the p-type semiconductor layer of the first unit cell layer and the
这是因为通常p型半导体层的导电率高,所述p型半导体层通过贯通孔P3接触到上部电极400时,也有可能发生漏电。因此,如上所述,形成绝缘槽P2时,同时贯通与所述中间反射膜320相接的p型半导体层,因此可以防止漏电的发生。This is because generally the conductivity of the p-type semiconductor layer is high, and when the p-type semiconductor layer is in contact with the
以上说明了包括两个单元电池层310,330以及该电池层之间形成的中间反射膜320的光电转换层300。但是,根据本发明的实施例,三个以上的单元电池层可以包括在光电转换层300内。另外,根据本发明的实施例,所述光电转换层300可以包括两个以上的中间反射膜。此时,绝缘槽按照可以同时贯通两个中间反射膜的方式形成。The
所述光电转换层300的单元电池层通常在真空状态下形成,形成下部电极分离槽P1、绝缘槽P2、贯通孔P3以及上部分离槽P4的激光图案是在大气中完成。因此,为了进行图3g相关的下面要说明的贯通孔P3的形成为目的的激光划线时,所述光电转换层300需要暴露在大气中。这样所述光电转换层300暴露在大气中的过程中,所述光电转换层300会产生氧化而导致光电转换层300的变质,最终会降低所制造的光电模块的效率。The unit cell layer of the
因此,制造根据本发明的其它实施例的光电模块时,还可以包括在真空状态下形成所述光电转换层300,在大气中形成贯通孔P3之前,在真空状态下在所述光电转换层上形成透明导电膜的步骤。这样,在真空状态下在所述光电转换层上形成所述透明导电膜,因此可以防止所述光电转换层300暴露在大气中而发生变质。例如,所述光电转换层300由于所述透明导电膜形成在上面,在大气中进行激光划线时会防止其氧化。Therefore, when manufacturing the photoelectric module according to other embodiments of the present invention, it may also include forming the
如前所述,所述透明导电膜不仅具有所述光电转换层300的保护作用,还可以在所述光电转换层300和所述上部电极400之间最大限度地提高光捕捉效果(light trapping effect)。即,所述透明导电膜将所述光电转换层300上无法用于光电转换的光进行反射,在所述光电转换层300上重新使用起来,因此可以提高光的利用效率。所述透明导电膜可以包括,例如氧化锌(ZnO)或氧化铟锡(ITO)等物质。As mentioned above, the transparent conductive film not only has the protective function of the
虽然在下面的记载中贯通孔P3只贯通了光电转换层300,但是根据实施例,所述贯通孔P3可以按照贯通光电转换层300和光电转换层300上形成的透明导电膜的方式形成。另外,记载中上部分离槽P4也贯通光电转换层300和上部电极400形成,但是根据实施例,上部分离槽P4可以按照贯通光电转换层300、透明导电膜以及上部电极400的方式形成。Although the through hole P3 only penetrates the
如图3g所示,激光在大气中照射到基板100一侧或光电转换层300一侧对光电转换层300进行划线。由此,形成贯通光电转换层300的多个相互隔开的贯通孔P3。此时,所述贯通孔P3不会沿着连续的直线型线条形成。所述贯通孔P3作为具有规定宽度的点状,可以在所述下部电极分离槽P1的一侧相互隔开形成多个。通过这样形成的贯通孔P3,光电模块内的电池之间串联连接起来。As shown in FIG. 3 g , the laser is irradiated in the atmosphere to the side of the
此时,为了让所述贯通孔P3完全插入到所述绝缘槽P2通过,所述贯通孔P3截面的宽度小于所述绝缘槽P2截面的宽度。这样,所述贯通孔P3通过所述绝缘槽P2可以与所述中间反射膜320以及/或与所述中间反射膜320相接的p型半导体层绝缘。At this time, in order to allow the through hole P3 to be completely inserted into the insulating slot P2, the width of the section of the through hole P3 is smaller than the width of the section of the insulating slot P2. In this way, the through hole P3 can be insulated from the
如图3h所示,形成覆盖所述光电转换层300以及所述贯通孔P3的上部电极400。所述上部电极400可以包括光反射特性优异,可作为电极使用的导电性物质。例如,形成所述上部电极400的导电性物质可以包括,铝(Al)、银(Ag)、金(Au)、铜(cu)、锌(Zn)、镍(Ni)、铂金(Pt)、钯金(Pd)或铬(Cr)等。形成所述上部电极400的导电性物质填充到所述贯通孔P3内,使相邻的电池中第一电池的下部电极200和其它第二电池的上部电极400进行电连接。As shown in FIG. 3 h , an
另外,根据本发明实施例的光电模块通过从上部电极400一侧照射的光进行光电转换时,所述上部电极400可以由透明导电性物质形成。此时,所述下部电极200可以包括,光反射特性好,可以作为电极使用的导电性物质。In addition, when the photoelectric module according to the embodiment of the present invention performs photoelectric conversion by light irradiated from the
如图3i所示,激光在大气中照射,对光电转换层300和上部电极400进行划线。由此,贯通所述光电转换层300以及所述上部电极400的上部分离槽P4可以沿着第二线420形成。除了围绕住点状的所述贯通孔P3之外,所述第二线420与下部电极分离槽P2形成的第一线220的路径相同。即,除了围绕住所述贯通孔P3部分之外,所述上部分离槽P4会经过所述下部电极分离槽P1之上。通过所述上部分离槽P4定义单元电池UC1,UC2。As shown in FIG. 3i , laser light is irradiated in the atmosphere to scribe the
根据本发明的其它实施例,在真空状态下形成所述上部电极,在大气中通过激光划线形成上部分离槽P4的过程,可以被在非真空状态下印刷形成有图案的上部电极的方式取代。例如,以第二线420的形状图案化的上部电极可以在非真空状态下,通过激光印刷、喷墨印刷以及丝网印刷等印刷方法,形成在所述光电转换层300之上。这样,在非真空的大气中形成图案化的上部电极,因此可以节省制造成本。According to other embodiments of the present invention, the process of forming the upper electrode in a vacuum state and forming the upper separation groove P4 by laser scribing in the atmosphere can be replaced by printing the upper electrode with a pattern in a non-vacuum state . For example, the upper electrodes patterned in the shape of the second lines 420 may be formed on the
前面所述的根据本发明一个实施例的光电模块的制造过程中,例示了下部电极分离槽P1沿着第一线220形成,上部分离槽P4沿着第二线420形成的情形。但是,下部电极分离槽P1沿着第二线420形成,上部分离槽P4沿着第一线220形成也可以。In the manufacturing process of the photoelectric module according to an embodiment of the present invention, the case where the lower electrode separation groove P1 is formed along the first line 220 and the upper separation groove P4 is formed along the second line 420 is illustrated. However, the lower electrode separation groove P1 may be formed along the second line 420 and the upper separation groove P4 may be formed along the first line 220 .
此时,相对于所述第一线的长度的所述上部分离槽和所述下部电极分离槽重叠部分的长度之比可以为0.70~0.96。所述比率小于0.70时,无效区域增加,无法取得足够的电流上升的效果,制造时间也会延长。所述比率大于0.96时,电子的移动路径延长,阻抗和焦耳热增加,导致光电模块的填充因子(fill factor)减少。At this time, a ratio of a length of an overlapping portion of the upper separation groove and the lower electrode separation groove with respect to the length of the first line may be 0.70˜0.96. When the above-mentioned ratio is less than 0.70, the ineffective area increases, the effect of a sufficient current increase cannot be obtained, and the manufacturing time is prolonged. When the ratio is greater than 0.96, the moving path of electrons is prolonged, and impedance and Joule heating are increased, resulting in a decrease in the fill factor of the photovoltaic module.
另外,根据图1和前面所述的本发明一个实施例的光电模块的制造过程中,下部电极分离槽P1的宽度大于上部分离槽P4的宽度,但这只是例示,下部电极分离槽P1的宽度可以小于或等于上部分离槽P4的宽度。In addition, according to FIG. 1 and the manufacturing process of the photovoltaic module according to an embodiment of the present invention described above, the width of the lower electrode separation groove P1 is greater than the width of the upper separation groove P4, but this is only an example. The width of the lower electrode separation groove P1 It may be less than or equal to the width of the upper separation groove P4.
根据前面所述的本发明实施例的光电模块的制造过程中,下部电极分离槽P1、绝缘槽P2、贯通孔P3以及上部分离槽P4中的至少一个可以通过激光划线形成。执行这样的激光划线的激光加工机(未图示)可以具备均化器(homogenizer),以便激光振荡器发出的激光光束的强度均匀分布在照射区域。这种均化器可以是球面透镜的组合或利用全反射特性的光纤维电缆等组成。During the manufacturing process of the photoelectric module according to the aforementioned embodiments of the present invention, at least one of the lower electrode separation groove P1 , the insulation groove P2 , the through hole P3 and the upper separation groove P4 may be formed by laser scribing. A laser processing machine (not shown) that performs such laser scribing may be provided with a homogenizer so that the intensity of the laser beam emitted by the laser oscillator is uniformly distributed in the irradiation area. This homogenizer can be composed of a combination of spherical lenses or an optical fiber cable utilizing total reflection characteristics.
如图4a和图4b所示,从激光振荡器发出的具有高斯强度分布的激光光束通过均化器时,会成为具有均匀强度分布的激光光束。另外,参照图4a和图4b时可以发现,利用具有高斯强度分布(图4a)的激光光束制作的图案面,与利用通过均化器具有均匀强度分布(图4b)的激光光束制作的图案面相比非常不规则。As shown in Figure 4a and Figure 4b, when the laser beam with Gaussian intensity distribution emitted from the laser oscillator passes through the homogenizer, it will become a laser beam with uniform intensity distribution. In addition, when referring to Figures 4a and 4b, it can be found that the patterned surface produced by a laser beam with a Gaussian intensity distribution (Figure 4a) is comparable to the patterned surface produced by a laser beam with a uniform intensity distribution through a homogenizer (Figure 4b). Very irregular.
即,激光光束的强度分布均匀时,激光光束照射而形成的分离槽的图案面实质上会均匀。由此,可以最大限度地降低下部电极分离槽、绝缘槽、贯通孔以及/或上部分离槽P1,P2,P3,P4侧壁上毛刺(burr)的发生,可以制作改善效率的集成型薄膜光电模块。另外,这样利用通过均化器的激光光束,能够防止为体现所需的绝缘特性而增加激光能所导致周边光电转换层和电极特性发生变化。That is, when the intensity distribution of the laser beam is uniform, the pattern surface of the separation groove formed by laser beam irradiation becomes substantially uniform. Thus, the occurrence of burrs (burr) on the sidewalls of the lower electrode separation grooves, insulating grooves, through-holes and/or upper separation grooves P1, P2, P3, and P4 can be minimized, and integrated thin-film photovoltaics with improved efficiency can be produced. module. In addition, by using the laser beam passing through the homogenizer in this way, it is possible to prevent changes in the peripheral photoelectric conversion layer and electrode characteristics caused by increasing the laser energy to express the desired insulation characteristics.
另外,所述激光加工机可以包括形成有规定图案的掩模,以便使通过均化器的激光光束有选择地透射。因此,只将具有所需程度均匀强度分布的激光光束区域,用于分离槽、绝缘槽或贯通孔的形成。In addition, the laser processing machine may include a mask formed with a prescribed pattern so as to selectively transmit the laser beam passing through the homogenizer. Therefore, only a laser beam area having a desired degree of uniform intensity distribution is used for the formation of separation grooves, insulating grooves, or through-holes.
图4c显示根据本发明的实施例形成的分离槽、绝缘槽或贯通孔图案的截面。此时,相对于图案宽度W的图案底面的段差h之比优选的是5%~10%。相对于所述图案宽度W的段差h之比大于10%时,无法充分去除图案的边缘,可能发生漏电(leak)。相对于所述图案宽度W的段差h之比小于5%时,会施加过多的激光能量,周围的光电转换层和电极特性可能会发生变化。Fig. 4c shows a cross-section of a separation trench, isolation trench or via pattern formed according to an embodiment of the present invention. In this case, the ratio of the step h of the pattern bottom surface to the pattern width W is preferably 5% to 10%. When the ratio of the step h to the pattern width W exceeds 10%, the edge of the pattern cannot be sufficiently removed, and leakage may occur. When the ratio of the step h to the pattern width W is less than 5%, too much laser energy is applied, and the surrounding photoelectric conversion layer and electrode characteristics may change.
根据本发明的一个实施例的包括通过点接触串联连接的光电电池的光电模块中,形成适当数量的贯通孔P3非常重要。如果贯通孔P3的数量太多,则会与直线型激光划线一样,无效区域增加,无法取得足够的电流上升的效果。另外,通过激光划线形成的上部分离槽P4按照围绕住所述贯通孔P3的方式形成,所以会延长制造时间。如果所述贯通孔P3的数量太少,则电子需要移动的路径延长,导致阻抗和焦耳(joule)热变大,填充因子(fill factor)会减少。因此,有必要优化两个相邻的单元电池之间形成的多个贯通孔P3之间的距离和所述贯通孔P3数量。In a photovoltaic module including photovoltaic cells connected in series through point contacts according to an embodiment of the present invention, it is very important to form an appropriate number of through-holes P3. If the number of the through-holes P3 is too large, the ineffective area will increase as in the linear laser scribing, and a sufficient effect of current rise cannot be obtained. In addition, since the upper separation groove P4 formed by laser scribing is formed so as to surround the through hole P3, the manufacturing time is prolonged. If the number of the through-holes P3 is too small, the path for electrons to move will be extended, resulting in increased impedance and joule heat, and a decrease in fill factor. Therefore, it is necessary to optimize the distance between the plurality of through holes P3 formed between two adjacent unit cells and the number of the through holes P3.
图5为图1的虚线四角形部分(A)的放大图。d表示两个相邻贯通孔P3之间的距离。x表示第一线220和贯通孔P3之间的距离。P3h表示从贯通孔P3落到第一线220的垂足。J14表示下部电极分离槽P1和上部分离槽P4的分叉点。r表示所述P3h和J14之间的距离。FIG. 5 is an enlarged view of a quadrangular portion (A) in dotted line in FIG. 1 . d represents the distance between two adjacent through-holes P3. x represents the distance between the first line 220 and the through hole P3. P3h represents a vertical foot falling from the through hole P3 to the first line 220 . J14 represents a branch point of the lower electrode separation groove P1 and the upper separation groove P4. r represents the distance between the P3h and J14.
如图5所示,除了围绕所述贯通孔P3的区域之外,第二线420与第一线220重叠。即,所述第二线420从所述垂足P3h距第一线220上的规定距离r的地点J14开始从第一线220分岔出来并围绕住所述贯通孔P3,且回归到从垂足P3h距所述第一线220上的规定距离r的另一个地点。As shown in FIG. 5 , the second line 420 overlaps the first line 220 except for the area surrounding the through hole P3 . That is, the second line 420 diverges from the first line 220 at a point J14 at a predetermined distance r from the vertical foot P3h to the first line 220, surrounds the through hole P3, and returns to the point J14 from the vertical foot P3h. Another location at a specified distance r from the first line 220 .
此时,所述贯通孔P3可以位于所述第二线420距离所述第一线220最远的最外围地点P4p和所述垂足P3h的中间,所述垂足P3h和所述第二线420距离所述第一线220最远的最外围地点P4p的距离可以用2x表示。At this time, the through hole P3 may be located between the outermost point P4p of the second line 420 farthest from the first line 220 and the vertical foot P3h, and the vertical foot P3h is at a distance from the second line 420 The distance of the furthest peripheral point P4p of the first line 220 can be represented by 2x.
根据本发明实施例的光电模块中,所述距离2x可以为300μm~400μm。将所述距离2x维持在所述范围之内,不仅可以防止所述下部电极分离槽P1和上部分离槽P4之间绝缘槽P2和贯通孔P3的短路,还可以防止无效区域无为增加。In the photoelectric module according to the embodiment of the present invention, the distance 2x may be 300 μm˜400 μm. Keeping the distance 2x within the above range not only prevents the short circuit between the insulating groove P2 and the through hole P3 between the lower electrode separation groove P1 and the upper separation groove P4, but also prevents unnecessary increase of the invalid area.
根据本发明实施例的光电模块中,所述贯通孔P3之间的距离d优选的是1mm~5cm。此时,相对于所述贯通孔P3之间的距离d的、所述距离2x,即所述垂足P3h和所述第二线420距离所述第一线220最远的最外围地点P4p的距离之比可以为6x10-3~400x10-3。所述距离d小于1mm时,无效区域会增加,无法获得足够的电流上升效果,制造时间会延长。所述距离d大于5cm时,电子移动到下部电极的路径会增加,导致阻抗和焦耳热变大,光电模块的填充因子(fill factor)会减少。In the photoelectric module according to the embodiment of the present invention, the distance d between the through holes P3 is preferably 1 mm˜5 cm. At this time, the distance 2x relative to the distance d between the through holes P3 is the distance between the vertical foot P3h and the outermost point P4p of the second line 420 farthest from the first line 220 The ratio can be 6x10 -3 to 400x10 -3 . When the distance d is less than 1 mm, the ineffective area will increase, the current rising effect cannot be obtained sufficiently, and the manufacturing time will be prolonged. When the distance d is greater than 5 cm, the path for electrons to move to the lower electrode will increase, resulting in increased impedance and Joule heat, and a decrease in the fill factor of the photoelectric module.
根据本发明实施例的光电模块的单元电池UC1,UC2具有6mm~15mm的宽度。所述电池的宽度小于6mm时,无效区域会增加,每个模块中发生的开路电压(Voc)值变大,安装成本会增加。所述电池宽度大于15mm时,阻抗变大,效率降低。The unit cells UC1 and UC2 of the photovoltaic module according to the embodiment of the present invention have a width of 6 mm˜15 mm. When the width of the battery is less than 6mm, the ineffective area increases, the value of open circuit voltage (Voc) generated in each module becomes large, and the installation cost increases. When the battery width is greater than 15 mm, the impedance becomes larger and the efficiency decreases.
模块中为了进行边缘隔离(edge isolation)去除半导体和导体后剩下的,执行光电转换的区域称之为有效区域时,根据本发明实施例的光电模块中,相对于有效区域的通过激光划线形成的无效区域之比大约为0.015%~2.7%。In order to perform edge isolation (edge isolation) in the module, what remains after removing semiconductors and conductors, and when the region performing photoelectric conversion is called an effective region, in the photoelectric module according to an embodiment of the present invention, relative to the effective region by laser scribing The ratio of the formed invalid area is about 0.015% to 2.7%.
根据本发明实施例的光电模块中,所述第二线420围绕住所述贯通孔P3的形状取决于电子从所述贯通孔P3到所述第二线420的最短距离。从所述贯通孔P3到围绕住贯通孔的上部分离槽P4为止的移动距离短,才可以最大限度地减少焦耳热的产生。另外,所述形状应保证距贯通孔P3的距离均等,可以最大限度减少无效区域。例如,围绕住所述贯通孔P3的所述上部分离槽P4可以具有部分圆形的形态。例如,所述第二线420可以以部分圆形的形态围绕住所述贯通孔P3。In the photoelectric module according to the embodiment of the present invention, the shape of the second wire 420 surrounding the through hole P3 depends on the shortest distance of electrons from the through hole P3 to the second wire 420 . Only when the movement distance from the through hole P3 to the upper separation groove P4 surrounding the through hole is short can the generation of Joule heat be minimized. In addition, the shape should ensure that the distance from the through hole P3 is equal, so that the invalid area can be minimized. For example, the upper separation groove P4 surrounding the through hole P3 may have a partially circular shape. For example, the second line 420 may surround the through hole P3 in a partially circular shape.
图5中显示,绝缘槽P2被所述贯通孔P3贯通,被上部分离槽P4围绕住。但这只是一个例子,如图6a所示,从所述光电模块的上部电极一假观察所述绝缘槽P2时,可以按照上部分离槽P4横穿所述绝缘槽P2的方式形成。图7a为沿着所述图6a的c-c′线的截面图。此时,所述绝缘槽P2的宽度足够大,以便所述贯通孔P3和所述上部分离槽P4形成在所述绝缘槽P2内。As shown in FIG. 5 , the insulating groove P2 is penetrated by the through hole P3 and surrounded by the upper separation groove P4 . But this is just an example. As shown in FIG. 6a, when the insulating groove P2 is viewed from the upper electrode of the photoelectric module, the upper separation groove P4 can be formed in such a way that it traverses the insulating groove P2. Fig. 7a is a cross-sectional view along line c-c' of Fig. 6a. At this time, the width of the insulating groove P2 is large enough so that the through hole P3 and the upper separation groove P4 are formed in the insulating groove P2.
为了使所述贯通孔P3与导电性的中间反射膜320以及/或与所述中间反射膜相接的p型半导体层绝缘,所述贯通孔P3完全插入到所述绝缘槽P2内时,所述绝缘槽P2形成的宽度或形状可以有多种变形。但是,所述绝缘槽P2的宽度不必要的变宽时,光电模块的效率会降低。In order to insulate the through hole P3 from the conductive
所述绝缘槽P2可以是多角形、圆形或椭圆形。最好按照与所述贯通孔P3的形状匹配的方式确定所述绝缘槽P2的形状,由此可以维持适当的绝缘性的同时,还可以防止电流收集效率的不必要的降低。例如,所述贯通孔P3为圆形或正多边形时,所述绝缘槽P2的形状优选的也是圆形或正多边形,其中心与所述贯通孔P3的中心一致。这种绝缘槽P2的形状可以通过所述激光加工机包括形成有规定图案的掩模,以便通过所述均化器的激光光束可以有选择地透射来实现。The insulating groove P2 may be polygonal, circular or elliptical. It is preferable to determine the shape of the insulating groove P2 so as to match the shape of the through hole P3, thereby maintaining proper insulation and preventing unnecessary reduction in current collection efficiency. For example, when the through hole P3 is circular or regular polygonal, the shape of the insulating groove P2 is also circular or regular polygonal, and its center coincides with the center of the through hole P3. Such a shape of the insulating groove P2 can be achieved by the laser processing machine including a mask formed with a prescribed pattern so that the laser beam passing through the homogenizer can be selectively transmitted.
图6b为根据本发明另一个实施例的图1虚线四角形部分(A)的放大图。尤其,图示了防止所述贯通孔P3内填充的上部电极400物质和中间反射膜可能接触而发生的漏电为目的的绝缘槽P2的另一个实施例。即,所述上部分离槽P4和下部电极分离槽P1分岔,围绕住所述贯通孔P3的区域内,所述绝缘槽P2按照与所述上部分离槽P4形成封闭环路的方式形成。此时,所述贯通孔P3可以位于所述绝缘槽P2和所述上部分离槽P4形成的封闭环路内部。此时,所述绝缘槽P2还可以按照形成围绕住所述贯通孔P3的封闭环路的方式形成。即,所述绝缘槽P2可以与所述上部分离槽P4一起形成封闭环路,但是也可以由所述绝缘槽P2单独形成围绕住所述贯通孔P3的封闭环路。Fig. 6b is an enlarged view of the quadrangular portion (A) shown in dotted line in Fig. 1 according to another embodiment of the present invention. In particular, another embodiment of the insulating groove P2 for preventing leakage due to possible contact between the material of the
所述贯通孔P3与位于所述封闭环路内部的导电性的中间反射膜320以及/或与所述中间反射膜相接的p型半导体层相接。但是,通过形成所述封闭环路的所述绝缘槽P2以及所述上部分离槽P4,与所述中间反射膜320以及/或与所述中间反射膜相接的p型半导体层与相邻电池的中间反射膜绝缘,所以能防止漏电。The through hole P3 is in contact with the conductive
图7b为沿着图6b的d-d′线的截面图。此时,可以发现,与所述贯通孔P3相接的中间反射膜320通过绝缘槽P2以及上部分离槽P4,与相邻电池的中间反射膜绝缘。Fig. 7b is a cross-sectional view along line d-d' of Fig. 6b. At this time, it can be found that the intermediate
本说明书中,所述贯通孔P3位于封闭环路内部时,并不排除所述贯通孔P3与所述绝缘槽P2重叠的情形。即,所述绝缘槽P2可以比图6b所示的更大,与所述贯通孔P3的部分或全部重叠。但是,所述贯通孔P3此时也要与所述上部分离槽P4绝缘。In this specification, when the through hole P3 is located inside the closed loop, the situation that the through hole P3 overlaps with the insulating groove P2 is not excluded. That is, the insulating groove P2 may be larger than that shown in FIG. 6 b , and partially or completely overlap the through hole P3 . However, the through hole P3 is also insulated from the upper separation groove P4 at this time.
另外,只要所述上部分离槽P4和所述绝缘槽P2能形成围绕住所述贯通孔P3的封闭环路,所述绝缘槽P2可以是任何长度或任何形状。例如,所述绝缘槽P2可以是与所述上部分离槽P4接触的两个终端延长的形态。所述绝缘槽P2与下部电极分离槽P1一样,也可以沿着第一线220形成。In addition, as long as the upper separation groove P4 and the insulating groove P2 can form a closed loop around the through hole P3, the insulating groove P2 can be of any length or shape. For example, the insulating groove P2 may be in a form in which two terminals in contact with the upper separating groove P4 are extended. The insulation groove P2 may also be formed along the first line 220 like the lower electrode separation groove P1.
根据本发明的其它实施例,上部分离槽P4沿着直线形态的第一线220形成,下部电极分离槽P1沿着第二线420形成时,所述绝缘槽P2按照和所述上部分离槽P3形成封闭环路的方式形成,可以防止漏电。此时,所述贯通孔P3位于通过所述绝缘槽P2和所述上部分离槽P4形成的封闭环路内部。According to other embodiments of the present invention, the upper separation groove P4 is formed along the linear first line 220, and when the lower electrode separation groove P1 is formed along the second line 420, the insulation groove P2 is formed in the same manner as the upper separation groove P3. The closed loop is formed to prevent leakage. At this time, the through hole P3 is located inside the closed loop formed by the insulating groove P2 and the upper separation groove P4.
图8a至图8c显示,根据本发明实施例的光电模块中,所述上部分离槽P4围绕住所述贯通孔P3的形状的另一个例子。8a to 8c show another example of the shape of the upper separation groove P4 surrounding the through hole P3 in the photoelectric module according to the embodiment of the present invention.
图8a显示,第二线420在分叉点J14上从第一线220分岔,沿着椭圆的一部分围绕住贯通孔P3的形状。此时,所述贯通孔P3可以位于垂足P3h和所述第二线420的最外围地点P4p的中间。第二线420沿着椭圆或圆形的一部分围绕住贯通孔P3时,从所述贯通孔P3到所述第二线420的距离有所均匀,可以减少无效区域。FIG. 8 a shows that the second line 420 diverges from the first line 220 at the bifurcation point J14 , and surrounds the shape of the through hole P3 along a part of the ellipse. At this time, the through hole P3 may be located between the vertical foot P3h and the outermost point P4p of the second line 420 . When the second line 420 surrounds the through hole P3 along a part of the ellipse or circle, the distance from the through hole P3 to the second line 420 is uniform, which can reduce the invalid area.
图8b和图8c显示,所述第二线420围绕住所述贯通孔P3的部分五角形或三角形的形状。所述第二线420以这种形状围绕住所述贯通孔P3时,也可以减少无效区域,从所述贯通孔P3到所述第二线420的距离也有所均匀。8b and 8c show that the second line 420 surrounds a part of the through hole P3 in a pentagonal or triangular shape. When the second line 420 surrounds the through hole P3 in this shape, the ineffective area can also be reduced, and the distance from the through hole P3 to the second line 420 is also uniform.
但是,图示的形状只是例示,根据本发明实施例的光电模块中,所述特定形状可以是包括五角形或三角形的多角形的一部分。此时,所述多角形的所有内角均小于180°,才可以有效地减少无效区域。另外,所述多角形优选的是相对于连接所述垂足P3h、所述贯通孔P3以及所述最外围地点P4p的直线对称。另外,所述多角形的所有内角优选的是大于90°,因为所述多角形的内角为锐角时,激光光束集中到相同的顶点,形成过度的图案形成或通过产生的热量光电转换层和电极层可能受损。However, the illustrated shape is only an example, and in the photovoltaic module according to the embodiment of the present invention, the specific shape may be a part of a polygon including a pentagon or a triangle. In this case, all internal angles of the polygon are smaller than 180°, so that the invalid area can be effectively reduced. In addition, the polygon is preferably symmetrical with respect to a straight line connecting the vertical foot P3h, the through hole P3, and the outermost peripheral point P4p. In addition, all internal angles of the polygon are preferably larger than 90°, because when the internal angles of the polygon are acute angles, the laser beams are concentrated to the same vertex, forming excessive pattern formation or by heat generated by the photoelectric conversion layer and electrode layer may be damaged.
但是,所述第一线220和所述第二线420在所述分叉点J14形成的角θ可以具有90°~135°的值。例如,所述形状为圆形或椭圆的一部分时,所述圆形或椭圆在所述分叉点J14上的切线和所述第一线220所形成的角度为90°~135°。所述形状为前面所述的多角形时,所述分叉点J14上所述多角形的外角可以为90°~135°。所述角θ小于90°时,所述第二线420和所述贯通孔P3之间的距离变长,无法有效减少无效区域。另外,所述角θ大于135°时,围绕住所述贯通孔P3的所述第二线420的宽度会变大,减少无效区域的效果会降低。However, an angle θ formed by the first line 220 and the second line 420 at the bifurcation point J14 may have a value of 90°˜135°. For example, when the shape is a part of a circle or an ellipse, the angle formed by the tangent of the circle or ellipse on the bifurcation point J14 and the first line 220 is 90°˜135°. When the shape is the aforementioned polygon, the outer angle of the polygon at the bifurcation point J14 may be 90°-135°. When the angle θ is smaller than 90°, the distance between the second line 420 and the through hole P3 becomes longer, and the ineffective area cannot be effectively reduced. In addition, when the angle θ is greater than 135°, the width of the second line 420 surrounding the through hole P3 will become larger, and the effect of reducing the invalid area will be reduced.
另外,根据围绕住所述贯通孔P3的形状,所述贯通孔P3的点状也可以具有圆形或椭圆形或多角形形状。这种贯通孔P3的形状可以通过,所述激光加工机上包括形成有规定图案的掩模,以便通过所述均化器的激光光束可以有选择地透射来实现。这样使所述贯通孔P3的形状与围绕住所述贯通孔P3的形状匹配,可以缩短电子从所述贯通孔P3通过下部电极到达围绕住所述贯通孔P3的第二线420的距离,也使距离均匀。In addition, depending on the shape surrounding the through-hole P3, the dot shape of the through-hole P3 may also have a circular, elliptical, or polygonal shape. The shape of the through hole P3 can be realized by including a mask formed with a predetermined pattern on the laser processing machine so that the laser beam passing through the homogenizer can be selectively transmitted. In this way, the shape of the through hole P3 is matched with the shape surrounding the through hole P3, which can shorten the distance for electrons to pass through the lower electrode from the through hole P3 to the second line 420 surrounding the through hole P3, and also make the distance uniform. .
以上,参照附图对本发明的实施例进行了说明,但是本发明所属技术领域的技术人员可以理解在无需变更其技术思想或必要特征的情况下,通过其它的具体实施方式实施。因此,本发明的上述实施例在所有方面都只是例示性的,而不仅限于此。The embodiments of the present invention have been described above with reference to the drawings, but those skilled in the art to which the present invention pertains can understand that other specific embodiments can be implemented without changing the technical idea or essential features. Therefore, the above-described embodiments of the present invention are illustrative in all aspects and not limited thereto.
Claims (27)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0016990 | 2011-02-25 | ||
KR1020110016990A KR101203452B1 (en) | 2011-02-25 | 2011-02-25 | Tandem Type Integrated Photovoltaic Module and Manufacturing Method Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102651362A true CN102651362A (en) | 2012-08-29 |
CN102651362B CN102651362B (en) | 2015-01-21 |
Family
ID=46693328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110311254.1A Expired - Fee Related CN102651362B (en) | 2011-02-25 | 2011-10-14 | Series integrated photoelectric module and producing method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101203452B1 (en) |
CN (1) | CN102651362B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106033783A (en) * | 2015-03-09 | 2016-10-19 | 英属开曼群岛商精曜有限公司 | Solar cell and solar cell module |
WO2023029612A1 (en) * | 2021-09-01 | 2023-03-09 | 隆基绿能科技股份有限公司 | Color laminated photovoltaic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4981525A (en) * | 1988-02-19 | 1991-01-01 | Sanyo Electric Co., Ltd. | Photovoltaic device |
US6870088B2 (en) * | 2002-03-15 | 2005-03-22 | Sharp Kabushiki Kaisha | Solar battery cell and manufacturing method thereof |
JP2009044184A (en) * | 2008-10-24 | 2009-02-26 | Kaneka Corp | Manufacturing method of tandem type thin film photoelectric converter |
CN101494193A (en) * | 2008-01-22 | 2009-07-29 | 财团法人工业技术研究院 | Thin film solar cell module and method for manufacturing same |
JP2010074071A (en) * | 2008-09-22 | 2010-04-02 | Sharp Corp | Integrated thin film solar cell and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003298089A (en) | 2002-04-02 | 2003-10-17 | Kanegafuchi Chem Ind Co Ltd | Tandem thin film photoelectric converter and its fabricating method |
-
2011
- 2011-02-25 KR KR1020110016990A patent/KR101203452B1/en not_active Expired - Fee Related
- 2011-10-14 CN CN201110311254.1A patent/CN102651362B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4981525A (en) * | 1988-02-19 | 1991-01-01 | Sanyo Electric Co., Ltd. | Photovoltaic device |
US6870088B2 (en) * | 2002-03-15 | 2005-03-22 | Sharp Kabushiki Kaisha | Solar battery cell and manufacturing method thereof |
CN101494193A (en) * | 2008-01-22 | 2009-07-29 | 财团法人工业技术研究院 | Thin film solar cell module and method for manufacturing same |
JP2010074071A (en) * | 2008-09-22 | 2010-04-02 | Sharp Corp | Integrated thin film solar cell and manufacturing method thereof |
JP2009044184A (en) * | 2008-10-24 | 2009-02-26 | Kaneka Corp | Manufacturing method of tandem type thin film photoelectric converter |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106033783A (en) * | 2015-03-09 | 2016-10-19 | 英属开曼群岛商精曜有限公司 | Solar cell and solar cell module |
WO2023029612A1 (en) * | 2021-09-01 | 2023-03-09 | 隆基绿能科技股份有限公司 | Color laminated photovoltaic device |
AU2022337499B2 (en) * | 2021-09-01 | 2025-05-22 | Longi Green Energy Technology Co., Ltd. | Colour tandem photovoltaic device |
Also Published As
Publication number | Publication date |
---|---|
KR20120097651A (en) | 2012-09-05 |
CN102651362B (en) | 2015-01-21 |
KR101203452B1 (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102449780B (en) | Solar battery apparatus and manufacture method thereof | |
CN102637700B (en) | Integrated thin film photovoltaic module and manufacturing method thereof | |
KR100999797B1 (en) | Photovoltaic device and its manufacturing method | |
KR101395792B1 (en) | Integrated Photovoltaic Module | |
JP6034791B2 (en) | Solar power plant | |
US20130125980A1 (en) | Device for generating photovoltaic power and manufacturing method for same | |
CN102651362B (en) | Series integrated photoelectric module and producing method thereof | |
JP2012231142A (en) | Solar cell | |
KR101382880B1 (en) | Solar cell apparatus and method of fabricating the same | |
CN104081538B (en) | Solar cell device and manufacturing method thereof | |
JP2013516784A (en) | Photovoltaic power generation apparatus and manufacturing method thereof | |
KR101272997B1 (en) | Solar cell apparatus and method of fabricating the same | |
KR101338610B1 (en) | Solar cell apparatus and method of fabricating the same | |
CN102593099B (en) | Series type integrated photovoltaic module and manufacturing method thereof | |
KR101055019B1 (en) | Photovoltaic device and its manufacturing method | |
US20130312816A1 (en) | Tandem type integrated photovoltaic module and manufacturing method thereof | |
KR101332297B1 (en) | Tandem type Integrated Photovoltaic Module and Manufacturing Method Thereof | |
KR20130119072A (en) | Photovoltaic apparatus | |
KR101226446B1 (en) | Integrated Thin Film Photovoltaic Module and Manufacturing Method Thereof | |
US9130102B2 (en) | Integrated thin film photovoltaic module and manufacturing method thereof | |
KR101210162B1 (en) | Solar cell apparatus and method of fabricating the same | |
KR20130030906A (en) | Solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: YINGDI CO., LTD. Free format text: FORMER OWNER: KISCO Effective date: 20130911 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20130911 Address after: Seoul, South Kerean Applicant after: Neo Lab Convergence Inc. Address before: South Korea celebrates Chang Applicant before: Kisco |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150121 Termination date: 20181014 |