CN102649931A - Preparation method for microarray biochip - Google Patents
Preparation method for microarray biochip Download PDFInfo
- Publication number
- CN102649931A CN102649931A CN2012101673476A CN201210167347A CN102649931A CN 102649931 A CN102649931 A CN 102649931A CN 2012101673476 A CN2012101673476 A CN 2012101673476A CN 201210167347 A CN201210167347 A CN 201210167347A CN 102649931 A CN102649931 A CN 102649931A
- Authority
- CN
- China
- Prior art keywords
- nozzles
- nozzle
- biochip
- microarray biochip
- microarray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/06—Nozzles; Sprayers; Spargers; Diffusers
Landscapes
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种微阵列生物芯片制备方法,使用M个打印喷头组成喷头组,喷头平行于X方向安装,沿Y方向排列;生物芯片基质沿Y方向与喷头组相对步进运动,通过驱动信号控制每个步进位置所对应喷头上相应喷嘴的动作,将一个指标的生物分子溶液喷射到沿X方向排列的一个或者多个微阵列生物芯片基质的预定位置上;经过通过M个喷头的顺序动作,将M个指标的生物分子溶液依次逐行喷射到生物芯片基质的预定位置上,形成点样阵列。此方法可以实现多指标、多人份并行检测用微阵列生物芯片的制备;与目前已有的产品相比,速度快、精度高、适用性广、效率高、交叉污染少、维护使用简便、制造成本低等特点,非常适用于生物芯片的规模化生产,也适合于科研和应用。
The invention relates to a method for preparing a microarray biochip. M printing nozzles are used to form a nozzle group, and the nozzles are installed parallel to the X direction and arranged along the Y direction; Control the action of the corresponding nozzle on the nozzle corresponding to each step position, and spray an index biomolecule solution to the predetermined position of one or more microarray biochip substrates arranged along the X direction; after passing through the sequence of M nozzles The action is to spray the biomolecule solutions of M indicators one by one onto the predetermined positions of the biochip matrix to form a spotting array. This method can realize the preparation of microarray biochips for multi-index and multi-person parallel detection; compared with the existing products, it has the advantages of fast speed, high precision, wide applicability, high efficiency, less cross-contamination, easy maintenance and use, The characteristics of low manufacturing cost are very suitable for large-scale production of biochips, and also suitable for scientific research and application.
Description
技术领域 technical field
本发明涉及一种生物芯片制备技术,特别涉及一种微阵列并行检测用微阵列生物芯片的制备方法。 The invention relates to a biochip preparation technology, in particular to a preparation method of a microarray biochip for microarray parallel detection.
背景技术 Background technique
现有生物芯片的制备方法,基本上可分为两类:一类是原位合成(即在支持物表面直接原位合成寡核苷酸探针);一类是预合成后直接点样,将微量DNA溶液直接以微阵列的形式点放并固化在生物芯片基质上。由于原位合成方法非常复杂,所以大多数的DNA微阵列芯片都是采用合成点样法。而蛋白芯片的制备,由于方法的限制,都是采用先合成后点样的方法制备。合成点样法是将预先通过液相化学合成好的探针经纯化、定量分析后,通过微阵列点样平台,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,固化后即得到DNA微阵列或蛋白芯片。 The preparation method of existing biochip can basically be divided into two classes: a class is in-situ synthesis (that is, the direct in-situ synthesis of oligonucleotide probes on the surface of the support); a class is directly sampled after pre-synthesis, A small amount of DNA solution is directly placed in the form of a microarray and solidified on the biochip substrate. Because the in situ synthesis method is very complicated, most of the DNA microarray chips use the synthetic spotting method. The preparation of the protein chip, due to the limitation of the method, is prepared by the method of first synthesis and then spotting. The synthetic spotting method is to accurately and quickly spot different probe samples quantitatively on positively charged nylon membranes or Silicon wafers and other corresponding positions, after solidification, DNA microarrays or protein chips can be obtained.
传统点样的方式分两种,其一为接触式点样,即点样针直接与生物芯片基质表面接触,将样品留在基质上;其二为非接触式点样,使用压电原理或微量电磁阀通断原理制作的专用微喷点样喷头,通过毛细管将样品喷至生物芯片基质表面。 There are two traditional methods of spotting, one is contact spotting, that is, the spotting needle directly contacts the surface of the biochip substrate, and the sample is left on the matrix; the other is non-contact spotting, which uses the principle of piezoelectricity or The special micro-spray spotting nozzle made by the principle of micro-solenoid valve on-off, sprays the sample to the surface of the biochip substrate through the capillary.
接触式点样中,点样针需要先浸入源板中蘸取样品,提起后在针的顶端形成一定体积的液滴,移动到相应的玻片位置上,接触基片把样品转移,形成样点,不断重复这一过程,直至芯片制备完成。接触式点样缺点明显:实心点样针携带样品量很小,每次取样只能点样一次,生产过程很慢;每张芯片离源板的距离不一,点样针从微孔板转移样品到芯片需时间不等,蒸发对液滴的影响程度变化很大,使得样点直径均一性较差:离源板近的样点直径较大,远的直径则较小。 In contact spotting, the spotting needle needs to be dipped into the source plate first to pick up the sample, and then a certain volume of liquid droplet is formed on the tip of the needle after being lifted, and then moved to the corresponding position of the glass slide, and the sample is transferred by contacting the substrate to form a sample. point, and repeat this process until the chip preparation is complete. The disadvantages of contact spotting are obvious: the solid sampling needle carries a small amount of sample, and each sampling can only be sampled once, and the production process is very slow; the distance between each chip and the source plate is different, and the sampling needle is transferred from the microwell plate The time required for the sample to reach the chip varies greatly, and the degree of influence of evaporation on the droplet varies greatly, resulting in poor uniformity of sample diameter: the diameter of the sample near the source plate is larger, and the diameter of the farther away is smaller.
非接触式点样中,空心点样针先浸入源板中吸取少量的样品,然后点样针喷嘴把样品逐点喷射到芯片表面上。相比于接触式点样,非接触式点样针可以一次吸样多次点样,可以相对提高点样效率,但仍需要逐点喷样,无法同时进行多人份、多指标点样。 In non-contact spotting, the hollow spotting needle is first dipped into the source plate to absorb a small amount of sample, and then the sample is sprayed point by point onto the chip surface by the pointing needle nozzle. Compared with contact spotting, the non-contact spotting needle can draw a sample multiple times at one time, which can relatively improve the efficiency of spotting, but it still needs to spray samples point by point, and it is impossible to spot multiple people and multiple indicators at the same time.
经过调研和实验表明,工业用喷墨头物理精度可以达到185dpi-360dpi,墨滴容积最小可达14pL-80pL不等,完全能够用于生物芯片的喷制。 Research and experiments have shown that the physical precision of industrial inkjet heads can reach 185dpi-360dpi, and the minimum ink droplet volume can reach 14pL-80pL, which can be used for the printing of biochips.
发明内容 Contents of the invention
本发明是针对现在的生物制备效率低、无法多份同时点样的问题,提出了一种微阵列生物芯片制备方法,使用工业喷墨打印喷头的“喷印式”微阵列生物芯片制备方法,可以实现多指标、多人份检测用微阵列生物芯片的快速生产。 The present invention aims at the problems of low efficiency of biological preparation and the inability to print multiple samples at the same time, and proposes a preparation method of a microarray biochip, which uses an industrial inkjet printing nozzle to prepare a "jet-printing" microarray biochip. The rapid production of microarray biochips for multi-indicator and multi-person testing can be realized. the
本发明的技术方案为:一种微阵列生物芯片制备方法,具体包括如下步骤: The technical scheme of the present invention is: a method for preparing a microarray biochip, specifically comprising the following steps:
1)使用M个打印喷头组成喷头组,喷头平行于X方向安装,沿Y方向排列; 1) Use M print nozzles to form a nozzle group, the nozzles are installed parallel to the X direction and arranged along the Y direction;
2)生物芯片基质沿Y方向与喷头组相对步进运动,通过驱动信号控制每个步进位置所对应喷头上相应喷嘴的动作,将一个指标的生物分子溶液喷射到沿X方向排列的一个或者多个微阵列生物芯片基质的预定位置上; 2) The biochip matrix moves relative to the nozzle group along the Y direction, and the action of the corresponding nozzle on the nozzle corresponding to each step position is controlled by the driving signal, and an index of biomolecular solution is sprayed to one or the other nozzles arranged along the X direction. Predetermined positions on a plurality of microarray biochip substrates;
3)经过通过M个喷头的顺序动作,将M个指标的生物分子溶液依次逐行喷射到生物芯片基质的预定位置上,形成点样阵列。 3) Through the sequential actions of M nozzles, the biomolecule solutions of M indicators are sequentially sprayed onto the predetermined positions of the biochip matrix to form a spotting array.
所述点样密度和点样阵列的间距通过驱动信号控制一定间距上喷嘴的选通实现,若相邻喷嘴的间距为e,则点样阵列中样点间距为n·e,即两个工作喷嘴间距为n·e,n为两个工作喷嘴之间的喷嘴间隔个数,点样阵列的间距控制方法相似,记相邻两个点样阵列间距为m·e,即相隔m个喷嘴间距。 The dot-like density and the spacing of the dot-like array are controlled by the driving signal to control the gating of the nozzles at a certain distance. If the distance between adjacent nozzles is e, the dot spacing in the dot-like array is n·e, that is, two working The nozzle spacing is n·e, n is the number of nozzle intervals between two working nozzles, the spacing control method of the spotting array is similar, and the spacing between two adjacent spotting arrays is m·e, that is, the distance between m nozzles .
所述点样的大小由驱动信号的振幅大小和频率控制。 The size of the spot is controlled by the amplitude and frequency of the driving signal.
所述每个喷头只喷射一种指标的生物分子溶液。 Each nozzle only sprays one kind of index biomolecule solution.
所述点样阵列中样点在X方向和Y方向上间距相同,为喷嘴间距的整数倍。 The sample points in the spot pattern array have the same spacing in the X direction and the Y direction, which is an integer multiple of the nozzle spacing.
所述X方向上排列的同一指标的样品点所对应的喷嘴由同一驱动信号驱动。 The nozzles corresponding to the sample points of the same index arranged in the X direction are driven by the same driving signal.
所述芯片基质沿Y方向与喷头组相对运动可以是喷头组运动,芯片基质固定;也可以是喷头组固定,芯片基质运动。 The relative movement of the chip substrate and the nozzle group along the Y direction may be that the nozzle group moves and the chip substrate is fixed; or the nozzle group is fixed and the chip substrate moves.
所述所使用的喷头工作方式可以为压电式或热力式。 The working mode of the nozzle used can be piezoelectric or thermal.
所述生物分子溶液可以是核酸或蛋白质,核酸包括DNA探针。 The biomolecule solution may be nucleic acid or protein, nucleic acid including DNA probes.
所述生物芯片基质可以是一张或多张膜基质,也可以是一个或多个玻片,还可以是一块或多块多孔板。 The biochip substrate can be one or more membrane substrates, one or more glass slides, or one or more porous plates.
本发明的有益效果在于:本发明微阵列生物芯片制备方法,可以实现多指标、多人份并行检测用微阵列生物芯片的制备;与目前已有的产品相比,速度快、精度高、适用性广、效率高、交叉污染少、维护使用简便、制造成本低等特点,非常适用于生物芯片的规模化生产,也适合于科研和应用。 The beneficial effect of the present invention is that: the preparation method of the microarray biochip of the present invention can realize the preparation of the microarray biochip for multi-indicator and multi-person parallel detection; Wide range of performance, high efficiency, less cross-contamination, easy maintenance and use, low manufacturing cost, etc., are very suitable for large-scale production of biochips, and are also suitable for scientific research and applications.
附图说明 Description of drawings
图1为本发明用于制备生物芯片的点样仪喷头组示意图; Fig. 1 is the schematic diagram of the sprinkler group of the spotting instrument used for preparing the biochip of the present invention;
图2为本发明微阵列生物芯片制备方法实例示意图; 2 is a schematic diagram of an example of a method for preparing a microarray biochip of the present invention;
图3为本发明微阵列生物芯片制备方法所制备的生物芯片微阵列结构图。 Fig. 3 is a structure diagram of the biochip microarray prepared by the microarray biochip preparation method of the present invention.
具体实施方式 Detailed ways
如图1或图2所示,1-8为喷头组成的喷头组,9为生物芯片基质,10-17为工作喷嘴的示意位置,a、b为典型阵列结构中的两种不同指标样点。生物芯片基质9沿Y方向移动,当芯片基质9的预定位置运动到第一个喷头 1 的位置时,驱动信号控制喷头1的10、11和12、13处对应的喷嘴动作,将生物分子溶液样品a喷射到基质上。
As shown in Figure 1 or Figure 2, 1-8 is the nozzle group composed of nozzles, 9 is the biochip substrate, 10-17 is the schematic position of the working nozzle, a and b are two different index sample points in a typical array structure . The
当芯片预定位置运动到第二个喷头2所在位置时,驱动信号控制喷头的14、15和16、17处对应的喷嘴动作,将生物溶液样品b喷射到基质上。这样就在X方向上完成了第一列点样列。其它点样列的制备方法相同,分别由3到8号喷头完成,最终结果如图3所示生物芯片微阵列结构图。
When the predetermined position of the chip moves to the position of the
点样密度和点样阵列的间距通过驱动信号控制一定间距上喷嘴的选通实现。若相邻喷嘴10、11的间距为e,则点样阵列中样点间距为n·e,即两个工作喷嘴间距为n·e,n为两个工作喷嘴之间的喷嘴间隔个数。选通的工作喷嘴之间的喷嘴间隔个数越小,样点间距越小,点样密度越高。点样阵列的间距控制方法相似,记相邻两个点样阵列间距为m·e,即相隔m个喷嘴间距。
The dot density and the spacing of the dot array are realized by controlling the gating of the nozzles at a certain spacing by the driving signal. If the distance between
样点的大小由驱动信号的振幅大小和频率控制,振幅较小的驱动信号产生小液滴,振幅较大的信号能产生中型液滴,而两个紧密的脉冲可以连续喷出小液滴和中型液滴,它们在空中完成合并过程,落在基质上形成较大的样点。 The size of the sample point is controlled by the amplitude and frequency of the driving signal. A driving signal with a smaller amplitude produces small droplets, a signal with a larger amplitude can produce medium-sized droplets, and two tight pulses can continuously eject small droplets and Medium-sized droplets that coalesce in the air and land on the substrate to form larger spots.
本发明方法可以实现多指标、多人份并行检测用微阵列生物芯片的制备。与目前已有的产品相比,速度快,比接触式机械点样方法和非接触式微喷点样针式点样速度快,尤其是大规模生产;精度高,喷墨式点样液滴小,密度高,精度好,定量准确、样点均一,重现性好;适用性广,可以对多种材料的片基进行点样,可以是一张或多张尼龙膜 或者硝酸纤维膜等膜基质,也可以是一个或多个玻片等刚性基质,还可以是一块或多块多孔板;效率高,本点样平台横向可以对喷墨范围内多个人份同时点样,也多个喷头组同时作业;纵向可以对多人份流水作业,并且可以进行多指标样品的点样,大大提高了点样效率;交叉污染少,一个喷头单元只负责点其中一个指标的样品,节省了更换样品时清洗时间,还有效的减少了不同样品间的交叉污染。 The method of the invention can realize the preparation of the microarray biochip for multi-indicator and multi-person parallel detection. Compared with the existing products, the speed is faster than the contact mechanical pointing method and the non-contact micro-spray pointing needle pointing speed, especially for mass production; high precision, and the inkjet pointing liquid droplet is small , high density, good precision, accurate quantification, uniform sample points, and good reproducibility; wide applicability, can spot samples on a variety of material substrates, which can be one or more nylon membranes or nitrocellulose membranes and other membranes The substrate can also be one or more rigid substrates such as glass slides, or one or more porous plates; the efficiency is high, and this spotting platform can simultaneously spot samples for multiple people within the inkjet range horizontally, and also multiple nozzles The group can work at the same time; vertically, multiple people can be flow-lined, and samples with multiple indicators can be sampled, which greatly improves the efficiency of sample spotting; cross-contamination is less, and one nozzle unit is only responsible for sampling one of the indicators, saving replacement samples It also effectively reduces the cross-contamination between different samples.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101673476A CN102649931A (en) | 2012-05-28 | 2012-05-28 | Preparation method for microarray biochip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101673476A CN102649931A (en) | 2012-05-28 | 2012-05-28 | Preparation method for microarray biochip |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102649931A true CN102649931A (en) | 2012-08-29 |
Family
ID=46692058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101673476A Pending CN102649931A (en) | 2012-05-28 | 2012-05-28 | Preparation method for microarray biochip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102649931A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869075A (en) * | 2012-12-14 | 2014-06-18 | 仓怀兴 | Preparation device of protein chip by real-time quantitative detection and capillary electrophoresis |
CN104593870A (en) * | 2015-02-02 | 2015-05-06 | 上海理工大学 | Linear-array-sprayer multi-sampling-point method for dynamically preparing biochips |
CN105842171A (en) * | 2015-01-15 | 2016-08-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Biochemical detection system |
TWI641833B (en) * | 2018-02-07 | 2018-11-21 | 國立臺灣師範大學 | Marking equipment for making biochips |
CN112218708A (en) * | 2018-05-15 | 2021-01-12 | 生物复制有限公司 | Microarray transducer |
CN112881494A (en) * | 2020-11-09 | 2021-06-01 | 北京大学 | Field effect transistor type biosensing device for multi-index detection |
CN112973592A (en) * | 2019-12-16 | 2021-06-18 | 天津大学 | High-throughput DNA synthesis device and method based on array type ink-jet printing |
CN113324813A (en) * | 2021-05-27 | 2021-08-31 | 江西烈冰生物科技有限公司 | Biological probe sample application method and process based on high-density dot matrix |
CN115452507A (en) * | 2022-09-01 | 2022-12-09 | 广西大学 | An array biochip spotting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1186888A1 (en) * | 2000-04-03 | 2002-03-13 | Riken | Microarray fabricating device |
CN101334403A (en) * | 2007-06-26 | 2008-12-31 | 上海裕隆生物科技有限公司 | Assembly line biological chips sample application platform |
CN101334405A (en) * | 2007-06-26 | 2008-12-31 | 上海裕隆生物科技有限公司 | Biological chips sample application platform |
CN102080072A (en) * | 2010-11-29 | 2011-06-01 | 中国科学院化学研究所 | Biochip and preparation method thereof |
WO2011156836A1 (en) * | 2010-06-17 | 2011-12-22 | Geneasys Pty Ltd | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
-
2012
- 2012-05-28 CN CN2012101673476A patent/CN102649931A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1186888A1 (en) * | 2000-04-03 | 2002-03-13 | Riken | Microarray fabricating device |
CN101334403A (en) * | 2007-06-26 | 2008-12-31 | 上海裕隆生物科技有限公司 | Assembly line biological chips sample application platform |
CN101334405A (en) * | 2007-06-26 | 2008-12-31 | 上海裕隆生物科技有限公司 | Biological chips sample application platform |
WO2011156836A1 (en) * | 2010-06-17 | 2011-12-22 | Geneasys Pty Ltd | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
CN102080072A (en) * | 2010-11-29 | 2011-06-01 | 中国科学院化学研究所 | Biochip and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
焦炳华 等: "《现代生物工程》", 31 March 2007 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869075A (en) * | 2012-12-14 | 2014-06-18 | 仓怀兴 | Preparation device of protein chip by real-time quantitative detection and capillary electrophoresis |
CN105842171A (en) * | 2015-01-15 | 2016-08-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Biochemical detection system |
CN105842171B (en) * | 2015-01-15 | 2019-05-17 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of biochemistry detection system |
CN104593870A (en) * | 2015-02-02 | 2015-05-06 | 上海理工大学 | Linear-array-sprayer multi-sampling-point method for dynamically preparing biochips |
TWI641833B (en) * | 2018-02-07 | 2018-11-21 | 國立臺灣師範大學 | Marking equipment for making biochips |
CN112218708A (en) * | 2018-05-15 | 2021-01-12 | 生物复制有限公司 | Microarray transducer |
CN112973592A (en) * | 2019-12-16 | 2021-06-18 | 天津大学 | High-throughput DNA synthesis device and method based on array type ink-jet printing |
CN112881494A (en) * | 2020-11-09 | 2021-06-01 | 北京大学 | Field effect transistor type biosensing device for multi-index detection |
CN113324813A (en) * | 2021-05-27 | 2021-08-31 | 江西烈冰生物科技有限公司 | Biological probe sample application method and process based on high-density dot matrix |
CN115452507A (en) * | 2022-09-01 | 2022-12-09 | 广西大学 | An array biochip spotting device |
CN115452507B (en) * | 2022-09-01 | 2024-05-14 | 广西大学 | An array type biochip spotting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102649931A (en) | Preparation method for microarray biochip | |
CN103013813B (en) | Method for manufacturing digital PCR (polymerase chain reaction) chip based on 3D (three-dimensional) printing platform | |
Faulkner-Jones et al. | Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates | |
CN1916627A (en) | Ink-jet sampler for preparing microarray and sampling method using the instrument | |
US20090033690A1 (en) | Ink jet device and method for releasing a plurality of substances onto a substrate | |
He et al. | An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator | |
CN202705345U (en) | Microarray biochip preparation device | |
CN110835599B (en) | Biological detection device and method based on microfluidic impact printing | |
JP2001337088A (en) | Biochip making method and biochip making apparatus using the same | |
US20030143316A1 (en) | Process and apparatus for the production of biopolymer arrays | |
CN102115025B (en) | Method for preparing polystyrene micro-sphere micro-array by ultrasonic focusing micro-jet process | |
CN103389237B (en) | A kind of using method of Simple low-cost microarray chip sample applicator | |
CN103028354B (en) | Preparation method for droplet-in-oil array structure | |
CN104630902B (en) | The method and apparatus that microarray formula prepares biochip | |
JP3691486B2 (en) | Method for forming detection point in detection chip for analyte | |
THERIAULT et al. | Application of ink-jet printing technology to the manufacture of | |
JP2004534242A (en) | Method and apparatus for ex situ fabrication of low and medium integrated biochip arrays | |
Wu et al. | Modelling and hydrostatic analysis of contact printing microarrays by quill pins | |
CN204509510U (en) | The device of continuous production biochip | |
CN104593871A (en) | Method and device for dynamically preparing biochip by virtue of linear-array combined spray head | |
CN1896744B (en) | Non-contacting micro-sampling head | |
US20040120859A1 (en) | Biomolecular micro-deposition system | |
JP2002116205A (en) | Liquid discharge device as well as method and apparatus for manufacture of microarray using it | |
CN104630901B (en) | Method and system for dynamically preparing biochip by using linear-array sprayers | |
CN204506137U (en) | Linear array piezo jets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120829 |