CN102646709A - A Fast Superjunction Vertical Double-diffused Metal Oxide Semiconductor Transistor - Google Patents
A Fast Superjunction Vertical Double-diffused Metal Oxide Semiconductor Transistor Download PDFInfo
- Publication number
- CN102646709A CN102646709A CN201210101011XA CN201210101011A CN102646709A CN 102646709 A CN102646709 A CN 102646709A CN 201210101011X A CN201210101011X A CN 201210101011XA CN 201210101011 A CN201210101011 A CN 201210101011A CN 102646709 A CN102646709 A CN 102646709A
- Authority
- CN
- China
- Prior art keywords
- type
- region
- source
- layer
- vertical double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域 technical field
本发明属于半导体功率器件技术领域,涉及快速开关的硅制高压功率器件,特别适用于硅制超结纵向双扩散金属氧化物场效应晶体管(SuperjunctionVDMOS,即超结VDMOS,一下均简写为超结VDMOS),更具体的说,涉及一种可以快速开关、超低损耗的硅制超结VDMOS的结构。The invention belongs to the technical field of semiconductor power devices, and relates to a fast-switching high-voltage power device made of silicon, especially suitable for superjunction vertical double-diffused metal oxide field-effect transistors made of silicon (Superjunction VDMOS, that is, super junction VDMOS, all of which are abbreviated as super junction VDMOS. ), more specifically, relates to a fast-switching, ultra-low-loss silicon superjunction VDMOS structure.
背景技术 Background technique
目前,功率器件在日常生活、生产等领域的应用越来越广泛,特别是功率金属氧化物半导体场效应晶体管,由于它们拥有较快的开关速度、较小的驱动电流、较宽的安全工作区,因此受到了众多研究者们的青睐。如今,功率器件正向着提高工作电压、增加工作电流、减小导通电阻、加快开关速度和集成化的方向发展。在众多的功率金属氧化物半导体场效应晶体管器件中,尤其是在纵向功率金属氧化物半导体场效应晶体管中,超结半导体功率器件的发明,它克服传统功率金属氧化物半导体场效应管导通电阻与击穿电压之间的矛盾,改变了传统功率器件依靠漂移层耐压的结构,而是采用了一种“超结结构”——P型、N型硅半导体材料在漂移区相互交替排列的形式。这种结构改善了击穿电压和导通电阻不易同时兼顾的情况,在截止态时,由于P型柱和N型柱中的耗尽区电场产生相互补偿效应,使P型柱和N型柱的掺杂浓度可以做得很高而不会引起器件击穿电压的下降。导通时,这种高浓度的掺杂器件的导通电阻明显降低。由于超结纵向双扩散金属氧化物半导体场效应管的这种独特器件结构,使它的电性能明显优于传统功率金属氧化物半导体场效应晶体管,因此这种技术被人们称为功率金属氧化物半导体场效应晶体管技术上的一个里程碑。At present, power devices are more and more widely used in daily life, production and other fields, especially power metal-oxide-semiconductor field-effect transistors, because they have faster switching speeds, smaller drive currents, and wider safe operating areas. , so it has been favored by many researchers. Nowadays, power devices are developing towards higher working voltage, higher working current, lower on-resistance, faster switching speed and integration. Among many power MOSFET devices, especially in vertical power MOSFETs, the invention of super junction semiconductor power devices overcomes the on-resistance of traditional power MOSFETs The contradiction between the breakdown voltage and the breakdown voltage has changed the structure of traditional power devices relying on the drift layer withstand voltage, but adopted a "super junction structure" - P-type, N-type silicon semiconductor materials are arranged alternately in the drift region form. This structure improves the situation that the breakdown voltage and on-resistance are not easy to be considered at the same time. In the off state, due to the mutual compensation effect of the depletion region electric field in the P-type column and the N-type column, the P-type column and the N-type column The doping concentration can be made very high without causing a drop in the breakdown voltage of the device. When turned on, the on-resistance of such high-concentration doped devices is significantly reduced. Due to the unique device structure of the superjunction vertical double-diffused metal oxide semiconductor field effect transistor, its electrical performance is significantly better than that of the traditional power metal oxide semiconductor field effect transistor, so this technology is called power metal oxide semiconductor field effect transistor. A milestone in semiconductor field effect transistor technology.
功率器件不仅在国防、航天、航空等尖端技术领域倍受青睐,在工业,民用家电等领域也同样为人们所重视。随着功率器件的日益发展,其可靠性也已经成为人们普遍关注的焦点。功率器件为电子设备提供所需形式的电源和电机设备提供驱动,几乎一切电子设备和电机设备都需用到功率器件,所以对器件可靠性的研究有着至关重要的意义。Power devices are not only favored in the cutting-edge technology fields such as national defense, aerospace, and aviation, but also in the fields of industry and civilian household appliances. With the increasing development of power devices, their reliability has become the focus of people's general attention. Power devices provide the required form of power supply for electronic equipment and drive for electrical equipment. Almost all electronic equipment and electrical equipment require power devices, so the research on device reliability is of great significance.
可靠性的定义是产品在规定的条件下和规定的时间内,完成规定功能的能力。所谓规定的条件,主要指使用条件和环境条件。使用条件是指那些将进入到产品或材料内部而起作用的应力条件,如电应力、化学应力和物理应力。可靠性试验的范围非常广泛,其目的是为了考核电子元器件等电子产品在储存、运输和工作过程中可能遇到各种复杂的机械、环境条件。The definition of reliability is the ability of the product to complete the specified functions under specified conditions and within a specified time. The so-called prescribed conditions mainly refer to the conditions of use and environmental conditions. Service conditions refer to those stress conditions that will enter into the product or material, such as electrical stress, chemical stress and physical stress. The scope of reliability test is very wide, and its purpose is to assess various complex mechanical and environmental conditions that electronic products such as electronic components may encounter during storage, transportation and work.
然而,传统超结纵向双扩散金属氧化物半导体管中,由于漂移区的浓度远远高于纵向双扩散金属氧化物半导体场效应晶体管,使其栅极寄生电容很高,在器件开关过程中,影响开关速度与开关损耗。However, in the traditional super-junction vertical double-diffused metal-oxide-semiconductor transistor, because the concentration of the drift region is much higher than that of the vertical double-diffused metal-oxide-semiconductor field-effect transistor, the gate parasitic capacitance is very high. During the switching process of the device, Affects switching speed and switching losses.
另外,传统纵向双扩散金属氧化物半导体场效应管中,由于开关速度很快,在器件的漏源两端的电压快速变化,漏源电容产生很大的漂移电流,流过P型掺杂区,导致器件寄生三极管导通,器件失效。In addition, in the traditional vertical double-diffused metal oxide semiconductor field effect transistor, due to the fast switching speed, the voltage at both ends of the drain source of the device changes rapidly, and the drain source capacitance generates a large drift current, which flows through the P-type doped region. As a result, the parasitic triode of the device is turned on, and the device fails.
发明内容 Contents of the invention
本发明提供了一种快速超结纵向双扩散金属氧化物半导体管,所涉及的结构能减小栅极寄生电容,加快器件的开关速度,减小器件开关过程的损耗,并且能抑制器件内寄生三极管的开启,提高器件的可靠性。The invention provides a fast superjunction vertical double-diffused metal oxide semiconductor tube, the structure involved can reduce the parasitic capacitance of the gate, accelerate the switching speed of the device, reduce the loss in the switching process of the device, and can suppress the parasitic in the device The opening of the triode improves the reliability of the device.
本发明提供如下技术方案:The present invention provides following technical scheme:
一种快速超结纵向双扩散金属氧化物半导体管,包括:兼做漏区的N型掺杂硅衬底、N型掺杂硅外延层、超结结构,所述的N型掺杂硅外延层设在N型掺杂硅衬底上,超结结构设在N型硅掺杂半导体区上,所述的超结结构由间隔排列的P型柱和N型柱组成,在P型柱上有第一P型掺杂半导体区,且第一P型掺杂半导体区位于N型掺杂外延层内,在第一P型掺杂半导体区中设有第二P型重掺杂半导体接触区和N型重掺杂半导体源区,在N型柱上方设有栅氧化层,在栅氧化层上方设有多晶硅栅,在多晶硅栅上设有第一型氧化层,在第二P型重掺杂半导体接触区和N型重掺杂半导体源区上连接有源极金属,在N型柱表面有源极埋层,源极埋层包括薄氧化层和薄氧化层上的多晶硅,多晶硅栅和源极金属相连。A fast superjunction vertical double-diffused metal oxide semiconductor tube, comprising: an N-type doped silicon substrate serving as a drain region, an N-type doped silicon epitaxial layer, and a superjunction structure, and the N-type doped silicon epitaxial The layer is set on the N-type doped silicon substrate, and the super-junction structure is set on the N-type silicon-doped semiconductor region. The super-junction structure is composed of P-type pillars and N-type pillars arranged at intervals, and on the P-type pillars There is a first P-type doped semiconductor region, and the first P-type doped semiconductor region is located in the N-type doped epitaxial layer, and a second P-type heavily doped semiconductor contact region is provided in the first P-type doped semiconductor region and an N-type heavily doped semiconductor source region, a gate oxide layer is provided above the N-type column, a polysilicon gate is provided above the gate oxide layer, a first-type oxide layer is provided on the polysilicon gate, and a second P-type heavily doped The heterosemiconductor contact region and the N-type heavily doped semiconductor source region are connected with a source metal, and there is a source buried layer on the surface of the N-type column. The source buried layer includes a thin oxide layer and polysilicon on the thin oxide layer, and the polysilicon gate and source metal connection.
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
1、本发明结构在传统的超结结构N型柱表面设有源极埋层,源极埋层位于栅极氧化层下方,源极埋层的氧化层使其中的多晶硅与N型柱隔离,源极埋层中的多晶硅和源极金属相连。源极埋层的结构能够使栅极的寄生电容减小,加快了器件的开关速度,减小了器件的开关损耗。1. The structure of the present invention is provided with a buried source layer on the surface of the N-type pillar of the traditional super-junction structure. The buried source layer is located below the gate oxide layer. The oxide layer of the buried source layer isolates the polysilicon in it from the N-type pillar. The polysilicon in the source buried layer is connected to the source metal. The structure of the source buried layer can reduce the parasitic capacitance of the gate, accelerate the switching speed of the device, and reduce the switching loss of the device.
2、本发明结构为器件内寄生电容的充电提供了一条电流通路,在关断过程中漏极和源极电压的变化引起的位移电流会有一部分流过源极埋层,从而减小了流过P型掺杂区的电流,使器件内寄生三极管更难开启,增强了器件的可靠性。2. The structure of the present invention provides a current path for charging the parasitic capacitance in the device. During the turn-off process, part of the displacement current caused by the change of the drain and source voltage will flow through the source buried layer, thereby reducing the current flow. The current passing through the P-type doped region makes it more difficult to turn on the parasitic triode in the device, which enhances the reliability of the device.
附图说明 Description of drawings
图1是本发明内容所涉及一种快速超结纵向双扩散金属氧化物半导体管的结构示意图。FIG. 1 is a schematic structural diagram of a fast superjunction vertical double-diffused metal oxide semiconductor transistor involved in the present invention.
图2是传统的超结纵向双扩散金属氧化物半导体管的结构示意图。FIG. 2 is a schematic structural diagram of a conventional superjunction vertical double-diffused metal oxide semiconductor transistor.
图3是本发明内容所涉及一种快速超结纵向双扩散金属氧化物半导体管的位移电流路径示意图。FIG. 3 is a schematic diagram of a displacement current path of a fast superjunction vertical double-diffused metal-oxide-semiconductor transistor involved in the present invention.
图4是传统的超结纵向双扩散金属氧化物半导体的位移电流路径示意图。FIG. 4 is a schematic diagram of a displacement current path of a conventional superjunction vertical double-diffused metal oxide semiconductor.
具体实施方式 Detailed ways
一种快速超结纵向双扩散金属氧化物半导体管,包括:兼做漏区的N型掺杂硅衬底1、N型掺杂硅外延层2、超结结构3,所述的N型掺杂硅外延层2设在N型掺杂硅衬底1上,超结结构3设在N型硅掺杂半导体区2上,所述的超结结构3由间隔排列的P型柱4和N型柱5组成,在P型柱上有第一P型掺杂半导体区6,且第一P型掺杂半导体区6位于N型掺杂外延层2内,在第一P型掺杂半导体区6中设有第二P型重掺杂半导体接触区8和N型重掺杂半导体源区7,在N型柱5上方设有栅氧化层9,在栅氧化层9上方设有多晶硅栅10,在多晶硅栅10上设有第一型氧化层11,在第二P型重掺杂半导体接触区8和N型重掺杂半导体源区7上连接有源极金属12,在N型柱表面有源极埋层13,源极埋层13包括薄氧化层14和薄氧化层上的多晶硅15,多晶硅栅15和源极金属12相连。A fast superjunction vertical double-diffused metal oxide semiconductor tube, comprising: an N-type doped
源极埋层的宽度可大可小,取决于漏源电容和栅漏电容的大小,薄氧化层的厚度可以调节,取决于漏源电容的大小,多晶硅上的栅极氧化层的厚度可以调节,取决于栅源电容的大小,在本实施例中,源极埋层的宽度为10纳米~50微米,薄氧化层14的厚度为1纳米~5微米,多晶硅上的栅极氧化层的厚度为1纳米~5微米,多晶硅上的栅极氧化层的宽度10纳米~50微米。The width of the source buried layer can be large or small, depending on the size of the drain-source capacitance and gate-drain capacitance, the thickness of the thin oxide layer can be adjusted, depending on the size of the drain-source capacitance, the thickness of the gate oxide layer on polysilicon can be adjusted , depending on the size of the gate-source capacitance, in this embodiment, the width of the source buried layer is 10 nanometers to 50 microns, the thickness of the thin oxide layer 14 is 1 nanometer to 5 microns, and the thickness of the gate oxide layer on the polysilicon The width of the gate oxide layer on the polysilicon is 10 nanometers to 50 micrometers.
下面参照附图,对本发明的具体实施方式做出更为详细的说明:Below with reference to accompanying drawing, specific embodiment of the present invention is described in more detail:
图1为本发明涉及的一种快速超结纵向双扩散金属氧化物半导体管的结构示意图,其中源极埋层设置在栅极下方的N型外延层中。FIG. 1 is a schematic structural diagram of a fast superjunction vertical double-diffused metal-oxide-semiconductor transistor according to the present invention, wherein the source buried layer is arranged in the N-type epitaxial layer below the gate.
图3为本发明涉及的一种快速超结纵向双扩散金属氧化物半导体管结构在关断时位移电流的流向,可以看到一部分电流流向了源极埋层从而减小了流向寄生三极管的电流,阻止了寄生三极管开启。Fig. 3 is a flow direction of displacement current when a fast superjunction vertical double-diffused metal-oxide-semiconductor transistor structure involved in the present invention is turned off. It can be seen that a part of the current flows to the source buried layer, thereby reducing the current flowing to the parasitic triode , preventing the parasitic transistor from turning on.
参照图4,传统的超结纵向双扩散金属氧化物半导体管结在关断时位移电流的全部流经寄生三极管的基区,寄生三极管开启的风险较大。Referring to FIG. 4 , when the conventional superjunction vertical double-diffused metal-oxide-semiconductor junction is turned off, all the displacement current flows through the base region of the parasitic triode, and the risk of turning on the parasitic triode is relatively high.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210101011.XA CN102646709B (en) | 2012-04-06 | 2012-04-06 | Rapid super junction vertical double-diffused metal-oxide semiconductor field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210101011.XA CN102646709B (en) | 2012-04-06 | 2012-04-06 | Rapid super junction vertical double-diffused metal-oxide semiconductor field-effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102646709A true CN102646709A (en) | 2012-08-22 |
CN102646709B CN102646709B (en) | 2014-06-11 |
Family
ID=46659419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210101011.XA Active CN102646709B (en) | 2012-04-06 | 2012-04-06 | Rapid super junction vertical double-diffused metal-oxide semiconductor field-effect transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102646709B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103489917A (en) * | 2013-10-22 | 2014-01-01 | 东南大学 | Longitudinal double-diffusion metal oxide semiconductor structure with high avalanche tolerance capacity |
WO2021042582A1 (en) * | 2019-09-03 | 2021-03-11 | 苏州东微半导体有限公司 | Semiconductor power device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050242392A1 (en) * | 2004-04-30 | 2005-11-03 | Siliconix Incorporated | Super trench MOSFET including buried source electrode and method of fabricating the same |
US7651918B2 (en) * | 2006-08-25 | 2010-01-26 | Freescale Semiconductor, Inc. | Strained semiconductor power device and method |
CN101777581A (en) * | 2009-12-18 | 2010-07-14 | 东南大学 | P-type super-junction laterally double diffused metal oxide semiconductor |
CN102097480A (en) * | 2010-12-22 | 2011-06-15 | 东南大学 | N-type super-junction transverse double-diffusion metal oxide semiconductor tube |
CN202616237U (en) * | 2012-04-06 | 2012-12-19 | 东南大学 | Rapid super junction VDMOS |
-
2012
- 2012-04-06 CN CN201210101011.XA patent/CN102646709B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050242392A1 (en) * | 2004-04-30 | 2005-11-03 | Siliconix Incorporated | Super trench MOSFET including buried source electrode and method of fabricating the same |
US7651918B2 (en) * | 2006-08-25 | 2010-01-26 | Freescale Semiconductor, Inc. | Strained semiconductor power device and method |
CN101777581A (en) * | 2009-12-18 | 2010-07-14 | 东南大学 | P-type super-junction laterally double diffused metal oxide semiconductor |
CN102097480A (en) * | 2010-12-22 | 2011-06-15 | 东南大学 | N-type super-junction transverse double-diffusion metal oxide semiconductor tube |
CN202616237U (en) * | 2012-04-06 | 2012-12-19 | 东南大学 | Rapid super junction VDMOS |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103489917A (en) * | 2013-10-22 | 2014-01-01 | 东南大学 | Longitudinal double-diffusion metal oxide semiconductor structure with high avalanche tolerance capacity |
CN103489917B (en) * | 2013-10-22 | 2016-09-21 | 东南大学 | A kind of vertical double-diffused MOS structure of high snow slide tolerance ability |
WO2021042582A1 (en) * | 2019-09-03 | 2021-03-11 | 苏州东微半导体有限公司 | Semiconductor power device |
Also Published As
Publication number | Publication date |
---|---|
CN102646709B (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101969074B (en) | High voltage lateral double diffused MOSFET element | |
CN102760756B (en) | Super junction metallic oxide field effect tube terminal structure with floating field plate | |
Luo et al. | Low on-resistance SOI dual-trench-gate MOSFET | |
CN101819998B (en) | High voltage low power consumption SOI LDMOS transistor having strained silicon structure | |
CN102157560B (en) | High-voltage LDMOS (landscape diffusion metal oxide semiconductor) device | |
CN102610643A (en) | Trench Metal Oxide Semiconductor Field Effect Transistor Devices | |
CN102738240B (en) | Bigrid power MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) device | |
CN104103522B (en) | A kind of preparation method of high pressure super-junction terminal structure | |
US20100271851A1 (en) | Self-bootstrapping field effect diode structures and methods | |
CN106876464A (en) | A kind of lateral double diffusion metal oxide semiconductor FET | |
CN103296081A (en) | Horizontal double-diffusion metallic oxide semiconductor field effect transistor | |
CN106887451B (en) | Super junction device and manufacturing method thereof | |
CN106571388B (en) | Transverse diffusion metal oxide semiconductor field effect pipe with RESURF structures | |
CN101702409B (en) | Transverse P-type double diffused metal oxide semiconductor transistor of silicon on insulator | |
CN102646709B (en) | Rapid super junction vertical double-diffused metal-oxide semiconductor field-effect transistor | |
CN202616236U (en) | Super junction VDMOS with P-type buried layer | |
CN104037231B (en) | A kind of flash horizontal dual pervasion field effect transistor | |
CN202616237U (en) | Rapid super junction VDMOS | |
Nigar et al. | A uni-gate vertical power MOSFET with improved figure of merits: design and analysis | |
CN102306662B (en) | Terminal structure of super junction vertical dual-diffusion metal oxide field effect transistor | |
CN102646710B (en) | Super-junction vertical double-diffusion metal oxide semiconductor tube | |
CN102646711B (en) | Super junction vertical double-diffused metal-oxide semiconductor field-effect transistor with P-type buried layer | |
CN202394979U (en) | Terminal structure of vertical double-diffused metal oxide field effect transistor | |
CN202616235U (en) | A Superjunction Vertical Double-Diffused Metal-Oxide Semiconductor Transistor | |
CN102315275A (en) | Terminal structure of superjunction VDMOS with discontinuous surface field oxidation layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |