[go: up one dir, main page]

CN102645550B - Physical quantity transducer and electronic equipment - Google Patents

Physical quantity transducer and electronic equipment Download PDF

Info

Publication number
CN102645550B
CN102645550B CN201210038089.1A CN201210038089A CN102645550B CN 102645550 B CN102645550 B CN 102645550B CN 201210038089 A CN201210038089 A CN 201210038089A CN 102645550 B CN102645550 B CN 102645550B
Authority
CN
China
Prior art keywords
displacement
physical quantity
quantity sensor
axis
displacement part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210038089.1A
Other languages
Chinese (zh)
Other versions
CN102645550A (en
Inventor
金本启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN102645550A publication Critical patent/CN102645550A/en
Application granted granted Critical
Publication of CN102645550B publication Critical patent/CN102645550B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明提供物理量传感器及电子设备。物理量传感器(10)的特征在于,具有:基板;第1、第2移位部(21、31),它们配置在基板上的空间平面内,并具有旋转轴(22、32);固定电极部,其设置在基板的分别与第1、第2移位部(21、31)相对的位置处;支承部(40),其分别支承第1移位部和第2移位部的旋转轴;固定部(50),其经由弹簧部(60)对支承部(40)进行支承;以及驱动部(70),其使支承部(40)在振动方向上振动,第1、第2移位部能够以旋转轴为轴相对于空间平面在垂直方向上移位,旋转轴被设置成分别偏离第1移位部或第2移位部的重心,第1移位部(21)的旋转轴(22)与第2移位部(31)的旋转轴(32)从重心偏离的方向彼此相反。

The invention provides a physical quantity sensor and electronic equipment. A physical quantity sensor (10) is characterized by comprising: a substrate; first and second displacement parts (21, 31) arranged in a space plane on the substrate and having rotation axes (22, 32); fixed electrode parts , which are arranged on the substrate at positions opposite to the first and second displacement parts (21, 31) respectively; the support part (40), which supports the rotation shafts of the first displacement part and the second displacement part respectively; The fixed part (50) supports the support part (40) via the spring part (60); and the drive part (70) vibrates the support part (40) in the vibration direction, and the first and second displacement parts It can be displaced in the vertical direction relative to the space plane with the rotation axis as the axis, and the rotation axis is set to deviate from the center of gravity of the first displacement part or the second displacement part respectively, and the rotation axis of the first displacement part (21) ( 22) The direction in which the rotation axis (32) of the second displacement part (31) deviates from the center of gravity is opposite to each other.

Description

物理量传感器及电子设备Physical Quantity Sensors and Electronic Equipment

技术领域 technical field

本发明涉及物理量传感器以及使用了该物理量传感器的电子设备。The present invention relates to a physical quantity sensor and electronic equipment using the same.

背景技术 Background technique

近年来,在汽车导航系统和摄像机的手抖校正等的姿势控制中,大多使用检测角速度的角速度传感器。在这种角速度传感器中,存在检测形成有元件的面内的绕轴的角速度的方式的角速度传感器。In recent years, angular velocity sensors that detect angular velocity are widely used in posture control such as car navigation systems and camera shake correction. Among such angular velocity sensors, there is an angular velocity sensor of a type that detects an angular velocity around an axis in a plane on which an element is formed.

专利文献1公开的角速度传感器由以下部件构成:在XY平面内呈圆环状的驱动质量;配置在其中心的支架;固定有支架的基板;在所述驱动质量的X轴方向上相对配置的一对第1质量部;在所述驱动质量的Y轴方向上相对配置的一对第2质量部;以及在所述基板上与所述第1质量部以及第2质量部相对配置的检测电极。The angular velocity sensor disclosed in Patent Document 1 is composed of the following components: an annular driving mass in the XY plane; a bracket arranged in the center; a substrate on which the bracket is fixed; A pair of first mass parts; a pair of second mass parts arranged oppositely in the Y-axis direction of the driving mass; and a detection electrode arranged opposite to the first mass part and the second mass part on the substrate .

利用这种结构,对驱动质量进行使其绕与XY平面垂直的Z轴方向的支架轴交替重复的旋转驱动,在施加绕X轴或绕Y轴的角速度时,作用哥氏力,对杠杆状的第1质量部或第2质量部旋转所造成的角速度进行检测。With this structure, the driving mass is alternately and repeatedly rotated around the support axis in the Z-axis direction perpendicular to the XY plane. When the angular velocity around the X-axis or around the Y-axis is applied, the Coriolis force acts, and the lever The angular velocity caused by the rotation of the first mass part or the second mass part is detected.

【专利文献1】美国专利申请公开第2009/0100930号说明书[Patent Document 1] Specification of U.S. Patent Application Publication No. 2009/0100930

但是,根据专利文献1公开的角速度传感器,由于旋转驱动产生离心力,尤其是在旋转方向变化时,存在杠杆状的检测电极振动的问题。当检测电极振动时会产生输出,因此存在即使在不施加角速度的情况下也产生输出的问题。However, according to the angular velocity sensor disclosed in Patent Document 1, there is a problem that the lever-shaped detection electrode vibrates due to the centrifugal force generated by rotational driving, especially when the rotational direction changes. An output is generated when the detection electrode vibrates, so there is a problem that an output is generated even when no angular velocity is applied.

发明内容 Contents of the invention

因此,本发明的目的在于在提供一种物理量传感器以及电子设备,该物理量传感器的检测电极不会由于驱动而进行振动,在例如将传感器用作了角速度传感器时,不会受到作为输出值的角速度以外的物理量即直线加速度的影响、以及检测轴以外的其他轴的角速度的影响的至少一种影响。Therefore, the object of the present invention is to provide a kind of physical quantity sensor and electronic equipment, the detection electrode of this physical quantity sensor will not vibrate due to driving, and when the sensor is used as an angular velocity sensor, for example, it will not be affected by the angular velocity as the output value. At least one of the influence of the physical quantity other than the linear acceleration and the influence of the angular velocity of the axis other than the detection axis.

本发明正是为了解决上述课题中的至少一部分而完成的,可作为以下应用例来实现。The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following application examples.

[应用例1]一种物理量传感器,其特征在于,该物理量传感器具有:基板;第1移位部和第2移位部,它们配置在所述基板上的空间平面内,并具有旋转轴;固定电极部,其设置在所述基板的分别与所述第1移位部以及第2移位部相对的位置处;支承部,其支承所述第1移位部和第2移位部各自的所述旋转轴;固定部,其经由弹簧部支承所述支承部;以及驱动部,其使所述支承部在振动方向上振动,所述第1移位部和第2移位部能够以所述旋转轴为轴相对于所述空间平面在垂直方向上移位,所述旋转轴分别被设置成偏离所述第1移位部或第2移位部的重心,所述第1移位部的所述旋转轴与所述第2移位部的所述旋转轴从所述重心偏离的方向彼此相反。[Application example 1] A physical quantity sensor, characterized in that the physical quantity sensor has: a substrate; a first displacement part and a second displacement part, which are arranged in a space plane on the substrate and have a rotation axis; a fixed electrode portion provided on the substrate at positions facing the first displacement portion and the second displacement portion; a support portion supporting each of the first displacement portion and the second displacement portion the rotating shaft; a fixing part that supports the support part via a spring part; and a drive part that vibrates the support part in the vibration direction, and the first displacement part and the second displacement part can be The rotation axis is an axis that is displaced in the vertical direction relative to the space plane, and the rotation axes are respectively set to deviate from the center of gravity of the first displacement part or the second displacement part, and the first displacement part The direction in which the rotation axis of the first displacement portion deviates from the center of gravity and the rotation axis of the second displacement portion are opposite to each other.

根据上述结构,例如在将物理量传感器用作角速度传感器的情况下,仅检测绕检测轴的角速度,不检测成为噪声的除检测轴以外的其他轴的角速度。因此,能够高精度地进行物理量检测。According to the above configuration, for example, when the physical quantity sensor is used as the angular velocity sensor, only the angular velocity around the detection axis is detected, and angular velocities other than the detection axis that become noise are not detected. Therefore, physical quantity detection can be performed with high precision.

[应用例2]根据应用例1所述的物理量传感器,其特征在于,所述旋转轴分别被配置成与所述支承部的所述振动方向平行。[Application example 2] The physical quantity sensor according to application example 1, wherein the rotation shafts are respectively arranged parallel to the vibration direction of the support portion.

根据上述结构,例如在将物理量传感器用作角速度传感器的情况下,在绕检测轴产生了角速度时各移位部容易相对于基板上的空间平面在垂直方向上移位,从而能够高精度地进行物理量检测。According to the above configuration, for example, when the physical quantity sensor is used as the angular velocity sensor, when the angular velocity is generated around the detection axis, each displacement part is easily displaced in the vertical direction with respect to the space plane on the substrate, thereby enabling high-precision measurement. Physical quantity detection.

[应用例3]根据应用例1或应用例2所述的物理量传感器,其特征在于,所述第1移位部和所述第2移位部配置成相互对称。[Application example 3] The physical quantity sensor according to application example 1 or application example 2, wherein the first displacement part and the second displacement part are arranged symmetrically to each other.

根据上述结构,各移位部的静电电容的绝对值相同,能够通过差动检测对移位进行检测。According to the above configuration, the absolute values of the electrostatic capacitances of the respective displacement parts are the same, and the displacement can be detected by differential detection.

[应用例4]一种物理量传感器,其特征在于,该物理量传感器具有:基板;以及第1振动体和第2振动体,它们配置在所述基板上的空间平面内,所述第1振动体具有:具备旋转轴的第1移位部和第2移位部;以及支承所述第1移位部和所述第2移位部的各个所述旋转轴的第1支承部,所述第2振动体具有:具备旋转轴的第3移位部和第4移位部;以及支承所述第3移位部和所述第4移位部的各个所述旋转轴的第2支承部,所述物理量传感器还具有:固定电极部,其设置在所述基板的分别与所述第1移位部、第2移位部、第3移位部、第4移位部相对的位置处;固定部,其经由弹簧部分别支承所述第1支承部和第2支承部;以及驱动部,其分别使所述第1支承部和第2支承部振动,所述第1振动体和所述第2振动体在彼此相反的方向上振动,所述第1移位部、第2移位部、第3移位部、第4移位部能够以所述旋转轴为轴相对于所述空间平面在垂直方向上移位,所述旋转轴分别被设置成偏离所述第1移位部、第2移位部、第3移位部、第4移位部的重心,所述第1移位部的所述旋转轴与所述第2移位部的所述旋转轴从所述重心偏离的方向彼此相反,并且,所述第3移位部的所述旋转轴与所述第4移位部的所述旋转轴从所述重心偏离的方向彼此相反。[Application example 4] A physical quantity sensor comprising: a substrate; and a first vibrating body and a second vibrating body arranged in a space plane on the substrate, the first vibrating body It has: a first displacement part and a second displacement part having a rotation shaft; and a first support part supporting each of the rotation shafts of the first displacement part and the second displacement part, and the first 2. The vibrating body has: a third displacing part and a fourth displacing part having a rotating shaft; and a second support part supporting each of the rotating shafts of the third displacing part and the fourth displacing part The physical quantity sensor further includes: fixed electrode portions provided on the substrate at positions facing the first displacement portion, the second displacement portion, the third displacement portion, and the fourth displacement portion; a fixing part that supports the first support part and the second support part via a spring part; and a drive part that vibrates the first support part and the second support part respectively, and the first vibrating body and the The second vibrating body vibrates in directions opposite to each other, and the first, second, third, and fourth displacement parts can move relative to the space around the rotation axis. The plane is displaced in the vertical direction, and the rotation axes are respectively set to deviate from the center of gravity of the first displacement part, the second displacement part, the third displacement part and the fourth displacement part, and the first displacement part The rotation axis of the bit portion and the rotation axis of the second displacement portion deviate from the center of gravity in opposite directions, and the rotation axis of the third displacement portion is opposite to the rotation axis of the fourth displacement portion. The directions in which the rotation axes of the bits deviate from the center of gravity are opposite to each other.

根据上述结构,例如在将物理量传感器用作角速度传感器的情况下,仅检测绕检测轴的角速度,不检测成为噪声的除检测轴以外的其他轴的角速度和直线加速度。因此,与应用例1相比,能够高精度地进行物理量检测。According to the above configuration, for example, when the physical quantity sensor is used as the angular velocity sensor, only the angular velocity around the detection axis is detected, and angular velocities and linear accelerations other than the detection axis, which become noise, are not detected. Therefore, compared with application example 1, physical quantity detection can be performed with high precision.

[应用例5]根据应用例4所述的物理量传感器,其特征在于,所述第1振动体和第2振动体通过连结弹簧相互连接。[Application example 5] The physical quantity sensor according to application example 4, wherein the first vibrating body and the second vibrating body are connected to each other by a connecting spring.

根据上述结构,能够提高第1振动体和第2振动体的振动效率。According to the above configuration, the vibration efficiency of the first vibrating body and the second vibrating body can be improved.

[应用例6]根据应用例4或应用例5所述的物理量传感器,其特征在于,在设所述第1移位部与和其相对的所述固定电极部之间的静电电容为C1、所述第2移位部与和其相对的所述固定电极部之间的静电电容为C2、所述第3移位部与和其相对的所述固定电极部之间的静电电容为C3、所述第4移位部与和其相对的所述固定电极部之间的静电电容为C4时,所述物理量传感器的输出值为(C1+C2)-(C3+C4)。[Application Example 6] The physical quantity sensor according to Application Example 4 or Application Example 5, wherein the capacitance between the first displacement portion and the fixed electrode portion facing it is C1, The capacitance between the second displacement part and the fixed electrode part facing it is C2, the capacitance between the third displacement part and the fixed electrode part facing it is C3, When the capacitance between the fourth displacement unit and the fixed electrode unit facing it is C4, the output value of the physical quantity sensor is (C1+C2)−(C3+C4).

根据上述结构,能够检测差动电容输出,从而高精度地检测角速度。According to the above configuration, the differential capacitance output can be detected, and the angular velocity can be detected with high precision.

[应用例7]根据应用例1至应用例6中的任意一例所述的物理量传感器,其特征在于,该物理量传感器检测绕在平面视图中与所述振动方向垂直的方向的轴产生的角速度。[Application example 7] The physical quantity sensor according to any one of application examples 1 to 6, wherein the physical quantity sensor detects an angular velocity generated around an axis perpendicular to the vibration direction in plan view.

根据上述结构,仅检测绕检测轴的角速度,不检测检测轴以外的其他轴的角速度。因此,可得到能够以高精度检测角速度的物理量传感器。According to the above configuration, only the angular velocity around the detection axis is detected, and the angular velocity of other axes than the detection axis is not detected. Therefore, a physical quantity sensor capable of detecting angular velocity with high accuracy can be obtained.

[应用例8]一种电子设备,其特征在于,该电子设备具有应用例1至应用例7中的任意一例所述的物理量传感器。[Application example 8] An electronic device comprising the physical quantity sensor described in any one of application examples 1 to 7.

根据上述结构,可得到具有能够以高精度检测物理量的物理量传感器的电子设备。According to the above configuration, an electronic device having a physical quantity sensor capable of detecting a physical quantity with high precision can be obtained.

附图说明 Description of drawings

图1是示出本发明的物理量传感器的第1实施方式的概略结构图。FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity sensor of the present invention.

图2是图1中的A-A截面放大图。Fig. 2 is an enlarged view of the section A-A in Fig. 1 .

图3是示出本发明的物理量传感器的第2实施方式的概略结构图。Fig. 3 is a schematic configuration diagram showing a second embodiment of the physical quantity sensor of the present invention.

图4是物理量传感器作用的说明图。Fig. 4 is an explanatory diagram of the action of the physical quantity sensor.

图5是示出本发明的物理量传感器的第3实施方式的概略结构图。Fig. 5 is a schematic configuration diagram showing a third embodiment of the physical quantity sensor of the present invention.

图6是示出本发明的物理量传感器的第4实施方式的概略结构图。FIG. 6 is a schematic configuration diagram showing a fourth embodiment of the physical quantity sensor of the present invention.

图7是示出本发明的物理量传感器的第5实施方式的概略结构图。Fig. 7 is a schematic configuration diagram showing a fifth embodiment of the physical quantity sensor of the present invention.

图8是应用了具有本发明的物理量传感器的电子设备的便携电话机的说明图。FIG. 8 is an explanatory diagram of a mobile phone to which an electronic device having a physical quantity sensor of the present invention is applied.

标号说明Label description

10、100、100a、100b、100c物理量传感器;12、120振动系统结构体;14第1振动体;16第2振动体;20、20a、20b、20c第1移位部;21、21a、21b、21c移位板;22、22a、22b、22c旋转轴;30、30a、30b、30c第2移位部;31、31a、31b、31c移位板;32、32a、32b、32c旋转轴;40支承部;42开口;44、44a第1支承部;46、46a第2支承部;50固定部;60弹簧部;62第1弹簧部;64第2弹簧部;66第3弹簧部(连结弹簧);70驱动部;72驱动部;74基板;76下部电极;80、80a、80b、80c第3移位部;90、90a、90b、90c第4移位部;500便携电话机;502操作按钮;504接听口;506发送口;508显示部。10, 100, 100a, 100b, 100c physical quantity sensor; 12, 120 vibration system structure; 14 first vibration body; 16 second vibration body; 20, 20a, 20b, 20c first displacement part; 21, 21a, 21b , 21c shifting plate; 22, 22a, 22b, 22c rotating shaft; 30, 30a, 30b, 30c second shifting part; 31, 31a, 31b, 31c shifting plate; 32, 32a, 32b, 32c rotating shaft; 40 support part; 42 opening; 44, 44a first support part; 46, 46a second support part; 50 fixed part; 60 spring part; 62 first spring part; 64 second spring part; 66 third spring part (link spring); 70 driving part; 72 driving part; 74 substrate; 76 lower electrode; 80, 80a, 80b, 80c 3rd shifting part; Operation button; 504 receiving port; 506 sending port; 508 display unit.

具体实施方式 detailed description

以下参照附图详细说明本发明的物理量传感器、电子设备的实施方式。Embodiments of the physical quantity sensor and electronic equipment of the present invention will be described in detail below with reference to the drawings.

图1是示出本发明的物理量传感器的第1实施方式的概略结构图。图2是图1中的A-A截面放大图。另外,在各图中,为了便于说明,作为彼此垂直的3个轴,图示了X轴、Y轴、Z轴。此外,以下,将与X轴(第1轴)平行的方向称作X轴方向、将与Y轴(第2轴)平行的方向称作Y轴方向、将与Z轴(第3轴)平行的方向称作Z轴方向。FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity sensor of the present invention. Fig. 2 is an enlarged view of the section A-A in Fig. 1 . In addition, in each figure, for convenience of description, an X axis, a Y axis, and a Z axis are shown as three axes perpendicular to each other. In addition, hereinafter, the direction parallel to the X-axis (first axis) will be referred to as the X-axis direction, the direction parallel to the Y-axis (second axis) will be referred to as the Y-axis direction, and the direction parallel to the Z-axis (third axis) will be referred to as the X-axis direction. The direction of is called the Z-axis direction.

本发明的物理量传感器10形成为在振动系统结构体12上以如下部件为主要的基本结构:第1移位部20和第2移位部30,旋转轴22、32,支承部40,固定部50,连接支承部40和固定部50的弹簧部60,以及驱动部70。另外,本实施方式的物理量传感器10是能够检测绕X轴、Y轴或Z轴中的任意1个轴的角速度的传感器,以下,作为一例,对能够沿X轴方向振动、能够检测绕Y轴作用的旋转的角速度传感器的结构进行说明。The physical quantity sensor 10 of the present invention is formed on the vibration system structure body 12 with the following components as the main basic structure: the first displacement part 20 and the second displacement part 30, the rotation shafts 22, 32, the support part 40, and the fixed part 50 , the spring part 60 connecting the supporting part 40 and the fixing part 50 , and the driving part 70 . In addition, the physical quantity sensor 10 of this embodiment is a sensor capable of detecting an angular velocity around any one of the X-axis, Y-axis, or Z-axis. The structure of the function of the rotation angular velocity sensor will be described.

振动系统结构体12以硅为主要材料而构成,通过在硅基板(硅晶片)上使用薄膜形成技术(例如外延生长技术、化学气相生长技术等沉积技术)或各种加工技术(例如干蚀刻、湿蚀刻等蚀刻技术)加工成期望的外形形状,由此所述各部形成为一体。或者,还能够通过在对硅基板和玻璃基板进行贴合后,仅将硅基板加工成期望的外形形状,来形成前述各部。通过将振动系统结构体12的主要材料设为硅,能够实现优异的振动特性,并且能够发挥优异的耐久性。此外,能够应用硅半导体器件制作中所使用的精密加工技术,能够实现物理量传感器10的小型化。The vibration system structural body 12 is made of silicon as the main material, by using thin film formation techniques (such as deposition techniques such as epitaxial growth technology and chemical vapor growth technology) or various processing techniques (such as dry etching, Etching techniques such as wet etching) are processed into a desired shape, whereby the above-mentioned parts are integrated. Alternatively, the respective portions described above can also be formed by processing only the silicon substrate into a desired external shape after bonding the silicon substrate and the glass substrate. By using silicon as the main material of the vibration system structure 12 , excellent vibration characteristics can be realized, and excellent durability can also be exhibited. In addition, it is possible to apply the precision processing technology used in the production of silicon semiconductor devices, and it is possible to realize miniaturization of the physical quantity sensor 10 .

第1移位部20和第2移位部30在以Z轴为法线的XY平面视图中形成为矩形板状,具有在XY平面的空间平面内沿Z轴方向移位的移位板21、31。移位板21、31通过旋转轴22、32与支承部40连结。如图2所示,旋转轴22、32形成在从各移位板21、31的重心偏离的位置上。旋转轴22、32均延伸设置在作为振动方向的X轴方向上。在施加了外力时,绕旋转轴22、32扭转变形,并且使移位板21、31在Z方向上旋转。The first displacing unit 20 and the second displacing unit 30 are formed in a rectangular plate shape in an XY plane view with the Z axis as a normal line, and have a displacing plate 21 that displaces in the Z-axis direction within the spatial plane of the XY plane. , 31. The displacement plates 21 , 31 are connected to the support portion 40 via the rotation shafts 22 , 32 . As shown in FIG. 2 , the rotation shafts 22 , 32 are formed at positions deviated from the centers of gravity of the respective shift plates 21 , 31 . The rotation shafts 22 and 32 both extend in the X-axis direction which is the vibration direction. When an external force is applied, the displacement plates 21 and 31 are rotated in the Z direction while twisting and deforming around the rotation shafts 22 and 32 .

利用这种结构,第1移位部20和第2移位部30被安装成以如下方式旋转:基于重力(Z轴方向的外力)的旋转方向相对于旋转轴22、32为彼此相反的方向。换言之,也可以说旋转轴22从移位板21的重心偏离的方向、与旋转轴32从移位板31的重心偏离的方向为彼此相反的方向。With this structure, the first displacement part 20 and the second displacement part 30 are attached so as to rotate in such a manner that the rotation directions due to gravity (external force in the Z-axis direction) are opposite to each other with respect to the rotation shafts 22 and 32. . In other words, it can be said that the direction in which the rotation shaft 22 deviates from the center of gravity of the shift plate 21 and the direction in which the rotation shaft 32 deviates from the center of gravity of the shift plate 31 are directions opposite to each other.

支承部40是支承第1移位部20和第2移位部30的框。第1实施方式的支承部40具有包围第1移位部20和第2移位部30外周的开口42,经由旋转轴22、32进行支承,以使移位板21、31的摆动侧(自由端侧)相互朝向内侧。另外,支承部40的形状不限于框形状,还能够应用其他形状。The support portion 40 is a frame that supports the first displacement portion 20 and the second displacement portion 30 . The supporting portion 40 of the first embodiment has an opening 42 surrounding the outer peripheries of the first displacing portion 20 and the second displacing portion 30, and is supported via the rotating shafts 22, 32 so that the swinging sides (free) of the displacing plates 21, 31 end sides) toward each other inwardly. In addition, the shape of the support part 40 is not limited to a frame shape, and other shapes can be applied.

在支承部40的外侧设置有多个固定部50。在本实施方式中,在以Z轴为法线的平面视图中,在由配置成矩形形状的固定部50a、50b、50c、50d围起的区域中设置了支承部40。A plurality of fixing parts 50 are provided on the outer side of the support part 40 . In the present embodiment, the support portion 40 is provided in a region surrounded by the fixing portions 50 a , 50 b , 50 c , and 50 d arranged in a rectangular shape in a plan view with the Z axis as a normal line.

弹簧部60连结支承部40和固定部50。第1实施方式的弹簧部60由第1弹簧部62和第2弹簧部64构成。第1弹簧部62由一对弹簧部62a、62b构成,各弹簧部62a、62b呈在Y轴方向上往返并且在X轴方向上延伸的形状。此外,弹簧部62a、62b在以Z轴为法线的平面视图中,相对于与支承部40的中心相交的Y轴对称设置。通过将各弹簧部62a、62b设为这种形状,能够抑制第1弹簧部62在Y轴方向和Z轴方向上的变形,并且使第1弹簧部62在作为振动方向的X轴方向上顺利伸缩。此外,第2弹簧部64的结构为:相对于与支承部40的中心相交的X轴,和第1弹簧部62对称设置,并由一对弹簧部64a、64b构成。通过将各弹簧部64a、64b设为这种形状,能够抑制第2弹簧部64在Y轴方向和Z轴方向上的变形,并且使第1弹簧部64在作为振动方向的X轴方向上顺利伸缩。The spring portion 60 connects the support portion 40 and the fixing portion 50 . The spring portion 60 of the first embodiment is composed of a first spring portion 62 and a second spring portion 64 . The 1st spring part 62 is comprised from a pair of spring part 62a, 62b, and each spring part 62a, 62b has the shape extended in the X-axis direction while reciprocating in the Y-axis direction. Moreover, the spring parts 62a and 62b are symmetrically provided with respect to the Y-axis which intersects the center of the support part 40 in the plan view which makes Z-axis normal. By forming the respective spring portions 62a and 62b in such a shape, deformation of the first spring portion 62 in the Y-axis direction and the Z-axis direction can be suppressed, and the first spring portion 62 can be smoothly moved in the X-axis direction, which is the vibration direction. telescopic. Moreover, the structure of the 2nd spring part 64 is provided symmetrically with respect to the X axis which intersects the center of the support part 40 with respect to the 1st spring part 62, and consists of a pair of spring part 64a, 64b. By forming the respective spring portions 64a and 64b in such a shape, the deformation of the second spring portion 64 in the Y-axis direction and the Z-axis direction can be suppressed, and the first spring portion 64 can smoothly move in the X-axis direction which is the vibration direction. telescopic.

驱动部70具有使支承部40在X轴方向上以预定频率振动的功能。即,驱动部70使支承部40以重复在+X轴方向移位的状态、和在-X轴方向上移位的状态的方式振动。驱动部70a、70b由未图示的驱动电极和固定电极构成,分别形成在第1移位部20和第2移位部30上,但是只要是能够使支承部40在X方向上振动的结构,则也可以仅是任意一方的移位部。固定电极具有隔着驱动电极在X轴方向上相对配置的梳齿状的一对电极片。这种结构的驱动部70通过未图示的电源向电极片施加电压,由此在各驱动电极与各电极片之间产生静电力,从而使弹簧部60伸缩,并且使支承部40以预定频率在X轴方向上振动。另外,驱动部70还能够应用静电驱动方式、压电驱动方式或利用了磁场的劳伦兹力的电磁驱动方式等。The drive unit 70 has a function of vibrating the support unit 40 at a predetermined frequency in the X-axis direction. That is, the driving unit 70 vibrates the supporting unit 40 so as to repeat the state of being displaced in the +X axis direction and the state of being displaced in the −X axis direction. The driving parts 70a and 70b are composed of driving electrodes and fixed electrodes not shown in the figure, and are respectively formed on the first displacement part 20 and the second displacement part 30. However, as long as the driving parts 70a and 70b can vibrate the supporting part 40 in the X direction, , then it can also be only one of the displacement parts. The fixed electrode has a pair of comb-shaped electrode pieces arranged opposite to each other in the X-axis direction with the driving electrode interposed therebetween. The driving unit 70 having such a structure applies a voltage to the electrode pads from a power source not shown, thereby generating electrostatic force between each driving electrode and each electrode pad, thereby expanding and contracting the spring portion 60 and causing the support portion 40 to rotate at a predetermined frequency. Vibrates in the direction of the X axis. In addition, an electrostatic driving method, a piezoelectric driving method, an electromagnetic driving method using Lorentz force of a magnetic field, or the like can be applied to the driving unit 70 .

图2所示的基板74支承振动系统结构体12。基板74以硅为主要材料构成,但是不限于硅,可以是例如石英或各种玻璃。基板74是板状,在上表面接合了固定部50。由此,能够使振动系统结构体12固定并支承在基板74上。另外,将基板74与振动系统结构体12的间隙设定为由于外力而移位的第1移位部20以及第2移位部30不会接触到的距离。基板74与振动系统结构体12的接合方法没有特别限定,能够使用直接接合、阳极接合等各种接合方法进行接合。另外,固定部50不限于设置基板74上,也可以设置在基板74以外的部件(例如封装等)上。并且,在基板74的上表面、且与第1移位部20以及第2移位部30相对的部位处,设置了下部电极(固定电极部)76。由第1移位部20和第2移位部30以及下部电极76形成换能器(transducer),下部电极76固定在基板74上,并且在Z轴方向上与第1移位部20以及第2移位部30隔开并相对配置。The base plate 74 shown in FIG. 2 supports the vibration system structure 12 . The substrate 74 is mainly composed of silicon, but is not limited to silicon, and may be, for example, quartz or various types of glass. The substrate 74 is plate-shaped, and the fixing part 50 is bonded to the upper surface. Accordingly, the vibration system structure 12 can be fixed and supported on the base plate 74 . In addition, the gap between the substrate 74 and the vibration system structure 12 is set to a distance at which the first displacement part 20 and the second displacement part 30 displaced by an external force do not come into contact. The bonding method of the substrate 74 and the vibration system structure 12 is not particularly limited, and various bonding methods such as direct bonding and anodic bonding can be used for bonding. In addition, the fixing portion 50 is not limited to being provided on the substrate 74 , and may be provided on components other than the substrate 74 (for example, a package or the like). Further, a lower electrode (fixed electrode portion) 76 is provided on the upper surface of the substrate 74 at a portion facing the first displacement portion 20 and the second displacement portion 30 . A transducer (transducer) is formed by the first displacement part 20, the second displacement part 30 and the lower electrode 76, and the lower electrode 76 is fixed on the substrate 74, and is connected to the first displacement part 20 and the second displacement part 20 in the Z-axis direction. 2. The displacement parts 30 are spaced apart and arranged facing each other.

图3是示出本发明的物理量传感器的第2实施方式的概略结构图。如图所示,第2实施方式的物理量传感器100在振动系统结构体120上具有两个振动体、和设置在各振动体上的4个移位部。具体而言,物理量传感器100沿着传感器的振动方向由第1振动体14和第2振动体16构成,第1振动体14具有第1移位部20和第2移位部30,第2振动体16具有第3移位部80和第4移位部90。另外,振动系统结构体120以硅为主要材料构成,在硅基板(硅晶片)上使用薄膜形成技术或各种加工技术加工为期望的外形形状,由此各部形成为一体。第1移位部20和第2移位部30的结构与第1实施方式的结构相同,省略其详细说明。此外,第3移位部80和第4移位部90的基本结构与第1移位部20以及第2移位部30相同。但是,在第1移位部20以及第2移位部30与第3移位部80以及第4移位部90之间,形成了第3弹簧部(连结弹簧)66。第3弹簧部66由一对弹簧部66a、66b构成,各弹簧部66a、66b呈在Y轴方向上往复并且在X轴方向上延伸的形状。此外,弹簧部66a、66b在以Z轴为法线的XY平面视图中,相对于与第1支承部44以及第2支承部46的中心相交的X轴对称设置。通过将各弹簧部66a、66b设为这种形状,能够抑制第1弹簧部62在Y轴方向和Z轴方向上的变形,并且使第1弹簧部62在X轴方向上顺利伸缩。Fig. 3 is a schematic configuration diagram showing a second embodiment of the physical quantity sensor of the present invention. As shown in the figure, the physical quantity sensor 100 of the second embodiment has two vibrating bodies and four displacement parts provided on each vibrating body in the vibrating system structure 120 . Specifically, the physical quantity sensor 100 is composed of a first vibrating body 14 and a second vibrating body 16 along the vibration direction of the sensor. The first vibrating body 14 has a first displacement part 20 and a second displacement part 30. The body 16 has a third displacement portion 80 and a fourth displacement portion 90 . In addition, the vibration system structure 120 is composed of silicon as a main material, and is processed into a desired external shape on a silicon substrate (silicon wafer) using a thin film forming technique or various processing techniques, whereby the various parts are integrally formed. The configurations of the first displacing unit 20 and the second displacing unit 30 are the same as those of the first embodiment, and detailed description thereof will be omitted. In addition, the basic configurations of the third displacement unit 80 and the fourth displacement unit 90 are the same as those of the first displacement unit 20 and the second displacement unit 30 . However, a third spring portion (coupling spring) 66 is formed between the first displacement portion 20 and the second displacement portion 30 and the third displacement portion 80 and the fourth displacement portion 90 . The 3rd spring part 66 is comprised from a pair of spring part 66a, 66b, and each spring part 66a, 66b has the shape extended in the X-axis direction while reciprocating in the Y-axis direction. Moreover, the spring parts 66a and 66b are provided symmetrically with respect to the X axis which intersects the center of the 1st support part 44 and the 2nd support part 46 in XY plan view which makes Z-axis normal. By making each spring part 66a, 66b into such a shape, deformation|transformation of the 1st spring part 62 in the Y-axis direction and Z-axis direction can be suppressed, and the 1st spring part 62 can expand and contract smoothly in the X-axis direction.

此外,第2实施方式的物理量传感器100的驱动部72与第1实施方式的驱动部70的基本结构相同。但是,通过向第1移位部20和第2移位部30的驱动部72a、72b、以及第3移位部80和第4移位部90的驱动部72c、72d施加相位错开180度的交变电压,在各驱动电极与各电极片之间分别产生静电力,从而使第1~第3弹簧部62、64、66在X轴方向上伸缩,并且使第1移位部20以及第2移位部30与第3移位部80以及第4移位部90以彼此相反相位、且以预定频率在X轴方向上振动。另外,驱动部72a、72b可以仅形成任意一方。关于驱动部72c、72d也同样如此。In addition, the drive unit 72 of the physical quantity sensor 100 of the second embodiment has the same basic configuration as that of the drive unit 70 of the first embodiment. However, by applying 180 degrees of phase shift to the driving parts 72a, 72b of the first shifting part 20 and the second shifting part 30, and the driving parts 72c and 72d of the third shifting part 80 and the fourth shifting part 90, Alternating voltage generates electrostatic force between each drive electrode and each electrode piece, thereby making the first to third spring parts 62, 64, 66 expand and contract in the X-axis direction, and make the first displacement part 20 and the first displacement part 20 2. The displacement unit 30, the third displacement unit 80, and the fourth displacement unit 90 are in opposite phases to each other and vibrate in the X-axis direction at a predetermined frequency. In addition, only either one of the driving parts 72a and 72b may be formed. The same applies to the drive units 72c and 72d.

另外,关于第2实施方式的物理量传感器100,在将与和第1~第4移位部20、30、80、90分别相对的下部电极76之间产生的静电电容分别设为了C1~C4的情况下,其输出设定为(C1+C2)-(C3+C4)。In addition, in the physical quantity sensor 100 according to the second embodiment, the electrostatic capacitances generated between the lower electrodes 76 facing the first to fourth displacement parts 20, 30, 80, and 90 are set to C1 to C4, respectively. In this case, its output is set to (C1+C2)-(C3+C4).

接着,以下说明上述结构的本发明的物理量传感器10、100的作用。图4是物理量传感器作用的说明图。另外,在图4中,根据施加给移位板的力的状态,分为A~G的情况进行记述。Next, the operation of the physical quantity sensor 10, 100 of the present invention having the above-mentioned configuration will be described below. Fig. 4 is an explanatory diagram of the action of the physical quantity sensor. In addition, in FIG. 4 , cases A to G are described according to the state of the force applied to the displacement plate.

首先,在对于物理量传感器的输入为零的情况下(状态A),第1~第4移位部20、30、80、90的旋转轴22、32、82、92的延伸方向和振动方向相同,因此除了移位板的自重引起的倾斜以外,第1~第4移位部20、30、80、90不发生变动。因此,不会引起换能器的电容变化,所以输出为零。First, when the input to the physical quantity sensor is zero (state A), the extension direction of the rotation shafts 22, 32, 82, 92 of the first to fourth displacement parts 20, 30, 80, 90 is the same as the vibration direction. Therefore, the first to fourth displacement parts 20, 30, 80, and 90 do not fluctuate except for the inclination caused by the own weight of the displacement plate. Therefore, no change in the capacitance of the transducer is caused, so the output is zero.

接着,在输入了对于物理量传感器的绕X轴的角速度的情况下(状态B),第1~第4移位部20、30、80、90的旋转轴22、32、82、92的轴向形成在与振动方向相同的方向上,因此不产生哥氏力。因此,不会引起换能器的电容变化,所以输出为零。Next, when the angular velocity around the X-axis is input to the physical quantity sensor (state B), the axial directions of the rotation shafts 22, 32, 82, 92 of the first to fourth displacement parts 20, 30, 80, 90 Formed in the same direction as the vibration direction, so no Coriolis force is generated. Therefore, no change in the capacitance of the transducer is caused, so the output is zero.

接着,对输入了对于物理量传感器的绕Y轴的角速度的情况(状态C)进行说明。此处,假定第1振动体14的第1移位部20和第2移位部30朝-X轴方向振动,第2振动体16的第3移位部80和第4移位部90朝+X轴方向振动,绕Y轴输入了角速度。一般而言,哥氏力Fcori能够用下式表示:Next, a case where an angular velocity around the Y axis is input to the physical quantity sensor (state C) will be described. Here, it is assumed that the first displacing part 20 and the second displacing part 30 of the first vibrating body 14 vibrate in the -X axis direction, and the third displacing part 80 and the fourth displacing part 90 of the second vibrating body 16 vibrate toward the -X axis. Vibrates in the +X-axis direction, and an angular velocity is input around the Y-axis. In general, the Coriolis force Fcori can be expressed by the following formula:

【式1】【Formula 1】

Fcori=2mv×Ω。Fcori=2mv×Ω.

此处,m表示质量,v表示速度,Ω表示角速度。Here, m represents mass, v represents velocity, and Ω represents angular velocity.

对于第1移位部20和第2移位部30,当朝-X轴方向振动并且施加绕Y轴的角速度Ωy时,作用-Z轴方向的哥氏力,移位板21、31朝-Z轴方向旋转,由此移位板21、31与下部电极76之间的静电电容C1、C2变化。并且,对于第3移位部80和第4移位部90,当朝+X轴方向振动并且施加绕Y轴的角速度Ωy时,作用+Z轴方向的哥氏力,移位板81、91朝+Z轴方向旋转,由此移位板81、91与下部电极76之间的静电电容C3、C4变化。这样,在第1移位部20以及第2移位部30与第3移位部80以及第4移位部90中,哥氏力的方向为相反方向,第1~第4移位部20、30、80、90的静电电容C1~C4能够根据(C1+C2)-(C3+C4),检测到与绕Y轴的角速度对应的电容变化。For the first displacement part 20 and the second displacement part 30, when vibrating in the direction of the -X axis and applying an angular velocity Ωy around the Y axis, a Coriolis force in the direction of the -Z axis acts, and the displacement plates 21 and 31 move toward the - The rotation in the Z-axis direction changes the capacitances C1 and C2 between the displacement plates 21 and 31 and the lower electrode 76 . Furthermore, when the third displacement part 80 and the fourth displacement part 90 vibrate in the +X-axis direction and apply an angular velocity Ωy around the Y-axis, a Coriolis force in the +Z-axis direction acts, and the displacement plates 81, 91 Rotation in the +Z axis direction changes capacitances C3 and C4 between displacement plates 81 and 91 and lower electrode 76 . In this way, in the first displacement part 20 and the second displacement part 30 and the third displacement part 80 and the fourth displacement part 90, the direction of the Coriolis force is the opposite direction, and the first to fourth displacement parts 20 , 30 , 80 , and 90 electrostatic capacitances C1 to C4 can detect capacitance changes corresponding to angular velocities around the Y-axis according to (C1+C2)-(C3+C4).

接着,说明输入了对于物理量传感器的绕Z轴的角速度的情况(状态D)。此处,假定第1振动体14的第1移位部20和第2移位部30朝-X轴方向振动,第2振动体16的第3移位部80和第4移位部90朝+X轴方向振动,绕Z轴输入了角速度。Next, a case where an angular velocity around the Z axis is input to the physical quantity sensor (state D) will be described. Here, it is assumed that the first displacing part 20 and the second displacing part 30 of the first vibrating body 14 vibrate in the -X axis direction, and the third displacing part 80 and the fourth displacing part 90 of the second vibrating body 16 vibrate toward the -X axis. Vibrates in the +X axis direction, and an angular velocity is input around the Z axis.

对于第1移位部20和第2移位部30,当朝-X轴方向振动并且施加绕Z轴的角速度Ωz时,作用+Y轴方向的哥氏力。此时,第1移位部20和第2移位部30的旋转轴22、32形成在从各移位板21、31的重心偏离的位置上,从重心偏离的方向彼此相反地形成。因此,朝-Z轴方向按压移位板21,朝+Z轴方向按压移位板31。由此,移位板21、31与下部电极76之间的静电电容C1、C2变化。When the first displacement part 20 and the second displacement part 30 vibrate in the −X axis direction and an angular velocity Ωz around the Z axis is applied, a Coriolis force in the +Y axis direction acts. At this time, the rotation shafts 22, 32 of the first displacing unit 20 and the second displacing unit 30 are formed at positions deviated from the centers of gravity of the respective displacing plates 21, 31, and the directions of displacing from the centers of gravity are opposite to each other. Therefore, the displacement plate 21 is pressed in the −Z axis direction, and the displacement plate 31 is pressed in the +Z axis direction. As a result, the capacitances C1 and C2 between the displacement plates 21 and 31 and the lower electrode 76 change.

对于第3移位部80和第4移位部90,当朝+X轴方向振动并且施加绕Z轴的角速度Ωz时,作用-Y轴方向的哥氏力。此时,第3移位部80和第4移位部90的旋转轴82、92形成在从各移位板81、91的重心偏离的位置上,从重心偏离的方向彼此相反地形成。因此,朝+Z轴方向按压移位板81,朝-Z轴方向按压移位板91。由此,移位板81、91与下部电极76之间的静电电容C3、C4变化。When the third displacement part 80 and the fourth displacement part 90 vibrate in the +X-axis direction and an angular velocity Ωz around the Z-axis is applied, a Coriolis force in the -Y-axis direction acts. At this time, the rotation shafts 82, 92 of the third displacing portion 80 and the fourth displacing portion 90 are formed at positions deviated from the centers of gravity of the respective displacing plates 81, 91, and the directions of displacing from the centers of gravity are opposite to each other. Therefore, the displacement plate 81 is pressed in the +Z axis direction, and the displacement plate 91 is pressed in the −Z axis direction. As a result, the capacitances C3 and C4 between the displacement plates 81 and 91 and the lower electrode 76 change.

其结果,第1~第4移位部20、30、80、90的静电电容C1~C4的输出为C1-C4=0以及C2-C3=0,(C1+C2)-(C3+C4)=(C1-C4)-(C2-C3)=0,从而检测不到在Z轴方向上作用的哥氏力。As a result, the outputs of the capacitances C1 to C4 of the first to fourth shifting units 20, 30, 80, and 90 are C1-C4=0 and C2-C3=0, (C1+C2)-(C3+C4) =(C1-C4)-(C2-C3)=0, so that the Coriolis force acting in the Z-axis direction cannot be detected.

接着,在输入了对于物理量传感器的X轴方向的加速度的情况下(状态E),第1~第4移位部20、30、80、90的旋转轴22、32、82、92的轴向形成在与X轴方向的加速度相同的方向上,因此移位部不进行移位。因此,不会引起换能器的电容变化,所以输出为零。Next, when acceleration in the X-axis direction is input to the physical quantity sensor (state E), the axial directions of the rotation shafts 22, 32, 82, 92 of the first to fourth displacement parts 20, 30, 80, 90 Since it is formed in the same direction as the acceleration in the X-axis direction, the displacement part does not displace. Therefore, no change in the capacitance of the transducer is caused, so the output is zero.

接着,在输入了对于物理量传感器的+Y轴方向的加速度的情况下(状态F),对于第1移位部20和第2移位部30,朝-X轴方向振动,并且施加+Y轴方向的加速度。第1移位部20和第2移位部30的旋转轴22、32形成在从各移位板21、31的重心偏离的位置上,从重心偏离的方向彼此相反地形成。因此,朝+Z轴方向按压移位板21,朝-Z轴方向按压移位板31。由此,移位板21、31与下部电极76之间的静电电容C1、C2变化。Next, when an acceleration in the +Y-axis direction is input to the physical quantity sensor (state F), the first displacement part 20 and the second displacement part 30 vibrate in the -X-axis direction and apply +Y-axis acceleration. direction of acceleration. The rotation shafts 22 and 32 of the first displacing unit 20 and the second displacing unit 30 are formed at positions deviated from the centers of gravity of the respective displacing plates 21 and 31 , and the directions of displacing from the centers of gravity are opposite to each other. Therefore, the displacement plate 21 is pressed in the +Z axis direction, and the displacement plate 31 is pressed in the −Z axis direction. As a result, the capacitances C1 and C2 between the displacement plates 21 and 31 and the lower electrode 76 change.

并且,对于第3移位部80和第4移位部90,朝+X轴方向振动,并且施加+Y轴方向的加速度。第3移位部80和第4移位部90的旋转轴82、92形成在从各移位板81、91的重心偏离的位置上,从重心偏离的方向彼此相反地形成。因此,朝+Z轴方向按压移位板81,朝-Z轴方向按压移位板91。由此,移位板81、91与下部电极76之间的静电电容C3、C4变化。Furthermore, while vibrating in the +X-axis direction, acceleration in the +Y-axis direction is applied to the third displacement part 80 and the fourth displacement part 90 . The rotation shafts 82, 92 of the third displacing portion 80 and the fourth displacing portion 90 are formed at positions deviated from the centers of gravity of the respective displacing plates 81, 91, and the directions of displacing from the centers of gravity are opposite to each other. Therefore, the displacement plate 81 is pressed in the +Z axis direction, and the displacement plate 91 is pressed in the −Z axis direction. As a result, the capacitances C3 and C4 between the displacement plates 81 and 91 and the lower electrode 76 change.

其结果,第1~第4移位部20、30、80、90的静电电容C1~C4的输出为C1-C3=0、C2-C4=0,从而检测不到在Y轴方向上作用的加速度。另外,即使在对物理量传感器输入了-Y轴方向的加速度的情况下,第1~第4移位部20、30、80、90的静电电容C1~C4的输出也为C1-C3=0以及C2-C4=0,(C1+C2)-(C3+C4)=(C1-C3)+(C2-C4)=0,从而检测不到在Y轴方向上作用的加速度。As a result, the outputs of the electrostatic capacitances C1 to C4 of the first to fourth displacement parts 20, 30, 80, and 90 are C1-C3=0, C2-C4=0, so that no force acting in the Y-axis direction can be detected. acceleration. In addition, even when the acceleration in the -Y axis direction is input to the physical quantity sensor, the outputs of the electrostatic capacitances C1 to C4 of the first to fourth displacement parts 20, 30, 80, and 90 are C1-C3=0 and C2-C4=0, (C1+C2)-(C3+C4)=(C1-C3)+(C2-C4)=0, so no acceleration acting in the Y-axis direction can be detected.

最后,在输入了对于物理量传感器的+Z轴方向的加速度的情况下(状态G),对于第1移位部20和第2移位部30,朝-X轴方向振动,并且施加+Z轴方向的加速度,由此移位板21和移位板31朝-Z轴方向旋转,从而移位板21、31与下部电极76之间的静电电容C1、C2变化。并且,对于第3移位部80和第4移位部90,通过朝+X轴方向振动并且施加+Z轴方向的加速度,移位板81和移位板91朝-Z轴方向旋转,由此移位板81、91与下部电极76之间的静电电容C3、C4变化。其结果,第1~第4移位部20、30、80、90的静电电容C1~C4全部为相同的值,且输出为C1+C2=C3+C4,从而检测不到在+Z轴方向上作用的加速度。另外,即使在对物理量传感器输入了-Z轴方向的加速度的情况下,第1~第4移位部20、30、80、90的静电电容C1~C4也全部为相同的值,且输出为C1+C2=C3+C4,从而检测不到在+Z轴方向上作用的加速度。Finally, when acceleration in the +Z-axis direction is input to the physical quantity sensor (state G), the first displacement part 20 and the second displacement part 30 vibrate in the -X-axis direction, and +Z-axis With the acceleration in the direction, the displacement plate 21 and the displacement plate 31 rotate in the −Z axis direction, thereby changing the capacitances C1 and C2 between the displacement plates 21 and 31 and the lower electrode 76 . Furthermore, the displacement plate 81 and the displacement plate 91 are rotated in the −Z axis direction by vibrating in the +X axis direction and applying an acceleration in the +Z axis direction to the third displacement portion 80 and the fourth displacement portion 90. The capacitances C3 and C4 between the displacement plates 81 and 91 and the lower electrode 76 vary. As a result, the electrostatic capacitances C1 to C4 of the first to fourth displacement parts 20, 30, 80, and 90 all have the same value, and the output is C1+C2=C3+C4, so that the capacitance in the +Z axis direction cannot be detected. The acceleration acting on it. In addition, even when acceleration in the -Z axis direction is input to the physical quantity sensor, all the capacitances C1 to C4 of the first to fourth displacement parts 20, 30, 80, and 90 have the same value, and the output is C1+C2=C3+C4, so the acceleration acting in the +Z axis direction cannot be detected.

另外,对于除了与旋转轴相同的轴向以外的角速度和加速度,能够应用第2实施方式的物理量传感器100,如果是除Z轴方向的加速度以外的情况,则即使是第1实施方式的物理量传感器也能够应用。In addition, the physical quantity sensor 100 of the second embodiment can be applied to angular velocities and accelerations other than the same axial direction as the rotation axis, and even the physical quantity sensor 100 of the first embodiment can be applied to accelerations other than the Z-axis direction. can also be applied.

根据这种物理量传感器,仅检测绕检测轴的角速度,不检测成为噪声的除检测轴以外的其他轴的角速度。因此,能够高精度地进行物理量检测。According to such a physical quantity sensor, only the angular velocity around the detection axis is detected, and the angular velocity of other axes other than the detection axis, which becomes noise, is not detected. Therefore, physical quantity detection can be performed with high precision.

图5是示出本发明的物理量传感器的第3实施方式的概略结构图。如图所示,关于第3实施方式的物理量传感器100a,第1移位部20a和第2移位部30a的旋转轴22a、32a相互接近的一侧以移位板21a、31a的摆动侧(自由端侧)朝向外侧的方式固定在第1支承部44上。并且,第3移位部80a和第4移位部90a的旋转轴82a、92a相互接近的一侧以移位板81a、91a的摆动侧(自由端侧)朝向外侧的方式固定在第2支承部46上。此时,第1~第4移位部20a、30a、80a、90a的旋转轴22a、32a、82a、92a分别设置为偏离所述第1~第4移位部20a、30a、80a、90a的各个重心。此外,配置成第1移位部20a的旋转轴22a和第2移位部30a的旋转轴32a从重心偏离的方向彼此相反,并且第3移位部80a的旋转轴82a和第4移位部90a的旋转轴92a从重心偏离的方向彼此相反。其他结构与第2实施方式的物理量传感器100的结构相同,标注相同标号并省略详细说明。Fig. 5 is a schematic configuration diagram showing a third embodiment of the physical quantity sensor of the present invention. As shown in the figure, in the physical quantity sensor 100a according to the third embodiment, the side where the rotation shafts 22a, 32a of the first displacement part 20a and the second displacement part 30a are close to each other is the swing side of the displacement plates 21a, 31a ( The free end side) is fixed on the first supporting part 44 in such a manner that it faces outward. In addition, the sides where the rotation shafts 82a, 92a of the third displacement portion 80a and the fourth displacement portion 90a are close to each other are fixed to the second support so that the swing sides (free end sides) of the displacement plates 81a, 91a face outward. Part 46 on. At this time, the rotation shafts 22a, 32a, 82a, 92a of the first to fourth displacement parts 20a, 30a, 80a, 90a are respectively set to deviate from the positions of the first to fourth displacement parts 20a, 30a, 80a, 90a. Each center of gravity. In addition, the rotation shaft 22a of the first displacement part 20a and the rotation shaft 32a of the second displacement part 30a are disposed in opposite directions from the center of gravity, and the rotation shaft 82a of the third displacement part 80a and the rotation shaft 82a of the fourth displacement part The directions in which the rotation axes 92a of 90a deviate from the center of gravity are opposite to each other. The other configurations are the same as those of the physical quantity sensor 100 of the second embodiment, and are assigned the same reference numerals and detailed description thereof will be omitted.

根据这种结构的第3实施方式的物理量传感器100a,在将物理量传感器用作角速度传感器的情况下,也仅检测绕检测轴的角速度,不检测成为噪声的除检测轴以外的其他轴的角速度。因此,能够高精度地进行物理量检测。并且,构成为,第1移位部20a和第2移位部30a的旋转轴22a、32a被安装在第1支承部44内侧、第3移位部80a和第4移位部90a的旋转轴82a、92a被安装在第2支承部46内侧,能够实现移位板彼此不会接触而破损。According to the physical quantity sensor 100a of the third embodiment having such a configuration, even when the physical quantity sensor is used as an angular velocity sensor, only the angular velocity around the detection axis is detected, and angular velocities other than the detection axis that become noise are not detected. Therefore, physical quantity detection can be performed with high precision. In addition, it is configured that the rotation shafts 22a, 32a of the first displacement part 20a and the second displacement part 30a are attached to the inner side of the first support part 44, and the rotation shafts of the third displacement part 80a and the fourth displacement part 90a 82a, 92a are attached inside the 2nd support part 46, and can prevent displacement plates from contacting and being damaged.

图6是示出本发明的物理量传感器的第4实施方式的概略结构图。如图所示,第4实施方式的物理量传感器100b在以Z轴为法线的XY平面视图中,在X轴方向上排列配置第1~第4移位部20b、30b、80b、90b。此时,第1~第4移位部20b、30b、80b、90b的旋转轴22b、32b、82b、92b分别设置为偏离所述第1~第4移位部20b、30b、80b、90b的各个重心。此外,配置成第1移位部20b的旋转轴22b和第2移位部30b的旋转轴32b从重心偏离的方向彼此相反,并且第3移位部80b的旋转轴82b和第4移位部90b的旋转轴92b从重心偏离的方向彼此相反。其他结构与第2实施方式的物理量传感器100的结构相同,标注相同标号并省略详细说明。FIG. 6 is a schematic configuration diagram showing a fourth embodiment of the physical quantity sensor of the present invention. As shown in the figure, the physical quantity sensor 100b according to the fourth embodiment has first to fourth displacement parts 20b, 30b, 80b, and 90b arranged side by side in the X-axis direction in an XY plane view with the Z-axis as a normal line. At this time, the rotation shafts 22b, 32b, 82b, 92b of the first to fourth displacement parts 20b, 30b, 80b, 90b are respectively set to deviate from the positions of the first to fourth displacement parts 20b, 30b, 80b, 90b. Each center of gravity. In addition, the directions in which the rotation shaft 22b of the first displacement part 20b and the rotation shaft 32b of the second displacement part 30b are deviated from the center of gravity are opposite to each other, and the rotation shaft 82b of the third displacement part 80b and the rotation shaft 82b of the fourth displacement part The directions in which the rotation axes 92b of 90b deviate from the center of gravity are opposite to each other. The other configurations are the same as those of the physical quantity sensor 100 of the second embodiment, and are assigned the same reference numerals and detailed description thereof will be omitted.

根据这种结构的第4实施方式的物理量传感器100b,在将物理量传感器用作角速度传感器的情况下,也仅检测绕检测轴的角速度,不检测成为噪声的除检测轴以外的其他轴的角速度。因此,能够高精度地进行物理量检测。According to the physical quantity sensor 100b of the fourth embodiment having such a configuration, even when the physical quantity sensor is used as the angular velocity sensor, only the angular velocity around the detection axis is detected, and angular velocities other than the detection axis that become noise are not detected. Therefore, physical quantity detection can be performed with high precision.

图7是示出本发明的物理量传感器的第5实施方式的概略结构图。如图所示,第5实施方式的物理量传感器100c在以Z轴为法线的XY平面视图中,将第1支承部44a和第2支承部46a形成为大致H型形状,在±Y轴方向的两个凹部上安装了第1~第4移位部20c、30c、80c、90c。并且,将驱动部70a、70b设为了分别安装在第1支承部44a和第2支承部46a上的结构。此时,第1~第4移位部20c、30c、80c、90c的旋转轴22c、32c、82c、92c分别设定成偏离所述第1~第4移位部20c、30c、80c、90c的各个重心。此外,配置成第1移位部20c的旋转轴22c和第2移位部30c的旋转轴32c从重心偏离的方向彼此相反,并且第3移位部80c的旋转轴82c和第4移位部90c的旋转轴92c从重心偏离的方向彼此相反。其他结构与第2实施方式的物理量传感器100的结构相同,标注相同标号并省略详细说明。Fig. 7 is a schematic configuration diagram showing a fifth embodiment of the physical quantity sensor of the present invention. As shown in the figure, the physical quantity sensor 100c according to the fifth embodiment has a first support portion 44a and a second support portion 46a formed in a substantially H-shape in an XY plane view with the Z-axis as a normal line, and is arranged in the ±Y-axis direction. The first to fourth displacement parts 20c, 30c, 80c, and 90c are installed on the two concave parts of the. Moreover, the drive parts 70a and 70b are set as the structure attached to the 1st support part 44a and the 2nd support part 46a, respectively. At this time, the rotation axes 22c, 32c, 82c, and 92c of the first to fourth displacement parts 20c, 30c, 80c, and 90c are respectively set to deviate from the first to fourth displacement parts 20c, 30c, 80c, and 90c. each center of gravity. In addition, the directions in which the rotation shaft 22c of the first displacement part 20c and the rotation shaft 32c of the second displacement part 30c deviate from the center of gravity are opposite to each other, and the rotation shaft 82c of the third displacement part 80c and the rotation shaft 82c of the fourth displacement part The directions in which the rotation axes 92c of 90c deviate from the center of gravity are opposite to each other. The other configurations are the same as those of the physical quantity sensor 100 of the second embodiment, and are assigned the same reference numerals and detailed description thereof will be omitted.

根据这种结构的第5实施方式的物理量传感器100c,在将物理量传感器用作角速度传感器的情况下,也仅检测绕检测轴的角速度,不检测成为噪声的除检测轴以外的其他轴的角速度。因此,能够高精度地进行物理量检测。并且,构成为,第1~第4移位部20c、30c、80c、90c被安装在第1支承部44a和第2支承部46a的外侧,相比于将移位板配置在支承部的框内的结构的物理量传感器,能够减小布线的寄生电容。According to the physical quantity sensor 100c of the fifth embodiment having such a configuration, even when the physical quantity sensor is used as the angular velocity sensor, only the angular velocity around the detection axis is detected, and angular velocities other than the detection axis that become noise are not detected. Therefore, physical quantity detection can be performed with high precision. In addition, the configuration is such that the first to fourth displacement parts 20c, 30c, 80c, and 90c are attached to the outer sides of the first support part 44a and the second support part 46a, and the displacement plate is arranged on the frame of the support part. The physical quantity sensor of the internal structure can reduce the parasitic capacitance of the wiring.

图8是应用了具有本发明的物理量传感器的电子设备的便携电话机的说明图。如图所示,便携电话机500具有多个操作按钮502、接听口504以及发送口506,在操作按钮502与接听器504之间配置有显示部508。在这种便携电话机500中内置有作为角速度检测单元(陀螺仪传感器)发挥作用的物理量传感器10、100、1OOa、100b、100c。FIG. 8 is an explanatory diagram of a mobile phone to which an electronic device having a physical quantity sensor of the present invention is applied. As shown in the figure, the mobile phone 500 has a plurality of operation buttons 502 , an answering port 504 , and a sending port 506 , and a display unit 508 is disposed between the operating buttons 502 and the receiver 504 . Physical quantity sensors 10 , 100 , 100 a , 100 b , and 100 c function as angular velocity detection means (gyro sensors) are incorporated in such mobile phone 500 .

Claims (8)

1.一种物理量传感器,其特征在于,该物理量传感器具有:1. A physical quantity sensor, characterized in that the physical quantity sensor has: 基板;Substrate; 第1移位部和第2移位部,它们配置在所述基板上的空间平面内,并具有旋转轴;a first displacement part and a second displacement part, which are arranged in a spatial plane on the substrate and have a rotation axis; 固定电极部,其设置在所述基板的分别与所述第1移位部以及第2移位部相对的位置处;a fixed electrode part disposed on the substrate at positions opposite to the first displacement part and the second displacement part; 支承部,其支承所述第1移位部和第2移位部各自的所述旋转轴;a supporting part supporting the respective rotation shafts of the first displacing part and the second displacing part; 固定部,其经由弹簧部支承所述支承部;以及a fixing portion supporting the supporting portion via a spring portion; and 驱动部,其安装在所述支承部上,使所述支承部在振动方向上振动,a driving part mounted on the support part to vibrate the support part in the vibration direction, 所述第1移位部和第2移位部能够以所述旋转轴为轴相对于所述空间平面在垂直方向上移位,The first displacing part and the second displacing part can be displaceable in a vertical direction relative to the spatial plane with the rotation axis as an axis, 所述旋转轴分别被设置成偏离所述第1移位部或第2移位部的重心,The rotation shafts are respectively arranged to deviate from the center of gravity of the first displacement part or the second displacement part, 所述第1移位部的所述旋转轴与所述第2移位部的所述旋转轴从所述重心偏离的方向彼此相反,The direction in which the rotation axis of the first displacement part and the rotation axis of the second displacement part deviate from the center of gravity are opposite to each other, 在与所述振动方向垂直的方向上,所述驱动部配置在所述第1移位部与所述第2移位部之间。The drive unit is arranged between the first displacement unit and the second displacement unit in a direction perpendicular to the vibration direction. 2.根据权利要求1所述的物理量传感器,其特征在于,2. The physical quantity sensor according to claim 1, wherein 所述旋转轴分别被配置成与所述支承部的所述振动方向平行。The rotation shafts are respectively arranged parallel to the vibration direction of the support portion. 3.根据权利要求1所述的物理量传感器,其特征在于,3. The physical quantity sensor according to claim 1, wherein: 所述第1移位部和所述第2移位部被配置成相互对称。The first displacement part and the second displacement part are arranged symmetrically to each other. 4.根据权利要求1所述的物理量传感器,其特征在于,4. The physical quantity sensor according to claim 1, wherein 该物理量传感器检测绕在所述基板上的空间平面中与所述振动方向垂直的方向的轴产生的角速度。The physical quantity sensor detects an angular velocity generated around an axis in a direction perpendicular to the vibration direction in a space plane on the substrate. 5.一种物理量传感器,其特征在于,该物理量传感器具有:5. A physical quantity sensor, characterized in that the physical quantity sensor has: 基板;以及substrate; and 第1振动体和第2振动体,它们配置在所述基板上的空间平面内,a first vibrating body and a second vibrating body arranged in a spatial plane on the substrate, 所述第1振动体具有:具备旋转轴的第1移位部和第2移位部;以及支承所述第1移位部和所述第2移位部的各个所述旋转轴的第1支承部,The first vibrating body has: a first displacement part and a second displacement part having a rotation shaft; and a first displacement part supporting each of the rotation shafts of the first displacement part and the second displacement part. supporting part, 所述第2振动体具有:具备旋转轴的第3移位部和第4移位部;以及支承所述第3移位部和所述第4移位部的各个所述旋转轴的第2支承部,The second vibrating body has: a third displacing part and a fourth displacing part having a rotating shaft; supporting part, 所述物理量传感器还具有:The physical quantity sensor also has: 固定电极部,其设置在所述基板的分别与所述第1移位部、第2移位部、第3移位部、第4移位部相对的位置处;fixed electrode parts, which are provided on the substrate at positions opposite to the first displacement part, the second displacement part, the third displacement part, and the fourth displacement part; 固定部,其经由弹簧部分别支承所述第1支承部和第2支承部;以及a fixing part that supports the first support part and the second support part respectively via a spring part; and 驱动部,其分别安装在所述第1支承部和第2支承部上,分别使所述第1支承部和第2支承部振动,a driving part, which is installed on the first support part and the second support part respectively, and vibrates the first support part and the second support part respectively, 所述第1振动体和所述第2振动体在彼此相反的方向上振动,the first vibrating body and the second vibrating body vibrate in directions opposite to each other, 所述第1移位部、第2移位部、第3移位部、第4移位部能够以所述旋转轴为轴相对于所述空间平面在垂直方向上移位,The first displacement part, the second displacement part, the third displacement part, and the fourth displacement part can be displaced in a vertical direction relative to the spatial plane with the rotation axis as an axis, 所述旋转轴分别被设置成偏离所述第1移位部、第2移位部、第3移位部、第4移位部的重心,The rotation shafts are respectively arranged to deviate from the center of gravity of the first displacement part, the second displacement part, the third displacement part and the fourth displacement part, 所述第1移位部的所述旋转轴与所述第2移位部的所述旋转轴从所述重心偏离的方向彼此相反,The direction in which the rotation axis of the first displacement part and the rotation axis of the second displacement part deviate from the center of gravity are opposite to each other, 并且,所述第3移位部的所述旋转轴与所述第4移位部的所述旋转轴从所述重心偏离的方向彼此相反,In addition, directions in which the rotation axis of the third displacement portion and the rotation axis of the fourth displacement portion deviate from the center of gravity are opposite to each other, 在与所述第1支承部和第2支承部的振动方向垂直的方向上,所述驱动部配置在所述第1移位部与所述第2移位部之间以及所述第3移位部与所述第4移位部之间。In a direction perpendicular to the vibration direction of the first supporting part and the second supporting part, the driving part is disposed between the first displacing part and the second displacing part and the third displacing part. Between the bit part and the 4th shift part. 6.根据权利要求5所述的物理量传感器,其特征在于,6. The physical quantity sensor according to claim 5, wherein: 所述第1振动体和第2振动体通过连结弹簧相互连接。The first vibrating body and the second vibrating body are connected to each other by a connecting spring. 7.根据权利要求5所述的物理量传感器,其特征在于,7. The physical quantity sensor according to claim 5, wherein: 在设所述第1移位部与和其相对的所述固定电极部之间的静电电容为C1、Assume that the capacitance between the first displacement portion and the fixed electrode portion facing it is C1, 所述第2移位部与和其相对的所述固定电极部之间的静电电容为C2、The capacitance between the second displacement portion and the fixed electrode portion facing it is C2, 所述第3移位部与和其相对的所述固定电极部之间的静电电容为C3、The capacitance between the third displacement portion and the fixed electrode portion facing it is C3, 所述第4移位部与和其相对的所述固定电极部之间的静电电容为C4时,When the capacitance between the fourth displacement portion and the fixed electrode portion facing it is C4, 所述物理量传感器的输出值为The output value of the physical quantity sensor is (C1+C2)-(C3+C4)。(C1+C2) - (C3+C4). 8.一种电子设备,其特征在于,8. An electronic device, characterized in that, 该电子设备具有权利要求1所述的物理量传感器。The electronic device has the physical quantity sensor according to claim 1 .
CN201210038089.1A 2011-02-18 2012-02-17 Physical quantity transducer and electronic equipment Expired - Fee Related CN102645550B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-033665 2011-02-18
JP2011033665A JP2012173055A (en) 2011-02-18 2011-02-18 Physical quantity sensor and electronic apparatus

Publications (2)

Publication Number Publication Date
CN102645550A CN102645550A (en) 2012-08-22
CN102645550B true CN102645550B (en) 2016-04-13

Family

ID=45571472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210038089.1A Expired - Fee Related CN102645550B (en) 2011-02-18 2012-02-17 Physical quantity transducer and electronic equipment

Country Status (6)

Country Link
US (1) US9273962B2 (en)
EP (1) EP2489981A3 (en)
JP (1) JP2012173055A (en)
KR (1) KR101365096B1 (en)
CN (1) CN102645550B (en)
TW (1) TWI476372B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1392741B1 (en) 2008-12-23 2012-03-16 St Microelectronics Rousset MICROELETTROMECHANICAL GYROSCOPE WITH IMPROVED REJECTION OF ACCELERATION DISORDERS
IT1394007B1 (en) 2009-05-11 2012-05-17 St Microelectronics Rousset MICROELETTROMECANICAL STRUCTURE WITH IMPROVED REJECTION OF ACCELERATION DISORDERS
ITTO20091042A1 (en) 2009-12-24 2011-06-25 St Microelectronics Srl MICROELETTROMECHANICAL INTEGRATED GYROSCOPE WITH IMPROVED DRIVE STRUCTURE
ITTO20110806A1 (en) 2011-09-12 2013-03-13 St Microelectronics Srl MICROELETTROMECANICAL DEVICE INTEGRATING A GYROSCOPE AND AN ACCELEROMETER
JP5979344B2 (en) * 2012-01-30 2016-08-24 セイコーエプソン株式会社 Physical quantity sensor and electronic equipment
JP6127377B2 (en) 2012-04-10 2017-05-17 セイコーエプソン株式会社 Gyro sensor and electronics
US9404747B2 (en) 2013-10-30 2016-08-02 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
JP2015184009A (en) * 2014-03-20 2015-10-22 セイコーエプソン株式会社 Vibration element, electronic device, and moving object
JP6930396B2 (en) * 2017-11-28 2021-09-01 セイコーエプソン株式会社 Physical quantity sensors, physical quantity sensor devices, composite sensor devices, inertial measurement units, portable electronic devices and mobile objects
JP2020085744A (en) 2018-11-28 2020-06-04 セイコーエプソン株式会社 Acceleration sensor, electronic device and moving body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905203A (en) * 1995-11-07 1999-05-18 Temic Telefunken Microelectronic Gmbh Micromechanical acceleration sensor
CN101772705A (en) * 2007-08-03 2010-07-07 飞思卡尔半导体公司 Symmetrical differential capacitive sensor and method of making same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646346A (en) 1994-11-10 1997-07-08 Okada; Kazuhiro Multi-axial angular velocity sensor
JPH073337A (en) * 1993-06-21 1995-01-06 Nippon Steel Corp Steel strip cooling system
JPH07190782A (en) * 1993-12-27 1995-07-28 Nikon Corp Vibrational angular velocity meter
DE4414237A1 (en) 1994-04-23 1995-10-26 Bosch Gmbh Robert Micromechanical vibrator of an oscillation gyrometer
JP3512004B2 (en) 2000-12-20 2004-03-29 トヨタ自動車株式会社 Physical quantity detector
DE10108197A1 (en) 2001-02-21 2002-09-12 Bosch Gmbh Robert Yaw rate sensor
US6928872B2 (en) * 2001-04-27 2005-08-16 Stmicroelectronics S.R.L. Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
JP3534251B2 (en) * 2002-08-08 2004-06-07 和廣 岡田 Angular velocity sensor
ES2333890T3 (en) * 2004-09-27 2010-03-02 Conti Temic Microelectronic Gmbh ANGLE SPEED SENSOR.
US8261614B2 (en) * 2006-03-10 2012-09-11 Continental Teves Ag & Co. Ohg Rotational speed sensor having a coupling bar
JP2008058259A (en) * 2006-09-04 2008-03-13 Sony Corp Inertial sensor and manufacturing method therefor
US8042396B2 (en) 2007-09-11 2011-10-25 Stmicroelectronics S.R.L. Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes
TW201004748A (en) * 2008-07-22 2010-02-01 Eclatorq Technology Co Ltd Tool having the function of measuring angle
JP4868027B2 (en) * 2009-05-26 2012-02-01 株式会社デンソー Acceleration angular velocity sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905203A (en) * 1995-11-07 1999-05-18 Temic Telefunken Microelectronic Gmbh Micromechanical acceleration sensor
CN101772705A (en) * 2007-08-03 2010-07-07 飞思卡尔半导体公司 Symmetrical differential capacitive sensor and method of making same

Also Published As

Publication number Publication date
TWI476372B (en) 2015-03-11
KR20120095310A (en) 2012-08-28
US9273962B2 (en) 2016-03-01
TW201235638A (en) 2012-09-01
US20120210789A1 (en) 2012-08-23
EP2489981A3 (en) 2014-07-02
CN102645550A (en) 2012-08-22
EP2489981A2 (en) 2012-08-22
JP2012173055A (en) 2012-09-10
KR101365096B1 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
CN102645550B (en) Physical quantity transducer and electronic equipment
US11313681B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
CN104964679B (en) Gyro sensor and electronic equipment
JP5021312B2 (en) Angular velocity sensor and manufacturing method thereof
JP5138772B2 (en) Coriolis Gyro
CN103900546B (en) A kind of micro electronmechanical six axle inertial sensors
JP5450451B2 (en) XY Axis Dual Mass Tuning Fork Gyroscope with Vertically Integrated Electronic Circuits and Wafer Scale Sealed Packaging
US7770451B2 (en) Angular velocity detecting device
US6539801B1 (en) Z-axis vibratory gyroscope
CN102175236A (en) Micro gyroscope capable of regulating and reducing quadrature errors
JP2012149961A (en) Vibration gyro
JP6146592B2 (en) Physical quantity sensor, electronic equipment
JP4983107B2 (en) Inertial sensor and method of manufacturing inertial sensor
JP2012242240A (en) Gyro sensor, electronic apparatus
JP4466283B2 (en) Gyro sensor
CN120063238A (en) A gyroscope structure, chip, gyroscope and electronic equipment
KR20000050760A (en) Laterally driving gimbal type gyroscope having unbalanced inner torsional gimbal
Chang et al. Design and testing of dual-axial gyroscope

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20210217

CF01 Termination of patent right due to non-payment of annual fee