CN102643374A - Construction of High Performance Cationic Gene Carrier with PGMA as Backbone by ATRP Method - Google Patents
Construction of High Performance Cationic Gene Carrier with PGMA as Backbone by ATRP Method Download PDFInfo
- Publication number
- CN102643374A CN102643374A CN2012101270210A CN201210127021A CN102643374A CN 102643374 A CN102643374 A CN 102643374A CN 2012101270210 A CN2012101270210 A CN 2012101270210A CN 201210127021 A CN201210127021 A CN 201210127021A CN 102643374 A CN102643374 A CN 102643374A
- Authority
- CN
- China
- Prior art keywords
- add
- pgma
- product
- dissolve
- ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 56
- 125000002091 cationic group Chemical group 0.000 title claims abstract description 42
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 title claims abstract description 38
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 title abstract description 16
- 238000000034 method Methods 0.000 title abstract description 13
- 101710141544 Allatotropin-related peptide Proteins 0.000 title description 11
- 238000010276 construction Methods 0.000 title 1
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 75
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 72
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 53
- 239000000047 product Substances 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 26
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 26
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 24
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 24
- 239000003446 ligand Substances 0.000 claims description 23
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 22
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 claims description 22
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 21
- 238000010526 radical polymerization reaction Methods 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 19
- 238000001291 vacuum drying Methods 0.000 claims description 19
- 238000000502 dialysis Methods 0.000 claims description 17
- 239000000178 monomer Substances 0.000 claims description 16
- -1 alcohol amine Chemical class 0.000 claims description 15
- 239000002244 precipitate Substances 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 11
- DWFKOMDBEKIATP-UHFFFAOYSA-N n'-[2-[2-(dimethylamino)ethyl-methylamino]ethyl]-n,n,n'-trimethylethane-1,2-diamine Chemical compound CN(C)CCN(C)CCN(C)CCN(C)C DWFKOMDBEKIATP-UHFFFAOYSA-N 0.000 claims description 10
- 238000007142 ring opening reaction Methods 0.000 claims description 10
- 239000002202 Polyethylene glycol Substances 0.000 claims description 9
- BKMMTJMQCTUHRP-UHFFFAOYSA-N 2-aminopropan-1-ol Chemical compound CC(N)CO BKMMTJMQCTUHRP-UHFFFAOYSA-N 0.000 claims description 8
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 claims description 6
- 230000000977 initiatory effect Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- MWVTWFVJZLCBMC-UHFFFAOYSA-N 4,4'-bipyridine Chemical compound C1=NC=CC(C=2C=CN=CC=2)=C1 MWVTWFVJZLCBMC-UHFFFAOYSA-N 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 claims description 3
- 229940099500 cystamine Drugs 0.000 claims description 3
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 claims description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 claims 2
- MXZROAOUCUVNHX-UHFFFAOYSA-N 2-Aminopropanol Chemical compound CCC(N)O MXZROAOUCUVNHX-UHFFFAOYSA-N 0.000 claims 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims 1
- 229910052794 bromium Inorganic materials 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 238000001890 transfection Methods 0.000 abstract description 25
- 229920002873 Polyethylenimine Polymers 0.000 abstract description 14
- 239000013598 vector Substances 0.000 abstract description 10
- 231100000053 low toxicity Toxicity 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 abstract description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 4
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract 1
- 229910052737 gold Inorganic materials 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 17
- 239000000969 carrier Substances 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- 239000013603 viral vector Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 229920006317 cationic polymer Polymers 0.000 description 9
- XXSPGBOGLXKMDU-UHFFFAOYSA-N 2-bromo-2-methylpropanoic acid Chemical compound CC(C)(Br)C(O)=O XXSPGBOGLXKMDU-UHFFFAOYSA-N 0.000 description 8
- 231100000419 toxicity Toxicity 0.000 description 7
- 230000001988 toxicity Effects 0.000 description 7
- 238000011160 research Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 241001411320 Eriogonum inflatum Species 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 108700005077 Viral Genes Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000053 physical method Methods 0.000 description 3
- 239000004633 polyglycolic acid Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102100038904 GPI inositol-deacylase Human genes 0.000 description 2
- 101001099051 Homo sapiens GPI inositol-deacylase Proteins 0.000 description 2
- 101001126591 Homo sapiens Post-GPI attachment to proteins factor 2 Proteins 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 102100030422 Post-GPI attachment to proteins factor 2 Human genes 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000012637 gene transfection Methods 0.000 description 2
- 231100000086 high toxicity Toxicity 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 229920000962 poly(amidoamine) Polymers 0.000 description 2
- 229920002246 poly[2-(dimethylamino)ethyl methacrylate] polymer Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- HMLSBRLVTDLLOI-UHFFFAOYSA-N 1-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)C(C)OC(=O)C(C)=C HMLSBRLVTDLLOI-UHFFFAOYSA-N 0.000 description 1
- 229940044613 1-propanol Drugs 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 208000034486 Multi-organ failure Diseases 0.000 description 1
- 208000010718 Multiple Organ Failure Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- YSVZGWAJIHWNQK-UHFFFAOYSA-N [3-(hydroxymethyl)-2-bicyclo[2.2.1]heptanyl]methanol Chemical compound C1CC2C(CO)C(CO)C1C2 YSVZGWAJIHWNQK-UHFFFAOYSA-N 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- QATBRNFTOCXULG-UHFFFAOYSA-N n'-[2-(methylamino)ethyl]ethane-1,2-diamine Chemical compound CNCCNCCN QATBRNFTOCXULG-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012712 reversible addition−fragmentation chain-transfer polymerization Methods 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Medicinal Preparation (AREA)
Abstract
Description
技术领域 technical field
本发明属于非病毒基因载体技术领域,具体涉及ATRP法构建一系列以PGMA(聚甲基丙烯酸缩水甘油酯)为骨架,具有高的基因转染效率低毒的阳离子基因载体。The invention belongs to the technical field of non-viral gene carriers, and specifically relates to constructing a series of cationic gene carriers with PGMA (polyglycidyl methacrylate) as the backbone, high gene transfection efficiency and low toxicity by ATRP method.
背景技术 Background technique
基因治疗方法为先天性遗传疾病和严重后天获得性疾病的治疗提供了一条富有前景的新途径。基因治疗是一种将外源基因导入目的细胞并有效表达,从而达到治病目的的治疗方法。DNA分子通常以带负电的疏松状态存在,体积较大,满负电荷与细胞表面之间存在排斥作用,难于进入细胞;另外,血液及细胞内存在大量的水解酶尤其是核酸酶,能将裸DNA分子破坏,因此单独使用DNA转染时,效率较低。为了使DNA有效转染,需要借助物理方法或使用基因载体辅助DNA转染。物理方法需要使用专门的设备,不能进行全身性使用,并且会对组织和细胞产生严重损害,采用基因载体法有望克服物理方法的缺陷。Gene therapy approaches offer a promising new avenue for the treatment of congenital genetic diseases and severe acquired diseases. Gene therapy is a treatment method that introduces foreign genes into target cells and expresses them effectively, so as to achieve the purpose of curing diseases. DNA molecules usually exist in a negatively charged loose state, with a large volume, and there is repulsion between the fully negatively charged and the cell surface, making it difficult to enter the cell; in addition, there are a large number of hydrolytic enzymes, especially nucleases, in the blood and cells, which can The DNA molecule is damaged, so transfection with DNA alone is less efficient. In order to effectively transfect DNA, it is necessary to use physical methods or use gene vectors to assist DNA transfection. Physical methods require the use of specialized equipment, cannot be used systemically, and will cause serious damage to tissues and cells. The use of gene carrier methods is expected to overcome the shortcomings of physical methods.
应用于基因治疗的载体主要分为病毒载体(viral vector)和非病毒载体(non-viral vector)。病毒载体主要为逆转录病毒、腺病毒、腺相关病毒及单纯疱疹病毒,其优点是转染率高,缺点是缺乏安全性,可能引起致癌作用与不希望的自身免疫反应(unexpected immune response)和白细胞的病毒变化,甚至可能造成病人多器官衰竭导致死亡。此外病毒载体还会引起插入突变的现象,可能导致宿主细胞的恶行转化,而且病毒载体携带DNA的能力有限,不利于大规模的生产。由于它的上述弱点,目前科学界已经研究重心转向非病毒载体技术的研究与开发。与病毒性载体相比,非病毒载体安全性高,并且具有低免疫原性、能够携带大量DNA分子、容易大批量生产及费用低廉等优点,是一个有潜力的替代路线,故人们愈来愈重视人工合成的非病毒载体的研究。阳离子聚合物是目前研究最广泛的人工合成非病毒载体。阳离子聚合物能够自发与带负电荷的基因通过电荷相互作用,可形成带正电荷纳米级的复合体(complex),从而协助基因穿过带负电的细胞膜。此外,阳离子聚合物载体也能够保护质粒,避免被核酸酶降解,加速基因的细胞转染。Vectors used in gene therapy are mainly divided into viral vectors and non-viral vectors. Viral vectors are mainly retroviruses, adenoviruses, adeno-associated viruses and herpes simplex viruses, which have the advantage of high transfection rate and the disadvantage of lack of safety, which may cause carcinogenesis and unwanted autoimmune response (unexpected immune response) and Viral changes in white blood cells may even cause multiple organ failure and death in patients. In addition, viral vectors can also cause insertional mutations, which may lead to malicious transformation of host cells, and the ability of viral vectors to carry DNA is limited, which is not conducive to large-scale production. Because of its above-mentioned weakness, the research focus of the scientific community has shifted to the research and development of non-viral vector technology. Compared with viral vectors, non-viral vectors have the advantages of high safety, low immunogenicity, ability to carry a large number of DNA molecules, easy mass production and low cost, etc. It is a potential alternative route, so more and more people Pay attention to the research of artificially synthesized non-viral vectors. Cationic polymers are currently the most widely studied synthetic non-viral vectors. Cationic polymers can spontaneously interact with negatively charged genes through charge interactions to form positively charged nanoscale complexes, thereby assisting genes to pass through negatively charged cell membranes. In addition, cationic polymer carriers can also protect plasmids from degradation by nucleases and accelerate gene transfection into cells.
近年来,随着活性/可控自由聚合(living/controlled radical polymerization,LRP)研究的快速发展,LRP技术在制备具有新颖特定功能的生物高分子材料中也得到了巨大发展。LRP集活性可控聚合与自由基聚合的优点为一身,不但可得到相对分子量分布极窄、相对分子量可控、结构明晰的高分子,而且可聚合的单体多,反应条件温和易控制。所以,LRP技术具有极高的实用价值,受到了高分子化学家们的重视。迄今为止,已有原子转移自由基聚合(atom transferradical polymerization,ATRP)、稳定自由基氮氧游离基调控(nitroxide mediatedfree radical polymerization,NMRP)体系和可逆加成-裂解链转移聚合(reversibleaddition-fragmentation chain transfer,RAFT)等LRP体系问世。其中,ATRP近几年得到了迅速发展并有着重要应用价值。其所用引发剂一般为卤代烷烃,基本原理是通过一交替的“活化-去活”可逆反应使体系中游离基浓度极低,迫使不可逆终止反应降低到最低程度,而链增长反应仍可进行,从而实现“活性”聚合。ATRP反应温度适中,适用单体范围广,甚至可以在少量氧存在下进行,对高分子材料的分子设计不需复杂的合成路线,是现有NMRP、RAFT等其它活性聚合方法无法比拟的,因此可以说ATRP技术的出现开辟了活性聚合的新领域。In recent years, with the rapid development of living/controlled radical polymerization (LRP) research, LRP technology has also been greatly developed in the preparation of biopolymer materials with novel and specific functions. LRP integrates the advantages of living controllable polymerization and free radical polymerization. It can not only obtain polymers with extremely narrow relative molecular weight distribution, controllable relative molecular weight and clear structure, but also has many monomers that can be polymerized, and the reaction conditions are mild and easy to control. Therefore, LRP technology has extremely high practical value, and has been valued by polymer chemists. So far, there have been atom transfer radical polymerization (atom transferradical polymerization, ATRP), stable free radical nitroxide radical regulation (nitroxide mediated free radical polymerization, NMRP) system and reversible addition-fragmentation chain transfer polymerization (reversible addition-fragmentation chain transfer) , RAFT) and other LRP systems came out. Among them, ATRP has developed rapidly in recent years and has important application value. The initiators used are generally halogenated alkanes. The basic principle is to make the concentration of free radicals in the system extremely low through an alternate "activation-deactivation" reversible reaction, forcing the irreversible termination reaction to be reduced to a minimum, while the chain growth reaction can still be carried out. Thus "living" polymerization is achieved. ATRP reaction temperature is moderate, suitable for a wide range of monomers, and can even be carried out in the presence of a small amount of oxygen. The molecular design of polymer materials does not require complicated synthetic routes, which is unmatched by other active polymerization methods such as NMRP and RAFT. Therefore, It can be said that the emergence of ATRP technology has opened up a new field of active polymerization.
随着高分子科学、医学、生物学以及工程学等多门学科的相互交融、相互渗透和迅速发展,高分子基因载体材料进入一个快速发展的时期。目前,文献中报道一系列非病毒阳离子聚合物载体,包括聚-L-赖氨酸(poly(L-lysine),PLL)、聚乙二胺树枝状聚合物(poly(amidoamine),PAMAM)、聚甲基丙烯酸N,N-二甲氨基乙酯(poly(2-dimethylaminoethyl methacrylate),PDMAEMA)、聚乙烯亚胺(polyethylenimine,PEI)等。其中PEI具有较高的转染效率,是阳离子非病毒载体中公认的“金标”。但是上述阳离子聚合物仍具有相当高的毒性,大大限制了它们的应用。这样,开发低毒而高效阳离子聚合物是研究非病毒基因载体的核心内容。目前较为流行的方案是在阳离子聚合物中插入生物相容的成份,最常见的是聚乙二醇(PEG)。另一种常见的思路是多糖阳离子化,包括壳聚糖(chitosan)、环糊精(cyclodextrin)、葡聚糖(dextran)等。但是上述报道的非病毒载体的性能(比如安全性和转染效率)与实际应用的要求还有相当大的距离。With the intermingling, interpenetration and rapid development of polymer science, medicine, biology, engineering and other disciplines, polymer gene carrier materials have entered a period of rapid development. At present, a series of non-viral cationic polymer carriers have been reported in the literature, including poly-L-lysine (poly(L-lysine), PLL), polyethylenediamine dendrimers (poly(amidoamine), PAMAM), N,N-dimethylaminoethyl methacrylate (poly(2-dimethylaminoethyl methacrylate), PDMAEMA), polyethyleneimine (polyethyleneimine, PEI), etc. Among them, PEI has high transfection efficiency and is recognized as the "gold standard" among cationic non-viral vectors. However, the above-mentioned cationic polymers still have rather high toxicity, which greatly limits their applications. Thus, the development of cationic polymers with low toxicity and high efficiency is the core content of the study of non-viral gene vectors. The more popular solution is to insert biocompatible components into cationic polymers, the most common being polyethylene glycol (PEG). Another common idea is polysaccharide cationization, including chitosan (chitosan), cyclodextrin (cyclodextrin), dextran (dextran) and so on. However, the performance (such as safety and transfection efficiency) of the non-viral vectors reported above still has a considerable distance from the requirements of practical applications.
近几年研究者致力于ATRP理论和应用的研究工作,在ATRP合成生物材料以及ATRP技术的生物材料应用方面开展了广泛的研究,取得了一定的研究成果。对多种单体(包括DMAEMA、PEGEEMA、PEGMA以及GMA)的ATRP进行了系统的研究,积累了丰富的经验,促进了活性可控聚合在医用生物高分子中的应用。In recent years, researchers have devoted themselves to the research of ATRP theory and application. They have carried out extensive research on ATRP synthesis of biomaterials and the application of ATRP technology to biomaterials, and have achieved certain research results. The ATRP of various monomers (including DMAEMA, PEGEEMA, PEGMA and GMA) has been systematically studied, and rich experience has been accumulated, which has promoted the application of active controllable polymerization in medical biopolymers.
阳离子基因载体与DNA通过电荷作用将DNA包裹成纳米颗粒,这样就减小了DNA和细胞表面的排斥。同时阳离子基因载体可以保护DNA防止核酸酶的分解,这样有利于提高在细胞的转染效率。现在常用阳离子基因载体有:聚乙烯亚胺(PEI),聚类氨酸(PLL),聚乙二醇(PEG)等,其中PEI是目前应用最广泛的基因载体,由于它的高的转染效率在阳离子基因载体中PEI被作为黄金标准。但是对于大多数具有高转染效率的基因载体往往具有较大的毒性。而成功的基因载体不仅要有高的转染效率同时要具有低的毒性。而目前大多数阳离子基因载体不仅转染效率不高,毒性也很大。Cationic gene carriers and DNA wrap DNA into nanoparticles through the interaction of charges, which reduces the repulsion of DNA and cell surface. At the same time, the cationic gene carrier can protect DNA from the decomposition of nucleases, which is beneficial to improve the transfection efficiency in cells. Now commonly used cationic gene carriers include: polyethyleneimine (PEI), polyglycolic acid (PLL), polyethylene glycol (PEG), etc., among which PEI is currently the most widely used gene carrier, due to its high transfection Efficiency PEI is considered the gold standard among cationic gene carriers. However, most of the gene vectors with high transfection efficiency tend to have greater toxicity. A successful gene carrier should not only have high transfection efficiency but also have low toxicity. At present, most cationic gene carriers not only have low transfection efficiency, but also have high toxicity.
对于非病毒基因载体转染效率的提高和毒性的降低,将在临床上应用有巨大的意义,最普遍的方法是通过引入非离子亲水基团,来屏蔽阳离子聚合物毒性。最近,有研究发现环氧族PGMA可以与胺族开环反应,并且合成的PGEA阳离子基因载体通过它在不同细胞中的转染效率相当于枝化PEI(25KD)甚至还高。通过一系列的转染和毒性试验表明了PGEA系列作为具有高转染效率和低毒性,安全的基因载体对与将来临床上基因治疗具有深远的意义。The improvement of transfection efficiency and the reduction of toxicity of non-viral gene vectors will have great significance in clinical application. The most common method is to shield the toxicity of cationic polymers by introducing non-ionic hydrophilic groups. Recently, studies have found that epoxy-based PGMA can react with amine-based ring-opening, and the transfection efficiency of the synthetic PGEA cationic gene carrier in different cells is equivalent to that of branched PEI (25KD) or even higher. A series of transfection and toxicity tests showed that PGEA series, as a safe gene carrier with high transfection efficiency and low toxicity, has far-reaching significance for clinical gene therapy in the future.
综上所述,尽管在利用活性可控自由基聚合法制备基因载体方面已经做了很多工作,但是在技术方面还有以下问题需要解决:In summary, although a lot of work has been done on the preparation of gene vectors by living-controlled free radical polymerization, the following technical problems still need to be solved:
1、在制备高性能阳离子基因载体时,随着单体不断的接枝到PGMA骨架上,阳离子基因载体的分子量随之增大,细胞内吞作用增大,转染效率增加,但是细胞的毒性也随之增大,如何最大限度的降低基因载体的毒性成为需要解决的问题。1. When preparing high-performance cationic gene carriers, as the monomers are continuously grafted onto the PGMA backbone, the molecular weight of the cationic gene carrier increases, the endocytosis of the cells increases, and the transfection efficiency increases, but the toxicity of the cells How to minimize the toxicity of the gene carrier has become a problem that needs to be solved.
2、在制备高性能阳离子基因载体时,接枝不同单体,可以得到不同性能的阳离子聚合物,但是不同单体的质子化能力不同,导致载体的转染效率高低不同,如何筛选出具有高效高性能的单体是需要考虑的问题。2. When preparing high-performance cationic gene carriers, different monomers can be grafted to obtain cationic polymers with different properties, but the protonation ability of different monomers is different, resulting in different transfection efficiencies of the carriers. High-performance monomers are issues that need to be considered.
3、在制备高性能阳离子基因载体时,接枝相同的单体,在不同的细胞包括癌细胞和普通细胞中,转染高低不同,如何提高在确定细胞中的转染效率是需要研究的问题。3. When preparing a high-performance cationic gene carrier, the same monomer is grafted. In different cells, including cancer cells and ordinary cells, the transfection level is different. How to improve the transfection efficiency in certain cells is a problem that needs to be studied .
发明内容 Contents of the invention
本发明的目的是提供一种活性可控自由基聚合法(ATRP法)构建的以PGMA(聚甲基丙烯酸缩水甘油酯)为骨架的,其中包括线性PGEA、PGAP1、PGAP2、PGDED、梳状PGEA、梳状PGEAPEG的生物可还原高效阳离子基因载体。该阳离子基因载体分子量可控,分布窄、可剪切、毒性低,转染效率高,高效无毒的特点使其具备了投入临床试验的可能。The object of the present invention is to provide a kind of PGMA (polyglycidyl methacrylate) that is constructed by active controllable radical polymerization (ATRP method), including linear PGEA, PGAP1, PGAP2, PGDED, comb-like PGEA , comb-shaped PGEAPEG bioreducible high-efficiency cationic gene carrier. The cationic gene carrier has controllable molecular weight, narrow distribution, shearability, low toxicity, high transfection efficiency, high efficiency and non-toxicity, making it possible to put it into clinical trials.
所述的线性的以PGEA为骨架的阳离子基因载体的制备方法为:The preparation method of the linear cationic gene carrier with PGEA as the backbone is:
1)0-60℃无氧条件下,将0.1g-0.2g五甲基二乙烯三胺、5g-10g四氢呋喃、6g-12g GMA、0.08g-0.26g配体、0.033g-0.15g CuBr混合,各组分添加顺序为:先将GMA溶于四氢呋喃,然后加入五甲基二乙烯三胺,再加入配体,最后加入CuBr引发活性可控自由基聚合,或者先将GMA溶于四氢呋喃,然后加入五甲基二乙烯三胺,再加入CuBr,最后加入配体引发活性可控自由基聚合;聚合反应时间为1-9h,反应完成后加入水或者甲醇,或者暴露在空气中,使引发体系失活和终止聚合,然后用乙醚或者甲醇沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚或者甲醇,所得产物为线性PGMA;1) Mix 0.1g-0.2g pentamethyldiethylenetriamine, 5g-10g tetrahydrofuran, 6g-12g GMA, 0.08g-0.26g ligand, 0.033g-0.15g CuBr under 0-60℃ anaerobic condition , the order of adding each component is: first dissolve GMA in tetrahydrofuran, then add pentamethyldiethylenetriamine, then add ligand, and finally add CuBr to initiate living controllable free radical polymerization, or first dissolve GMA in tetrahydrofuran, and then Add pentamethyldiethylenetriamine, then add CuBr, and finally add ligand to initiate active controllable free radical polymerization; the polymerization reaction time is 1-9h, after the reaction is completed, add water or methanol, or expose to the air to make the initiation system Deactivate and terminate the polymerization, then precipitate with ether or methanol until the shape becomes solid, put it in a vacuum drying oven to remove ether or methanol, and the obtained product is linear PGMA;
所述的配体为2,2-联吡啶(BPY)、1,1,4,7,10,10-六甲基三乙烯四胺(HMTETA)、五甲基二乙烯三胺(PMDTETA)、4,4-联吡啶中的一种或几种;The ligands are 2,2-bipyridine (BPY), 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), pentamethyldiethylenetriamine (PMDTETA), One or more of 4,4-bipyridine;
2)0-60℃无氧条件下,将0.2g-0.5g步骤1)得到的线性PGMA溶于4g-10g四氢呋喃或N-N-二甲基甲酰胺中,加入2g-4g醇胺和1g-2g三乙胺,开环反应72-168h;然后用乙醚沉淀直到产物形貌为固体,放入真空干燥箱中除去乙醚;然后将产物溶于水中,加水量与产物的比例为100-300ml/g;产物溶解后放入截留分子量为2500-4500Mw的透析袋中,在去离子水中透析3-6h;最后将透析袋中的产物冷冻干燥直至除去所有水分即得到线性的以PGEA为骨架的阳离子基因载体。2) Under anaerobic conditions at 0-60°C, dissolve 0.2g-0.5g of the linear PGMA obtained in step 1) in 4g-10g of tetrahydrofuran or N-N-dimethylformamide, add 2g-4g of alcohol amine and 1g-2g Triethylamine, ring-opening reaction for 72-168h; then precipitate with ether until the product is solid, put it in a vacuum drying oven to remove ether; then dissolve the product in water, the ratio of the amount of water added to the product is 100-300ml/g ; After the product is dissolved, put it into a dialysis bag with a molecular weight cut-off of 2500-4500Mw, and dialyze in deionized water for 3-6h; finally, freeze-dry the product in the dialysis bag until all water is removed to obtain a linear cationic gene with PGEA as the backbone carrier.
步骤2)所述的醇胺为乙醇胺(EA)、2-氨基-1-丙醇(AP1)、3-氨基-1-丙醇(AP2)、N-N-二甲基乙二胺(DED)、胱胺中的一种或几种。The alcohol amine described in step 2) is ethanolamine (EA), 2-amino-1-propanol (AP1), 3-amino-1-propanol (AP2), N-N-dimethylethylenediamine (DED), One or more of cystamine.
所述的梳状的以PGEA为骨架的阳离子基因载体的制备方法为:The preparation method of the cationic gene carrier with PGEA as the skeleton of the comb is as follows:
1.0-60℃无氧条件下,将0.05g-0.2g五甲基二乙烯三胺、5g-10g四氢呋喃、6g-12g GMA、0.08g-0.26g配体、0.033g-0.15g CuBr混合,各组分添加顺序为:先将GMA溶于四氢呋喃,然后加入五甲基二乙烯三胺,再加入配体,最后加入CuBr引发活性可控自由基聚合,或者先将GMA溶于四氢呋喃,然后加入五甲基二乙烯三胺,再加入CuBr,最后加入配体引发活性可控自由基聚合;聚合反应时间为1-9h,反应完成后加入水或者甲醇,或者暴露在空气中,使引发体系失活和终止聚合,然后用乙醚或者甲醇沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚或者甲醇,所得产物为线性PGMA;所述的配体为2,2-联吡啶(BPY)、1,1,4,7,10,10-六甲基三乙烯四胺(HMTETA)、五甲基二乙烯三胺(PMDTETA)、4,4-联吡啶中的一种或几种;1. Under anaerobic conditions at 0-60°C, mix 0.05g-0.2g pentamethyldiethylenetriamine, 5g-10g tetrahydrofuran, 6g-12g GMA, 0.08g-0.26g ligand, 0.033g-0.15g CuBr, each The order of adding components is: first dissolve GMA in tetrahydrofuran, then add pentamethyldiethylenetriamine, then add ligand, and finally add CuBr to initiate active controllable free radical polymerization, or first dissolve GMA in tetrahydrofuran, then add pentamethyldiethylenetriamine Add methyldiethylenetriamine, then add CuBr, and finally add ligand to initiate active controllable free radical polymerization; the polymerization reaction time is 1-9h, after the reaction is completed, add water or methanol, or expose to the air to inactivate the initiation system and terminate the polymerization, then use ether or methanol precipitation until the appearance becomes solid, put into a vacuum drying oven to remove ether or methanol, the product obtained is linear PGMA; the ligand is 2,2-bipyridine (BPY), One or more of 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), pentamethyldiethylenetriamine (PMDTETA), 4,4-bipyridine;
2.0-60℃无氧条件下,将1.5g-2.5g步骤1中制备的线性PGMA溶于7g-10g四氢呋喃或N-N-二甲基甲酰胺中,再加入0.36g-0.37gα-溴异丁酸(BIBA);反应12-48h,优选24-48h,用乙醚沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚,所得产物为PGMA-Br;2. Under anaerobic conditions at 0-60°C, dissolve 1.5g-2.5g of the linear PGMA prepared in step 1 in 7g-10g of tetrahydrofuran or N-N-dimethylformamide, and then add 0.36g-0.37g of α-bromoisobutyric acid (BIBA); react for 12-48h, preferably 24-48h, precipitate with ether until the appearance becomes solid, put into a vacuum oven to remove ether, and the resulting product is PGMA-Br;
3.0-60℃无氧条件下,将0.2g-0.5g步骤2得到的PGMA-Br、5g-10g有机溶剂、3g-6g单体、0.082g-0.15g配体、0.033g-0.1g CuBr混合,各组分加入顺序为:先将PGMA-Br溶于有机溶剂,然后加入单体,再加入配体,最后加入CuBr引发活性可控自由基聚合,或者先将PGMA-Br溶于有机溶剂中,然后加入单体,再加入CuBr,最后加入配体引发活性可控自由基聚合;反应1-500min,优选1-450min,然后加入甲醇,或者暴露在空气中,使引发体系失活和终止聚合,最后用乙醚或者甲醇沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚或甲醇,即得到梳状的以PGMA为骨架的聚合物;3. Under anaerobic conditions at 0-60°C, mix 0.2g-0.5g of PGMA-Br obtained in
4.0-60℃无氧条件下,将0.1-0.5g步骤3得到的梳状的以PGMA为骨架的聚合物溶于5g-10g四氢呋喃或N-N-二甲基甲酰胺中,加入2g-4g醇胺和1g-2g三乙胺,开环反应72-168h;然后用乙醚沉淀直到产物形貌为固体,放入真空干燥箱中除去乙醚;然后将产物溶于水中,加水量与产物的比例为100-300ml/g;产物溶解后放入截留分子量为2500-4500Mw的透析袋中,在去离子水中透析3-6h;最后将透析袋中的产物冷冻干燥直至除去所有水分即得到梳状的以PGEA为骨架的阳离子基因载体。4. Under anaerobic conditions at 0-60°C, dissolve 0.1-0.5g of the comb-like PGMA-based polymer obtained in step 3 in 5g-10g of tetrahydrofuran or N-N-dimethylformamide, and add 2g-4g of alcohol amine And 1g-2g triethylamine, ring-opening reaction for 72-168h; then precipitate with ether until the product is solid, put it in a vacuum drying oven to remove ether; then dissolve the product in water, the ratio of the amount of water added to the product is 100 -300ml/g; after the product is dissolved, put it into a dialysis bag with a molecular weight cut-off of 2500-4500Mw, and dialyze in deionized water for 3-6h; finally, freeze-dry the product in the dialysis bag until all water is removed to obtain comb-shaped PGEA Cationic gene carrier for the backbone.
步骤3所述的有机溶剂为N-N-二甲基甲酰胺或二甲基亚砜。The organic solvent described in step 3 is N-N-dimethylformamide or dimethylsulfoxide.
步骤3所述的单体为甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸N,N-二甲氨基乙酯(DMEMA)、N-异丙基丙烯酰胺(NIPAAm)、聚(乙二醇)乙醚甲基丙烯酸酯(PEGEEMA)、聚乙二醇甲基丙烯酸酯(PEGMA)、聚乙二醇(PEG)中的一种或几种。The monomer described in step 3 is glycidyl methacrylate (GMA), N, N-dimethylaminoethyl methacrylate (DMEMA), N-isopropylacrylamide (NIPAAm), poly(ethylene glycol ) one or more of ether methacrylate (PEGEEMA), polyethylene glycol methacrylate (PEGMA), polyethylene glycol (PEG).
步骤3所述的配体为2,2-联吡啶(BPY)、1,1,4,7,10,10-六甲基三乙烯四胺(HMTETA)、五甲基二乙烯三胺(PMDTETA)、4,4-联吡啶中的一种或几种。The ligand described in step 3 is 2,2-bipyridine (BPY), 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), pentamethyldiethylenetriamine (PMDTETA ), one or more of 4,4-bipyridine.
步骤4所述的醇胺为乙醇胺(EA)、2-氨基-1-丙醇(AP1)、3-氨基-1-丙醇(AP2)、N-N-二甲基乙二胺(DED)、胱胺中的一种或几种。The alcohol amine described in step 4 is ethanolamine (EA), 2-amino-1-propanol (AP1), 3-amino-1-propanol (AP2), N-N-dimethylethylenediamine (DED), cysteine One or more of the amines.
有益效果:本发明利用活性可控自由基聚合法制得分子量大小从20000-100000,分子量分布1.6-2.1的聚合物。该聚合反应平稳,易于调控,并可根据需要制备出多种不同分子量系列的、窄分子量分布的高性能阳离子基因载体。该基因载体储存稳定性好,放置几天或几个月后仍可保持原有性能;并且在Hepg2、Hela、C6、Cos7、HEK293等细胞中具有高于PEI(25Kda)的转染效率,使用方法简单,具有商业化潜力。Beneficial effect: the invention utilizes the living controllable free radical polymerization method to prepare polymers with a molecular weight of 20,000-100,000 and a molecular weight distribution of 1.6-2.1. The polymerization reaction is stable and easy to regulate, and various high-performance cationic gene carriers with different molecular weight series and narrow molecular weight distribution can be prepared according to needs. The gene carrier has good storage stability and can maintain its original performance after being placed for a few days or months; and it has higher transfection efficiency than PEI (25Kda) in Hepg2, Hela, C6, Cos7, HEK293 and other cells. The method is simple and has commercial potential.
附图说明 Description of drawings
图1不同的以PGMA为骨架的梳状阳离子基因载体的合成图。Fig. 1 Synthesis diagram of different comb-shaped cationic gene carriers with PGMA as backbone.
图2以PGMA为骨架的线性阳离子基因载体的开环反应图。Fig. 2 The ring-opening reaction diagram of the linear cationic gene carrier with PGMA as the backbone.
图3转染效率图;PEI为金标,1-PGEA为实施例1得到的线性的以PGMA为骨架的阳离子基因载体PGEA;c-PGEA、c-PGEAPEG分别为实施例3和是实施例4得到的梳状的以PGMA为骨架的阳离子基因载体。Fig. 3 transfection efficiency diagram; PEI is the gold standard, 1-PGEA is the linear cationic gene carrier PGEA with PGMA as the backbone obtained in Example 1; c-PGEA and c-PGEAPEG are respectively Example 3 and Example 4 The obtained comb-shaped cationic gene carrier with PGMA as the backbone.
图4细胞内毒性曲线图;PEI为金标,1-PGEA为实施例1得到的线性的以PGMA为骨架的阳离子基因载体PGEA;c-PGEA、c-PGEAPEG分别为实施例3和实施例4得到的梳状的以PGMA为骨架的阳离子基因载体。Fig. 4 intracellular toxicity curve; PEI is the gold standard, and 1-PGEA is the linear cationic gene carrier PGEA with PGMA as the skeleton obtained in Example 1; c-PGEA and c-PGEAPEG are respectively Example 3 and Example 4 The obtained comb-shaped cationic gene carrier with PGMA as the backbone.
具体实施方式 Detailed ways
实施例1Example 1
1)50℃氮气保护条件下连续反应,将12gGMA(甲基丙烯酸缩水甘油酯)加入小烧瓶中,然后依次加入10g的THF(四氢呋喃)、120mg五甲基二乙烯三胺、213.6mg PMDETA,最后加入86.4mg CuBr来引发活性可控自由基聚合;3h后打开瓶塞加速搅拌10min,与空气充分接触停止反应,聚合产物用甲醇反复沉淀直到形貌变为固体,放入真空干燥箱中除去甲醇,即得到线性PGMA,该聚合物数均分子量(Mn)为580000g/mol,PDI(Mw/Mn)为1.23。1) Continuous reaction under nitrogen protection conditions at 50°C, add 12g of GMA (glycidyl methacrylate) into a small flask, then add 10g of THF (tetrahydrofuran), 120mg of pentamethyldiethylenetriamine, 213.6mg of PMDETA, and finally Add 86.4mg CuBr to initiate active controllable free radical polymerization; after 3h, open the bottle stopper to accelerate stirring for 10min, fully contact with air to stop the reaction, and the polymerization product is repeatedly precipitated with methanol until the shape becomes solid, then put it in a vacuum drying oven to remove methanol , to obtain linear PGMA, the polymer number average molecular weight (Mn) is 580000g/mol, PDI (Mw/Mn) is 1.23.
2)50℃氮气保护条件下连续反应,将0.3g步骤1)得到的线性PGMA加入5.6g的THF溶解,然后加入3g乙醇胺(或使用2-氨基-1-丙醇、3-氨基-1-丙醇、N-N-二甲基乙二胺、或者0.15g乙醇胺和0.15g N-N-二甲基乙二胺),1g的三乙胺后进行开环反应168h,聚合产物用乙醚反复沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚;然后将产物溶于40ml水放入截留分子量为3500Mw的透析袋中,之后转入5L大烧杯中加满去离子水开始透析,透析6h;之后放入冷冻干燥机中冷冻干燥直至除去所有水分,得到线性的以PGMA为骨架的阳离子基因载体,记为PGEA(使用2-氨基-1-丙醇得到的产物记为PGAP1,使用3-氨基-1-丙醇得到的产物记为PGAP2,使用N-N-二甲基乙二胺得到的产物记为PGDED,使用0.15g乙醇胺和0.15g N-N-二甲基乙二胺得到的产物记为PGEADED)。2) Continuous reaction under nitrogen protection conditions at 50°C, add 0.3g of linear PGMA obtained in step 1) into 5.6g of THF to dissolve, then add 3g of ethanolamine (or use 2-amino-1-propanol, 3-amino-1- Propanol, N-N-dimethylethylenediamine, or 0.15g ethanolamine and 0.15g N-N-dimethylethylenediamine), 1g of triethylamine, followed by ring-opening reaction for 168h, and the polymerized product was repeatedly precipitated with ether until the morphology Become a solid, put it in a vacuum drying oven to remove ether; then dissolve the product in 40ml of water and put it in a dialysis bag with a molecular weight cut-off of 3500Mw, then transfer it to a 5L beaker and fill it with deionized water to start dialysis, and dialysis for 6h; Put it into a lyophilizer and freeze-dry until all the water is removed to obtain a linear cationic gene carrier with PGMA as the backbone, which is denoted as PGEA (the product obtained using 2-amino-1-propanol is denoted as PGAP1, and the product obtained using 3-amino- The product obtained by 1-propanol is designated as PGAP2, the product obtained by using N-N-dimethylethylenediamine is designated as PGDED, and the product obtained by using 0.15g ethanolamine and 0.15g N-N-dimethylethylenediamine is designated as PGEADED).
实施例2Example 2
1)37℃氮气保护条件下连续反应,在烧瓶中取1.5克实施例1的步骤1)中得到的线性PGMA溶于10g的THF中,加入0.36克BIBA(2-Bromoisobutyricacid),反应24h后,乙醚沉淀,真空干燥后得到PGMA-Br(PGMA/BIBA为5∶1,分子链上每6个GMA链段中有一个上面接Br)。1) Continuous reaction under nitrogen protection conditions at 37°C, take 1.5 grams of linear PGMA obtained in step 1) of Example 1 in a flask and dissolve it in 10 g of THF, add 0.36 grams of BIBA (2-Bromoisobutyric acid), and react for 24 hours, Precipitate with ether and dry in vacuo to obtain PGMA-Br (PGMA/BIBA ratio is 5:1, one of every 6 GMA segments on the molecular chain is connected with Br).
2)50℃氮气保护条件下连续反应,将0.3g上述步骤1)得到的PGMA-Br加入5g THF中溶解,然后依次加入4gGMA,82mg的HMTETA,最后加入33.5mg的CuBr引发活性可控自由基聚合,待反应4h后打开瓶塞加速搅拌10min,与空气充分接触停止反应;聚合产物用甲醇反复沉淀直到产物变为固体,放入真空干燥箱中除去甲醇后得到梳状PGMA。2) Continuous reaction under nitrogen protection conditions at 50°C, add 0.3g of PGMA-Br obtained in the above step 1) into 5g of THF to dissolve, then add 4g of GMA, 82mg of HMTETA in sequence, and finally add 33.5mg of CuBr to trigger active controllable free radicals Polymerization, after 4 hours of reaction, open the bottle stopper to accelerate stirring for 10 minutes, and fully contact with air to stop the reaction; the polymerization product is repeatedly precipitated with methanol until the product becomes solid, and then placed in a vacuum drying oven to remove methanol to obtain comb-shaped PGMA.
3)50℃氮气保护条件下连续反应,将0.3g步骤2)得到的梳状PGMA加入5.6g的THF溶解,然后加入3g乙醇胺,1g的三乙胺后进行开环反应168h,聚合产物用乙醚反复沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚;然后将产物溶于40ml水放入截留分子量为3500Mw的透析袋中,之后转入5L大烧杯中加满去离子水开始透析,透析6h;之后放入冷冻干燥机中冷冻干燥直至除去所有水分,得到梳状的以PGMA为骨架的阳离子基因载体。3) Continuous reaction under the condition of nitrogen protection at 50°C, add 0.3g of the comb-like PGMA obtained in step 2) into 5.6g of THF to dissolve, then add 3g of ethanolamine and 1g of triethylamine to carry out ring-opening reaction for 168h, and the polymerized product is diethyl ether Repeated precipitation until the shape becomes solid, put it in a vacuum drying oven to remove ether; then dissolve the product in 40ml of water and put it in a dialysis bag with a molecular weight cut-off of 3500Mw, then transfer it to a 5L large beaker and fill it with deionized water to start dialysis , dialyzed for 6 hours; then freeze-dried in a freeze dryer until all water was removed to obtain a comb-shaped cationic gene carrier with PGMA as the backbone.
实施例3Example 3
1)37℃氮气保护条件下连续反应,在烧瓶中取2.5克实施例1的步骤1)中得到的线性PGMA溶于10g的THF中,加入0.37克BIBA(2-Bromoisobutyricacid)反应24h后,乙醚沉淀,真空干燥后得到PGMA-Br(PGMA/BIBA为8∶1,分子链上每8个GMA链段中有一个上面接Br)。1) Continuous reaction under nitrogen protection conditions at 37°C. Take 2.5 grams of linear PGMA obtained in step 1) of Example 1 in a flask and dissolve it in 10 g of THF. Add 0.37 grams of BIBA (2-Bromoisobutyric acid) and react for 24 hours. Precipitate and vacuum dry to obtain PGMA-Br (PGMA/BIBA ratio is 8:1, one of every eight GMA segments on the molecular chain is connected with Br).
2)50℃氮气保护条件下连续反应,将0.3g上述步骤1)得到的PGMA-Br加入5g THF中溶解,然后依次加入4gGMA,82mg的HMTETA,最后加入33.5mg的CuBr引发活性可控自由基聚合,待反应4h后打开瓶塞加速搅拌10min,与空气充分接触停止反应;聚合产物用甲醇反复沉淀直到产物变为固体,放入真空干燥箱中除去甲醇后得到梳状PGMA。2) Continuous reaction under nitrogen protection conditions at 50°C, add 0.3g of PGMA-Br obtained in the above step 1) into 5g of THF to dissolve, then add 4g of GMA, 82mg of HMTETA in sequence, and finally add 33.5mg of CuBr to trigger active controllable free radicals Polymerization, after 4 hours of reaction, open the bottle stopper to accelerate stirring for 10 minutes, and fully contact with air to stop the reaction; the polymerization product is repeatedly precipitated with methanol until the product becomes solid, and then placed in a vacuum drying oven to remove methanol to obtain comb-shaped PGMA.
3)50℃氮气保护条件下连续反应,将0.3g步骤2)得到的梳状PGMA加入5.6g的THF溶解,然后加入3g乙醇胺,1g的三乙胺后进行开环反应168h,聚合产物用乙醚反复沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚;然后将产物溶于40ml水放入截留分子量为3500Mw的透析袋中,之后转入5L大烧杯中加满去离子水开始透析,透析6h;之后放入冷冻干燥机中冷冻干燥直至除去所有水分,得到梳状的以PGMA为骨架的阳离子基因载体。3) Continuous reaction under the condition of nitrogen protection at 50°C, add 0.3g of the comb-like PGMA obtained in step 2) into 5.6g of THF to dissolve, then add 3g of ethanolamine and 1g of triethylamine to carry out ring-opening reaction for 168h, and the polymerized product is diethyl ether Repeated precipitation until the shape becomes solid, put it in a vacuum drying oven to remove ether; then dissolve the product in 40ml of water and put it in a dialysis bag with a molecular weight cut-off of 3500Mw, then transfer it to a 5L large beaker and fill it with deionized water to start dialysis , dialyzed for 6 hours; then freeze-dried in a freeze dryer until all water was removed to obtain a comb-shaped cationic gene carrier with PGMA as the backbone.
实施例4Example 4
1)50℃氮气保护条件下连续反应,将0.3g实施例3中步骤1)得到的PGMA-Br加入3.6gTHF中溶解,然后依次加入3.7gGMA,0.3g PEGEEMA,82mg的HMTETA,最后加入33.5mg的CuBr引发活性可控自由基聚合,待反应4h后打开瓶塞加速搅拌10min,与空气充分接触停止反应;聚合产物用甲醇反复沉淀直到产物颜色变浅为止,放入真空干燥箱中除去甲醇后得到梳状P(GMA-PEGEEMA)。1) Continuous reaction under nitrogen protection conditions at 50°C, add 0.3g of PGMA-Br obtained in step 1) of Example 3 into 3.6gTHF to dissolve, then add 3.7gGMA, 0.3g PEGEEMA, 82mg of HMTETA, and finally add 33.5mg The CuBr triggers active controllable free radical polymerization. After 4 hours of reaction, open the bottle stopper to accelerate stirring for 10 minutes, and fully contact with air to stop the reaction; the polymerization product is repeatedly precipitated with methanol until the color of the product becomes lighter, and then put it in a vacuum drying oven to remove methanol. Comb P(GMA-PEGEEMA) was obtained.
2)50℃氮气保护条件下连续反应,将0.3g步骤1)得到的梳状P(GMA-PEGEEMA)加入5.6g的THF溶解,然后加入3g乙醇胺,1g的三乙胺后进行开环反应168h,聚合产物用乙醚反复沉淀直到形貌变为固体,放入真空干燥箱中除去乙醚;然后将产物溶于40ml水放入截留分子量为3500Mw的透析袋中,之后转入5L大烧杯中加满去离子水开始透析,透析6h;之后放入冷冻干燥机中冷冻干燥直至除去所有水分,得到梳状的以PGMA为骨架的阳离子基因载体,记为PGEAPEG。2) Continuous reaction under nitrogen protection at 50°C, add 0.3g of the comb-like P(GMA-PEGEEMA) obtained in step 1) into 5.6g of THF to dissolve, then add 3g of ethanolamine and 1g of triethylamine to carry out ring-opening reaction for 168h , the polymerization product was repeatedly precipitated with ether until the shape became solid, and then put it in a vacuum drying oven to remove the ether; then dissolved the product in 40ml of water and put it in a dialysis bag with a molecular weight cut-off of 3500Mw, and then transferred it to a 5L beaker to fill up Start dialysis with deionized water for 6 hours; then freeze-dry in a freeze dryer until all water is removed to obtain a comb-shaped cationic gene carrier with PGMA as the backbone, which is denoted as PGEAPEG.
通过X射线光电子能谱(XPS)表征聚合物主要组分的含量,用核磁共振谱仪(NMR)对原料、反应中间体和产物进行了结构分析和验证。使用激光粒度及电位分析仪表征所得产物的粒径、zeta电位,用凝胶渗透色谱(GPC)对产物的可剪切性和分子量进行了表征。最后,通过凝胶电泳实验测试所得基因载体包埋DNA的能力,细胞转染实验测试了产物载体的转染效率和生物相容性。所得到的阳离子基因载体的转染效率和毒性如图3和图4。The content of the main components of the polymer was characterized by X-ray photoelectron spectroscopy (XPS), and the structure analysis and verification of the raw materials, reaction intermediates and products were carried out by nuclear magnetic resonance spectroscopy (NMR). The particle size and zeta potential of the obtained product were characterized by laser particle size and potential analyzer, and the shearability and molecular weight of the product were characterized by gel permeation chromatography (GPC). Finally, the ability of the obtained gene carrier to embed DNA was tested by gel electrophoresis experiment, and the transfection efficiency and biocompatibility of the product carrier were tested by cell transfection experiment. The transfection efficiency and toxicity of the obtained cationic gene carrier are shown in Fig. 3 and Fig. 4 .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210127021 CN102643374B (en) | 2012-04-26 | 2012-04-26 | High-performance cationic gene vectors with PGMA (polyglycidyl methacrylate) serving as framework constructed by ATRP (atom transfer radical polymerization) method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210127021 CN102643374B (en) | 2012-04-26 | 2012-04-26 | High-performance cationic gene vectors with PGMA (polyglycidyl methacrylate) serving as framework constructed by ATRP (atom transfer radical polymerization) method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102643374A true CN102643374A (en) | 2012-08-22 |
CN102643374B CN102643374B (en) | 2013-10-30 |
Family
ID=46656468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210127021 Expired - Fee Related CN102643374B (en) | 2012-04-26 | 2012-04-26 | High-performance cationic gene vectors with PGMA (polyglycidyl methacrylate) serving as framework constructed by ATRP (atom transfer radical polymerization) method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102643374B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104306987A (en) * | 2014-09-24 | 2015-01-28 | 北京化工大学 | Method for constructing multifunctional gene treatment vectors based on gold nanoparticles |
CN104987470A (en) * | 2015-07-03 | 2015-10-21 | 安徽星合新材料科技有限公司 | Ultra-mild crosslinking hyperbranched structure polymer nanometer slow-release material and preparation method and application thereof |
CN105461838A (en) * | 2015-12-29 | 2016-04-06 | 北京化工大学 | Preparation method and application of cationic gene vector with aggregation-induced emission effect |
CN106893054A (en) * | 2016-03-29 | 2017-06-27 | 江苏省肿瘤医院 | A kind of cationic polymer gene vector and its preparation method and application |
CN108498853A (en) * | 2018-04-25 | 2018-09-07 | 重庆工程职业技术学院 | A kind of preparation method of polysaccharide quaternary ammonium salt antiseptic dressing |
CN109988780A (en) * | 2019-03-19 | 2019-07-09 | 苏州大学 | High-performance gene vector based on glycidyl methacrylate and its application |
CN110204664A (en) * | 2019-06-17 | 2019-09-06 | 苏州大学 | It is a kind of to carry drug and gene cationic polymer and its application altogether |
CN110628313A (en) * | 2019-10-05 | 2019-12-31 | 鲁东大学 | A method for preparing self-repairing and aldehyde-removing polyurethane water-based coatings using grape residue |
CN111289663A (en) * | 2019-12-27 | 2020-06-16 | 中国农业科学院农业质量标准与检测技术研究所 | Polyethyleneimine functionalized block polymer magnetic nanoparticle composite material and preparation method and application thereof |
CN115337444A (en) * | 2022-09-01 | 2022-11-15 | 北京化工大学 | Preparation method of a procoagulant surface regulated by negatively charged small molecules |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235384A (en) * | 2008-03-07 | 2008-08-06 | 苏州大学 | Preparation method of a novel non-viral cationic gene carrier |
US20110210073A1 (en) * | 2010-02-26 | 2011-09-01 | Georgia Tech Research Corporation | Polymeric sorbents for removing low level contaminants |
CN102277386A (en) * | 2011-04-26 | 2011-12-14 | 苏州大学 | Bi-component gene carrier and application thereof |
-
2012
- 2012-04-26 CN CN 201210127021 patent/CN102643374B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235384A (en) * | 2008-03-07 | 2008-08-06 | 苏州大学 | Preparation method of a novel non-viral cationic gene carrier |
US20110210073A1 (en) * | 2010-02-26 | 2011-09-01 | Georgia Tech Research Corporation | Polymeric sorbents for removing low level contaminants |
CN102277386A (en) * | 2011-04-26 | 2011-12-14 | 苏州大学 | Bi-component gene carrier and application thereof |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104306987B (en) * | 2014-09-24 | 2017-06-23 | 北京化工大学 | A kind of method that multi-functional gene therapy vector is built based on gold nano grain |
CN104306987A (en) * | 2014-09-24 | 2015-01-28 | 北京化工大学 | Method for constructing multifunctional gene treatment vectors based on gold nanoparticles |
CN104987470A (en) * | 2015-07-03 | 2015-10-21 | 安徽星合新材料科技有限公司 | Ultra-mild crosslinking hyperbranched structure polymer nanometer slow-release material and preparation method and application thereof |
CN104987470B (en) * | 2015-07-03 | 2017-04-05 | 安徽英迪纳特新材料股份有限公司 | Crosslinked hyperbranched structural polymer nano sustained-release material of the ultralight degree of one kind and its production and use |
CN105461838B (en) * | 2015-12-29 | 2017-10-27 | 北京化工大学 | A kind of preparation method and applications of the cationic gene carriers with aggregation-induced emission effect |
CN105461838A (en) * | 2015-12-29 | 2016-04-06 | 北京化工大学 | Preparation method and application of cationic gene vector with aggregation-induced emission effect |
CN106893054B (en) * | 2016-03-29 | 2020-07-28 | 江苏省肿瘤医院 | A kind of cationic polymer gene carrier and its preparation method and application |
CN106893054A (en) * | 2016-03-29 | 2017-06-27 | 江苏省肿瘤医院 | A kind of cationic polymer gene vector and its preparation method and application |
CN108498853A (en) * | 2018-04-25 | 2018-09-07 | 重庆工程职业技术学院 | A kind of preparation method of polysaccharide quaternary ammonium salt antiseptic dressing |
CN109988780A (en) * | 2019-03-19 | 2019-07-09 | 苏州大学 | High-performance gene vector based on glycidyl methacrylate and its application |
CN110204664A (en) * | 2019-06-17 | 2019-09-06 | 苏州大学 | It is a kind of to carry drug and gene cationic polymer and its application altogether |
CN110204664B (en) * | 2019-06-17 | 2022-06-03 | 苏州大学 | Cationic polymer for co-loading medicine and gene and application thereof |
CN110628313A (en) * | 2019-10-05 | 2019-12-31 | 鲁东大学 | A method for preparing self-repairing and aldehyde-removing polyurethane water-based coatings using grape residue |
CN111289663A (en) * | 2019-12-27 | 2020-06-16 | 中国农业科学院农业质量标准与检测技术研究所 | Polyethyleneimine functionalized block polymer magnetic nanoparticle composite material and preparation method and application thereof |
CN115337444A (en) * | 2022-09-01 | 2022-11-15 | 北京化工大学 | Preparation method of a procoagulant surface regulated by negatively charged small molecules |
CN115337444B (en) * | 2022-09-01 | 2023-10-20 | 北京化工大学 | Preparation method of electronegative micromolecule-regulated procoagulant surface |
Also Published As
Publication number | Publication date |
---|---|
CN102643374B (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102643374B (en) | High-performance cationic gene vectors with PGMA (polyglycidyl methacrylate) serving as framework constructed by ATRP (atom transfer radical polymerization) method | |
Cao et al. | Expanding the Scope of Polymerization‐Induced Self‐Assembly: Recent Advances and New Horizons | |
Zhang et al. | Efficient fabrication of photosensitive polymeric nano-objects via an ingenious formulation of RAFT dispersion polymerization and their application for drug delivery | |
Davaran et al. | Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis,“schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem | |
CN104558421B (en) | A kind of grafted cellulose molecule of pharmaceutical preparation method with pH/ temperature-responsives | |
Bauri et al. | Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers | |
Zan et al. | Near-infrared light-triggered drug release nanogels for combined photothermal-chemotherapy of cancer | |
Du et al. | Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly (ethylene glycol) copolymers | |
Zhang et al. | Structural difference in macro-RAFT agents redirects polymerization-induced self-assembly | |
Rinkenauer et al. | A paradigm change: efficient transfection of human leukemia cells by stimuli-responsive multicompartment micelles | |
Ahmed et al. | Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems | |
Piogé et al. | Core Cross-Linking of Dynamic Diblock Copolymer Micelles: Quantitative Study of Photopolymerization Efficiency and Micelle Structure. | |
CN102702407A (en) | ATRP method for constructing cationic gene vector with PGMA as skeleton | |
Hu et al. | Supramolecular host–guest pseudocomb conjugates composed of multiple star polycations tied tunably with a linear polycation backbone for gene transfection | |
Xu et al. | Well-defined poly (2-hydroxyl-3-(2-hydroxyethylamino) propyl methacrylate) vectors with low toxicity and high gene transfection efficiency | |
CN105802106B (en) | A kind of preparation method of the supermolecule nano aggregation of temperature, UV and the triple responses of reducing agent | |
Mathew et al. | Hyperbranched PEGmethacrylate linear pDMAEMA block copolymer as an efficient non-viral gene delivery vector | |
Lu et al. | One-pot orthogonal copper-catalyzed synthesis and self-assembly of L-lysine-decorated polymeric dendrimers | |
CN101417134A (en) | Hyaluronic acid decorated novel tertiary structure non-virogene transmission system and use thereof | |
CN102492095B (en) | Construction of bio-reducible efficient cation gene vectors taking polysaccharides as frameworks with ATRP (Atom Transfer Radical Polymerization) method | |
Hu et al. | Gene delivery of PEI incorporating with functional block copolymer via non-covalent assembly strategy | |
RU2617059C2 (en) | Method for production of amphiphilic block copolymers n, n-dimethylaminoethyl methacrylate for nucleic acid delivery to living cells | |
CN102174579A (en) | Reducible and biodegradable comb type high polymer gene vector and preparation method of same | |
Chen et al. | Seeded RAFT Polymerization‐Induced Self‐assembly: Recent Advances and Future Opportunities | |
Johnson et al. | Poly (2‐Hydroxyethyl Methacrylate)‐b‐Poly (L‐Lysine) Cationic Hybrid Materials for Non‐Viral Gene Delivery in NIH 3T3 Mouse Embryonic Fibroblasts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131030 |
|
CF01 | Termination of patent right due to non-payment of annual fee |