[go: up one dir, main page]

CN102638003A - Distributed feedback laser array - Google Patents

Distributed feedback laser array Download PDF

Info

Publication number
CN102638003A
CN102638003A CN2012101317823A CN201210131782A CN102638003A CN 102638003 A CN102638003 A CN 102638003A CN 2012101317823 A CN2012101317823 A CN 2012101317823A CN 201210131782 A CN201210131782 A CN 201210131782A CN 102638003 A CN102638003 A CN 102638003A
Authority
CN
China
Prior art keywords
distributed feedback
feedback laser
refractive index
laser array
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101317823A
Other languages
Chinese (zh)
Inventor
孟剑俊
武林
王磊
何建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2012101317823A priority Critical patent/CN102638003A/en
Publication of CN102638003A publication Critical patent/CN102638003A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种分布反馈激光器阵列。它由制作在同一块半导体外延片上的多个平行排列的分布反馈激光器组成。半导体外延片至少包括上包层、有源层、间隔层、折射率控制层、下包层和衬底。有源层或者折射率控制层内含有形成分布反馈的布拉格光栅。折射率控制层之上各层形成分布反馈激光器的上台面。折射率控制层形成分布反馈激光器的导波结构,阵列中每个分布反馈激光器导波结构宽度不同。该分布反馈激光器阵列中的任一个分布反馈激光器由上电极、上台面、导波结构、衬底和下电极组成。不同宽度的导波结构实现每个分布反馈激光器在拥有相同周期的布拉格光栅的同时使激射波长有一定的偏移。该阵列可用作多波长激光器和可调谐激光器。

Figure 201210131782

The invention discloses a distributed feedback laser array. It consists of multiple distributed feedback lasers arranged in parallel on the same semiconductor epitaxial wafer. The semiconductor epitaxial wafer at least includes an upper cladding layer, an active layer, a spacer layer, a refractive index control layer, a lower cladding layer and a substrate. The active layer or the refractive index control layer contains a Bragg grating forming a distributed feedback. Layers above the index control layer form the upper mesa of the distributed feedback laser. The refractive index control layer forms the wave guiding structure of the distributed feedback laser, and the width of the wave guiding structure of each distributed feedback laser in the array is different. Any distributed feedback laser in the distributed feedback laser array is composed of an upper electrode, an upper table, a waveguide structure, a substrate and a lower electrode. The waveguide structure with different width realizes that each distributed feedback laser has a Bragg grating with the same period and at the same time makes the lasing wavelength shift to a certain extent. The array can be used as a multi-wavelength laser and a tunable laser.

Figure 201210131782

Description

分布反馈激光器阵列Distributed Feedback Laser Array

技术领域 technical field

本发明涉及一种分布反馈激光器阵列,尤其是涉及激射波长可调谐且可以多波长激射的一种分布反馈激光器阵列。 The invention relates to a distributed feedback laser array, in particular to a distributed feedback laser array with tunable lasing wavelength and multi-wavelength lasing.

背景技术 Background technique

信息技术的普及与发展使对网络技术的要求越来越高,尤其对带宽的需求越来越大。密集波分复用和无源光网络等新一代技术的发展提出了对多波长光源的需求。多个分立的激光器固然能够满足对波长的需要,但是分立器件之间相互独立,每个器件的工作状况相差较大,导致光源设备的整体性能在稳定性、可靠性方面无法保证。在这样的背景下,可调谐激光器在具有了重大的优势。一类可调谐激光器通过注入电流或者通过加热等方式影响激光器的参数,从而改变激光器的激射波长;另一类采用多个不同激射波长的激光器集成的方式来实现激射波长的调谐。多个激光器集成的方式可以获得更大的调谐范围,更紧凑的结构和更高的稳定性。 The popularization and development of information technology make the requirements for network technology higher and higher, especially for bandwidth. The development of next-generation technologies such as dense wavelength division multiplexing and passive optical networks has raised the need for multi-wavelength light sources. Although multiple discrete lasers can meet the wavelength requirements, the discrete devices are independent of each other, and the working conditions of each device are quite different, which leads to the inability to guarantee the overall performance of the light source equipment in terms of stability and reliability. In this context, tunable lasers have significant advantages. One type of tunable laser affects the parameters of the laser by injecting current or heating, thereby changing the lasing wavelength of the laser; the other type uses the integration of multiple lasers with different lasing wavelengths to realize the tuning of the lasing wavelength. The integration of multiple lasers can obtain a larger tuning range, a more compact structure and higher stability.

分布反馈激光器具有发射功率大,高速调制时单模性能好等特点,已广泛作为光源应用在光通信、光传感等领域。分布反馈激光器阵列继承了单个分布反馈激光器的优点,同时实现了优越的可调谐性能,并且结构简单,可靠性高,稳定性好。 Distributed feedback lasers have the characteristics of high emission power and good single-mode performance during high-speed modulation, and have been widely used as light sources in optical communication, optical sensing and other fields. The distributed feedback laser array inherits the advantages of a single distributed feedback laser, while achieving superior tunable performance, simple structure, high reliability, and good stability.

分布反馈激光器阵列,由数个分布反馈激光器组成,其中每个激光器的激射波长相对上一个有一定的偏移。需要较小的波长变化时,可以通过注入电流、控制温度等方法对一个激光器的激射波长调谐;需要较大的波长变化时,可以选择激射另一个激光器。 The distributed feedback laser array is composed of several distributed feedback lasers, and the lasing wavelength of each laser has a certain offset relative to the previous one. When a small wavelength change is required, the lasing wavelength of one laser can be tuned by injecting current, controlling temperature, etc.; when a large wavelength change is required, another laser can be selected to lase.

实现分布反馈激光器阵列的关键在于让不同的激光器的激射波长有一定的偏移。目前常采用的手段是改变光栅周期。采用电子束直写曝光的方法制作布拉格光栅可以精确控制光栅周期,但是由于电子束曝光技术速度较慢,其产能受到限制,难以满足大规模,低成本制作的要求。加拿大的Quantum Device 公司阐述了利用相位掩模版来制作分布反馈激光器阵列的方法,然而,相位掩模版成本较高,大规模应用仍有问题。在国内,武汉邮科院利用新兴的纳米压印技术已经成功的制作出了13 个信道的分布反馈激光器阵列,不过纳米压印技术使用的硬掩模版制作分布反馈激光器时容易损坏有源层,该技术用于分布反馈激光器阵列的制作仍有不少问题有待解决。       The key to realizing the distributed feedback laser array is to make the lasing wavelengths of different lasers have a certain offset. The most commonly used method at present is to change the grating period. Fabricating Bragg gratings by electron beam direct writing exposure can precisely control the grating period, but due to the slow speed of electron beam exposure technology, its production capacity is limited, and it is difficult to meet the requirements of large-scale and low-cost production. Canada's Quantum Device Company has described a method of using a phase mask to make a distributed feedback laser array. However, the cost of the phase mask is relatively high, and large-scale applications are still problematic. In China, Wuhan Institute of Posts and Technology has successfully produced a 13-channel distributed feedback laser array by using the emerging nanoimprinting technology. However, the hard mask used in nanoimprinting technology is easy to damage the active layer when making distributed feedback lasers. There are still many problems to be solved in the fabrication of distributed feedback laser arrays using this technology. ``

实现分布反馈激光器激射波长偏移的另一种方法是利用采样布拉格光栅技术。布拉格光栅1级干涉波长的位置与采样周期有关,只要抑制0级干涉波长谐振,令激光器在1 级干涉波长激射,并通过控制采样周期,就可以控制激光器的激射波长。由于光栅的采样周期尺度在微米量级,因此采样光栅的制作可以采用全息曝光外加一次紫外光刻实现。不过到目前为止,根据主要研究该项技术的北京半导体所的朱洪亮研究小组、南京大学陈向飞教授的研究小组和韩国的电子与通讯研究的报道,所用该技术制作的分布反馈激光器阵列其波长可变范围仍然较小(不超过11nm),难以满足实际的应用要求。此外,由于光栅采样所产生的1 次干涉波长的激射阈值要高于0 级,因此采样光栅的分布反馈激光器的阈值通常要高于一般的分布反馈激光器。 Another way to achieve lasing wavelength shift in distributed feedback lasers is to use the sampling Bragg grating technique. The position of the first-order interference wavelength of the Bragg grating is related to the sampling period. As long as the resonance of the zero-order interference wavelength is suppressed, the laser is lased at the first-order interference wavelength, and the lasing wavelength of the laser can be controlled by controlling the sampling period. Since the sampling period of the grating is on the order of microns, the fabrication of the sampling grating can be realized by holographic exposure plus one UV lithography. But so far, according to reports from Zhu Hongliang's research group of Beijing Institute of Semiconductors, Nanjing University's Professor Chen Xiangfei's research group, and South Korea's Electronics and Communications Research Group, which mainly study this technology, the wavelength of the distributed feedback laser array produced by this technology can be The variable range is still small (no more than 11nm), which is difficult to meet the actual application requirements. In addition, since the lasing threshold of the 1st order interference wavelength generated by grating sampling is higher than that of 0th order, the threshold value of distributed feedback lasers with sampled gratings is usually higher than that of general distributed feedback lasers.

还有一类方法是光栅采用全息曝光制作周期固定的光栅,再通过波导结构的变化,改变波导等效折射率来实现波长偏移。美国Infinera公司利用选择性外延技术在不同区域一次性外延出不同厚度的有源层,从而实现对波导折射率的控制。不过,就目前报道的结果来看,这种方法波长偏移有限,一般不超过10nm,单一芯片难以满足实际 应用的需要,需要封装多个芯片才能覆盖所需的波段,增加了芯片封装的复杂性和成本。 Another method is that the grating adopts holographic exposure to make a grating with a fixed period, and then changes the equivalent refractive index of the waveguide through the change of the waveguide structure to realize the wavelength shift. Infinera Corporation of the United States uses selective epitaxy technology to epitaxially produce active layers with different thicknesses in different regions at one time, so as to realize the control of the refractive index of the waveguide. However, according to the results reported so far, the wavelength shift of this method is limited, generally no more than 10nm, and a single chip is difficult to meet the needs of practical applications. Multiple chips need to be packaged to cover the required band, which increases the complexity of chip packaging. sex and cost.

综上所述,除了采用电子束等高精度曝光手段外,目前利用采样光栅等方法制作出的分布反馈激光器阵列其波长可变范围均十分有限。缺乏低成本高可靠性的分布反馈激光器阵列的制作手段。 To sum up, in addition to the use of high-precision exposure methods such as electron beams, the wavelength variable range of distributed feedback laser arrays produced by methods such as sampling gratings is very limited. There is a lack of low-cost and high-reliability distributed feedback laser array fabrication methods.

发明内容 Contents of the invention

为了克服背景技术方案中的不足,本发明的目的在于提供结构简单、制作方便、低成本、高可靠性、调谐范围大的一种分布反馈激光器阵列,同时易于合波器等无源波导集成。 In order to overcome the shortcomings in the background technical solutions, the object of the present invention is to provide a distributed feedback laser array with simple structure, convenient manufacture, low cost, high reliability, and large tuning range, and at the same time, it is easy to integrate passive waveguides such as multiplexers.

本发明采用的技术方案是: The technical scheme adopted in the present invention is:

技术方案一: Technical solution one:

它是由制作在同一块半导体外延片上的多个平行排列的分布反馈激光器构成;半导体外延片从上至下依次包括上包层、有源层、间隔层、折射率控制层、下包层和衬底,用于形成分布反馈的布拉格光栅设置在有源层或者折射率控制层中;布拉格光栅的周期在整块半导体外延片上保持一致;所有分布反馈激光器与布拉格光栅垂直;上包层、有源层和间隔层构成分布反馈激光器的上台面;折射率控制层形成导波结构;分布反馈激光器阵列中任意一个分布反馈激光器均由一个上台面和其所对应的导波结构以及下包层、衬底和上电极、下电极共同构成。 It is composed of multiple distributed feedback lasers arranged in parallel on the same semiconductor epitaxial wafer; the semiconductor epitaxial wafer includes upper cladding layer, active layer, spacer layer, refractive index control layer, lower cladding layer and The substrate, the Bragg grating used to form the distributed feedback is set in the active layer or the refractive index control layer; the period of the Bragg grating is kept consistent on the entire semiconductor epitaxial wafer; all the distributed feedback lasers are perpendicular to the Bragg grating; the upper cladding, the The source layer and the spacer layer constitute the upper mesa of the distributed feedback laser; the refractive index control layer forms the waveguide structure; any distributed feedback laser in the distributed feedback laser array consists of an upper mesa and its corresponding waveguide structure and the lower cladding, The substrate, the upper electrode and the lower electrode are jointly constituted.

技术方案二: Technical solution two:

它是由制作在同一块半导体外延片上的多个平行排列的分布反馈激光器构成;半导体外延片从上至下依次包括上包层、折射率控制层、间隔层、有源层、下包层和衬底,用于形成分布反馈的布拉格光栅设置在有源层或者折射率控制层中;布拉格光栅的周期在整块半导体外延片上保持一致;所有分布反馈激光器与布拉格光栅垂直;上包层构成分布反馈激光器的上台面;折射率控制层形成导波结构;分布反馈激光器阵列中任意一个分布反馈激光器均由一个上台面和其所对应的导波结构以及下包层、衬底和上电极、下电极共同构成。 It is composed of multiple distributed feedback lasers arranged in parallel on the same semiconductor epitaxial wafer; the semiconductor epitaxial wafer includes an upper cladding layer, a refractive index control layer, a spacer layer, an active layer, a lower cladding layer and The substrate, the Bragg grating used to form the distributed feedback is set in the active layer or the refractive index control layer; the period of the Bragg grating is consistent on the entire semiconductor epitaxial wafer; all the distributed feedback lasers are perpendicular to the Bragg grating; the upper cladding layer constitutes the distribution The upper mesa of the feedback laser; the refractive index control layer forms a waveguide structure; any distributed feedback laser in the distributed feedback laser array consists of an upper mesa and its corresponding waveguiding structure, as well as a lower cladding layer, a substrate, an upper electrode, and a lower cladding layer. electrodes together.

以上两种技术方案中:上台面和导波结构的宽度在不同的分布反馈激光器之间随激射波长的增加而递增的。折射率控制层折射率大于上包层(11)、下包层的折射率。 In the above two technical solutions: the width of the upper mesa and the waveguide structure increases with the increase of the lasing wavelength among different distributed feedback lasers. The refractive index of the refractive index control layer is higher than that of the upper cladding layer (11) and the lower cladding layer.

与背景技术相比,本发明具有的有益效果是: Compared with background technology, the beneficial effect that the present invention has is:

通过引入折射率控制层,采用侧向湿法腐蚀或者选择性氧化等工艺对其侧向腐蚀,形成不同宽度导波结构,从而影响等效折射率,进而使激射波长产生偏移的方法,可以获得足够的偏移量。导波结构宽度从0.8微米变化到1.6微米可以使激射波长偏移30纳米。采用分布反馈激光器阵列中每个分布反馈激光器有不同宽度导波结构的方式获得激射波长的偏移,不要求对分布反馈激光器阵列中每个分布反馈激光器的布拉格光栅周期做相应的改变,分布反馈激光器阵列中每一个激光器采用相同周期的布拉格光栅,因此可以采用全息曝光的方法来制作,便于分布反馈激光器阵列的集成与制作,同时有利于封装,简化了工艺,降低了成本,提高了成品率。此外,折射率控制层也有利于制作合波器等无源结构,利于耦合分布反馈激光器阵列中不同分布反馈激光器的输出,便于使用。 By introducing a refractive index control layer, it is laterally etched by lateral wet etching or selective oxidation to form waveguide structures with different widths, thereby affecting the equivalent refractive index and shifting the lasing wavelength. Sufficient offset can be obtained. Varying the width of the waveguide structure from 0.8 microns to 1.6 microns can shift the lasing wavelength by 30 nm. The shift of the lasing wavelength is obtained by adopting the method that each distributed feedback laser in the distributed feedback laser array has a different width guide wave structure, and it is not required to make corresponding changes to the Bragg grating period of each distributed feedback laser in the distributed feedback laser array. Each laser in the feedback laser array uses a Bragg grating with the same period, so it can be produced by holographic exposure, which is convenient for the integration and production of the distributed feedback laser array, and is also conducive to packaging, which simplifies the process, reduces the cost, and improves the finished product. Rate. In addition, the refractive index control layer is also conducive to making passive structures such as multiplexers, and is conducive to coupling the outputs of different distribution feedback lasers in the distribution feedback laser array, which is convenient for use.

附图说明 Description of drawings

图1是一种分布反馈激光器阵列的半导体外延片结构的示意图。 Fig. 1 is a schematic diagram of a semiconductor epitaxial wafer structure of a distributed feedback laser array.

图2是一种分布反馈激光器阵列的侧视图。 Fig. 2 is a side view of a distributed feedback laser array.

图3是另一种分布反馈激光器阵列的半导体外延片结构的示意图。 Fig. 3 is a schematic diagram of another semiconductor epitaxial wafer structure of a distributed feedback laser array.

图4是另一种分布反馈激光器阵列的侧视图。 Fig. 4 is a side view of another distributed feedback laser array.

图5是基膜等效折射率随导波结构宽度变化示意图。 Fig. 5 is a schematic diagram showing the variation of the equivalent refractive index of the base film with the width of the waveguide structure.

图6是激射波长偏移量随导波结构宽度变化示意图。 Fig. 6 is a schematic diagram showing the variation of lasing wavelength offset with the width of the waveguide structure.

图7是激射波长偏移量与间隔层厚度关系示意图。 Fig. 7 is a schematic diagram of the relationship between the laser wavelength shift and the thickness of the spacer layer.

图中:1、半导体外延片,2、分布反馈激光器;11、上包层,12、有源层,13、折射率控制层,14、间隔层,15、下包层,16、衬底, 21、上台面,22、导波结构,23、上电极,24、下电极,121、布拉格光栅。 In the figure: 1. Semiconductor epitaxial wafer, 2. Distributed feedback laser; 11. Upper cladding layer, 12. Active layer, 13. Refractive index control layer, 14. Spacer layer, 15. Lower cladding layer, 16. Substrate, 21. Upper table, 22. Waveguide structure, 23. Upper electrode, 24. Lower electrode, 121. Bragg grating.

具体实施方式 Detailed ways

下面结合附图和实例对本发明做进一步说明。 The present invention will be further described below in conjunction with accompanying drawings and examples.

如图1所示,一种分布反馈激光器阵列是由制作在同一块半导体外延片1上的多个平行排列的分布反馈激光器2构成;半导体外延片1从上至下依次包括上包层11、有源层12 、间隔层14、折射率控制层13、下包层15和衬底16,用于形成分布反馈的布拉格光栅121设置在有源层12或者折射率控制层13中;布拉格光栅121的周期在整块半导体外延片1上保持一致。  As shown in Figure 1, a distributed feedback laser array is made up of a plurality of distributed feedback lasers 2 arranged in parallel on the same semiconductor epitaxial wafer 1; the semiconductor epitaxial wafer 1 includes an upper cladding layer 11, Active layer 12, spacer layer 14, refractive index control layer 13, lower cladding layer 15 and substrate 16, the Bragg grating 121 that is used to form distributed feedback is arranged in active layer 12 or refractive index control layer 13; Bragg grating 121 The period of is kept consistent on the whole semiconductor epitaxial wafer 1 . the

如图2所示,一种分布反馈激光器阵列中的所有分布反馈激光器2与布拉格光栅121垂直;上包层11、有源层12和间隔层14构成分布反馈激光器2的上台面21;折射率控制层13形成导波结构22;分布反馈激光器阵列中任意一个分布反馈激光器2均由一个上台面21和其所对应的导波结构22以及下包层15、衬底16和上电极23、下电极24共同构成。 As shown in Figure 2, all the distributed feedback lasers 2 in a distributed feedback laser array are perpendicular to the Bragg grating 121; the upper cladding layer 11, the active layer 12 and the spacer layer 14 constitute the upper table 21 of the distributed feedback laser 2; the refractive index The control layer 13 forms a waveguide structure 22; any distributed feedback laser 2 in the distributed feedback laser array consists of an upper mesa 21 and its corresponding waveguide structure 22, a lower cladding layer 15, a substrate 16, an upper electrode 23, a lower The electrodes 24 are formed together.

如图3所示,另一种分布反馈激光器是由制作在同一块半导体外延片1上的多个平行排列的分布反馈激光器2构成;半导体外延片1 从上至下依次包括上包层11、折射率控制层13 、间隔层14、有源层12、下包层15和衬底16,用于形成分布反馈的布拉格光栅121设置在有源层12或者折射率控制层13中;布拉格光栅121的周期在整块半导体外延片1上保持一致。 As shown in Figure 3, another distributed feedback laser is made up of a plurality of distributed feedback lasers 2 arranged in parallel on the same semiconductor epitaxial wafer 1; the semiconductor epitaxial wafer 1 includes an upper cladding layer 11, Refractive index control layer 13, spacer layer 14, active layer 12, lower cladding layer 15 and substrate 16, the Bragg grating 121 that is used to form distributed feedback is arranged in active layer 12 or refractive index control layer 13; Bragg grating 121 The period of is kept consistent on the whole semiconductor epitaxial wafer 1 .

如图4所示,另一种分布反馈激光器阵列中的所有分布反馈激光器2与布拉格光栅121垂直;上包层11构成分布反馈激光器2的上台面21;折射率控制层13形成导波结构22;分布反馈激光器阵列中任意一个分布反馈激光器2均由一个上台面21和其所对应的导波结构22以及下包层15、衬底16和上电极23、下电极24共同构成。 As shown in Figure 4, all the distributed feedback lasers 2 in another distributed feedback laser array are perpendicular to the Bragg grating 121; the upper cladding layer 11 constitutes the upper table 21 of the distributed feedback laser 2; the refractive index control layer 13 forms the waveguide structure 22 Any distributed feedback laser 2 in the distributed feedback laser array is composed of an upper mesa 21 and its corresponding waveguide structure 22, lower cladding layer 15, substrate 16, upper electrode 23, and lower electrode 24.

两种方案中的分布反馈激光器阵列,其中的分布反馈激光器2的方向都是垂直布拉格光栅2的方向,这样可以利用布拉格光栅的分布反馈效应。 In the distributed feedback laser arrays in the two schemes, the direction of the distributed feedback laser 2 is perpendicular to the direction of the Bragg grating 2, so that the distributed feedback effect of the Bragg grating can be utilized.

布拉格光栅121在半导体外延片1生长过程中一次制作在其中,使分布反馈激光器阵列的布拉格光栅121周期一致。包含了布拉格光栅121在有源层12内或者在折射率控制层13内两种情况。布拉格光栅12在有源层12内的方案,除了分布反馈激光器2常规具有的折射率耦合外,还包括了增益耦合。增益耦合克服了布拉格光栅121禁带两边的反射峰具有相同的阈值从而降低分布反馈激光器单模产率的问题,使分布反馈激光器2能够更多的工作在禁带边缘且靠近长波方向上的模式,保证了分布反馈激光器2的单波长激射。布拉格光栅121在折射率控制层13内的方案,避免了对有源层12的刻蚀,降低了阈值,采用端面镀膜等方法可弥补产率问题,两种情况各有优势。 The Bragg grating 121 is once fabricated in the semiconductor epitaxial wafer 1 during the growth process, so that the period of the Bragg grating 121 of the distributed feedback laser array is consistent. Two cases where the Bragg grating 121 is in the active layer 12 or in the refractive index control layer 13 are included. The solution of the Bragg grating 12 in the active layer 12 includes gain coupling in addition to the refractive index coupling conventionally provided by the distributed feedback laser 2 . Gain coupling overcomes the problem that the reflection peaks on both sides of the forbidden band of the Bragg grating 121 have the same threshold, thereby reducing the single-mode yield of the distributed feedback laser, so that the distributed feedback laser 2 can work more in the mode near the edge of the forbidden band and in the long-wave direction , which ensures the single-wavelength lasing of the distributed feedback laser 2. The solution of the Bragg grating 121 in the refractive index control layer 13 avoids the etching of the active layer 12 and lowers the threshold value, and the problem of yield can be compensated by methods such as end face coating. Both cases have their own advantages.

同一分布反馈激光器阵列中的分布反馈激光器2有不同宽度的上台面21,是出于通过侧向湿法腐蚀等工艺,一次制作不同宽度的导波结构的需要。整个分布反馈激光器阵列一次制作完成。 The distributed feedback lasers 2 in the same distributed feedback laser array have upper mesas 21 with different widths, which is due to the need to fabricate waveguide structures with different widths at one time through processes such as lateral wet etching. The entire distributed feedback laser array is fabricated once.

分布反馈激光器阵列可以用做可调谐激光器或者多波长激光器,是因为其中的不同分布反馈激光器2有不同的激射波长。激射波长取决于基膜等效折射率和布拉格光栅121的周期。由于改变布拉格光栅121周期的方法需要很高成本,本发明是采用易于实现且成熟的工艺,在同一分布反馈激光器阵列中的所有分布反馈激光器2都有同样的布拉格光栅121的周期,通过使不同的分布反馈激光器2有不同的基膜等效折射率来实现激射波长的不同。基膜等效折射率的不同通过导波结构22宽度的不同来实现。分布反馈激光器阵列内分布反馈激光器2的数目取决于使用中对激射波长偏移范围的需要或者取决于对同时激射不同波长数目的需要。 The distributed feedback laser array can be used as a tunable laser or a multi-wavelength laser because different distributed feedback lasers 2 have different lasing wavelengths. The lasing wavelength depends on the equivalent refractive index of the base film and the period of the Bragg grating 121 . Because the method for changing the period of the Bragg grating 121 requires a high cost, the present invention adopts an easy-to-implement and mature process, all distributed feedback lasers 2 in the same distributed feedback laser array have the same period of the Bragg grating 121, by making different The distributed feedback lasers 2 have different equivalent refractive indices of the base film to achieve different lasing wavelengths. The difference in the equivalent refractive index of the base film is realized by the difference in the width of the waveguide structure 22 . The number of distributed feedback lasers 2 in the distributed feedback laser array depends on the need for the lasing wavelength shift range in use or the need for the number of simultaneous lasing different wavelengths.

基膜等效折射率取决于光场分布。有源层12作为高折射率层,光场主要分布在其中,但对有源层12施加操作将影响激光器的阈值和输出功率。因此在有源层12附近,引入一层折射率高于上包层11和下包层15的折射率控制层13,折射率控制层13的折射率接近于有源层12,该高折射率层能影响原来的基模光场分布,将部分光场分布聚集在其周围。对折射率控制层13施加操作,能对光场分布造成有略微差异的影响,达到改变基膜等效折射率同时又不影响分布反馈激光器2的性能的目的。同时,折射率控制层13作为无源层,可以在其上制作合波器等无源结构,有利于耦合整个分布反馈激光器阵列中所有分布反馈激光器2的输出。 The equivalent refractive index of the base film depends on the optical field distribution. The active layer 12 is a high-refractive-index layer in which the optical field is mainly distributed, but applying operations to the active layer 12 will affect the threshold and output power of the laser. Therefore, near the active layer 12, a layer of refractive index control layer 13 with a higher refractive index than the upper cladding layer 11 and the lower cladding layer 15 is introduced. The refractive index of the refractive index control layer 13 is close to the active layer 12. The high refractive index The layer can affect the original fundamental mode light field distribution and gather part of the light field distribution around it. Applying operations to the refractive index control layer 13 can have a slightly different influence on the optical field distribution, so as to achieve the purpose of changing the equivalent refractive index of the base film without affecting the performance of the distribution feedback laser 2 . At the same time, the refractive index control layer 13 is used as a passive layer on which passive structures such as multiplexers can be fabricated, which is conducive to coupling the outputs of all distributed feedback lasers 2 in the entire distributed feedback laser array.

如图5所示,反映了基膜等效折射率随导波结构宽度变化的结果,其中横坐标是导波结构宽度,纵坐标是基模等效折射率。本发明在引入的折射率控制层13上制作导波结构22,通过使分布反馈激光器阵列中不同的分布反馈激光器2有不同宽度的导波结构22,从而有不同的基膜等效折射率,进而使激射波长不同。 As shown in Figure 5, it reflects the result of the change of the equivalent refractive index of the base film with the width of the waveguide structure, where the abscissa is the width of the waveguide structure, and the ordinate is the equivalent refractive index of the fundamental mode. In the present invention, the waveguide structure 22 is made on the introduced refractive index control layer 13, and different distributed feedback lasers 2 in the distributed feedback laser array have waveguide structures 22 of different widths, thereby having different equivalent refractive indices of the base film, Furthermore, the lasing wavelength is different.

在一定的导波结构22中,光场由横向的电场分布                                               

Figure 2012101317823100002DEST_PATH_IMAGE002
纵向的传播常数
Figure 2012101317823100002DEST_PATH_IMAGE004
来描述。通过亥姆霍兹方程: In a certain waveguide structure 22, the optical field is distributed by the transverse electric field
Figure 2012101317823100002DEST_PATH_IMAGE002
longitudinal propagation constant
Figure 2012101317823100002DEST_PATH_IMAGE004
to describe. Via the Helmholtz equation:

Figure 2012101317823100002DEST_PATH_IMAGE006
                   (1)
Figure 2012101317823100002DEST_PATH_IMAGE006
(1)

和具体结构中的边界条件来求的。

Figure 2012101317823100002DEST_PATH_IMAGE008
就是等效折射率。对一个特定的导波结构,分析出等效折射率以后再结合具体的光栅参数通过传输矩阵和耦合波等方法就可以得到它的激射波长。布拉格方程: and the boundary conditions in the specific structure.
Figure 2012101317823100002DEST_PATH_IMAGE008
is the equivalent refractive index. For a specific guided wave structure, its lasing wavelength can be obtained by analyzing the equivalent refractive index and combining the specific grating parameters through transmission matrix and coupled wave methods. Bragg equation:

                     (2) (2)

Figure 2012101317823100002DEST_PATH_IMAGE012
为等效折射率,为布拉格光栅周期,
Figure 2012101317823100002DEST_PATH_IMAGE016
为激射的波长阶数,一阶光栅取1。(2)两边取微分可得:
Figure 2012101317823100002DEST_PATH_IMAGE012
is the equivalent refractive index, is the Bragg grating period,
Figure 2012101317823100002DEST_PATH_IMAGE016
is the wavelength order of the lasing, and the first-order grating takes 1. (2) Differentiate both sides to get:

Figure 2012101317823100002DEST_PATH_IMAGE018
                     (3)
Figure 2012101317823100002DEST_PATH_IMAGE018
(3)

这样就得到基膜等效折射率变化与激射波长偏移的关系。(3)式分析的是布拉格波长的偏移量,并不是真正的分布反馈激光器激射波长,但激射波长与禁带中央(即布拉格波长)之间的距离在微小的等效折射率变化的情况下不会发生明显的改变。可以认为布拉格波长的偏移量就是分布反馈激光器2激射波长的偏移量。 In this way, the relationship between the change of the equivalent refractive index of the base film and the laser wavelength shift is obtained. Equation (3) analyzes the offset of the Bragg wavelength, not the real lasing wavelength of the distributed feedback laser, but the distance between the lasing wavelength and the center of the forbidden band (that is, the Bragg wavelength) changes in a small equivalent refractive index No noticeable changes will occur. It can be considered that the offset of the Bragg wavelength is the offset of the lasing wavelength of the distributed feedback laser 2 .

如图6所示,反映了激射波长的偏移量随导波结构22宽度变化的示意图。其中横坐标是导波结构22的宽度,对应的纵坐标是激射波长相对与导波结构宽度为0.8微米时激射波长的偏移量,同时间隔层14厚度为0.01微米。其中可以看出,在所设计的半导体外延片的结构下,导波结构22宽度从0.8微米变化到1.6微米时,激射波长的偏移可达32纳米,足够满足32信道50GHz的间隔波段。若折射率控制层13的折射率低于上包层11和下包层15,则其上无法聚集足够的光场分布,从而无法对等效折射率有足够的影响,从而无法实现明显的激射波长的偏移。 As shown in FIG. 6 , it is a schematic diagram reflecting the variation of the lasing wavelength offset with the width of the waveguide structure 22 . The abscissa is the width of the waveguide structure 22, and the corresponding ordinate is the offset of the lasing wavelength relative to the lasing wavelength when the width of the waveguide structure is 0.8 microns, and the thickness of the spacer layer 14 is 0.01 microns. It can be seen that under the designed structure of the semiconductor epitaxial wafer, when the width of the waveguide structure 22 changes from 0.8 microns to 1.6 microns, the lasing wavelength shift can reach 32 nanometers, which is enough to meet the interval band of 32 channels of 50 GHz. If the refractive index of the refractive index control layer 13 is lower than that of the upper cladding layer 11 and the lower cladding layer 15, sufficient light field distribution cannot be collected thereon, thereby failing to have a sufficient influence on the equivalent refractive index, thereby failing to achieve significant excitation. wavelength shift.

本发明中的两个技术方案,核心的区别是折射率控制层13在有源层12的上方或者下方。这体现了这两层之间的间隔层14厚度的影响。折射率控制层13在有源层12下方,工艺上可以使折射率控制层13尽可能接近有源层12,从而增大折射率控制层13的作用。 The core difference between the two technical solutions in the present invention is that the refractive index control layer 13 is above or below the active layer 12 . This reflects the effect of the thickness of the spacer layer 14 between these two layers. The refractive index control layer 13 is below the active layer 12 , and the refractive index control layer 13 can be made as close as possible to the active layer 12 in the process, so as to increase the function of the refractive index control layer 13 .

如图7所示,反映了间隔层14厚度对激射波长偏移量的影响,其中横坐标是间隔层厚度,纵坐标是导波结构宽度为1.6微米时相对与导波结构宽度为0.8微米时的激射波长偏移量。间隔层厚度增大时激射波长偏移量有很明显的减小。 As shown in Figure 7, it reflects the influence of the thickness of the spacer layer 14 on the lasing wavelength offset, wherein the abscissa is the thickness of the spacer layer, and the ordinate is that when the width of the waveguide structure is 1.6 microns, it is 0.8 microns relative to the width of the waveguide structure. The laser wavelength offset at . The lasing wavelength shift decreases obviously when the thickness of the spacer layer increases.

折射率控制层13在有源层12上方的方案,避免了在制作上台面21的过程中,刻穿有源层12可能带来的增大损耗的问题,同时在制作时简化了工艺。两种技术方案各有优势。 The scheme that the refractive index control layer 13 is above the active layer 12 avoids the problem of increased loss that may be caused by cutting through the active layer 12 during the process of manufacturing the upper mesa 21 , and at the same time simplifies the manufacturing process. Both technical solutions have their own advantages.

上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。 The above-mentioned embodiments are used to illustrate the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modification and change made to the present invention will fall into the protection scope of the present invention.

Claims (6)

1. distributed feedback laser array is characterized in that: it is to be made up of a plurality of distributed feedback lasers that are arranged in parallel (2) that are produced on the same block semiconductor epitaxial wafer (1); Semiconductor epitaxial wafer (1) comprises top covering (11), active layer (12), wall (14), refractive index key-course (13), under-clad layer (15) and substrate (16) from top to bottom successively, and the Bragg grating (121) that is used to form distributed feed-back is arranged in active layer (12) or the refractive index key-course (13); The cycle of Bragg grating (121) is consistent on monoblock semiconductor epitaxial wafer (1); All distributed feedback lasers (2) are vertical with Bragg grating (121); Top covering (11), active layer (12) and wall (14) constitute the upper table surface (21) of distributed feedback laser (2); Refractive index key-course (13) forms guided wave structure formed (22); Any distributed feedback laser (2) constitutes by a upper table surface (21) and its pairing guided wave structure formed (22) and under-clad layer (15), substrate (16) and top electrode (23), bottom electrode (24) jointly in the distributed feedback laser array.
2. distributed feedback laser array according to claim 1 is characterized in that: the width of said upper table surface (21) and guided wave structure formed (22) increases progressively with the increase of excitation wavelength between different distributed feedback laser (2).
3. distributed feedback laser array according to claim 1 is characterized in that: said refractive index key-course (13) refractive index is greater than the refractive index of top covering (11), under-clad layer (15).
4. distributed feedback laser array is characterized in that: it is to be made up of a plurality of distributed feedback lasers that are arranged in parallel (2) that are produced on the same block semiconductor epitaxial wafer (1); Semiconductor epitaxial wafer (1) comprises top covering (11), refractive index key-course (13), wall (14), active layer (12), under-clad layer (15) and substrate (16) from top to bottom successively, and the Bragg grating (121) that is used to form distributed feed-back is arranged in active layer (12) or the refractive index key-course (13); The cycle of Bragg grating (121) is consistent on monoblock semiconductor epitaxial wafer (1); All distributed feedback lasers (2) are vertical with Bragg grating (121); Top covering (11) constitutes the upper table surface (21) of distributed feedback laser (2); Refractive index key-course (13) forms guided wave structure formed (22); Any distributed feedback laser (2) constitutes by a upper table surface (21) and its pairing guided wave structure formed (22) and under-clad layer (15), substrate (16) and top electrode (23), bottom electrode (24) jointly in the distributed feedback laser array.
5. distributed feedback laser array according to claim 4 is characterized in that: the width of said upper table surface (21) and guided wave structure formed (22) increases progressively with the increase of excitation wavelength between different distributed feedback laser (2).
6. distributed feedback laser array according to claim 4 is characterized in that: said refractive index key-course (13) refractive index is greater than the refractive index of top covering (11), under-clad layer (15).
CN2012101317823A 2012-05-02 2012-05-02 Distributed feedback laser array Pending CN102638003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101317823A CN102638003A (en) 2012-05-02 2012-05-02 Distributed feedback laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101317823A CN102638003A (en) 2012-05-02 2012-05-02 Distributed feedback laser array

Publications (1)

Publication Number Publication Date
CN102638003A true CN102638003A (en) 2012-08-15

Family

ID=46622300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101317823A Pending CN102638003A (en) 2012-05-02 2012-05-02 Distributed feedback laser array

Country Status (1)

Country Link
CN (1) CN102638003A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901160A (en) * 2015-06-17 2015-09-09 中国科学院半导体研究所 Dry method PE method of distributed feedback laser based on nanometer impression rasters
CN105164874A (en) * 2012-11-30 2015-12-16 统雷量子电子有限公司 Multi-wavelength quantum cascade laser by growing different active and passive core layers
CN109565152A (en) * 2016-08-10 2019-04-02 浜松光子学株式会社 Light emitting device
US20190312410A1 (en) * 2017-03-27 2019-10-10 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
CN111257996A (en) * 2020-03-18 2020-06-09 中国科学院长春光学精密机械与物理研究所 A kind of birefringent waveguide Bragg grating reflector and preparation method thereof
US10734786B2 (en) 2016-09-07 2020-08-04 Hamamatsu Photonics K.K. Semiconductor light emitting element and light emitting device including same
CN111600198A (en) * 2020-05-26 2020-08-28 陕西源杰半导体技术有限公司 Ultra-high-power laser for communication and preparation method thereof
US11031751B2 (en) 2016-08-10 2021-06-08 Hamamatsu Photonics K.K. Light-emitting device
US11626709B2 (en) 2017-12-08 2023-04-11 Hamamatsu Photonics K.K. Light-emitting device and production method for same
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11686956B2 (en) 2017-06-15 2023-06-27 Hamamatsu Photonics K.K. Light-emitting device
US12126140B2 (en) 2018-06-08 2024-10-22 Hamamatsu Photonics K.K. Light-emitting element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993032A (en) * 1989-12-28 1991-02-12 General Dynamics Corp., Electronics Divn. Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers
EP0663710A2 (en) * 1994-01-18 1995-07-19 Canon Kabushiki Kaisha Optical semiconductor device and method for producing the same
US5536085A (en) * 1995-03-30 1996-07-16 Northern Telecom Limited Multi-wavelength gain-coupled distributed feedback laser array with fine tunability
US5689358A (en) * 1993-03-25 1997-11-18 Nippon Telegraph And Telephone Corporation Optical functional devices and integrated optical devices having a ridged multi-quantum well structure
US6167072A (en) * 1997-06-06 2000-12-26 University Of Florida Modulated cap thin p-clad semiconductor laser
US20020064201A1 (en) * 2000-11-27 2002-05-30 Keisuke Matsumoto Photonic semiconductor device and method for fabricating the same
US20020090011A1 (en) * 2000-10-30 2002-07-11 Bardia Pezeshki Laser thermal tuning
CN1701478A (en) * 2003-03-31 2005-11-23 日本电信电话株式会社 Optical semiconductor device and optical semiconductor integrated circuit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993032A (en) * 1989-12-28 1991-02-12 General Dynamics Corp., Electronics Divn. Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers
US5689358A (en) * 1993-03-25 1997-11-18 Nippon Telegraph And Telephone Corporation Optical functional devices and integrated optical devices having a ridged multi-quantum well structure
EP0663710A2 (en) * 1994-01-18 1995-07-19 Canon Kabushiki Kaisha Optical semiconductor device and method for producing the same
US5536085A (en) * 1995-03-30 1996-07-16 Northern Telecom Limited Multi-wavelength gain-coupled distributed feedback laser array with fine tunability
US6167072A (en) * 1997-06-06 2000-12-26 University Of Florida Modulated cap thin p-clad semiconductor laser
US20020090011A1 (en) * 2000-10-30 2002-07-11 Bardia Pezeshki Laser thermal tuning
US20020064201A1 (en) * 2000-11-27 2002-05-30 Keisuke Matsumoto Photonic semiconductor device and method for fabricating the same
CN1701478A (en) * 2003-03-31 2005-11-23 日本电信电话株式会社 Optical semiconductor device and optical semiconductor integrated circuit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164874A (en) * 2012-11-30 2015-12-16 统雷量子电子有限公司 Multi-wavelength quantum cascade laser by growing different active and passive core layers
CN105164874B (en) * 2012-11-30 2017-12-22 统雷量子电子有限公司 Multi-wavelength quantum cascade laser by growing different active and passive core layers
CN104901160A (en) * 2015-06-17 2015-09-09 中国科学院半导体研究所 Dry method PE method of distributed feedback laser based on nanometer impression rasters
CN109565152B (en) * 2016-08-10 2020-11-03 浜松光子学株式会社 Light emitting device
CN109565152A (en) * 2016-08-10 2019-04-02 浜松光子学株式会社 Light emitting device
US11031751B2 (en) 2016-08-10 2021-06-08 Hamamatsu Photonics K.K. Light-emitting device
US11031747B2 (en) 2016-08-10 2021-06-08 Hamamatsu Photonics K.K. Light-emitting device
US10734786B2 (en) 2016-09-07 2020-08-04 Hamamatsu Photonics K.K. Semiconductor light emitting element and light emitting device including same
US20190312410A1 (en) * 2017-03-27 2019-10-10 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US11637409B2 (en) 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11777276B2 (en) 2017-03-27 2023-10-03 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11686956B2 (en) 2017-06-15 2023-06-27 Hamamatsu Photonics K.K. Light-emitting device
US11626709B2 (en) 2017-12-08 2023-04-11 Hamamatsu Photonics K.K. Light-emitting device and production method for same
US12126140B2 (en) 2018-06-08 2024-10-22 Hamamatsu Photonics K.K. Light-emitting element
CN111257996A (en) * 2020-03-18 2020-06-09 中国科学院长春光学精密机械与物理研究所 A kind of birefringent waveguide Bragg grating reflector and preparation method thereof
CN111600198A (en) * 2020-05-26 2020-08-28 陕西源杰半导体技术有限公司 Ultra-high-power laser for communication and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102638003A (en) Distributed feedback laser array
CN100583579C (en) Manufacture method and device of single-chip integrated semiconductor laser array
CN103311807B (en) Manufacturing method of multi-wavelength laser array chip
CN101227061A (en) Manufacturing method of tunable semiconductor laser and tunable semiconductor laser
CN103762500B (en) Asymmetric equivalent apodization sampling optical grating and laser based on reconstruction-equivalent chirp
CN102684069B (en) Hybrid silicone monomode laser based on evanescent field coupling and period microstructural frequency selecting
CN112290382B (en) Semiconductor laser and manufacturing method thereof
CN103337788A (en) DFB semiconductor laser based on asymmetric structure of reconstruction-equivalent chirp and preparation method thereof
CN102142657B (en) Manufacturing method of photonic crystal waveguide for improving lateral far field of stripe laser
CN105281200A (en) Integrated high-speed digital modulation WDM-PON optical module based on REC technology
CN104917051A (en) Distributed coupling coefficient DFB laser based on reconstruction-equivalent chirp technology and array thereof
CN104779520A (en) Rapid tunable semiconductor laser and preparation method based on reconstitution-equivalent chirp
CN103762497A (en) Reconstruction-equivalent chirp and equivalent half apodization-based DFB semiconductor laser and preparation method thereof
CN107565381B (en) Distributed feedback semiconductor laser device and photonic integrated emission chip module
CN103779785A (en) Distribution reflection Bragg laser capable of achieving wave length and width tuning and manufacturing method thereof
CN102820616B (en) A Method for Fabricating Distributed Feedback Laser Array Using Selected Area Epitaxy
CN202651615U (en) A Distributed Feedback Laser Array
CN116632651A (en) Silicon-based surface high-order grating laser and its preparation method
CN215896966U (en) High-order grating single longitudinal mode groove laser
CN116207608A (en) Quantum dot laser structure and preparation method thereof
JP4006729B2 (en) Semiconductor light-emitting device using self-assembled quantum dots
CN104917050B (en) The production method of two-dimensional grating dual wavelength Distributed Feedback Laser
CN209675673U (en) Multi-Wavelength Distributed Feedback Semiconductor Laser Array
CN103257509B (en) The single chip integrated Wavelength conversion devices of selective area epitaxial
CN104242059A (en) Method for manufacturing laser array by selective area growth (SAG) technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120815