CN102638003A - Distributed feedback laser array - Google Patents
Distributed feedback laser array Download PDFInfo
- Publication number
- CN102638003A CN102638003A CN2012101317823A CN201210131782A CN102638003A CN 102638003 A CN102638003 A CN 102638003A CN 2012101317823 A CN2012101317823 A CN 2012101317823A CN 201210131782 A CN201210131782 A CN 201210131782A CN 102638003 A CN102638003 A CN 102638003A
- Authority
- CN
- China
- Prior art keywords
- distributed feedback
- feedback laser
- refractive index
- laser array
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 230000005284 excitation Effects 0.000 claims description 3
- 238000005253 cladding Methods 0.000 abstract description 27
- 125000006850 spacer group Chemical group 0.000 abstract description 14
- 238000000034 method Methods 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000005070 sampling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
本发明公开了一种分布反馈激光器阵列。它由制作在同一块半导体外延片上的多个平行排列的分布反馈激光器组成。半导体外延片至少包括上包层、有源层、间隔层、折射率控制层、下包层和衬底。有源层或者折射率控制层内含有形成分布反馈的布拉格光栅。折射率控制层之上各层形成分布反馈激光器的上台面。折射率控制层形成分布反馈激光器的导波结构,阵列中每个分布反馈激光器导波结构宽度不同。该分布反馈激光器阵列中的任一个分布反馈激光器由上电极、上台面、导波结构、衬底和下电极组成。不同宽度的导波结构实现每个分布反馈激光器在拥有相同周期的布拉格光栅的同时使激射波长有一定的偏移。该阵列可用作多波长激光器和可调谐激光器。
The invention discloses a distributed feedback laser array. It consists of multiple distributed feedback lasers arranged in parallel on the same semiconductor epitaxial wafer. The semiconductor epitaxial wafer at least includes an upper cladding layer, an active layer, a spacer layer, a refractive index control layer, a lower cladding layer and a substrate. The active layer or the refractive index control layer contains a Bragg grating forming a distributed feedback. Layers above the index control layer form the upper mesa of the distributed feedback laser. The refractive index control layer forms the wave guiding structure of the distributed feedback laser, and the width of the wave guiding structure of each distributed feedback laser in the array is different. Any distributed feedback laser in the distributed feedback laser array is composed of an upper electrode, an upper table, a waveguide structure, a substrate and a lower electrode. The waveguide structure with different width realizes that each distributed feedback laser has a Bragg grating with the same period and at the same time makes the lasing wavelength shift to a certain extent. The array can be used as a multi-wavelength laser and a tunable laser.
Description
技术领域 technical field
本发明涉及一种分布反馈激光器阵列,尤其是涉及激射波长可调谐且可以多波长激射的一种分布反馈激光器阵列。 The invention relates to a distributed feedback laser array, in particular to a distributed feedback laser array with tunable lasing wavelength and multi-wavelength lasing.
背景技术 Background technique
信息技术的普及与发展使对网络技术的要求越来越高,尤其对带宽的需求越来越大。密集波分复用和无源光网络等新一代技术的发展提出了对多波长光源的需求。多个分立的激光器固然能够满足对波长的需要,但是分立器件之间相互独立,每个器件的工作状况相差较大,导致光源设备的整体性能在稳定性、可靠性方面无法保证。在这样的背景下,可调谐激光器在具有了重大的优势。一类可调谐激光器通过注入电流或者通过加热等方式影响激光器的参数,从而改变激光器的激射波长;另一类采用多个不同激射波长的激光器集成的方式来实现激射波长的调谐。多个激光器集成的方式可以获得更大的调谐范围,更紧凑的结构和更高的稳定性。 The popularization and development of information technology make the requirements for network technology higher and higher, especially for bandwidth. The development of next-generation technologies such as dense wavelength division multiplexing and passive optical networks has raised the need for multi-wavelength light sources. Although multiple discrete lasers can meet the wavelength requirements, the discrete devices are independent of each other, and the working conditions of each device are quite different, which leads to the inability to guarantee the overall performance of the light source equipment in terms of stability and reliability. In this context, tunable lasers have significant advantages. One type of tunable laser affects the parameters of the laser by injecting current or heating, thereby changing the lasing wavelength of the laser; the other type uses the integration of multiple lasers with different lasing wavelengths to realize the tuning of the lasing wavelength. The integration of multiple lasers can obtain a larger tuning range, a more compact structure and higher stability.
分布反馈激光器具有发射功率大,高速调制时单模性能好等特点,已广泛作为光源应用在光通信、光传感等领域。分布反馈激光器阵列继承了单个分布反馈激光器的优点,同时实现了优越的可调谐性能,并且结构简单,可靠性高,稳定性好。 Distributed feedback lasers have the characteristics of high emission power and good single-mode performance during high-speed modulation, and have been widely used as light sources in optical communication, optical sensing and other fields. The distributed feedback laser array inherits the advantages of a single distributed feedback laser, while achieving superior tunable performance, simple structure, high reliability, and good stability.
分布反馈激光器阵列,由数个分布反馈激光器组成,其中每个激光器的激射波长相对上一个有一定的偏移。需要较小的波长变化时,可以通过注入电流、控制温度等方法对一个激光器的激射波长调谐;需要较大的波长变化时,可以选择激射另一个激光器。 The distributed feedback laser array is composed of several distributed feedback lasers, and the lasing wavelength of each laser has a certain offset relative to the previous one. When a small wavelength change is required, the lasing wavelength of one laser can be tuned by injecting current, controlling temperature, etc.; when a large wavelength change is required, another laser can be selected to lase.
实现分布反馈激光器阵列的关键在于让不同的激光器的激射波长有一定的偏移。目前常采用的手段是改变光栅周期。采用电子束直写曝光的方法制作布拉格光栅可以精确控制光栅周期,但是由于电子束曝光技术速度较慢,其产能受到限制,难以满足大规模,低成本制作的要求。加拿大的Quantum Device 公司阐述了利用相位掩模版来制作分布反馈激光器阵列的方法,然而,相位掩模版成本较高,大规模应用仍有问题。在国内,武汉邮科院利用新兴的纳米压印技术已经成功的制作出了13 个信道的分布反馈激光器阵列,不过纳米压印技术使用的硬掩模版制作分布反馈激光器时容易损坏有源层,该技术用于分布反馈激光器阵列的制作仍有不少问题有待解决。 The key to realizing the distributed feedback laser array is to make the lasing wavelengths of different lasers have a certain offset. The most commonly used method at present is to change the grating period. Fabricating Bragg gratings by electron beam direct writing exposure can precisely control the grating period, but due to the slow speed of electron beam exposure technology, its production capacity is limited, and it is difficult to meet the requirements of large-scale and low-cost production. Canada's Quantum Device Company has described a method of using a phase mask to make a distributed feedback laser array. However, the cost of the phase mask is relatively high, and large-scale applications are still problematic. In China, Wuhan Institute of Posts and Technology has successfully produced a 13-channel distributed feedback laser array by using the emerging nanoimprinting technology. However, the hard mask used in nanoimprinting technology is easy to damage the active layer when making distributed feedback lasers. There are still many problems to be solved in the fabrication of distributed feedback laser arrays using this technology. ``
实现分布反馈激光器激射波长偏移的另一种方法是利用采样布拉格光栅技术。布拉格光栅1级干涉波长的位置与采样周期有关,只要抑制0级干涉波长谐振,令激光器在1 级干涉波长激射,并通过控制采样周期,就可以控制激光器的激射波长。由于光栅的采样周期尺度在微米量级,因此采样光栅的制作可以采用全息曝光外加一次紫外光刻实现。不过到目前为止,根据主要研究该项技术的北京半导体所的朱洪亮研究小组、南京大学陈向飞教授的研究小组和韩国的电子与通讯研究的报道,所用该技术制作的分布反馈激光器阵列其波长可变范围仍然较小(不超过11nm),难以满足实际的应用要求。此外,由于光栅采样所产生的1 次干涉波长的激射阈值要高于0 级,因此采样光栅的分布反馈激光器的阈值通常要高于一般的分布反馈激光器。 Another way to achieve lasing wavelength shift in distributed feedback lasers is to use the sampling Bragg grating technique. The position of the first-order interference wavelength of the Bragg grating is related to the sampling period. As long as the resonance of the zero-order interference wavelength is suppressed, the laser is lased at the first-order interference wavelength, and the lasing wavelength of the laser can be controlled by controlling the sampling period. Since the sampling period of the grating is on the order of microns, the fabrication of the sampling grating can be realized by holographic exposure plus one UV lithography. But so far, according to reports from Zhu Hongliang's research group of Beijing Institute of Semiconductors, Nanjing University's Professor Chen Xiangfei's research group, and South Korea's Electronics and Communications Research Group, which mainly study this technology, the wavelength of the distributed feedback laser array produced by this technology can be The variable range is still small (no more than 11nm), which is difficult to meet the actual application requirements. In addition, since the lasing threshold of the 1st order interference wavelength generated by grating sampling is higher than that of 0th order, the threshold value of distributed feedback lasers with sampled gratings is usually higher than that of general distributed feedback lasers.
还有一类方法是光栅采用全息曝光制作周期固定的光栅,再通过波导结构的变化,改变波导等效折射率来实现波长偏移。美国Infinera公司利用选择性外延技术在不同区域一次性外延出不同厚度的有源层,从而实现对波导折射率的控制。不过,就目前报道的结果来看,这种方法波长偏移有限,一般不超过10nm,单一芯片难以满足实际 应用的需要,需要封装多个芯片才能覆盖所需的波段,增加了芯片封装的复杂性和成本。 Another method is that the grating adopts holographic exposure to make a grating with a fixed period, and then changes the equivalent refractive index of the waveguide through the change of the waveguide structure to realize the wavelength shift. Infinera Corporation of the United States uses selective epitaxy technology to epitaxially produce active layers with different thicknesses in different regions at one time, so as to realize the control of the refractive index of the waveguide. However, according to the results reported so far, the wavelength shift of this method is limited, generally no more than 10nm, and a single chip is difficult to meet the needs of practical applications. Multiple chips need to be packaged to cover the required band, which increases the complexity of chip packaging. sex and cost.
综上所述,除了采用电子束等高精度曝光手段外,目前利用采样光栅等方法制作出的分布反馈激光器阵列其波长可变范围均十分有限。缺乏低成本高可靠性的分布反馈激光器阵列的制作手段。 To sum up, in addition to the use of high-precision exposure methods such as electron beams, the wavelength variable range of distributed feedback laser arrays produced by methods such as sampling gratings is very limited. There is a lack of low-cost and high-reliability distributed feedback laser array fabrication methods.
发明内容 Contents of the invention
为了克服背景技术方案中的不足,本发明的目的在于提供结构简单、制作方便、低成本、高可靠性、调谐范围大的一种分布反馈激光器阵列,同时易于合波器等无源波导集成。 In order to overcome the shortcomings in the background technical solutions, the object of the present invention is to provide a distributed feedback laser array with simple structure, convenient manufacture, low cost, high reliability, and large tuning range, and at the same time, it is easy to integrate passive waveguides such as multiplexers.
本发明采用的技术方案是: The technical scheme adopted in the present invention is:
技术方案一: Technical solution one:
它是由制作在同一块半导体外延片上的多个平行排列的分布反馈激光器构成;半导体外延片从上至下依次包括上包层、有源层、间隔层、折射率控制层、下包层和衬底,用于形成分布反馈的布拉格光栅设置在有源层或者折射率控制层中;布拉格光栅的周期在整块半导体外延片上保持一致;所有分布反馈激光器与布拉格光栅垂直;上包层、有源层和间隔层构成分布反馈激光器的上台面;折射率控制层形成导波结构;分布反馈激光器阵列中任意一个分布反馈激光器均由一个上台面和其所对应的导波结构以及下包层、衬底和上电极、下电极共同构成。 It is composed of multiple distributed feedback lasers arranged in parallel on the same semiconductor epitaxial wafer; the semiconductor epitaxial wafer includes upper cladding layer, active layer, spacer layer, refractive index control layer, lower cladding layer and The substrate, the Bragg grating used to form the distributed feedback is set in the active layer or the refractive index control layer; the period of the Bragg grating is kept consistent on the entire semiconductor epitaxial wafer; all the distributed feedback lasers are perpendicular to the Bragg grating; the upper cladding, the The source layer and the spacer layer constitute the upper mesa of the distributed feedback laser; the refractive index control layer forms the waveguide structure; any distributed feedback laser in the distributed feedback laser array consists of an upper mesa and its corresponding waveguide structure and the lower cladding, The substrate, the upper electrode and the lower electrode are jointly constituted.
技术方案二: Technical solution two:
它是由制作在同一块半导体外延片上的多个平行排列的分布反馈激光器构成;半导体外延片从上至下依次包括上包层、折射率控制层、间隔层、有源层、下包层和衬底,用于形成分布反馈的布拉格光栅设置在有源层或者折射率控制层中;布拉格光栅的周期在整块半导体外延片上保持一致;所有分布反馈激光器与布拉格光栅垂直;上包层构成分布反馈激光器的上台面;折射率控制层形成导波结构;分布反馈激光器阵列中任意一个分布反馈激光器均由一个上台面和其所对应的导波结构以及下包层、衬底和上电极、下电极共同构成。 It is composed of multiple distributed feedback lasers arranged in parallel on the same semiconductor epitaxial wafer; the semiconductor epitaxial wafer includes an upper cladding layer, a refractive index control layer, a spacer layer, an active layer, a lower cladding layer and The substrate, the Bragg grating used to form the distributed feedback is set in the active layer or the refractive index control layer; the period of the Bragg grating is consistent on the entire semiconductor epitaxial wafer; all the distributed feedback lasers are perpendicular to the Bragg grating; the upper cladding layer constitutes the distribution The upper mesa of the feedback laser; the refractive index control layer forms a waveguide structure; any distributed feedback laser in the distributed feedback laser array consists of an upper mesa and its corresponding waveguiding structure, as well as a lower cladding layer, a substrate, an upper electrode, and a lower cladding layer. electrodes together.
以上两种技术方案中:上台面和导波结构的宽度在不同的分布反馈激光器之间随激射波长的增加而递增的。折射率控制层折射率大于上包层(11)、下包层的折射率。 In the above two technical solutions: the width of the upper mesa and the waveguide structure increases with the increase of the lasing wavelength among different distributed feedback lasers. The refractive index of the refractive index control layer is higher than that of the upper cladding layer (11) and the lower cladding layer.
与背景技术相比,本发明具有的有益效果是: Compared with background technology, the beneficial effect that the present invention has is:
通过引入折射率控制层,采用侧向湿法腐蚀或者选择性氧化等工艺对其侧向腐蚀,形成不同宽度导波结构,从而影响等效折射率,进而使激射波长产生偏移的方法,可以获得足够的偏移量。导波结构宽度从0.8微米变化到1.6微米可以使激射波长偏移30纳米。采用分布反馈激光器阵列中每个分布反馈激光器有不同宽度导波结构的方式获得激射波长的偏移,不要求对分布反馈激光器阵列中每个分布反馈激光器的布拉格光栅周期做相应的改变,分布反馈激光器阵列中每一个激光器采用相同周期的布拉格光栅,因此可以采用全息曝光的方法来制作,便于分布反馈激光器阵列的集成与制作,同时有利于封装,简化了工艺,降低了成本,提高了成品率。此外,折射率控制层也有利于制作合波器等无源结构,利于耦合分布反馈激光器阵列中不同分布反馈激光器的输出,便于使用。 By introducing a refractive index control layer, it is laterally etched by lateral wet etching or selective oxidation to form waveguide structures with different widths, thereby affecting the equivalent refractive index and shifting the lasing wavelength. Sufficient offset can be obtained. Varying the width of the waveguide structure from 0.8 microns to 1.6 microns can shift the lasing wavelength by 30 nm. The shift of the lasing wavelength is obtained by adopting the method that each distributed feedback laser in the distributed feedback laser array has a different width guide wave structure, and it is not required to make corresponding changes to the Bragg grating period of each distributed feedback laser in the distributed feedback laser array. Each laser in the feedback laser array uses a Bragg grating with the same period, so it can be produced by holographic exposure, which is convenient for the integration and production of the distributed feedback laser array, and is also conducive to packaging, which simplifies the process, reduces the cost, and improves the finished product. Rate. In addition, the refractive index control layer is also conducive to making passive structures such as multiplexers, and is conducive to coupling the outputs of different distribution feedback lasers in the distribution feedback laser array, which is convenient for use.
附图说明 Description of drawings
图1是一种分布反馈激光器阵列的半导体外延片结构的示意图。 Fig. 1 is a schematic diagram of a semiconductor epitaxial wafer structure of a distributed feedback laser array.
图2是一种分布反馈激光器阵列的侧视图。 Fig. 2 is a side view of a distributed feedback laser array.
图3是另一种分布反馈激光器阵列的半导体外延片结构的示意图。 Fig. 3 is a schematic diagram of another semiconductor epitaxial wafer structure of a distributed feedback laser array.
图4是另一种分布反馈激光器阵列的侧视图。 Fig. 4 is a side view of another distributed feedback laser array.
图5是基膜等效折射率随导波结构宽度变化示意图。 Fig. 5 is a schematic diagram showing the variation of the equivalent refractive index of the base film with the width of the waveguide structure.
图6是激射波长偏移量随导波结构宽度变化示意图。 Fig. 6 is a schematic diagram showing the variation of lasing wavelength offset with the width of the waveguide structure.
图7是激射波长偏移量与间隔层厚度关系示意图。 Fig. 7 is a schematic diagram of the relationship between the laser wavelength shift and the thickness of the spacer layer.
图中:1、半导体外延片,2、分布反馈激光器;11、上包层,12、有源层,13、折射率控制层,14、间隔层,15、下包层,16、衬底, 21、上台面,22、导波结构,23、上电极,24、下电极,121、布拉格光栅。 In the figure: 1. Semiconductor epitaxial wafer, 2. Distributed feedback laser; 11. Upper cladding layer, 12. Active layer, 13. Refractive index control layer, 14. Spacer layer, 15. Lower cladding layer, 16. Substrate, 21. Upper table, 22. Waveguide structure, 23. Upper electrode, 24. Lower electrode, 121. Bragg grating.
具体实施方式 Detailed ways
下面结合附图和实例对本发明做进一步说明。 The present invention will be further described below in conjunction with accompanying drawings and examples.
如图1所示,一种分布反馈激光器阵列是由制作在同一块半导体外延片1上的多个平行排列的分布反馈激光器2构成;半导体外延片1从上至下依次包括上包层11、有源层12 、间隔层14、折射率控制层13、下包层15和衬底16,用于形成分布反馈的布拉格光栅121设置在有源层12或者折射率控制层13中;布拉格光栅121的周期在整块半导体外延片1上保持一致。
As shown in Figure 1, a distributed feedback laser array is made up of a plurality of distributed
如图2所示,一种分布反馈激光器阵列中的所有分布反馈激光器2与布拉格光栅121垂直;上包层11、有源层12和间隔层14构成分布反馈激光器2的上台面21;折射率控制层13形成导波结构22;分布反馈激光器阵列中任意一个分布反馈激光器2均由一个上台面21和其所对应的导波结构22以及下包层15、衬底16和上电极23、下电极24共同构成。
As shown in Figure 2, all the distributed
如图3所示,另一种分布反馈激光器是由制作在同一块半导体外延片1上的多个平行排列的分布反馈激光器2构成;半导体外延片1 从上至下依次包括上包层11、折射率控制层13 、间隔层14、有源层12、下包层15和衬底16,用于形成分布反馈的布拉格光栅121设置在有源层12或者折射率控制层13中;布拉格光栅121的周期在整块半导体外延片1上保持一致。
As shown in Figure 3, another distributed feedback laser is made up of a plurality of distributed
如图4所示,另一种分布反馈激光器阵列中的所有分布反馈激光器2与布拉格光栅121垂直;上包层11构成分布反馈激光器2的上台面21;折射率控制层13形成导波结构22;分布反馈激光器阵列中任意一个分布反馈激光器2均由一个上台面21和其所对应的导波结构22以及下包层15、衬底16和上电极23、下电极24共同构成。
As shown in Figure 4, all the distributed
两种方案中的分布反馈激光器阵列,其中的分布反馈激光器2的方向都是垂直布拉格光栅2的方向,这样可以利用布拉格光栅的分布反馈效应。
In the distributed feedback laser arrays in the two schemes, the direction of the distributed
布拉格光栅121在半导体外延片1生长过程中一次制作在其中,使分布反馈激光器阵列的布拉格光栅121周期一致。包含了布拉格光栅121在有源层12内或者在折射率控制层13内两种情况。布拉格光栅12在有源层12内的方案,除了分布反馈激光器2常规具有的折射率耦合外,还包括了增益耦合。增益耦合克服了布拉格光栅121禁带两边的反射峰具有相同的阈值从而降低分布反馈激光器单模产率的问题,使分布反馈激光器2能够更多的工作在禁带边缘且靠近长波方向上的模式,保证了分布反馈激光器2的单波长激射。布拉格光栅121在折射率控制层13内的方案,避免了对有源层12的刻蚀,降低了阈值,采用端面镀膜等方法可弥补产率问题,两种情况各有优势。
The Bragg grating 121 is once fabricated in the
同一分布反馈激光器阵列中的分布反馈激光器2有不同宽度的上台面21,是出于通过侧向湿法腐蚀等工艺,一次制作不同宽度的导波结构的需要。整个分布反馈激光器阵列一次制作完成。
The distributed
分布反馈激光器阵列可以用做可调谐激光器或者多波长激光器,是因为其中的不同分布反馈激光器2有不同的激射波长。激射波长取决于基膜等效折射率和布拉格光栅121的周期。由于改变布拉格光栅121周期的方法需要很高成本,本发明是采用易于实现且成熟的工艺,在同一分布反馈激光器阵列中的所有分布反馈激光器2都有同样的布拉格光栅121的周期,通过使不同的分布反馈激光器2有不同的基膜等效折射率来实现激射波长的不同。基膜等效折射率的不同通过导波结构22宽度的不同来实现。分布反馈激光器阵列内分布反馈激光器2的数目取决于使用中对激射波长偏移范围的需要或者取决于对同时激射不同波长数目的需要。
The distributed feedback laser array can be used as a tunable laser or a multi-wavelength laser because different distributed
基膜等效折射率取决于光场分布。有源层12作为高折射率层,光场主要分布在其中,但对有源层12施加操作将影响激光器的阈值和输出功率。因此在有源层12附近,引入一层折射率高于上包层11和下包层15的折射率控制层13,折射率控制层13的折射率接近于有源层12,该高折射率层能影响原来的基模光场分布,将部分光场分布聚集在其周围。对折射率控制层13施加操作,能对光场分布造成有略微差异的影响,达到改变基膜等效折射率同时又不影响分布反馈激光器2的性能的目的。同时,折射率控制层13作为无源层,可以在其上制作合波器等无源结构,有利于耦合整个分布反馈激光器阵列中所有分布反馈激光器2的输出。
The equivalent refractive index of the base film depends on the optical field distribution. The
如图5所示,反映了基膜等效折射率随导波结构宽度变化的结果,其中横坐标是导波结构宽度,纵坐标是基模等效折射率。本发明在引入的折射率控制层13上制作导波结构22,通过使分布反馈激光器阵列中不同的分布反馈激光器2有不同宽度的导波结构22,从而有不同的基膜等效折射率,进而使激射波长不同。
As shown in Figure 5, it reflects the result of the change of the equivalent refractive index of the base film with the width of the waveguide structure, where the abscissa is the width of the waveguide structure, and the ordinate is the equivalent refractive index of the fundamental mode. In the present invention, the
在一定的导波结构22中,光场由横向的电场分布 纵向的传播常数来描述。通过亥姆霍兹方程:
In a
(1) (1)
和具体结构中的边界条件来求的。就是等效折射率。对一个特定的导波结构,分析出等效折射率以后再结合具体的光栅参数通过传输矩阵和耦合波等方法就可以得到它的激射波长。布拉格方程: and the boundary conditions in the specific structure. is the equivalent refractive index. For a specific guided wave structure, its lasing wavelength can be obtained by analyzing the equivalent refractive index and combining the specific grating parameters through transmission matrix and coupled wave methods. Bragg equation:
(2) (2)
为等效折射率,为布拉格光栅周期,为激射的波长阶数,一阶光栅取1。(2)两边取微分可得: is the equivalent refractive index, is the Bragg grating period, is the wavelength order of the lasing, and the first-order grating takes 1. (2) Differentiate both sides to get:
(3) (3)
这样就得到基膜等效折射率变化与激射波长偏移的关系。(3)式分析的是布拉格波长的偏移量,并不是真正的分布反馈激光器激射波长,但激射波长与禁带中央(即布拉格波长)之间的距离在微小的等效折射率变化的情况下不会发生明显的改变。可以认为布拉格波长的偏移量就是分布反馈激光器2激射波长的偏移量。
In this way, the relationship between the change of the equivalent refractive index of the base film and the laser wavelength shift is obtained. Equation (3) analyzes the offset of the Bragg wavelength, not the real lasing wavelength of the distributed feedback laser, but the distance between the lasing wavelength and the center of the forbidden band (that is, the Bragg wavelength) changes in a small equivalent refractive index No noticeable changes will occur. It can be considered that the offset of the Bragg wavelength is the offset of the lasing wavelength of the distributed
如图6所示,反映了激射波长的偏移量随导波结构22宽度变化的示意图。其中横坐标是导波结构22的宽度,对应的纵坐标是激射波长相对与导波结构宽度为0.8微米时激射波长的偏移量,同时间隔层14厚度为0.01微米。其中可以看出,在所设计的半导体外延片的结构下,导波结构22宽度从0.8微米变化到1.6微米时,激射波长的偏移可达32纳米,足够满足32信道50GHz的间隔波段。若折射率控制层13的折射率低于上包层11和下包层15,则其上无法聚集足够的光场分布,从而无法对等效折射率有足够的影响,从而无法实现明显的激射波长的偏移。
As shown in FIG. 6 , it is a schematic diagram reflecting the variation of the lasing wavelength offset with the width of the
本发明中的两个技术方案,核心的区别是折射率控制层13在有源层12的上方或者下方。这体现了这两层之间的间隔层14厚度的影响。折射率控制层13在有源层12下方,工艺上可以使折射率控制层13尽可能接近有源层12,从而增大折射率控制层13的作用。
The core difference between the two technical solutions in the present invention is that the refractive
如图7所示,反映了间隔层14厚度对激射波长偏移量的影响,其中横坐标是间隔层厚度,纵坐标是导波结构宽度为1.6微米时相对与导波结构宽度为0.8微米时的激射波长偏移量。间隔层厚度增大时激射波长偏移量有很明显的减小。
As shown in Figure 7, it reflects the influence of the thickness of the
折射率控制层13在有源层12上方的方案,避免了在制作上台面21的过程中,刻穿有源层12可能带来的增大损耗的问题,同时在制作时简化了工艺。两种技术方案各有优势。
The scheme that the refractive
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。 The above-mentioned embodiments are used to illustrate the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modification and change made to the present invention will fall into the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101317823A CN102638003A (en) | 2012-05-02 | 2012-05-02 | Distributed feedback laser array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101317823A CN102638003A (en) | 2012-05-02 | 2012-05-02 | Distributed feedback laser array |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102638003A true CN102638003A (en) | 2012-08-15 |
Family
ID=46622300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101317823A Pending CN102638003A (en) | 2012-05-02 | 2012-05-02 | Distributed feedback laser array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102638003A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104901160A (en) * | 2015-06-17 | 2015-09-09 | 中国科学院半导体研究所 | Dry method PE method of distributed feedback laser based on nanometer impression rasters |
CN105164874A (en) * | 2012-11-30 | 2015-12-16 | 统雷量子电子有限公司 | Multi-wavelength quantum cascade laser by growing different active and passive core layers |
CN109565152A (en) * | 2016-08-10 | 2019-04-02 | 浜松光子学株式会社 | Light emitting device |
US20190312410A1 (en) * | 2017-03-27 | 2019-10-10 | Hamamatsu Photonics K.K. | Semiconductor light-emitting module and control method therefor |
CN111257996A (en) * | 2020-03-18 | 2020-06-09 | 中国科学院长春光学精密机械与物理研究所 | A kind of birefringent waveguide Bragg grating reflector and preparation method thereof |
US10734786B2 (en) | 2016-09-07 | 2020-08-04 | Hamamatsu Photonics K.K. | Semiconductor light emitting element and light emitting device including same |
CN111600198A (en) * | 2020-05-26 | 2020-08-28 | 陕西源杰半导体技术有限公司 | Ultra-high-power laser for communication and preparation method thereof |
US11031751B2 (en) | 2016-08-10 | 2021-06-08 | Hamamatsu Photonics K.K. | Light-emitting device |
US11626709B2 (en) | 2017-12-08 | 2023-04-11 | Hamamatsu Photonics K.K. | Light-emitting device and production method for same |
US11646546B2 (en) | 2017-03-27 | 2023-05-09 | Hamamatsu Photonics K.K. | Semiconductor light emitting array with phase modulation regions for generating beam projection patterns |
US11686956B2 (en) | 2017-06-15 | 2023-06-27 | Hamamatsu Photonics K.K. | Light-emitting device |
US12126140B2 (en) | 2018-06-08 | 2024-10-22 | Hamamatsu Photonics K.K. | Light-emitting element |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4993032A (en) * | 1989-12-28 | 1991-02-12 | General Dynamics Corp., Electronics Divn. | Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers |
EP0663710A2 (en) * | 1994-01-18 | 1995-07-19 | Canon Kabushiki Kaisha | Optical semiconductor device and method for producing the same |
US5536085A (en) * | 1995-03-30 | 1996-07-16 | Northern Telecom Limited | Multi-wavelength gain-coupled distributed feedback laser array with fine tunability |
US5689358A (en) * | 1993-03-25 | 1997-11-18 | Nippon Telegraph And Telephone Corporation | Optical functional devices and integrated optical devices having a ridged multi-quantum well structure |
US6167072A (en) * | 1997-06-06 | 2000-12-26 | University Of Florida | Modulated cap thin p-clad semiconductor laser |
US20020064201A1 (en) * | 2000-11-27 | 2002-05-30 | Keisuke Matsumoto | Photonic semiconductor device and method for fabricating the same |
US20020090011A1 (en) * | 2000-10-30 | 2002-07-11 | Bardia Pezeshki | Laser thermal tuning |
CN1701478A (en) * | 2003-03-31 | 2005-11-23 | 日本电信电话株式会社 | Optical semiconductor device and optical semiconductor integrated circuit |
-
2012
- 2012-05-02 CN CN2012101317823A patent/CN102638003A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4993032A (en) * | 1989-12-28 | 1991-02-12 | General Dynamics Corp., Electronics Divn. | Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers |
US5689358A (en) * | 1993-03-25 | 1997-11-18 | Nippon Telegraph And Telephone Corporation | Optical functional devices and integrated optical devices having a ridged multi-quantum well structure |
EP0663710A2 (en) * | 1994-01-18 | 1995-07-19 | Canon Kabushiki Kaisha | Optical semiconductor device and method for producing the same |
US5536085A (en) * | 1995-03-30 | 1996-07-16 | Northern Telecom Limited | Multi-wavelength gain-coupled distributed feedback laser array with fine tunability |
US6167072A (en) * | 1997-06-06 | 2000-12-26 | University Of Florida | Modulated cap thin p-clad semiconductor laser |
US20020090011A1 (en) * | 2000-10-30 | 2002-07-11 | Bardia Pezeshki | Laser thermal tuning |
US20020064201A1 (en) * | 2000-11-27 | 2002-05-30 | Keisuke Matsumoto | Photonic semiconductor device and method for fabricating the same |
CN1701478A (en) * | 2003-03-31 | 2005-11-23 | 日本电信电话株式会社 | Optical semiconductor device and optical semiconductor integrated circuit |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105164874A (en) * | 2012-11-30 | 2015-12-16 | 统雷量子电子有限公司 | Multi-wavelength quantum cascade laser by growing different active and passive core layers |
CN105164874B (en) * | 2012-11-30 | 2017-12-22 | 统雷量子电子有限公司 | Multi-wavelength quantum cascade laser by growing different active and passive core layers |
CN104901160A (en) * | 2015-06-17 | 2015-09-09 | 中国科学院半导体研究所 | Dry method PE method of distributed feedback laser based on nanometer impression rasters |
CN109565152B (en) * | 2016-08-10 | 2020-11-03 | 浜松光子学株式会社 | Light emitting device |
CN109565152A (en) * | 2016-08-10 | 2019-04-02 | 浜松光子学株式会社 | Light emitting device |
US11031751B2 (en) | 2016-08-10 | 2021-06-08 | Hamamatsu Photonics K.K. | Light-emitting device |
US11031747B2 (en) | 2016-08-10 | 2021-06-08 | Hamamatsu Photonics K.K. | Light-emitting device |
US10734786B2 (en) | 2016-09-07 | 2020-08-04 | Hamamatsu Photonics K.K. | Semiconductor light emitting element and light emitting device including same |
US20190312410A1 (en) * | 2017-03-27 | 2019-10-10 | Hamamatsu Photonics K.K. | Semiconductor light-emitting module and control method therefor |
US11637409B2 (en) | 2017-03-27 | 2023-04-25 | Hamamatsu Photonics K.K. | Semiconductor light-emitting module and control method therefor |
US11646546B2 (en) | 2017-03-27 | 2023-05-09 | Hamamatsu Photonics K.K. | Semiconductor light emitting array with phase modulation regions for generating beam projection patterns |
US11777276B2 (en) | 2017-03-27 | 2023-10-03 | Hamamatsu Photonics K.K. | Semiconductor light emitting array with phase modulation regions for generating beam projection patterns |
US11686956B2 (en) | 2017-06-15 | 2023-06-27 | Hamamatsu Photonics K.K. | Light-emitting device |
US11626709B2 (en) | 2017-12-08 | 2023-04-11 | Hamamatsu Photonics K.K. | Light-emitting device and production method for same |
US12126140B2 (en) | 2018-06-08 | 2024-10-22 | Hamamatsu Photonics K.K. | Light-emitting element |
CN111257996A (en) * | 2020-03-18 | 2020-06-09 | 中国科学院长春光学精密机械与物理研究所 | A kind of birefringent waveguide Bragg grating reflector and preparation method thereof |
CN111600198A (en) * | 2020-05-26 | 2020-08-28 | 陕西源杰半导体技术有限公司 | Ultra-high-power laser for communication and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102638003A (en) | Distributed feedback laser array | |
CN100583579C (en) | Manufacture method and device of single-chip integrated semiconductor laser array | |
CN103311807B (en) | Manufacturing method of multi-wavelength laser array chip | |
CN101227061A (en) | Manufacturing method of tunable semiconductor laser and tunable semiconductor laser | |
CN103762500B (en) | Asymmetric equivalent apodization sampling optical grating and laser based on reconstruction-equivalent chirp | |
CN102684069B (en) | Hybrid silicone monomode laser based on evanescent field coupling and period microstructural frequency selecting | |
CN112290382B (en) | Semiconductor laser and manufacturing method thereof | |
CN103337788A (en) | DFB semiconductor laser based on asymmetric structure of reconstruction-equivalent chirp and preparation method thereof | |
CN102142657B (en) | Manufacturing method of photonic crystal waveguide for improving lateral far field of stripe laser | |
CN105281200A (en) | Integrated high-speed digital modulation WDM-PON optical module based on REC technology | |
CN104917051A (en) | Distributed coupling coefficient DFB laser based on reconstruction-equivalent chirp technology and array thereof | |
CN104779520A (en) | Rapid tunable semiconductor laser and preparation method based on reconstitution-equivalent chirp | |
CN103762497A (en) | Reconstruction-equivalent chirp and equivalent half apodization-based DFB semiconductor laser and preparation method thereof | |
CN107565381B (en) | Distributed feedback semiconductor laser device and photonic integrated emission chip module | |
CN103779785A (en) | Distribution reflection Bragg laser capable of achieving wave length and width tuning and manufacturing method thereof | |
CN102820616B (en) | A Method for Fabricating Distributed Feedback Laser Array Using Selected Area Epitaxy | |
CN202651615U (en) | A Distributed Feedback Laser Array | |
CN116632651A (en) | Silicon-based surface high-order grating laser and its preparation method | |
CN215896966U (en) | High-order grating single longitudinal mode groove laser | |
CN116207608A (en) | Quantum dot laser structure and preparation method thereof | |
JP4006729B2 (en) | Semiconductor light-emitting device using self-assembled quantum dots | |
CN104917050B (en) | The production method of two-dimensional grating dual wavelength Distributed Feedback Laser | |
CN209675673U (en) | Multi-Wavelength Distributed Feedback Semiconductor Laser Array | |
CN103257509B (en) | The single chip integrated Wavelength conversion devices of selective area epitaxial | |
CN104242059A (en) | Method for manufacturing laser array by selective area growth (SAG) technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120815 |