CN1026359C - Magneto-optical current angle comparison method and device - Google Patents
Magneto-optical current angle comparison method and device Download PDFInfo
- Publication number
- CN1026359C CN1026359C CN 91100372 CN91100372A CN1026359C CN 1026359 C CN1026359 C CN 1026359C CN 91100372 CN91100372 CN 91100372 CN 91100372 A CN91100372 A CN 91100372A CN 1026359 C CN1026359 C CN 1026359C
- Authority
- CN
- China
- Prior art keywords
- current
- winding
- probe
- light
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000004804 winding Methods 0.000 claims abstract description 24
- 239000000523 sample Substances 0.000 claims abstract description 13
- 230000010287 polarization Effects 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000013307 optical fiber Substances 0.000 claims description 9
- 230000004907 flux Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 241000220225 Malus Species 0.000 claims 1
- 102000041061 Theta family Human genes 0.000 claims 1
- 108091060841 Theta family Proteins 0.000 claims 1
- 239000012467 final product Substances 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
Images
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
本发明属电工仪表类,特别适用于大电流测量场合。The invention belongs to the category of electrical instruments, and is especially suitable for large current measurement occasions.
中国专利《多通道开口式直流大电流比较仪》《专利号85100829》,其结构必须保证反馈绕组的安匝数与被测电流母线中安匝数相平衡以保持零磁通状态,反馈绕组中的电流跟踪被测电流母线中的电流,将反馈绕组中的电流值乘以一定的变化系数,即得被测电流值。但由于外磁场的影响,上述发明赖以存在的基础-零磁通将受到干扰,导致测量出现的零磁通并不是测量本身所要求的零磁通。为此,上述专利中提供了一整套减少外磁场影响的结构措施,如采用独立的多通道系统,每一个通道设反馈绕组与激励绕组,在铁芯外设激励绕组,还设有屏蔽铁芯等。这种结构形式,还由于两个主铁芯绕组必须完全对称,因此制造工艺要求高,外加屏蔽铁芯,使得结构臃肿,体积大,重量大。该发明的实施效果还与零磁通的准确性直接相关,而要完全排除对零磁通的干扰是不可能的。Chinese Patent "Multi-Channel Open Type DC Large Current Comparator" "Patent No. 85100829", its structure must ensure that the ampere-turns of the feedback winding are balanced with the ampere-turns in the measured current bus to maintain the zero flux state, and the feedback winding The current tracks the current in the measured current bus, and the current value in the feedback winding is multiplied by a certain variation coefficient to obtain the measured current value. However, due to the influence of the external magnetic field, the basis for the existence of the above invention - the zero magnetic flux will be disturbed, so that the zero magnetic flux that appears in the measurement is not the zero magnetic flux required by the measurement itself. For this reason, the above-mentioned patent provides a whole set of structural measures to reduce the influence of the external magnetic field, such as adopting an independent multi-channel system, each channel is equipped with a feedback winding and an excitation winding, an excitation winding is arranged outside the iron core, and a shielding iron core is also provided. wait. This structure also requires high manufacturing process because the two main core windings must be completely symmetrical, and the additional shielding core makes the structure bloated, large in size and heavy in weight. The implementation effect of the invention is also directly related to the accuracy of the zero magnetic flux, and it is impossible to completely eliminate the interference to the zero magnetic flux.
针对上述现有技术存在的缺点,本发明提供一种测试大直流电电流强度的磁光角度比较方法及其装置,它由开口铁芯、探头、比较绕组、信号处理微机等部件组成。Aiming at the above-mentioned shortcomings in the prior art, the present invention provides a magneto-optical angle comparison method and device for testing the intensity of a large DC current, which is composed of an open core, a probe, a comparison winding, a signal processing microcomputer and other components.
本发明通过以下技术措施实施(图1、2及3),利用比较组9中的电流跟踪被测电流,使比较绕组电流磁场产生的偏振面旋转角θ比与被测电流磁场产生的偏振面旋转角θ比方向相反大小相等形成零磁通过被测电流值为比较绕组的安匝数即i=WI比,式中I比为每匝线圈的电流,W为比较绕组的匝数。为此,本方法中采用包括探头8在内的开口铁芯,其形状视应用场合而定,可采用圆形、正方形或长方形等各种形状。由图2可知,探头8由聚焦透镜14、起偏器15、敏感元件16、聚焦透镜17、检偏器18等部件组成。探头8的入射端直接偶合或通过光纤3与光源2联接,出射端直接偶合或通过光纤10与探测器11、12联接,由于本方法中的检偏器18采用OE双输棱镜(GP-5系列),所以探测器11、12各自检测的是来自检偏器18的相互正交的OE光束。为使O光、E光的光强相等,在探测器11、12中一个带有功率放大器13,只需简单调节就能获得二光束相等,从而解决双光路中45°预置角调节和安装光路的困难。根据马吕斯定律,从检偏器18出来的光强I=IOcos2θ,式中IO为起偏器15出射光强,I为偏振面旋转θ角后检偏器18的出射光强,该式中
θ与COS2θ存在如图2所示的关系,当θ为某值时,COS2θ值将出现最小值或零值。在测量过程中,采用信号处理电路13或微机系统(包括显示、打印)控制可控电流源6即可控制比较绕组9的电流的方法,控制比较绕组电流值及由它产生的偏振面旋转角θ比,跟踪并抵消被测电流产生的偏振面旋转角θ被,当比较绕组的安匝数与被测电流值相等时光强出现零值,即出现如图2所示曲线最低值相对应的θ值。由于磁场温、外磁场及其他因素的影响,图3曲线在座标上将发生飘移,但不会影响其形状及最低点的出现,因此测量的可靠性及精度能得到很好的保证。The present invention is implemented through the following technical measures (Figures 1, 2 and 3), using the current in the comparison group 9 to track the measured current, so that the ratio of the rotation angle θ of the polarization plane generated by the magnetic field of the comparison winding current to the polarization plane generated by the measured current magnetic field The rotation angle θ is opposite to the direction and equal in size to form zero magnetism. The measured current value is the ampere-turn number of the comparison winding, that is, i=WI ratio , where the I ratio is the current of each turn of the coil, and W is the number of turns of the comparison winding. For this reason, the open iron core including the probe 8 is adopted in this method, and its shape depends on the application occasion, and various shapes such as circle, square or rectangle can be adopted. As can be seen from FIG. 2 , the probe 8 is composed of a focusing
本发明的突出优点表现在(1)在敏感元件中采用OE双输棱镜作为检偏器,这样,只需简单的调节就可获得二光束相等,从而解决双光路中的采用45°预置角调节和安装光路的困难;(2)本装置中的铁芯采用可分式结构,利用铁芯联接器5将铁芯分为上下两部分,拆卸维修方便,并可带电操作不影响生产;(3)设磁分路器7,能“在线”进行装置检修、更换、调试,通过磁分路器对它进行简单调节达到等于断开被测电流的目的;(4)本方法在直流、交流电电测定场合均可使用。(5)具有体积小,重量轻不受外磁场干扰;(6)采用微机处理系统,使测量精度不受温度,外界环境等因素的影响,能保证长期工作;(7)精度高,价格低,(8)通过光纤连接本装置能在高电压下运行。The outstanding advantages of the present invention are as follows: (1) The OE double-input prism is used as the analyzer in the sensitive element, so that the two beams can be equal with only a simple adjustment, thereby solving the problem of using a 45° preset angle in the dual optical path Difficulties in adjusting and installing the optical path; (2) The iron core in this device adopts a divisible structure, and the iron core is divided into upper and lower parts by using the
图1为磁光电流比较仪原理图。图中1为光源驱动电源,2光源,3偶合器或光纤,4铁芯;5哈夫面,6可控电流源,7磁分路器,8探头,9比较绕组,10偶合器或光纤,11探测器,12探测器,13功率放大器,14信号处理电路或微机系统(包括显示、打印)。Figure 1 is a schematic diagram of the magneto-optical current comparator. In the figure 1 is the light source driving power, 2 light source, 3 coupler or optical fiber, 4 iron core; 5 Huff surface, 6 controllable current source, 7 magnetic shunt, 8 probe, 9 comparison winding, 10 coupler or optical fiber , 11 detectors, 12 detectors, 13 power amplifiers, 14 signal processing circuits or computer systems (including display, printing).
图2为探头8的内部结构原理图。FIG. 2 is a schematic diagram of the internal structure of the probe 8 .
图3为光强与偏振面旋转角的关系图。Fig. 3 is a graph showing the relationship between the light intensity and the rotation angle of the polarization plane.
图4为稳定性试验特性曲线。Figure 4 is the characteristic curve of the stability test.
对本发明所提供的磁光电流角度比较仪作了稳定性试验,经一小时的连续试验结果如表1及图4所示。其中需要说明的是本实验所提供的测试仪器准确度为1%。The magneto-optical current angle comparator provided by the present invention has been tested for stability, and the results of the one-hour continuous test are shown in Table 1 and Figure 4. It should be noted that the accuracy of the test equipment provided in this experiment is 1%.
标准电流(A) 装置测量(A) 引用误差(%)Standard current (A) Device measurement (A) Reference error (%)
0000 00000000 0000
1000 990 -0.101000 990 -0.10
2000 2030 +0.302000 2030 +0.30
3000 3040 +0.403000 3040 +0.40
4000 4030 +0.304000 4030 +0.30
5000 5050 +0.505000 5050 +0.50
6000 6040 +0.406000 6040 +0.40
7000 7020 +0.207000 7020 +0.20
8000 8020 +0.208000 8020 +0.20
9000 9020 +0.209000 9020 +0.20
10000 10040 +0.4010000 10040 +0.40
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 91100372 CN1026359C (en) | 1991-01-18 | 1991-01-18 | Magneto-optical current angle comparison method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 91100372 CN1026359C (en) | 1991-01-18 | 1991-01-18 | Magneto-optical current angle comparison method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1063363A CN1063363A (en) | 1992-08-05 |
CN1026359C true CN1026359C (en) | 1994-10-26 |
Family
ID=4904590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 91100372 Expired - Fee Related CN1026359C (en) | 1991-01-18 | 1991-01-18 | Magneto-optical current angle comparison method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1026359C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105866506B (en) * | 2016-04-01 | 2018-06-22 | 河北大学 | A kind of device and method that conductor current is measured using magneto-optic memory technique |
CN108333406B (en) * | 2018-01-19 | 2020-06-26 | 三峡大学 | High-precision current measuring system based on annular magnetic field sensing array |
CN111721992B (en) * | 2020-06-19 | 2022-09-06 | 贵州江源电力建设有限公司 | Optical fiber sensing system for measuring current intensity of three-phase high-voltage conductor |
-
1991
- 1991-01-18 CN CN 91100372 patent/CN1026359C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1063363A (en) | 1992-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111337864B (en) | Differential balance optical pumping atomic magnetic detection device | |
US4539519A (en) | Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect | |
CN106526277B (en) | A kind of Novel light path sensing unit for low pressure optical current sensor | |
JPS61234364A (en) | Magneto-optic current measuring device and drift compensating method thereof | |
JPH0693006B2 (en) | Magneto-optical current transformer device | |
US3746983A (en) | Apparatus fur measuring very high currents particularly direct currents | |
CN104931232A (en) | Test device and method of Verdet constant of doped optical fiber | |
US4956607A (en) | Method and apparatus for optically measuring electric current and/or magnetic field | |
Song et al. | A prototype clamp-on magneto-optical current transducer for power system metering and relaying | |
KR0173672B1 (en) | Fiber optic device for measuring current strength | |
CN108986613B (en) | A comprehensive experimental instrument for Hall, Faraday and Zeeman effects | |
CN1026359C (en) | Magneto-optical current angle comparison method and device | |
CN113534022A (en) | High-precision magnetic field measuring system | |
CN102121872B (en) | System for analyzing polarization characteristics of full-automatic optical fiber | |
Xu et al. | A linear optical current transducer based on crystal wedge imaging detection | |
CN205484007U (en) | Verdet constant measuring device of magneto optic material | |
JP3137468B2 (en) | Measurement device for electrical signals using optical elements | |
CN115453434B (en) | Multifunctional micro-nano focusing electrode longitudinal integrated magneto-optical Kerr effect device | |
RU2819134C1 (en) | Optical multichannel current meter for high-voltage networks | |
KR100228416B1 (en) | Complete current-voltage measuring apparatus using light | |
CN116908515B (en) | Differential optical current sensor for lightning current detection | |
JPS5938663A (en) | Current measuring apparatus using optical fiber | |
KR20060017690A (en) | Optical current sensor | |
KR100428891B1 (en) | Contactless current measuring apparatus using laser | |
GB2100018A (en) | Fibre optics measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |