CN102621216A - 用双放大效应分子印迹电化学传感器检测微量土霉素的方法 - Google Patents
用双放大效应分子印迹电化学传感器检测微量土霉素的方法 Download PDFInfo
- Publication number
- CN102621216A CN102621216A CN2012101072879A CN201210107287A CN102621216A CN 102621216 A CN102621216 A CN 102621216A CN 2012101072879 A CN2012101072879 A CN 2012101072879A CN 201210107287 A CN201210107287 A CN 201210107287A CN 102621216 A CN102621216 A CN 102621216A
- Authority
- CN
- China
- Prior art keywords
- oxytetracycline
- electrochemical sensor
- molecularly imprinted
- mol
- imprinted electrochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- KIPLYOUQVMMOHB-MXWBXKMOSA-L [Ca++].CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C([O-])[C@]2(O)C(=O)C(C(N)=O)=C1O)C(=O)c1c(O)cccc1[C@@]3(C)O.CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C([O-])[C@]2(O)C(=O)C(C(N)=O)=C1O)C(=O)c1c(O)cccc1[C@@]3(C)O Chemical compound [Ca++].CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C([O-])[C@]2(O)C(=O)C(C(N)=O)=C1O)C(=O)c1c(O)cccc1[C@@]3(C)O.CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C([O-])[C@]2(O)C(=O)C(C(N)=O)=C1O)C(=O)c1c(O)cccc1[C@@]3(C)O KIPLYOUQVMMOHB-MXWBXKMOSA-L 0.000 title 1
- 229940063650 terramycin Drugs 0.000 title 1
- 239000004100 Oxytetracycline Substances 0.000 claims description 61
- 229960000625 oxytetracycline Drugs 0.000 claims description 61
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 claims description 61
- 235000019366 oxytetracycline Nutrition 0.000 claims description 61
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 claims description 61
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 34
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 27
- 239000000243 solution Substances 0.000 claims description 18
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- 239000001103 potassium chloride Substances 0.000 claims description 16
- 235000011164 potassium chloride Nutrition 0.000 claims description 16
- 239000008055 phosphate buffer solution Substances 0.000 claims description 14
- 238000001903 differential pulse voltammetry Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 8
- 230000002860 competitive effect Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 8
- 239000012086 standard solution Substances 0.000 claims description 7
- 108010015776 Glucose oxidase Proteins 0.000 claims description 6
- 239000004366 Glucose oxidase Substances 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 229940116332 glucose oxidase Drugs 0.000 claims description 6
- 235000019420 glucose oxidase Nutrition 0.000 claims description 6
- 229920000128 polypyrrole Polymers 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000011088 calibration curve Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000002659 electrodeposit Substances 0.000 claims 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 13
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229960003351 prussian blue Drugs 0.000 description 5
- 239000013225 prussian blue Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000273 veterinary drug Substances 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000001318 differential pulse voltammogram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229940072172 tetracycline antibiotic Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明公开了一种用双放大效应分子印迹电化学传感器检测微量土霉素的方法。当待测分子土霉素与电极表面的土霉素分子印迹膜上葡萄糖氧化酶标记的土霉素进行竞争取代时,普鲁士蓝催化过氧化氢在铂电极上的电化学信号发生变化,据此建立了一种测定痕量土霉素的电化学分析方法。差分脉冲伏安法对待测液进行扫描,扫描电压0.5~-0.3V,土霉素在0~1×10-7mol/L和1×10-7~1×10-6mol/L浓度范围内与峰电流减少值Δi呈良好的线性关系。本发明克服了已有技术在检测时存在过于复杂等诸多缺点,更好地提高了灵敏度和选择性,对于低浓度土霉素的检测易于自动化。
Description
技术领域
本发明涉及一种利用双放大效应(膜放大和酶放大)分子印迹技术与电化学传感器联用快速测定微量土霉素的方法。
背景技术
由于其质优价廉、广谱抗菌活性的特点,四环素类兽药在养殖业中的应用非常广泛。土霉素为四环素类抗生素,即是畜禽中广泛应用的广谱抗菌药之一。在畜禽粪便、土壤和废水等环境中经常可以检测到兽药残留,而在四环素类兽药抗生素中以土霉素的检出率较高。另外土霉素作为临床应用最久的抗生素之一,若长期食用会增加人体的抗药性,对人体产生毒副作用,可在肝组织中富集,造成肝损伤。因此有必要在前有的基础上提高灵敏度来研究一种对土霉素具有高选择性的检测方法。分子印迹是近年发展起来的一种对模板分子具有高选择性和高灵敏度的技术。已报道的印迹传感器虽已引入了相关的酶放大技术,但对微量土霉素的检测仍不够灵敏,且需要电子媒介体,使检测步骤繁琐。
发明内容
本发明的目的是提供一种用双放大效应分子印迹电化学传感器检测微量土霉素的方法。
构思如下:普鲁士蓝(prussian blue,PB)由于其对过氧化氢的电还原有很好的催化活性和选择性,因此称之为“人工过氧化物酶”。PB对过氧化氢的还原发生催化作用是因为Fe3+的还原物Fe2+与过氧化氢发生了化学氧化反应,反应生成的Fe3+在电极上重新还原,使得还原剂Fe2+得以再生,因而出现了催化电流。当在电极表面电聚合得到稳定的普鲁士蓝分子印迹膜时,就可以通过该膜直接对待测液中的过氧化氢进行检测,不需要电子媒介体,方便测定。另外,引入酶放大效应,可以很好地提高检测的灵敏度。电化学信号的改变即是通过待测液中的土霉素竞争取代分子印迹膜上已孵化的葡萄糖氧化酶标记的土霉素来达到的。待测液中的土霉素浓度越大,竞争能力越强,使得电极表面的酶标土霉素量减少,即葡萄糖氧化酶催化葡萄糖产生的过氧化氢量减少,从而检测到普鲁士蓝催化过氧化氢产生的电化学信号减弱。这样即可达到间接地检测土霉素的目的。
本发明涉及双放大效应的分子印迹酶标增敏技术。当待测分子土霉素与电极表面的土霉素分子印迹膜上葡萄糖氧化酶标记的土霉素进行竞争取代时,普鲁士蓝催化过氧化氢在铂电极上的电化学信号发生变化,峰电流与待测土霉素的浓度在0~1×10-7mol/L和1×10-7~1×10-6mol/L范围内呈良好的线性关系。
具体步骤如下:
(1)铂电极的处理:
将铂电极依次用1.0~0.05μm的氧化铝粉进行表面抛光处理,然后依次在体积百分比浓度为50%的硝酸、无水乙醇和纯水中浸泡洗涤,取出后超声洗涤5min。
(2)土霉素分子印迹电化学传感器的制备:
将步骤(1)处理干净的铂电极置于含5.0mmol/L聚吡咯(PPY)、2.0mmol/LFeCl3、2.0mmol/L K3[Fe(CN)6]、0.3mmol/L土霉素(OTC)、0.1mol/L KCl和0.1mol/L HCl的混合溶液中,在0.36V电沉积30~50s,然后在-0.1~0.4V间于50mV/s的扫描速率循环扫描10~30圈。用蒸馏水冲洗该铂电极,并置于室温下晾干;再将该铂电极于含0.1mol/L KCl的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)中施加-0.05V的电位5~15min后,在-0.05~0.36V间扫描5~20圈,用蒸馏水冲洗干净后在室温下晾干,得土霉素分子印迹电化学传感器;
(3)检测方法:
在15mL小烧杯中加入含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)10mL作为检测体系;将步骤(2)制得的土霉素分子印迹电化学传感器置于葡萄糖氧化酶标记土霉素溶液中孵化15~20min,取出土霉素分子印迹电化学传感器并冲洗其表面,得到孵化完全的土霉素分子印迹电化学传感器;然后将已孵化完全的土霉素分子印迹电化学传感器浸入10mL 0~1.0×10-7mol/L和1.0×10-7~1.0×10-6mol/L浓度范围内的土霉素标准溶液中进行竞争吸附,10min后接入检测体系,选用电化学工作站进行差分脉冲伏安扫描,扫描电压0.5~-0.3V;
(4)标准工作曲线的绘制:
在15mL小烧杯中加入10mL含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)作为检测体系;将步骤(3)制得的已孵化完全的土霉素分子印迹电化学传感器浸入10mL土霉素标准溶液中竞争吸附,10min后接入检测体系,选用电化学工作站进行差分脉冲伏安扫描;土霉素在0~1×10-7mol/L和1×10-7~1×10-6mol/L浓度范围内与峰电流减少值Δi呈良好的线性关系:Δi(μA)=-111.12C-0.4209,线性相关系数r=0.9972;Δi(μA)=-48.412C-6.977,线性相关系数r=0.9985。
(5)待测样品中土霉素含量的测定:
在15mL小烧杯中加入含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)10mL作为检测体系;将步骤(3)制得的孵化完全的土霉素分子印迹电化学传感器浸入10mL土霉素溶液中竞争吸附,10min后接入检测体系,利用电化学工作站进行差分脉冲伏安扫描,扫描电压0.5~-0.3V,得到峰电流值i。根据校正曲线计算出土霉素的浓度C。
本发明克服了已有技术在检测时存在过于复杂等诸多缺点,更好地提高了灵敏度和选择性,对于低浓度土霉素的检测易于自动化。
附图说明
图1为本发明实施例铂电极上土霉素分子印迹膜在含0.1mol/L氯化钾的磷酸盐缓冲溶液中的差分脉冲伏安图。
图中:a为裸铂电极;b为非分子印迹电化学传感器;c为孵化后的分子印迹电化学传感器;d为已在土霉素标准溶液中竞争后的分子印迹电化学传感器。
图2为本发明实施例土霉素含量与差分脉冲伏安法峰电流的关系图。
具体实施方式
实施例:
(1)铂电极的处理:
将铂电极依次用1.0μm、0.3μm和0.05μm的氧化铝粉进行表面抛光处理,然后依次在体积百分比浓度为50%的硝酸、无水乙醇和纯水中浸泡洗涤,取出后超声洗涤5min。
(2)土霉素分子印迹电化学传感器的制备:
将步骤(1)处理干净的铂电极置于含5.0mmol/L聚吡咯(PPY)、2.0mmol/LFeCl3、2.0mmol/L K3[Fe(CN)6]、0.3mmol/L土霉素(OTC)、0.1mol/L KCl和0.1mol/L HCl的混合溶液中,在0.36V电沉积40s,然后在-0.1~0.4V间于50mV/s的扫描速率循环扫描20圈。用蒸馏水冲洗该电极,并置于室温下晾干。再将该铂电极于含0.1mol/L KCl的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)中施加-0.05V的电位10min后,在-0.05~0.36V间扫描10圈,用蒸馏水冲洗干净后在室温下晾干,得土霉素分子印迹电化学传感器;
(3)检测方法:
在15mL小烧杯中加入含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)10mL作为检测体系;将步骤(2)制得的土霉素分子印迹电化学传感器置于葡萄糖氧化酶标记土霉素溶液中孵化18min,取出土霉素分子印迹电化学传感器并冲洗其表面,得到孵化完全的土霉素分子印迹电化学传感器;然后将已孵化完全的土霉素分子印迹电化学传感器浸入10mL 5.0×10-7mol/L土霉素标准溶液中进行竞争吸附,10min后接入检测体系,用电化学工作站进行差分脉冲伏安扫描,扫描电压0.5~-0.3V;
(4)标准工作曲线的绘制:
在15mL小烧杯中加入10mL含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)作为检测体系;将步骤(3)制得的已孵化完全的土霉素分子印迹电化学传感器浸入10mL土霉素标准溶液中竞争吸附,10min后接入检测体系,选用电化学工作站进行差分脉冲伏安扫描。土霉素在0~1×10-7mol/L和1×10-7~1×10-6mol/L浓度范围内与峰电流变化值Δi呈良好的线性关系:Δi(μA)=-111.12C-0.4209,线性相关系数r=0.9972;Δi(μA)=-48.412C-6.977,线性相关系数r=0.9985。
(5)牛奶样品中土霉素含量的测定
用于样品检测的牛奶购于超市,但未检出土霉素,故采用加标回收实验。在15mL小烧杯中加入含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液(PBS)10mL作为检测体系。将步骤(3)制得的已孵化完全的土霉素分子印迹电化学传感器浸入10mL土霉素溶液中竞争吸附,10min后接入检测体系,利用电化学工作站进行差分脉冲伏安扫描,扫描电压0.5~-0.3V,得到峰电流值i。根据校正曲线计算出土霉素的浓度C。计算回收率,结果如表1所示。
表1加标回收试验数据
Claims (1)
1.一种用双放大效应分子印迹电化学传感器检测微量土霉素的方法,其特征在于具体步骤如下:
(1)铂电极的处理:
将铂电极依次用1.0~0.05μm的氧化铝粉进行表面抛光处理,然后依次在体积百分比浓度为50%的硝酸、无水乙醇和纯水中浸泡洗涤,取出后超声洗涤5min;
(2)土霉素分子印迹电化学传感器的制备:
将步骤(1)处理干净的铂电极置于含5.0mmol/L聚吡咯、2.0mmol/L FeCl3、2.0mmol/L K3[Fe(CN)6]、0.3mmol/L土霉素、0.1mol/L KCl和0.1mol/L HCl的混合溶液中,在0.36V电沉积30~50s,然后在-0.1~0.4V间于50mV/s的扫描速率循环扫描10~30圈;用蒸馏水冲洗该铂电极,并置于室温下晾干;再将该铂电极于含0.1mol/L KCl的0.02mol/L、pH=7.0的磷酸盐缓冲溶液中施加-0.05V的电位5~15min后,在-0.05~0.36V间扫描5~20圈,用蒸馏水冲洗干净后在室温下晾干,得土霉素分子印迹电化学传感器;
(3)检测方法:
在15mL小烧杯中加入含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液10mL作为检测体系;将步骤(2)制得的土霉素分子印迹电化学传感器置于葡萄糖氧化酶标记土霉素溶液中孵化15~20min,取出土霉素分子印迹电化学传感器并冲洗其表面,得到孵化完全的土霉素分子印迹电化学传感器;然后将已孵化完全的土霉素分子印迹电化学传感器浸入10mL 0~1.0×10-7mol/L和1.0×10-7~1.0×10-6mol/L浓度范围内的土霉素标准溶液中进行竞争吸附,10min后接入检测体系,选用电化学工作站进行差分脉冲伏安扫描,扫描电压0.5~-0.3V;
(4)标准工作曲线的绘制:
在15mL小烧杯中加入10mL含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液;将步骤(3)制得的已孵化完全的土霉素分子印迹电化学传感器浸入10mL土霉素标准溶液中竞争吸附,10min后接入检测体系,选用电化学工作站进行差分脉冲伏安扫描;土霉素在0~1×10-7mol/L和1×10-7~1×10-6mol/L浓度范围内与峰电流减少值Δi呈良好的线性关系:Δi(μA)=-111.12C-0.4209,线性相关系数r=0.9972;Δi(μA)=-48.412C-6.977,线性相关系数r=0.9985;
(5)待测样品中土霉素含量的测定:
在15mL小烧杯中加入含0.1mol/L氯化钾的0.02mol/L、pH=7.0的磷酸盐缓冲溶液10mL;将步骤(3)制得的孵化完全的土霉素分子印迹电化学传感器浸入10mL土霉素溶液中竞争吸附,10min后接入检测体系,利用电化学工作站对待测液进行差分脉冲伏安扫描,扫描电压0.5~-0.3V,得到峰电流值i;根据校正曲线计算出土霉素的浓度C。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101072879A CN102621216A (zh) | 2012-04-11 | 2012-04-11 | 用双放大效应分子印迹电化学传感器检测微量土霉素的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101072879A CN102621216A (zh) | 2012-04-11 | 2012-04-11 | 用双放大效应分子印迹电化学传感器检测微量土霉素的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102621216A true CN102621216A (zh) | 2012-08-01 |
Family
ID=46561256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101072879A Pending CN102621216A (zh) | 2012-04-11 | 2012-04-11 | 用双放大效应分子印迹电化学传感器检测微量土霉素的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102621216A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103995103A (zh) * | 2014-06-11 | 2014-08-20 | 中国农业科学院农业质量标准与检测技术研究所 | 基于普鲁士蓝仿生标记检测小分子化合物的方法 |
CN104931689A (zh) * | 2015-05-14 | 2015-09-23 | 桂林理工大学 | 一种分子印迹试纸条及其制备方法及应用 |
CN109959684A (zh) * | 2019-03-25 | 2019-07-02 | 扬州工业职业技术学院 | 双识别型毒死蜱传感器的制备、检测蔬菜中毒死蜱残留的方法及检测装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005056613A2 (en) * | 2003-12-08 | 2005-06-23 | The Research Foundation Of State University Of New York | Site selectively tagged and templated molecularly imprinted polymers for sensor applications |
CN101710116A (zh) * | 2009-11-10 | 2010-05-19 | 桂林理工大学 | 一种利用分子印迹免疫传感器测定微量土霉素的方法 |
-
2012
- 2012-04-11 CN CN2012101072879A patent/CN102621216A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005056613A2 (en) * | 2003-12-08 | 2005-06-23 | The Research Foundation Of State University Of New York | Site selectively tagged and templated molecularly imprinted polymers for sensor applications |
CN101710116A (zh) * | 2009-11-10 | 2010-05-19 | 桂林理工大学 | 一种利用分子印迹免疫传感器测定微量土霉素的方法 |
Non-Patent Citations (4)
Title |
---|
JIANPING LI ET AL: "Fabrication of an oxytetracycline molecular-imprinted sensor based on the Competition reaction via a GOD-enzymatic amplifier", 《BIOSENSORS AND BIOELECTRONICS》 * |
JIANPING LI ET AL: "Fabrication of an oxytetracycline molecular-imprinted sensor based on the Competition reaction via a GOD-enzymatic amplifier", 《BIOSENSORS AND BIOELECTRONICS》, vol. 26, no. 5, 31 January 2011 (2011-01-31), pages 2097 - 2101 * |
JIANPING LI ET AL: "Highly Sensitive Molecularly Imprinted Electrochemical Sensor Based on the Double Amplification by an Inorganic Prussian Blue Catalytic Polymer and the Enzymatic Effect of Glucose Oxidase", 《ANAL.CHEM.》 * |
陈志强 等: "高灵敏、易更新的土霉素分子印迹碳糊传感器的研制", 《分析化学研究报告》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103995103A (zh) * | 2014-06-11 | 2014-08-20 | 中国农业科学院农业质量标准与检测技术研究所 | 基于普鲁士蓝仿生标记检测小分子化合物的方法 |
CN104931689A (zh) * | 2015-05-14 | 2015-09-23 | 桂林理工大学 | 一种分子印迹试纸条及其制备方法及应用 |
CN109959684A (zh) * | 2019-03-25 | 2019-07-02 | 扬州工业职业技术学院 | 双识别型毒死蜱传感器的制备、检测蔬菜中毒死蜱残留的方法及检测装置 |
CN109959684B (zh) * | 2019-03-25 | 2021-07-13 | 扬州工业职业技术学院 | 双识别型毒死蜱传感器的制备、检测蔬菜中毒死蜱残留的方法及检测装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Electrochemical immunosensor based on the chitosan-magnetic nanoparticles for detection of tetracycline | |
Wang et al. | Au-nanoclusters incorporated 3-amino-5-mercapto-1, 2, 4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite | |
Chauhan et al. | Highly selective electrochemical detection of ciprofloxacin using reduced graphene oxide/poly (phenol red) modified glassy carbon electrode | |
Chauhan et al. | Immobilization of lysine oxidase on a gold–platinum nanoparticles modified Au electrode for detection of lysine | |
Zheng et al. | Simultaneous determination of ascorbic acid, dopamine and uric acid using poly (l-leucine)/DNA composite film modified electrode | |
Lindsay et al. | The development of an electrochemical sensor for the determination of cyanide in physiological solutions | |
Zhang et al. | ZnS quantum dots derived a reagentless uric acid biosensor | |
Haghighi et al. | Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles | |
CN103940872B (zh) | 同时检测两种急性白血病标志物电化学传感器的制备方法及应用 | |
Kianipour et al. | Room temperature ionic liquid/multiwalled carbon nanotube/chitosan-modified glassy carbon electrode as a sensor for simultaneous determination of ascorbic acid, uric acid, acetaminophen, and mefenamic acid | |
CN103454426B (zh) | 纳米金/壳聚糖-石墨烯-亚甲蓝修饰的免疫传感器的制备方法 | |
CN102375021B (zh) | 一种采用dna为探针的电化学检测环境污染物方法 | |
Chen et al. | Preparation and application of urea electrochemical sensor based on chitosan molecularly imprinted films | |
Hu et al. | Selective response of dopamine in the presence of ascorbic acid on l-cysteine self-assembled gold electrode | |
CN104677962B (zh) | 一种过氧化聚多巴胺修饰电极以及基于该电极的氯霉素电化学检测方法 | |
Wu et al. | Nanohybrid sensor for simple, cheap, and sensitive electrochemical recognition and detection of methylglyoxal as chemical markers | |
CN101858881A (zh) | 一种用于检测液体中青霉素的传感器 | |
Wang et al. | Application of aminobenzoic acid electrodeposited screen-printed carbon electrode in the beta-amyloid electrochemical impedance spectroscopy immunoassay | |
CN102621216A (zh) | 用双放大效应分子印迹电化学传感器检测微量土霉素的方法 | |
Lafuente et al. | Continuous and non-invasive lactate monitoring techniques in critical care patients | |
CN110672696A (zh) | 一种检测铜离子、磷酸根离子和碱性磷酸酶的新型电化学方法及其应用 | |
CN103163124A (zh) | 用分子印迹电化学发光传感器检测微量赤霉素a3的方法 | |
Butler et al. | Solution-processed graphene films for electrochemical monitoring of extracellular nitric oxide released by breast cancer cells | |
CN111239212A (zh) | 一种环丙沙星检测方法 | |
Yuan et al. | An electrochemiluminescent sensor for phenolic compounds based on the inhibition of peroxydisulfate electrochemiluminescence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120801 |