CN102620907B - A Method for Measuring the Phase Delay Angle of an Optical Device - Google Patents
A Method for Measuring the Phase Delay Angle of an Optical Device Download PDFInfo
- Publication number
- CN102620907B CN102620907B CN201210073614.3A CN201210073614A CN102620907B CN 102620907 B CN102620907 B CN 102620907B CN 201210073614 A CN201210073614 A CN 201210073614A CN 102620907 B CN102620907 B CN 102620907B
- Authority
- CN
- China
- Prior art keywords
- polarized light
- alpha
- angle
- sin
- phase delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000010287 polarization Effects 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 229920000535 Tan II Polymers 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 239000013598 vector Substances 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000000572 ellipsometry Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种测量光学器件相位延迟角度的方法,该检测装置由检测光源、起偏偏振片、1/4波片、待检光学器件、偏振光方位角探测组件组成,通过测量检测光源通过待测相位延迟器件前后的状态变化,从而获知待测器件的相位延迟角度。它适用于偏振光学系统、椭圆偏振测量领域、激光技术等与偏振相关的测量与检测领域。该方法的原理描述如下:长轴处于水平或竖直方向的椭圆偏振光通过不同相位延迟角度的光学器件时,其透射或反射偏振光的长轴方向会有所不同,通过测量透射或反射光的长轴方位角度来反推出待测器件的相位延迟角度,从而实现对待测器件偏振特性的测量。
The invention discloses a method for measuring the phase delay angle of an optical device. The detection device is composed of a detection light source, a polarizing polarizer, a 1/4 wave plate, an optical device to be detected, and a polarized light azimuth detection component. Through the state changes before and after the phase delay device under test, the phase delay angle of the device under test can be obtained. It is suitable for polarization optical systems, ellipsometry, laser technology and other polarization-related measurement and detection fields. The principle of this method is described as follows: when the elliptically polarized light whose major axis is in the horizontal or vertical direction passes through optical devices with different phase retardation angles, the direction of the major axis of the transmitted or reflected polarized light will be different. By measuring the transmitted or reflected light The phase delay angle of the device under test can be deduced from the azimuth angle of the major axis, so as to realize the measurement of the polarization characteristics of the device under test.
Description
技术领域 technical field
本发明涉及一种测量待测光学元件偏振传输矩阵的方法,具体涉及一种测量偏振光方向来获取被测器件相位延迟的装置及方法。The invention relates to a method for measuring the polarization transfer matrix of an optical element to be tested, in particular to a device and a method for measuring the polarized light direction to obtain the phase delay of the device under test.
背景技术 Background technique
随着对光的偏振性研究的加深,人们逐渐认识到偏振信息的广泛应用前景,偏振技术也开始进入到实用化阶段。而通过探测目标反射光的偏振信息反演出待测目标的相关信息,可以将待测目标的可测信息量从原有的维数再增加三维,偏振信息测量已经在地物遥感探测、大气探测、水下探测、天文探测、医学诊断、目标检测、图像处理和军事应用等领域得到广泛应用。同时随着单光子探测技术的日趋成熟,高效率的单光子探测器已经在技术上可以实现,单光子探测技术的发展导致单光子偏振应用领域的快速发展,目前基于偏振编码的自由空间量子保密通信就是单光子偏振的一种重要应用之一。With the deepening of the research on the polarization of light, people gradually realize the wide application prospect of polarization information, and the polarization technology has also begun to enter the practical stage. By detecting the polarization information of the reflected light of the target to invert the relevant information of the target to be measured, the measurable information of the target to be measured can be increased from the original dimension to three dimensions. The polarization information measurement has been used in ground object remote sensing detection and atmospheric detection. , underwater detection, astronomical detection, medical diagnosis, target detection, image processing and military applications are widely used. At the same time, with the maturity of single-photon detection technology, high-efficiency single-photon detectors have been technically realized. The development of single-photon detection technology has led to the rapid development of single-photon polarization applications. At present, free-space quantum security based on polarization encoding Communication is one of the important applications of single photon polarization.
波片则是偏振研究领域最常用的偏振光学器件之一,波片也称之为相位延迟器,其应用覆盖了整个偏振光应用技术领域,应用前景十分广泛。随着偏振应用的深入,人们对相位延迟器的使用精度也提出了更高的要求,如何准确测量出相位延迟器的延迟量是需要解决的关键技术之一,这对相位延迟片的加工精度及提高偏振光学仪器的性能都具有决定性的意义。目前在工程技术应用中,相位延迟器通常采用石英晶体、云母或电光晶体等具有双折射效应的材料制作而成,其形状成平行薄片状,相位延迟与2π(ne-no)d/λ成正比,其中ne、no为晶体材料非常光与寻常光的折射率,d为波片厚度,λ为入射光波长,在加工过程中,如何测量及监测实际波片的相位延迟量是偏振光应用技术进一步发展的关键之一。The wave plate is one of the most commonly used polarization optical devices in the field of polarization research. The wave plate is also called a phase retarder. Its application covers the entire field of polarized light application technology, and its application prospects are very broad. With the deepening of polarization applications, people have put forward higher requirements for the accuracy of the phase retarder. How to accurately measure the retardation of the phase retarder is one of the key technologies that need to be solved. This has a great impact on the processing accuracy of the phase retarder. It is of decisive significance to improve the performance of polarized optical instruments. At present, in the application of engineering technology, the phase retarder is usually made of materials with birefringence effect such as quartz crystal, mica or electro -optic crystal . λ is proportional to λ, where ne and n o are the refractive indices of extraordinary light and ordinary light of crystal materials, d is the thickness of the wave plate, and λ is the wavelength of incident light. How to measure and monitor the phase retardation of the actual wave plate during processing It is one of the keys to the further development of polarized light application technology.
本发明基于偏振光学理论,利用长轴处于水平或竖直方向的椭圆偏振光通过不同相位延迟角的光学器件时,其出射偏振光的长轴方向会有所不同,通过测量出射光的长轴方位角度来反推待测器件的相位延迟角,从而实现对待测器件偏振特性的测量。该方法还可以应用于特定相位延迟波片的加工过程监测中,其应用前景广泛。The present invention is based on the theory of polarized optics. When elliptically polarized light whose long axis is in the horizontal or vertical direction passes through optical devices with different phase retardation angles, the long axis direction of the outgoing polarized light will be different. By measuring the long axis of the outgoing light The azimuth angle is used to deduce the phase delay angle of the device under test, so as to realize the measurement of the polarization characteristics of the device under test. The method can also be applied to the process monitoring of the specific phase retardation wave plate, and its application prospect is broad.
发明内容 Contents of the invention
本发明的目的是提供一种测量光学器件相位延迟角度的方法,提出了一种通过测量检测光源通过待测相位延迟器件前后的状态变化,最后检测出射光的长轴方位角的方式来获知待测器件的相对相位延迟角,该测试系统可以实现对透射或反射光学元件进行相对相位延迟测量,可以应用于各种波片的设计加工过程中。The object of the present invention is to provide a method for measuring the phase delay angle of an optical device, and propose a method of measuring the state change before and after the detection light source passes through the phase delay device to be measured, and finally detecting the azimuth angle of the long axis of the outgoing light. The relative phase delay angle of the device can be tested. This test system can realize the relative phase delay measurement of the transmission or reflection optical elements, and can be applied in the design and processing of various wave plates.
本发明方法的检测装置如附图1所示:检测装置包括检测光源1、起偏偏振片2、1/4波片3、待测光学器件4、检偏偏振片51、带动检偏片旋转且可以记录角度的电机52、光学探测器53。所述的检测光源1的波长与最终器件的使用波长一致;所述的起偏偏振片2处于某一个角度α,该角度处于非±45°,同时偏振片的使用波段覆盖检测光源1的波长;所述的1/4波片3的方位角处于0°或90°,且该波片的使用波长与测试光源相符合;所述的待测光学器件4对目标光束可以为反射或透射,同样入射光可以是斜入射或垂直入射;所述的检偏偏振片51与起偏片2相同,所述的旋转电机52可以记录偏振片旋转的角度,所述的光学探测器5对测试光源进行能量检测,The detection device of the inventive method is as shown in accompanying drawing 1: detection device comprises
该光学器件相位延迟角度的检测方法具体测量步骤如下:The specific measurement steps of the detection method for the phase delay angle of the optical device are as follows:
1)检测光源1经过起偏偏振片2后产生某一角度α的线偏光,该角度处于非±45°,此时偏振光的琼斯矢量可以表示为
2)该线偏振光经过方位角处于0°或90°的1/4波片3时,取方位角为0°时,线偏振光经过波片后变成椭圆偏振光,椭圆偏振光可以表示为
3)待测光学器件4的相对相位延迟角度取为δ,此角度为待测量量,并取该相位延迟角度的范围为同时预先测量该器件对S、P光的反射率或透射率,其效率表示为步骤2中产生的椭偏光经过待测器件之后,其偏振状态可以表示为
4)偏振光方位角测量组件(5)对步骤3中的偏振光状态进行检测,测量出该偏振光的方位角为θ,通过预先获知S、P光的通光效率及线偏光的方位角度α,待测光学器件(4)的相位延迟角δ与出射光方位角θ的关系满足:4) The polarized light azimuth angle measurement component (5) detects the polarized light state in
本方法的具体原理如下:The specific principle of this method is as follows:
在光学理论中,偏振光分成线偏光、圆偏振光和椭圆偏振光。任何一种偏振光都可以表示为光矢量沿x轴和y轴的两个线偏振光的叠加,可以用琼斯矢量来表示,具体表示如下:In optical theory, polarized light is divided into linearly polarized light, circularly polarized light and elliptically polarized light. Any kind of polarized light can be expressed as the superposition of two linearly polarized light vectors along the x-axis and y-axis, which can be expressed by Jones vector, specifically as follows:
其中Ex、Ey分别表示X、Y分量的复振幅,而ax、ay为X、Y分量的实振幅,为X、Y分量的相位,两分量之间的相位延迟为 Where E x and E y represent the complex amplitudes of X and Y components respectively, and a x and a y are the real amplitudes of X and Y components, is the phase of the X and Y components, and the phase delay between the two components is
对于琼斯矢量
而如图1所示的光路中,检测光源1分别经过方位角为α的起偏偏振片2、方位角处于0度的1/4波片3、待测光学器件4,最后经过偏振光方位角探测组件5进行检测。同时假设待测光学器件4的待测相位延迟角为δ,其范围满足同时预先测量该器件对S、P光的反射率或透射率,其效率表示为则各偏振光学元件的传输矩阵描述如下:In the optical path shown in Figure 1, the
1、方位角为α的起偏偏振片2的传输矩阵为:
2、方位角处于0度的1/4波片3的传输矩阵为:
3、待测光学器件4的传输矩阵为:
假设入射光偏振状态为
此时待检椭圆偏振光的方位角与偏振光
则相位延迟角
本方法提供了一种通过测量出射偏振光方向来获取器件相对相位延迟角的思路,该方法的优点在于:1)本发明的测量装置结构简单;2)该发明方法即可以用于测量器件的相位延迟,也可以用于监测特性相位延迟器件的加工过程;3)该发明装置在用于特定角度相位延迟波片的加工过程中,与干涉仪监测相位延迟角度的装置相比,成本更加低廉。This method provides a kind of thought that obtains the relative phase retardation angle of device by measuring the outgoing polarized light direction, and the advantage of this method is: 1) the measuring device of the present invention is simple in structure; 2) this inventive method can be used for measuring the device The phase delay can also be used to monitor the processing of the characteristic phase delay device; 3) the device of the invention is cheaper than the device for monitoring the phase delay angle with an interferometer during the processing of the specific angle phase delay wave plate .
附图说明 Description of drawings
图1:光学器件相位延迟角度测量的检测装置图。Figure 1: Diagram of the detection setup for phase delay angle measurement of optical devices.
图2:待测器件S、P光效率相同情况下,不同起偏角时相位延迟角随出射偏振光光方位角的变化曲线;图中曲线a表示入射起偏角为30°时相位延迟随出射偏振光方位角的变化曲线,曲线b表示入射起偏角为40°时相位延迟随出射偏振光方位角的变化曲线。Figure 2: Under the same optical efficiency of the devices under test S and P, the phase delay angle varies with the azimuth angle of the outgoing polarized light at different polarization angles; the curve a in the figure indicates that the phase delay varies with the incident polarization angle of 30° The change curve of the azimuth angle of the outgoing polarized light, curve b shows the change curve of the phase delay with the azimuth angle of the outgoing polarized light when the incident polarization angle is 40°.
具体实施方式 Detailed ways
以下结合附图对本发明方法的实施实例进行详细的描述。The implementation examples of the method of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明实施例中所采用的主要器件描述如下:The main devices adopted in the embodiment of the present invention are described as follows:
检测光源、、1/4波片、待检光学器件、检偏偏振片及光学探测器组成,Composed of detection light source, 1/4 wave plate, optical device to be tested, analyzer polarizer and optical detector,
1)检测光源1:检测光源采用国产的功率可调激光器,测试为波长850nm;1) Detection light source 1: The detection light source adopts a domestic power adjustable laser, and the test wavelength is 850nm;
2)起偏片2与检偏片51:偏振片采用Thorlabs的产品,型号为LPVIS100,其主要性能参数:工作波段为600-1200nm;整个波段偏振消光比为10000∶1,在850nm处偏振消光比为100000∶1;口径大小为25mm,有效口径为口径的90%;2)
3)1/4波片3:采用Thorlabs的消色差1/4波片,型号为AQWP05M-980,其主要性能参数:工作波段为700-1200nm;相位延迟准确度λ/40-λ/230;3) 1/4 wave plate 3: Thorlabs' achromatic 1/4 wave plate, model AQWP05M-980, its main performance parameters: working band is 700-1200nm; phase delay accuracy λ/40-λ/230;
4)待测光学器件4:采用大恒光电公司宽带消偏振分光棱镜BS,型号为GCC-403112,其主要性能参数:材料K9;入射光角度0±2°,反射率/透过率:48/48±5%,|Ts-Tp|<5%,|Rs-Rp|<5%;4)
5)旋转电机52:旋转电机采用Thorlabs的产品,型号为PRM1Z8E,其主要性能参数:可360°旋转;角度分辨率±0.1°;角度重复精度±0.3°,最大旋转速度25°/S;5) Rotating motor 52: The rotating motor adopts Thorlabs' product, the model is PRM1Z8E, its main performance parameters: 360° rotation; angular resolution ±0.1°; angular repeatability ±0.3°, maximum rotation speed 25°/S;
6)光学探测器53:光学探测器采用Thorlabs公司的功率计,型号为PM120D,其主要性能参数:工作波段为400-1100nm;功率测试范围为50nw-50mw;探头为Si探测器。6) Optical detector 53: The optical detector adopts the power meter of Thorlabs Company, the model is PM120D, its main performance parameters: the working band is 400-1100nm; the power test range is 50nw-50mw; the probe is Si detector.
本发明方法的主光路示意图如附图1所示,具体情况描述如下:The main optical path schematic diagram of the inventive method is as shown in accompanying drawing 1, and specific situation is described as follows:
1)850nm激光器1的出射光经过方位角α处于30°的偏振片2后,产生一束比较理想的线偏光,该线偏光的线偏度为100000∶1,则出射光的归一化琼斯矢量可以表示为
2)该理想线偏振光经过方位角处于0°的1/4波片3时,波片的传输矩阵为
3)椭圆偏振光通过待测宽带消偏振分光棱镜BS4后,椭圆偏振光的方位角会发生变化,首先取宽带消偏振分光棱镜BS的相对相位延迟角度为δ,此角度为待测量量,并取该相位延迟角度的范围为由于该分光镜为消偏振的,其S、P光的反射率或透射率基本相等,其效率取为T2,则BS的传输矩阵为
4)偏振光方位角探测组件(5)再对步骤3中的偏振状态进行检测,通过检偏偏振片(51)来测量该偏振光的方位角、通过旋转电机(52)来记录方位角θ,由于消偏振BS的S、P光反射率或透射率基本相等,且入射线偏光的角度α确定,则方位角θ与待测光学器件(4)的相位延迟角δ满足如下关系:4) The polarized light azimuth angle detection component (5) detects the polarization state in
相位延迟角δ满足:The phase delay angle δ satisfies:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210073614.3A CN102620907B (en) | 2012-03-19 | 2012-03-19 | A Method for Measuring the Phase Delay Angle of an Optical Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210073614.3A CN102620907B (en) | 2012-03-19 | 2012-03-19 | A Method for Measuring the Phase Delay Angle of an Optical Device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102620907A CN102620907A (en) | 2012-08-01 |
CN102620907B true CN102620907B (en) | 2014-02-26 |
Family
ID=46560957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210073614.3A Active CN102620907B (en) | 2012-03-19 | 2012-03-19 | A Method for Measuring the Phase Delay Angle of an Optical Device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102620907B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110631806A (en) * | 2019-09-10 | 2019-12-31 | 中国科学院上海技术物理研究所 | A device and method for quickly measuring the phase delay of a wideband wave plate |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104236857B (en) * | 2014-09-11 | 2017-02-15 | 电子科技大学 | Liquid crystal optical phase shift distribution detection system and method based on quarter-wave plate method |
CN105716833B (en) * | 2014-12-02 | 2017-12-15 | 中国科学院大连化学物理研究所 | The measurement apparatus of infrared balzed grating, diffraction efficiency in a kind of |
CN106289155B (en) * | 2016-07-21 | 2018-09-07 | 哈尔滨工业大学 | A kind of hypersensitive angle detecting devices and method based on photon trajectory angular momentum |
KR102041807B1 (en) * | 2016-09-02 | 2019-11-07 | 주식회사 엘지화학 | Device for testing optical properties and method for testing optical properties |
CN107764524B (en) * | 2017-10-11 | 2023-11-28 | 深圳市深龙杰科技有限公司 | 3D printing precision monitoring device based on laser detection |
CN115031928B (en) * | 2022-06-10 | 2025-07-04 | 业成光电(深圳)有限公司 | Optical detection system and method of operating the same |
TWI866451B (en) * | 2023-09-08 | 2024-12-11 | 國立中央大學 | Circular polarizer detection device and method for detecting circular polarizer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2374141B (en) * | 2001-01-12 | 2004-09-22 | Hewlett Packard Co | Optical characterization of retarding devices |
TWI260428B (en) * | 2005-04-15 | 2006-08-21 | Optimax Tech Corp | Apparatus and method for measuring phase retardation |
JP3833556B2 (en) * | 2002-03-14 | 2006-10-11 | 三菱電機株式会社 | Optical amplitude phase time response measuring device |
CN101021447A (en) * | 2007-03-15 | 2007-08-22 | 中国科学院上海光学精密机械研究所 | Method and device for measuring phase delay and fast axis direction of 1/4 wave plate |
CN201107118Y (en) * | 2007-09-18 | 2008-08-27 | 江苏大学 | An elliptically polarized light analysis device |
-
2012
- 2012-03-19 CN CN201210073614.3A patent/CN102620907B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2374141B (en) * | 2001-01-12 | 2004-09-22 | Hewlett Packard Co | Optical characterization of retarding devices |
JP3833556B2 (en) * | 2002-03-14 | 2006-10-11 | 三菱電機株式会社 | Optical amplitude phase time response measuring device |
TWI260428B (en) * | 2005-04-15 | 2006-08-21 | Optimax Tech Corp | Apparatus and method for measuring phase retardation |
CN101021447A (en) * | 2007-03-15 | 2007-08-22 | 中国科学院上海光学精密机械研究所 | Method and device for measuring phase delay and fast axis direction of 1/4 wave plate |
CN201107118Y (en) * | 2007-09-18 | 2008-08-27 | 江苏大学 | An elliptically polarized light analysis device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110631806A (en) * | 2019-09-10 | 2019-12-31 | 中国科学院上海技术物理研究所 | A device and method for quickly measuring the phase delay of a wideband wave plate |
Also Published As
Publication number | Publication date |
---|---|
CN102620907A (en) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102620907B (en) | A Method for Measuring the Phase Delay Angle of an Optical Device | |
CN102279094B (en) | Apparatus and method for calibrating transmission axis of polaroid | |
CN110631806B (en) | Device and method for rapidly measuring phase delay amount of broadband wave plate | |
CN104296875B (en) | Device and method for measuring polarization degree of light beam | |
CN202024877U (en) | Device used for calibrating transmission axes of polaroid | |
CN103115705B (en) | Stress and double refraction measurement instrument and measurement method based on cross-polarization solid laser | |
CN101021447A (en) | Method and device for measuring phase delay and fast axis direction of 1/4 wave plate | |
CN102654392B (en) | Roll angle measurement device and method based on array-type multiple reflections | |
CN102243104A (en) | Device for measuring properties of polarized light in real time | |
CN102426058B (en) | A static interference imaging polarimeter and a method for obtaining polarization information of a target | |
CN103424881B (en) | Fresnel prism phase retarder for double-rotation compensator ellipsometer | |
CN112326201B (en) | Apparatus and method for measuring quarter-wave plate fast axis azimuth angle and phase retardation distribution | |
CN103017908A (en) | Polarized light characteristic real-time measuring device and method based on four-way light splitting module | |
CN103712781A (en) | Device and method for measuring multi-incidence-angle polarization interference in birefringence optical wedge optical axis direction | |
CN114018830B (en) | A method for detecting linear polarization direction based on liquid crystal polarization grating | |
CN102706809B (en) | Linear birefringence measuring device and measuring method thereof | |
Negara et al. | Simplified Stokes polarimeter based on division-of-amplitude | |
TWI615604B (en) | Calibration method for wide-band achromatic composite wave plate | |
CN103424839B (en) | Optical axis alignment method of compound wave plates | |
CN109443554B (en) | A kind of wavelength measurement device and method based on graphene optical spin Hall effect | |
CN102279052A (en) | Method for measuring characteristics of polarized light in real time | |
CN110631805A (en) | A device and method for measuring performance of wide-band wave plate using AOTF monochromatic light | |
CN202710848U (en) | Linearly-polarized light generating device with high energy utilization rate and application thereof | |
CN102749187B (en) | Method for measuring polarization fidelity of optical film | |
CN102636333A (en) | Device and method for measuring phase retardation and fast axis azimuth angle of wave plate in real time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |