CN102616295A - Multi-joint chain link-type robot based on modularization - Google Patents
Multi-joint chain link-type robot based on modularization Download PDFInfo
- Publication number
- CN102616295A CN102616295A CN2012101032763A CN201210103276A CN102616295A CN 102616295 A CN102616295 A CN 102616295A CN 2012101032763 A CN2012101032763 A CN 2012101032763A CN 201210103276 A CN201210103276 A CN 201210103276A CN 102616295 A CN102616295 A CN 102616295A
- Authority
- CN
- China
- Prior art keywords
- robot
- steering gear
- waist
- freedom
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manipulator (AREA)
- Toys (AREA)
Abstract
本发明为一种可以实现模块化组合的多关节链节式机器人。该机器人采用模块化的开链结构,每个模块有十二个自由度,每个自由度都由舵机或直流电机驱动完成。机器人的每个运动足由四个曲臂关节和一个轮足组成,共有五个主动自由度,两个对称布置的运动足组成一对关节,两对关节之间通过链节式腰部关节连接,腰部关节有两个主动自由度,可实现在四个相互垂直方向上的灵活转动。通过模块化组合,该机器人可实现轮式和腿式、直行与摆动的运动特性的有机融合,使其既有腿式机器人地形适应能力强、又有轮式机器人机动速度快的优点。同时腰部宽度的设计,使得机器人在前进或后退时的步长和运动能满足不干涉条件。多对运动足之间的协调配合可使机器人能完成几十种运动步态,并能跨越一定高度的障碍物。
The invention is a multi-joint chain-link robot capable of realizing modular combination. The robot adopts a modular open-chain structure, each module has twelve degrees of freedom, and each degree of freedom is driven by a steering gear or a DC motor. Each moving foot of the robot is composed of four curved arm joints and a wheel foot, with a total of five active degrees of freedom. Two symmetrically arranged moving feet form a pair of joints, and the two pairs of joints are connected by chain-link waist joints. The lumbar joint has two active degrees of freedom and can flexibly rotate in four mutually perpendicular directions. Through modular combination, the robot can realize the organic fusion of wheeled and legged, straight-line and swinging motion characteristics, making it not only has the advantages of strong terrain adaptability of legged robots, but also the advantages of fast maneuvering speed of wheeled robots. At the same time, the waist width is designed so that the step length and motion of the robot can meet the non-interference condition when it is moving forward or backward. The coordination and cooperation between multiple pairs of moving feet can enable the robot to complete dozens of moving gaits and cross obstacles of a certain height.
Description
技术领域 technical field
本发明属于仿生机器人应用领域,具体涉及一种基于模块化的多关节链节式机器人。The invention belongs to the application field of bionic robots, and in particular relates to a multi-joint chain-link robot based on modularization.
背景技术 Background technique
随着生物学对于人类和其他动物的神经系统及生活方式研究的逐步深入,仿生学技术的研究依靠着科学技术的发展也飞速前进,创造了科学技术和生物学研究之间学科交叉的广阔研究领域。在对生物神经系统的结构和功能进行分析和借鉴的基础上,国内外各研究单位先后研发了一系列的仿生学机器人,模仿生物、从事生物特点工作,并力求能达到尽可能高的生物相似度水平,以实现流畅自然的动作和神经反射,到达更加完美可靠的运动控制效果。With the gradual deepening of biological research on the nervous system and lifestyle of humans and other animals, the research of bionics technology is also advancing rapidly relying on the development of science and technology, creating a broad interdisciplinary research between science and technology and biological research field. Based on the analysis and reference of the structure and function of the biological nervous system, various research institutes at home and abroad have successively developed a series of bionic robots, which imitate living things and work on biological characteristics, and strive to achieve the highest possible biological similarity. Accuracy level, in order to achieve smooth and natural movements and nerve reflexes, to achieve a more perfect and reliable motion control effect.
鉴于目前的仿生机器人研究在仿生效果、能源消耗、实际用途、科技应用等各方面仍存在很大的研究空间,因此在仿生研究的基础上,保留机器本身的轮式运动的同时结合生物腿式运动的特点,设计一款拥有轮式快速运动和腿式适应性强的特点的节肢机器人是一个有很高研究价值和应用前景的工作。其中日本千叶理工学院设计的Halluc II型八足机器人兼具上述运动特色。但由于此机器人只有腿部的创新,各个运动足之间使用一块平板连接的设计不能展现摆动、起伏类动作,限制了此类轮足式机器人的姿态展示。In view of the fact that the current bionic robot research still has a lot of research space in terms of bionic effects, energy consumption, practical use, and technological applications, on the basis of bionic research, the wheeled movement of the machine itself is retained while combining the biological leg movement. According to the characteristics of motion, it is a work with high research value and application prospect to design an arthropod robot with the characteristics of wheeled fast movement and legged adaptability. Among them, the Halluc II eight-legged robot designed by Chiba Institute of Technology in Japan has the above-mentioned sports characteristics. However, since this robot only has innovations in the legs, the design of using a flat plate connection between the various sports feet cannot show swinging and undulating movements, which limits the posture display of this type of wheel-footed robot.
增加腰椎结构的设计,对每组运动足实现模块化连接,使每组运动足实现不同角度与方向的姿态变化正是多关节模块化的链节式机器人所研究完成的工作。Adding the design of the lumbar spine structure, realizing the modular connection of each group of moving feet, so that each group of moving feet can achieve attitude changes in different angles and directions is exactly the research and completion of the multi-joint modular chain-link robot.
发明内容 Contents of the invention
本发明为一种可以实现模块化组合的多关节链节式机器人。该机器人采用模块化的开链结构,每个模块有十二个自由度,每个自由度都由舵机或直流电机驱动完成。机器人的每个运动足由四个曲臂关节和一个轮足组成,共有五个主动自由度,两个对称布置的运动足组成一对关节,两对关节之间通过链节式腰部关节连接,腰部关节有两个主动自由度,可实现在四个相互垂直方向上的灵活转动。通过模块化组合,该机器人可实现轮式和腿式、直行与摆动的运动特性的有机融合,使其既有腿式机器人地形适应能力强、跨越障碍特性好和机身姿态灵活多变的优点,又有轮式机器人机动速度快、平衡能力好的优点。同时腰部宽度的设计,使得机器人在前进或后退时的步长和运动能满足不干涉条件。多对运动足之间的协调配合可使机器人能完成几十种运动步态,并能跨越一定高度的障碍物。The invention is a multi-joint chain-link robot capable of realizing modular combination. The robot adopts a modular open-chain structure, each module has twelve degrees of freedom, and each degree of freedom is driven by a steering gear or a DC motor. Each moving foot of the robot is composed of four curved arm joints and a wheel foot, with a total of five active degrees of freedom. Two symmetrically arranged moving feet form a pair of joints, and the two pairs of joints are connected by chain-link waist joints. The lumbar joint has two active degrees of freedom and can flexibly rotate in four mutually perpendicular directions. Through modular combination, the robot can realize the organic fusion of wheeled and legged, straight and swinging motion characteristics, so that it has the advantages of strong terrain adaptability, good obstacle crossing characteristics and flexible and changeable body posture of the legged robot. , and the wheeled robot has the advantages of fast maneuvering speed and good balance ability. At the same time, the waist width is designed so that the step length and motion of the robot can meet the non-interference condition when it is moving forward or backward. The coordination and cooperation between multiple pairs of moving feet can enable the robot to complete dozens of moving gaits and cross obstacles of a certain height.
其中,模块化的设计思想,可以实现2组模块以上的任意组模块拼接,通过模块灵活地进行增减实现不同的步态展现和运动套路;模块间距设计,即腰部宽度的设计,使得机器人在前进或后退时的步长和运动能满足设计要求,不至于运动时前后腿相冲突;运动足各关节之间的距离设计,可使得机器人的各关节能在预定的角度范围内转动;运动足足底滚轮的斜率设计,可使得机器人在横向侧行步态时腿部弯曲的角度恰好使滚轮着地点与地面相切。这种装置具有结构紧凑、承载能力强、足端可达域广、抗干扰能力强、控制方便、运动灵活等特点。Among them, the modular design concept can realize the splicing of any group of modules with more than two groups of modules, and realize different gait display and movement routines through flexible addition and subtraction of modules; the design of module spacing, that is, the design of waist width, makes the robot in the The step length and movement when moving forward or backward can meet the design requirements, so that the front and rear legs will not conflict during movement; the distance between the joints of the moving foot is designed so that each joint of the robot can rotate within a predetermined angle range; the moving foot The slope design of the sole roller can make the bending angle of the legs of the robot when the robot walks sideways gait just so that the landing point of the roller is tangent to the ground. This device has the characteristics of compact structure, strong bearing capacity, wide reachable area of foot end, strong anti-interference ability, convenient control, flexible movement and so on.
为了实现上述发明目的,多关节模块化组合的链节式机器人设计由多组以下部件组成:腿前部曲臂、腿后部曲臂、直流电机外壳、电机延伸套、轮子外套、轮芯、腿轴、脚部插板、舵机支撑架一、舵机支撑架二、舵机支撑架三、舵机支撑架四、舵机支撑架五、舵机支撑架六、舵机支撑架七、缓冲垫、腰部横板、齿轮箱、轴承盖、上下转动件、腰椎、轴承端盖、垫片、左右转动件、左右连接件、沉头螺钉、左右舵机固定架、舵机、垫片、圆柱齿轮、舵盘螺钉、舵机螺钉、舵盘、腰轴、螺钉、708c轴承、上下连接件、上下舵机固定架。其中,舵机安装在舵机支撑架内,直流电机安装在直流电机外壳内,电机支架通过螺钉固定在机体上,锥齿轮与电机轴相连。主要设计包括以下结构:①模块间距设计:通过测量可得最底端的舵机轴距离足底端橡胶底的距离和运动分析可知,运动足要能够绕最底端的舵机轴平角旋转,因此设计舵机轴到胶底距离以及两足之间距离为保证使两足能够同时旋转而不发生干涉。②腰部结构设计:通过对力矩强度校核,设计出具有两个腰椎一侧固连,运动方向互为垂直的两自由度腰部结构。③运动足曲臂的设计:通过对运动足动作的设计要求的分析可知,曲臂由两部分组成,通过调整尺寸,使拐角为直角。④舵机包围结构:根据舵机的尺寸大小,来确定包围结构外壳的尺寸。并通过精细的测量来确定背板上和舵机对称位置安装轴的位置,从而保证了对称性。此外,在设计时两侧预留出了误差允许范围的安装间隙以方便调整。In order to achieve the purpose of the above invention, the multi-joint modular combination chain-link robot design consists of multiple groups of the following components: curved arms at the front of the legs, curved arms at the rear of the legs, DC motor casings, motor extension sleeves, wheel casings, wheel cores, Leg shaft, foot plate, steering
本发明的优点在于:The advantages of the present invention are:
(1)模块化设计的思想,实现了机器人组装拼接的任意性,实现了最大程度的步态规划与拓展。(1) The idea of modular design realizes the arbitrariness of robot assembly and splicing, and realizes the maximum degree of gait planning and expansion.
(2)结合腿式与轮式仿生机器人的特点,运动足曲臂和轮式设计使其既有腿式机器人适应地形能力强、机身灵活的优点,又有轮式机器人机动速度快、机体平衡控制能力强的优点。(2) Combining the characteristics of legged and wheeled bionic robots, the design of the kinematic foot and wheeled robot not only has the advantages of strong adaptability to terrain and flexible body of the legged robot, but also has the advantages of fast maneuvering speed and stable body of the wheeled robot. The advantage of strong balance control ability.
(3)利用锥齿轮避免了电机直接承受径向负载,提高了电机的使用寿命,增大了力矩。(3) The use of bevel gears prevents the motor from directly bearing radial loads, improves the service life of the motor, and increases the torque.
附图说明 Description of drawings
附图1为基于多关节模块化的链节式机器人整体示意图;Accompanying
附图2为基于多关节模块化的链节式机器人主视图;Accompanying drawing 2 is the front view of the chain-link robot based on multi-joint modularization;
附图3为基于多关节模块化的链节式机器人左视图;Accompanying drawing 3 is the left view of the chain-link robot based on multi-joint modularization;
附图4为基于多关节模块化的链节式机器人俯视图;Accompanying
附图5为基于多关节模块化的链节式机器人运动足双足组合设计图;Accompanying drawing 5 is the combined design diagram of the chain-link type robot movement foot and two feet based on multi-joint modularization;
附图6为基于多关节模块化的链节式机器人腰部设计装配分解图;Accompanying
附图7为基于多关节模块化的链节式机器人腰部设计主视图;Accompanying
附图8为基于多关节模块化的链节式机器人腰部设计俯视图;Accompanying drawing 8 is the top view of the waist design of a chain-link robot based on multi-joint modularization;
附图中:1-支架,2-锥齿轮,3-轴承,4-1号舵机,5-套筒,6-1号轴,7-身板,8-键,9-螺钉,10-腿前部曲臂,11-轴承,12-舵机支撑架一,13-2号舵机,14-轴承,15-舵机支撑架一,16-舵机支撑架三,17-3号舵机,18-舵机支撑架五,19-舵机支撑架六,20-4号舵机,21-轮子外套,22-轮芯,23-卡箍,24-缓冲垫,25-插板,26-直流电机,27-电机支架,28-舵机支撑架六,29-舵机支撑架二,30-舵机支撑架七,31-腿后部曲臂,32-横板,33-舵机支撑架二,34-螺母,35-舵机支撑架四,36-上下转动件,37-腰椎2,38-轴承端盖,39-垫片,40-左右转动件,41-左右连接件,42-沉头螺钉M3,43-左右舵机固定架,44-舵机,45-垫片,46-圆柱齿轮,47-舵盘螺钉M2,48-舵机螺钉M3,49-舵盘,50-腰轴,51-螺钉M3,52-708C轴承,53-腰椎1,54-上下连接件,55-上下舵机固定架。In the accompanying drawings: 1-bracket, 2-bevel gear, 3-bearing, 4-No. 1 steering gear, 5-sleeve, 6-No. 1 shaft, 7-body, 8-key, 9-screw, 10-leg Front curved arm, 11-bearing, 12-steering
具体实施方式 Detailed ways
如图1所示,为基于多关节模块化的链节式机器人整体示意图,由四组腰腿部模块连接而成,是一种八足机器人。共有46个自由度,每对足之间由三组腰部连接模块连接而成。As shown in Figure 1, it is an overall schematic diagram of a chain-link robot based on multi-joint modularization, which is an eight-legged robot connected by four sets of waist and leg modules. There are 46 degrees of freedom in total, and each pair of feet is connected by three sets of waist connection modules.
如图3所示,1号舵机通过一号轴与下部相连,避免了电机轴直接承受径向载荷,提高了电机的使用寿命。As shown in Figure 3, the No. 1 steering gear is connected to the lower part through the No. 1 shaft, which prevents the motor shaft from directly bearing radial loads and improves the service life of the motor.
如图5所示,安装运动足时,舵机支撑架一(12)、舵机支撑架二(33)、舵机支撑架三(16)螺钉固连,放入2号舵机(13)后用舵机支撑架四(35)通过螺钉固连。再放入3号舵机(17)后,通过另一组舵机支撑架一(15)、舵机支撑架二(29)、舵机支撑架五(18)、舵机支撑架三(16)固定3号舵机(17),通过螺钉固连。再将腿前部曲臂(10)和腿后部曲臂(31)分别固连2号(13)、3号舵机(17)的两侧舵机支架,中间用横板(32)固定。舵机支撑架五(18)、舵机支撑架六(19)、舵机支撑架六、舵机支撑七(30)通过螺钉固定4号舵机(20)。后用直流电机外壳固定直流电机(26),插入插板(25)固定,后套入卡箍(23)和硬橡胶材质缓冲垫(24),后部套电机延伸套,前部套入轮芯(22),装轮子外套(21)。这样实现了三个舵机为主动自由度和一个直流电机为主动自由度的组装。与此过程类似,完成另一四自由度腿部组装后,通过一个连接平板可连接两部分机构,在舵机支撑架四上部通过轴承与连接板相连,连接板上部通过支架用螺钉固定1号舵机,后用锥齿轮啮合1号轴,1号轴通过轴承连接2号舵机。这样就可以实现单运动足五个主动自由度,双足连接十个主动自由度的运动足组装。利用1号轴通过连接板上的孔插入轴承内圈,避免了电机轴直接承受径向载荷,提高了电机的使用寿命,同时连接板下3个舵机的布置为腿部的侧向摆动提供了更强的动力。As shown in Figure 5, when installing the sports foot, the steering gear support frame 1 (12), the steering gear support frame 2 (33), and the steering gear support frame 3 (16) are fixedly connected by screws, and put into the No. 2 steering gear (13) The back is fixedly connected by screws with the four (35) of the steering gear support frame. After putting into the No. 3 steering gear (17), pass through another set of steering gear support frame one (15), steering gear support frame two (29), steering gear support frame five (18), steering gear support frame three (16 ) to fix No. 3 steering gear (17), and connect it by screws. Then connect the curved arm (10) at the front of the leg and the curved arm (31) at the rear of the leg to the steering gear brackets on both sides of No. 2 (13) and No. 3 steering gear (17) . Steering gear support frame five (18), steering gear support frame six (19), steering gear support frame six, steering gear support seven (30) fix No. 4 steering gear (20) by screws. Finally, fix the DC motor (26) with the DC motor casing, insert the plug-in plate (25) to fix it, put the clamp (23) and the hard rubber cushion (24) in the back, put the motor extension sleeve in the rear, and put the wheel in the front Core (22), dress wheel overcoat (21). In this way, the assembly of three steering gears as the active degree of freedom and one DC motor as the active degree of freedom is realized. Similar to this process, after completing another four-degree-of-freedom leg assembly, two parts of the mechanism can be connected through a connecting plate, and the upper part of the steering gear support frame is connected to the connecting plate through bearings, and the upper part of the connecting plate is fixed with screws through the bracket No. 1 The steering gear is used to mesh the No. 1 shaft with a bevel gear, and the No. 1 shaft is connected to the No. 2 steering gear through a bearing. In this way, five active degrees of freedom can be realized for a single movement foot, and the assembly of movement feet with ten active degrees of freedom connected by two feet can be realized. The No. 1 shaft is inserted into the inner ring of the bearing through the hole on the connecting plate, which avoids the direct bearing of radial load on the motor shaft and improves the service life of the motor. a stronger motivation.
如图6所示,安装腰部结构时,将腰椎1(53)与腰椎2(37)用四个螺钉固连,腰椎2(37)与左右转动件(40)通过腰轴(50)相连,可使腰部带动模块实现水平方向绕轴运动。将腰椎2(37)与上下转动件(36)通过轴承相连,可使腰部带动模块实现垂直方向绕轴运动。将上下转动件(36)与上下连接件(54)通过四个螺钉固连,放入舵机(55)后利用舵机支撑架连接到支撑平板上。将左右转动件(40)与左右连接件(41)固连后放入舵机(44),用上下舵机固定架(55)固定。在腰轴(50)外固连圆柱齿轮(46),以实现啮合平板齿轮。将腰椎连接部件与运动足的腿部曲臂(10)和轮腿式(21)结构通过模块化组合,实现不同模块数量的装配与步态规划。As shown in Figure 6, when installing the lumbar structure, the lumbar vertebra 1 (53) is fixedly connected with the lumbar vertebra 2 (37) with four screws, and the lumbar vertebra 2 (37) is connected with the left and right rotating parts (40) through the lumbar shaft (50). The waist drives the module to move around the axis in the horizontal direction. The lumbar vertebra 2 (37) is connected with the upper and lower rotating parts (36) through bearings, so that the waist can drive the module to move around the axis in the vertical direction. The upper and lower rotating parts (36) are fixedly connected with the upper and lower connecting parts (54) by four screws, put into the steering gear (55) and then utilize the steering gear support frame to be connected to the supporting plate. Put into the steering gear (44) after the left and right rotating parts (40) are fixedly connected with the left and right connectors (41), and fix with the upper and lower steering gear fixing brackets (55). The column gear (46) is fixedly connected outside the waist shaft (50) to realize meshing plate gear. The lumbar connection parts are combined with the leg curved arm (10) and the wheel leg (21) structure of the sports foot through modular combination to realize the assembly and gait planning of different module numbers.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101032763A CN102616295A (en) | 2012-04-09 | 2012-04-09 | Multi-joint chain link-type robot based on modularization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101032763A CN102616295A (en) | 2012-04-09 | 2012-04-09 | Multi-joint chain link-type robot based on modularization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102616295A true CN102616295A (en) | 2012-08-01 |
Family
ID=46556609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101032763A Pending CN102616295A (en) | 2012-04-09 | 2012-04-09 | Multi-joint chain link-type robot based on modularization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102616295A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103273980A (en) * | 2013-06-17 | 2013-09-04 | 吉林大学 | Modular robot capable of being self-assembled into multi-foot wheel-leg robot |
CN104859740A (en) * | 2015-05-12 | 2015-08-26 | 上海大学 | Four-wheel module-series-connection swinging arm sliding robot |
CN105059420A (en) * | 2015-07-24 | 2015-11-18 | 榆林学院 | Humanoid robot capable of moving with wheels, and working method |
CN106394722A (en) * | 2016-04-18 | 2017-02-15 | 上海交通大学 | Micro-bionic hexapod robot based on 3D printing technology |
CN106514606A (en) * | 2016-12-18 | 2017-03-22 | 徐州乐泰机电科技有限公司 | Wheel-legged double-arm robot |
CN107128384A (en) * | 2017-05-03 | 2017-09-05 | 魏绍均 | A kind of robot four-wheel travelling platform based on a motor control |
CN107336763A (en) * | 2017-07-10 | 2017-11-10 | 上海理工大学 | A kind of comprehensive multi-joint simulating crawling robot |
CN107351938A (en) * | 2017-07-10 | 2017-11-17 | 上海理工大学 | A kind of multi-joint climbing robot |
CN108710298A (en) * | 2018-05-23 | 2018-10-26 | 中国海洋大学 | Low energy consumption posture analysis method based on sufficient formula bio-robot under quiet vertical state |
CN110434828A (en) * | 2019-09-10 | 2019-11-12 | 河北工业大学 | A kind of band large-scale metal facade barrier-crossing wall-climbing robot |
CN110561388A (en) * | 2019-08-30 | 2019-12-13 | 东北大学 | modular mesh robot |
CN111267141A (en) * | 2020-04-09 | 2020-06-12 | 白志超 | Extensible robot joint and switchable robot with driving modes formed by same |
CN113119084A (en) * | 2021-03-23 | 2021-07-16 | 同济大学 | IIC bus-based modular robot and control method |
CN113306353A (en) * | 2021-07-14 | 2021-08-27 | 北京理工大学 | Variable and modular amphibious bionic mobile platform |
CN113602374A (en) * | 2021-08-31 | 2021-11-05 | 天津大学 | A new metamorphic eight-bar foldable wheel-legged robot |
CN114872013A (en) * | 2022-04-29 | 2022-08-09 | 厦门大学 | Multi-motion mode micro robot and motion control method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5685383A (en) * | 1995-07-14 | 1997-11-11 | Lockheed Idaho Technologies Company | Modular robot |
CN101020476A (en) * | 2007-02-06 | 2007-08-22 | 张厚祥 | Bionic mechanical reptile |
CN200995713Y (en) * | 2006-12-01 | 2007-12-26 | 华中科技大学 | Decomposed and reconfigured multi-foot walking robot |
CN101181913A (en) * | 2007-12-10 | 2008-05-21 | 北京航空航天大学 | Serial Modular Wall Climbing Robot |
CN101570220A (en) * | 2009-06-04 | 2009-11-04 | 哈尔滨工程大学 | Reversible and amphibious multi-legged robot with variable postures |
CN201597033U (en) * | 2010-02-22 | 2010-10-06 | 侯宇 | Wheeled model snake-shaped robot mechanism |
-
2012
- 2012-04-09 CN CN2012101032763A patent/CN102616295A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5685383A (en) * | 1995-07-14 | 1997-11-11 | Lockheed Idaho Technologies Company | Modular robot |
CN200995713Y (en) * | 2006-12-01 | 2007-12-26 | 华中科技大学 | Decomposed and reconfigured multi-foot walking robot |
CN101020476A (en) * | 2007-02-06 | 2007-08-22 | 张厚祥 | Bionic mechanical reptile |
CN101181913A (en) * | 2007-12-10 | 2008-05-21 | 北京航空航天大学 | Serial Modular Wall Climbing Robot |
CN101570220A (en) * | 2009-06-04 | 2009-11-04 | 哈尔滨工程大学 | Reversible and amphibious multi-legged robot with variable postures |
CN201597033U (en) * | 2010-02-22 | 2010-10-06 | 侯宇 | Wheeled model snake-shaped robot mechanism |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103273980A (en) * | 2013-06-17 | 2013-09-04 | 吉林大学 | Modular robot capable of being self-assembled into multi-foot wheel-leg robot |
CN104859740A (en) * | 2015-05-12 | 2015-08-26 | 上海大学 | Four-wheel module-series-connection swinging arm sliding robot |
CN105059420A (en) * | 2015-07-24 | 2015-11-18 | 榆林学院 | Humanoid robot capable of moving with wheels, and working method |
CN106394722A (en) * | 2016-04-18 | 2017-02-15 | 上海交通大学 | Micro-bionic hexapod robot based on 3D printing technology |
CN106514606A (en) * | 2016-12-18 | 2017-03-22 | 徐州乐泰机电科技有限公司 | Wheel-legged double-arm robot |
CN107128384A (en) * | 2017-05-03 | 2017-09-05 | 魏绍均 | A kind of robot four-wheel travelling platform based on a motor control |
CN107336763A (en) * | 2017-07-10 | 2017-11-10 | 上海理工大学 | A kind of comprehensive multi-joint simulating crawling robot |
CN107351938A (en) * | 2017-07-10 | 2017-11-17 | 上海理工大学 | A kind of multi-joint climbing robot |
CN108710298A (en) * | 2018-05-23 | 2018-10-26 | 中国海洋大学 | Low energy consumption posture analysis method based on sufficient formula bio-robot under quiet vertical state |
CN108710298B (en) * | 2018-05-23 | 2021-05-11 | 中国海洋大学 | Low energy consumption attitude analysis method based on footed bionic robot in static state |
CN110561388A (en) * | 2019-08-30 | 2019-12-13 | 东北大学 | modular mesh robot |
CN110434828A (en) * | 2019-09-10 | 2019-11-12 | 河北工业大学 | A kind of band large-scale metal facade barrier-crossing wall-climbing robot |
CN111267141A (en) * | 2020-04-09 | 2020-06-12 | 白志超 | Extensible robot joint and switchable robot with driving modes formed by same |
CN113119084A (en) * | 2021-03-23 | 2021-07-16 | 同济大学 | IIC bus-based modular robot and control method |
CN113306353A (en) * | 2021-07-14 | 2021-08-27 | 北京理工大学 | Variable and modular amphibious bionic mobile platform |
CN113306353B (en) * | 2021-07-14 | 2023-10-13 | 北京理工大学 | Variable and modularized amphibious bionic mobile platform |
CN113602374A (en) * | 2021-08-31 | 2021-11-05 | 天津大学 | A new metamorphic eight-bar foldable wheel-legged robot |
CN113602374B (en) * | 2021-08-31 | 2022-08-26 | 天津大学 | Novel metamorphic eight-rod foldable wheel-leg robot |
CN114872013A (en) * | 2022-04-29 | 2022-08-09 | 厦门大学 | Multi-motion mode micro robot and motion control method thereof |
CN114872013B (en) * | 2022-04-29 | 2023-12-15 | 厦门大学 | A multi-motion mode microrobot and its motion control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102616295A (en) | Multi-joint chain link-type robot based on modularization | |
CN101850798A (en) | A bionic cockroach robot based on double four-bar linkage mechanism | |
CN101570220B (en) | Reversible amphibious multi-legged robot with variable attitude | |
CN102351018B (en) | A quadruped robot leg joint | |
US11192600B2 (en) | Robot leg | |
CN102649450A (en) | Design of wheel leg type moving foot of multi-joint chain link type robot | |
CN201712689U (en) | Modular six-degree-of-freedom active joint type biped walking robot | |
CN107128397A (en) | Robot leg sole running gear | |
CN102849140B (en) | Multi-moving-mode bionic moving robot | |
CN107187512A (en) | Human-imitating double-foot walking robot | |
CN111846011A (en) | Electrically-driven bionic quadruped robot | |
CN107651039A (en) | A kind of mechanical gait synchronization Hexapod Robot | |
CN204124229U (en) | walking robot | |
CN104999472A (en) | Series-parallel type five-freedom-degree bionic shoulder joint linked with shoulder blade | |
CN113618750A (en) | Humanoid robot with highly dynamic quadruped motion mode and dual-arm working mode | |
CN103707293B (en) | Emulation row Wire walking robot | |
CN103170965B (en) | Three translational degree of freedom robot mechanism comprising near plane parallelogram-far plane parallel rod | |
CN107901045B (en) | Bionic robot mouse | |
CN113199458B (en) | Wearable robot controller for follow-up control | |
CN104875814B (en) | Walking robot | |
CN110294043A (en) | A kind of serial-parallel mirror arm/leg mechanism for bio-robot forelimb mechanical system | |
CN206885200U (en) | Robot leg sole running gear | |
CN113815745A (en) | Human walking simulating mechanical leg | |
CN103010329A (en) | Biped walking movement mechanism | |
CN210852709U (en) | Eight-foot bionic machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
DD01 | Delivery of document by public notice |
Addressee: BEIJING INSTITUTE OF TECHNOLOGY Document name: Notification of Publication and of Entering the Substantive Examination Stage of the Application for Invention |
|
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
DD01 | Delivery of document by public notice |
Addressee: Wei Tianqi Document name: Notification that Application Deemed to be Withdrawn |
|
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120801 |