CN102608701A - Medium slit optical waveguide - Google Patents
Medium slit optical waveguide Download PDFInfo
- Publication number
- CN102608701A CN102608701A CN2012100566373A CN201210056637A CN102608701A CN 102608701 A CN102608701 A CN 102608701A CN 2012100566373 A CN2012100566373 A CN 2012100566373A CN 201210056637 A CN201210056637 A CN 201210056637A CN 102608701 A CN102608701 A CN 102608701A
- Authority
- CN
- China
- Prior art keywords
- refractive index
- index medium
- layer
- low refractive
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及光波导技术领域,具体涉及一种介质狭缝光波导。 The invention relates to the field of optical waveguide technology, in particular to a dielectric slit optical waveguide. the
背景技术 Background technique
传统的介质光波导通常以高折射率材料作为波导芯,以低折射率材料作为被覆层,光场主要集中在高折射率材料构成的波导芯中传输。由于受衍射极限的影响,其尺寸往往相对较大。于2004年首次提出的介质狭缝光波导可以实现在纳米级尺寸的低折射率介质中进行光信号的传输,突破了传统光波导尺寸的限制。该类波导由紧邻的高折射率介质区域组成,高折射率介质区域的中间为低折射率介质区。其工作原理是利用在不同介电常数材料界面上电场分量的不连续,且其大小与材料介电系数的平方成反比。利用电场分布的不连续性,低折射率材料中的光场分布密度将大大高于邻近的高折射率区域的电场分布密度,从而实现光场在低折射率材料中的传输和限制。 Traditional dielectric optical waveguides usually use high-refractive-index materials as waveguide cores, and low-refractive-index materials as cladding layers. The light field is mainly transmitted in the waveguide core made of high-refractive index materials. Due to the diffraction limit, its size tends to be relatively large. The dielectric slit optical waveguide first proposed in 2004 can realize the transmission of optical signals in nanometer-sized low-refractive index media, breaking through the size limitation of traditional optical waveguides. This type of waveguide is composed of adjacent high-refractive-index medium regions, and the middle of the high-refractive-index medium region is a low-refractive-index medium region. Its working principle is to use the discontinuity of the electric field component on the interface of materials with different permittivity, and its magnitude is inversely proportional to the square of the permittivity of the material. Using the discontinuity of the electric field distribution, the light field distribution density in the low refractive index material will be much higher than the electric field distribution density in the adjacent high refractive index region, so as to realize the transmission and confinement of the light field in the low refractive index material. the
目前,介质狭缝波导已经成为光波导研究领域的热点,得到国内外学者的广泛关注。传统的介质狭缝波导主要有两大类,分别是水平狭缝波导和垂直狭缝波导,这两种波导均只能对一种偏振光(TE偏振或TM偏振)的较强模场约束,而对另一种偏振光(TM偏振或TE偏振)的约束能力则往往较弱。本发明则提出了一种能同时对两种偏振光实现强模场限制的介质狭缝光波导结构,通过结构几何尺寸的调控,还可实现正、负双折射或零双折射等多种特性。该介质狭缝波导与现有的硅基加工工艺相匹配,可用于构建多种光子器件。 At present, the dielectric slit waveguide has become a hot spot in the field of optical waveguide research, and has attracted extensive attention from domestic and foreign scholars. There are two main types of traditional dielectric slot waveguides, horizontal slot waveguides and vertical slot waveguides, both of which can only constrain the strong mode field of one polarized light (TE polarization or TM polarization). However, the confinement ability to another polarized light (TM polarization or TE polarization) is often weaker. The present invention proposes a dielectric slit optical waveguide structure capable of achieving strong mode field confinement for two kinds of polarized light at the same time. By adjusting the geometrical size of the structure, it can also realize various characteristics such as positive, negative birefringence or zero birefringence. . The dielectric slit waveguide matches the existing silicon-based processing technology and can be used to construct various photonic devices. the
发明内容 Contents of the invention
本发明提供了一种介质狭缝光波导结构,其横截面包括基底层、位于基底层上的从下到上依次排列的高折射率缓冲层、高折射率介质层、低折射率介质层、位于低折射率介质层上从左到右依次排列的高折射率介质区、低折射率介质区和高折射率介质区、以及包层;所述结构中高折射率介质层上表面的宽度与低折射率介质层下表面的宽度相等;位于低折射率介质层上的高折射率介质区、低折射率介质区和高折射率介质区共同构成的区域的下表面的宽度与低折射率介质层上表面的宽度相等;高折射率缓冲层的高度为所传输光信号的波长的0.006-0.06倍;高折射率介质层的上、下表面的宽度为所传输光信号的波长的0.1-0.3倍,高折射率介质层的高度为所传输光信号的波长的0.03-0.1倍;低折射率介质层的高度为所传输光信号的波长的0.006-0.06倍,低折射率介质层的上、下表面的宽度为所传输光信号的波长的0.1-0.3倍;位于低折射率介质层上的两个高折射率介质区和低折射率介质区的高度相等,且其高度为所传输光信号的波长的0.07-0.22倍,低折射率介质区和高折射率介质区共同构成的区域的上、下表面的宽度为所传输光信号的波长的0.1-0.3倍;低折射率介质区的上、下表面的宽度为所传输光信号的波长的0.006-0.06倍,且小于低折射率介质层的宽度;位于基底层上的高折射率缓冲层、高折射率介质层以及两 个高折射率介质区的材料为相同或不同材料,且四者的材料折射率均高于基底层、低折射率介质层以及包层的材料折射率,基底层、低折射率介质层和包层的材料为相同材料或不同材料,基底层、低折射率介质层和包层的材料折射率的最大值与高折射率缓冲层、高折射率介质层以及两个高折射率介质区的材料折射率的最小值的比值小于0.75。 The invention provides a dielectric slit optical waveguide structure, the cross-section of which comprises a base layer, a high-refractive-index buffer layer, a high-refractive-index medium layer, a low-refractive-index medium layer, The high-refractive-index medium region, the low-refractive-index medium region, the high-refractive-index medium region, and the cladding layer arranged from left to right on the low-refractive-index medium layer; the width of the upper surface of the high-refractive-index medium layer in the structure is related to the The width of the lower surface of the refractive index medium layer is equal; The width of the upper surface is equal; the height of the high-refractive index buffer layer is 0.006-0.06 times the wavelength of the transmitted optical signal; the width of the upper and lower surfaces of the high-refractive index medium layer is 0.1-0.3 times the wavelength of the transmitted optical signal , the height of the high-refractive index medium layer is 0.03-0.1 times the wavelength of the transmitted optical signal; the height of the low-refractive index medium layer is 0.006-0.06 times the wavelength of the transmitted optical signal, The width of the surface is 0.1-0.3 times the wavelength of the transmitted optical signal; the heights of the two high-refractive-index medium regions and the low-refractive-index medium region on the low-refractive-index medium layer are equal, and their height is the height of the transmitted optical signal 0.07-0.22 times the wavelength, and the width of the upper and lower surfaces of the area formed by the low-refractive index medium region and the high-refractive index medium region is 0.1-0.3 times the wavelength of the transmitted optical signal; the upper and lower surfaces of the low-refractive index medium region The width of the lower surface is 0.006-0.06 times the wavelength of the transmitted optical signal, and is smaller than the width of the low-refractive index medium layer; the high-refractive-index buffer layer, high-refractive-index medium layer and two high-refractive-index mediums on the base layer The materials of the regions are the same or different materials, and the refractive index of the four materials is higher than that of the base layer, the low refractive index medium layer and the cladding layer, and the materials of the base layer, the low refractive index medium layer and the cladding layer are the same Material or different materials, the maximum value of the material refractive index of the base layer, the low refractive index medium layer and the cladding layer and the minimum value of the material refractive index of the high refractive index buffer layer, the high refractive index medium layer and the two high refractive index medium regions The ratio is less than 0.75. the
所述光波导结构中位于低折射率介质层上从左到右依次排列的高折射率介质区、低折射率介质区和高折射率介质区共同构成的区域的截面的外轮廓形状为矩形、或梯形中的任何一种。 In the optical waveguide structure, the outer contour of the cross-section of the area formed by the high-refractive-index medium region, the low-refractive-index medium region and the high-refractive-index medium region arranged in sequence from left to right on the low-refractive-index medium layer is rectangular, or any of the trapezoids. the
所述光波导结构中高折射率介质层和低折射率介质层的截面的外轮廓形状为矩形、或梯形中的任何一种。 In the optical waveguide structure, the outer contours of the cross-sections of the high-refractive-index medium layer and the low-refractive-index medium layer are any one of rectangle and trapezoid. the
本发明的介质狭缝光波导具有以下优点: The dielectric slit optical waveguide of the present invention has the following advantages:
1.所提介质狭缝光波导基于的是传统硅波导和垂直介质狭缝波导的耦合,可在形成的倒“T”字形低折射率狭缝区域内对两种偏振的光实现较强的模场限制。 1. The proposed dielectric slit optical waveguide is based on the coupling of the traditional silicon waveguide and the vertical dielectric slit waveguide, which can achieve strong polarization of light in the inverted "T"-shaped low refractive index slit area. Mode field constraints. the
2.通过结构尺寸的调整可以对该波导所支持的两种模式特性进行有效调控,实现正、负双折射或零双折射等多种特性 2. Through the adjustment of the structure size, the two mode characteristics supported by the waveguide can be effectively regulated, and various characteristics such as positive, negative birefringence or zero birefringence can be realized.
3.所提介质狭缝波导可用现有成熟的硅基加工工艺实现,并可在此基础上构建各类集成光子器件,此外还可在非线性、光调制、光镊等领域中产生应用。 3. The proposed dielectric slit waveguide can be realized by the existing mature silicon-based processing technology, and various integrated photonic devices can be constructed on this basis. In addition, it can also be applied in the fields of nonlinearity, optical modulation, and optical tweezers. the
附图说明 Description of drawings
图1是介质狭缝光波导的结构示意图。区域1为基底层;区域2为高折射率缓冲层,其高度为h2;区域3为高折射率介质层,其下表面宽度为w3,上表面宽度为w4,高度为h3;区域4为低折射率介质层,其下表面宽度为w4,上表面宽度为wb,高度为h4;区域5为左侧的高折射率介质区,其下表面宽度为w5b,上表面宽度为w5t;区域7为右侧的高折射率介质区,其下表面宽度为w6b,上表面宽度为w6t;区域6为低折射率介质区,其下表面宽度为w6b,上表面宽度为w6t;区域5、6、7的高度为ht;区域8为包层。
Fig. 1 is a schematic diagram of the structure of a dielectric slit optical waveguide.
图2是实例所述介质狭缝光波导的结构图。201为基底层,ns为其折射率;202为高折射率缓冲层,其高度为hb;203为高折射率介质层,其截面为方形,其高度为h1;204为低折射率介质层,其截面为方形,其高度为hl,n1为其折射率;205和207为高折射率介质区,其截面均为方形,wh为其宽度;206为低射率介质区,其截面为方形,n1为其折射率,ws为其宽度;205、206、207的高度相等且均为h2;205、206、207共同构成的区域的截面的宽度、204的宽度、203的宽度相等,且均为w;202、203、205、207的折射率均为nh;208为包层,nc为其折射率。 Fig. 2 is a structural diagram of the dielectric slit optical waveguide described in the example. 201 is the base layer, n s is its refractive index; 202 is a high refractive index buffer layer, its height is h b ; 203 is a high refractive index medium layer, its cross section is square, and its height is h 1 ; 204 is a low refractive index Dielectric layer, its cross section is square, its height is h l , n 1 is its refractive index; 205 and 207 are high refractive index medium areas, its cross section is square, w h is its width; 206 is a low refractive index medium area , its cross section is square, n 1 is its refractive index, w s its width; the heights of 205, 206, and 207 are equal and both are h 2 ; The widths of 203 and 203 are equal, and both are w; the refractive indices of 202, 203, 205, and 207 are all n h ; 208 is the cladding layer, and n c is its refractive index.
图3是传输光信号的波长为1.55μm时实例所述介质狭缝光波导的模式光场的电场强度的分布图。图3(a)对应的是TE模式,图3(b)对应的是TM模式。 Fig. 3 is a distribution diagram of the electric field intensity of the mode light field of the dielectric slit optical waveguide described in the example when the wavelength of the transmitted optical signal is 1.55 μm. Figure 3(a) corresponds to the TE mode, and Figure 3(b) corresponds to the TM mode. the
图4是传输光信号的波长为1.55μm时实例所述介质狭缝光波导的模式双 折射随宽度w的变化曲线。 Fig. 4 is the variation curve of the mode birefringence of the dielectric slit optical waveguide described in the example with the width w when the wavelength of the transmitted optical signal is 1.55 μm. the
图5是传输光信号的波长为1.55μm时实例所述介质狭缝光波导内传输的两种模式的限制因子随宽度w的变化曲线。图5(a)为TE模式,图5(b)为TM模式。 Fig. 5 is a curve of the confinement factor of the two modes propagating in the dielectric slit optical waveguide described in the example as a function of the width w when the wavelength of the transmitted optical signal is 1.55 μm. Figure 5(a) is the TE mode, and Figure 5(b) is the TM mode. the
具体实施方式Detailed ways
这里研究狭缝波导的两个重要特性,模式双折射和限制因子。 Two important properties of slot waveguides, mode birefringence and confinement factor, are investigated here. the
模式双折射被定义为B=neff(TE)-neff(TM),其中neff(TE)和neff(TM)分别表示TE和TM偏振模式的有效折射率。 Mode birefringence is defined as B = n eff (TE) - n eff (TM), where n eff (TE) and n eff (TM) denote the effective indices of refraction for the TE and TM polarization modes, respectively.
限制因子定义为低折射率介质狭缝区域内的光功率与波导总的光功率的比值,该值可用于衡量狭缝区域对光场的限制能力。在本发明中对应的狭缝区域即为倒“T”字形的狭缝。 The confinement factor is defined as the ratio of the optical power in the slit area of the low-refractive index medium to the total optical power of the waveguide, and this value can be used to measure the confinement ability of the slit area to the optical field. In the present invention, the corresponding slit area is an inverted "T"-shaped slit. the
实例: Example:
图2是实例所述介质狭缝光波导的结构图。201为基底层,ns为其折射率;202为高折射率缓冲层,其高度为hb;203为高折射率介质层,其截面为方形,其高度为h1;204为低折射率介质层,其截面为方形,其高度为hl;205和207为高折射率介质区,其截面均为方形,wh为其宽度;206为低射率介质区,其截面为方形,n1为其折射率,ws为其宽度;205、206、207的高度相等且均为h2;205、206、207共同构成的区域的截面的宽度、204的宽度、203的宽度相等,且均为w;202、203、205、207的折射率均为nh;208为包层,nc为其折射率。 Fig. 2 is a structural diagram of the dielectric slit optical waveguide described in the example. 201 is the base layer, n s is its refractive index; 202 is a high refractive index buffer layer, its height is h b ; 203 is a high refractive index medium layer, its cross section is square, and its height is h 1 ; 204 is a low refractive index Dielectric layer, its cross-section is square, its height is h l ; 205 and 207 are high-refractive index medium areas, its cross-section is square, w h is its width; 206 is a low-emissivity medium area, its cross-section is square, n 1 is its refractive index, w s is its width; the heights of 205, 206, and 207 are equal and both are h 2 ; the width of the section of the area jointly formed by 205, 206, and 207, the width of 204, and the width of 203 are equal, and are all w; the refractive indices of 202, 203, 205, and 207 are all n h ; 208 is the cladding layer, and n c is its refractive index.
在本实例中,传输的光信号的波长选定为1.55μm,201、204、206、208的材料设为二氧化硅,其折射率为1.5;202、203、205、207的材料设为硅,其折射率为3.5。 In this example, the wavelength of the transmitted optical signal is selected as 1.55 μm, and the material of 201, 204, 206, and 208 is set as silicon dioxide, and its refractive index is 1.5; the material of 202, 203, 205, and 207 is set as silicon , whose refractive index is 3.5. the
在本实例中,202的高度hb=50nm;203的高度h1=100nm;204的高度hl=50nm;206的宽度ws=50nm;205、206、207的高度h2=200nm;宽度w的取值范围为200-400nm,相应地,205和207的宽度wh的取值范围为75-175nm。 In this example, the height h b of 202 = 50 nm; the height h 1 of 203 = 100 nm; the height h l of 204 = 50 nm; the width w s of 206 = 50 nm; The value range of w is 200-400nm, correspondingly, the value range of the width w h of 205 and 207 is 75-175nm.
使用全矢量有限元方法对本实施例中的上述波导结构进行仿真,计算得到1.55μm波长处该介质狭缝波导所支持的TE和TM模式的模场分布及模式特性。 The above-mentioned waveguide structure in this embodiment is simulated using the full vector finite element method, and the mode field distribution and mode characteristics of the TE and TM modes supported by the dielectric slit waveguide at a wavelength of 1.55 μm are calculated. the
图3是传输光信号的波长为1.55μm时实例所述介质狭缝光波导的模式光场的电场强度的分布图。图3(a)对应的是TE模式,图3(b)对应的是TM模式。由图可见,两种模式均在狭缝区域内有明显的场增强效应。TE模式的场增强主要集中在上方的垂直狭缝区域内,而TM模式的场增强则主要集中在下方的水平狭缝区域内。 Fig. 3 is a distribution diagram of the electric field intensity of the mode light field of the dielectric slit optical waveguide described in the example when the wavelength of the transmitted optical signal is 1.55 μm. Figure 3(a) corresponds to the TE mode, and Figure 3(b) corresponds to the TM mode. It can be seen from the figure that both modes have obvious field enhancement effect in the slit area. The field enhancement of TE mode is mainly concentrated in the upper vertical slit region, while the field enhancement of TM mode is mainly concentrated in the lower horizontal slit region. the
图4是传输光信号的波长为1.55μm时实例所述介质狭缝光波导的模式双折射随宽度w的变化曲线。由图可见,通过调控波导的尺寸,可获得负双折射、零双折射以及正双折射等多种双折射特性。 Fig. 4 is a curve of mode birefringence versus width w of the dielectric slit optical waveguide described in the example when the wavelength of the transmitted optical signal is 1.55 μm. It can be seen from the figure that by adjusting the size of the waveguide, various birefringence characteristics such as negative birefringence, zero birefringence, and positive birefringence can be obtained. the
图5是传输光信号的波长为1.55μm时实例所述介质狭缝光波导内传输的两种模式的限制因子随宽度w的变化曲线。图5(a)为TE模式,图5(b)为 TM模式,可见,两种模式的限制因子均随宽度w增大而增大,且其值较大,说明狭缝中能限制相当一部分光场的能量。 Fig. 5 is a curve of the confinement factor of the two modes propagating in the dielectric slit optical waveguide described in the example as a function of the width w when the wavelength of the transmitted optical signal is 1.55 μm. Figure 5(a) is the TE mode, and Figure 5(b) is the TM mode. It can be seen that the confinement factors of the two modes increase with the increase of the width w, and their values are relatively large, indicating that a considerable part of the slit can be restricted. The energy of the light field. the
最后应说明的是,以上各附图中的实施例仅用以说明本发明的介质狭缝光波导结构,但非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。 Finally, it should be noted that the embodiments in the above figures are only used to illustrate the dielectric slit optical waveguide structure of the present invention, but are not limiting. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that modifications or equivalent replacements to the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all of them should be included in the scope of the present invention. within the scope of the claims. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210056637 CN102608701B (en) | 2012-03-06 | 2012-03-06 | Medium slit optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210056637 CN102608701B (en) | 2012-03-06 | 2012-03-06 | Medium slit optical waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102608701A true CN102608701A (en) | 2012-07-25 |
CN102608701B CN102608701B (en) | 2013-09-18 |
Family
ID=46526196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210056637 Expired - Fee Related CN102608701B (en) | 2012-03-06 | 2012-03-06 | Medium slit optical waveguide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102608701B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558661A (en) * | 2013-11-11 | 2014-02-05 | 东南大学 | Integrated polarization converter based on silicon-based L-shaped waveguide structure |
CN104267463A (en) * | 2014-10-23 | 2015-01-07 | 重庆大学 | Novel orthogonal slit optical waveguide structure and manufacturing method |
WO2016086412A1 (en) * | 2014-12-05 | 2016-06-09 | 华为技术有限公司 | Optical waveguide |
CN106644069A (en) * | 2016-04-19 | 2017-05-10 | 中国科学院上海技术物理研究所 | Optical slit with submicron thickness and with sapphire as substrate |
US20200026000A1 (en) * | 2018-07-20 | 2020-01-23 | Globalfoundries Inc. | Stacked waveguide arrangements providing field confinement |
WO2020244322A1 (en) * | 2019-06-06 | 2020-12-10 | 浙江大学 | Electronically controlled depolarizer based on crossed-slit waveguide |
CN113031151A (en) * | 2021-03-30 | 2021-06-25 | 宁波大学 | Chalcogenide slit optical waveguide structure and preparation method thereof |
CN114217490A (en) * | 2021-12-06 | 2022-03-22 | 武汉光谷信息光电子创新中心有限公司 | On-chip optical amplifier and method for manufacturing the same |
WO2023104012A1 (en) * | 2021-12-06 | 2023-06-15 | 南方科技大学 | Resonant chip and manufacturing method therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101281273A (en) * | 2008-05-05 | 2008-10-08 | 北京航空航天大学 | An ultrahigh nonlinear photonic crystal fiber based on the slit effect |
CN101738679A (en) * | 2008-11-21 | 2010-06-16 | 北京航空航天大学 | Slit waveguide-based Bragg grating filter |
-
2012
- 2012-03-06 CN CN 201210056637 patent/CN102608701B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101281273A (en) * | 2008-05-05 | 2008-10-08 | 北京航空航天大学 | An ultrahigh nonlinear photonic crystal fiber based on the slit effect |
CN101738679A (en) * | 2008-11-21 | 2010-06-16 | 北京航空航天大学 | Slit waveguide-based Bragg grating filter |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558661A (en) * | 2013-11-11 | 2014-02-05 | 东南大学 | Integrated polarization converter based on silicon-based L-shaped waveguide structure |
CN104267463A (en) * | 2014-10-23 | 2015-01-07 | 重庆大学 | Novel orthogonal slit optical waveguide structure and manufacturing method |
CN104267463B (en) * | 2014-10-23 | 2016-03-02 | 重庆大学 | A kind of orthogonal slits optical waveguide structure and manufacture method |
CN107076923A (en) * | 2014-12-05 | 2017-08-18 | 华为技术有限公司 | Fiber waveguide |
WO2016086412A1 (en) * | 2014-12-05 | 2016-06-09 | 华为技术有限公司 | Optical waveguide |
CN106644069B (en) * | 2016-04-19 | 2019-04-02 | 中国科学院上海技术物理研究所 | It is a kind of using sapphire as the optical slot of the submicrometer-thick of substrate |
CN106644069A (en) * | 2016-04-19 | 2017-05-10 | 中国科学院上海技术物理研究所 | Optical slit with submicron thickness and with sapphire as substrate |
US20200026000A1 (en) * | 2018-07-20 | 2020-01-23 | Globalfoundries Inc. | Stacked waveguide arrangements providing field confinement |
US10746921B2 (en) * | 2018-07-20 | 2020-08-18 | Globalfoundries Inc. | Stacked waveguide arrangements providing field confinement |
WO2020244322A1 (en) * | 2019-06-06 | 2020-12-10 | 浙江大学 | Electronically controlled depolarizer based on crossed-slit waveguide |
CN113031151A (en) * | 2021-03-30 | 2021-06-25 | 宁波大学 | Chalcogenide slit optical waveguide structure and preparation method thereof |
CN113031151B (en) * | 2021-03-30 | 2022-09-30 | 宁波大学 | Chalcogenide slit optical waveguide structure and preparation method thereof |
CN114217490A (en) * | 2021-12-06 | 2022-03-22 | 武汉光谷信息光电子创新中心有限公司 | On-chip optical amplifier and method for manufacturing the same |
WO2023104012A1 (en) * | 2021-12-06 | 2023-06-15 | 南方科技大学 | Resonant chip and manufacturing method therefor |
CN114217490B (en) * | 2021-12-06 | 2025-03-28 | 武汉光谷信息光电子创新中心有限公司 | On-chip optical amplifier and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN102608701B (en) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102608701B (en) | Medium slit optical waveguide | |
CN104991308B (en) | A kind of waveguiding structure | |
CN102955268A (en) | Surface plasma optical modulator based on metal nano waveguide | |
CN103913801B (en) | A kind of New-type photon crystal optical fiber | |
CN103645536B (en) | A kind of all solid state large mould field photon band-gap optical fiber | |
CN102169205A (en) | Low-loss medium loaded surface plasmon excimer optical waveguide | |
CN101281273A (en) | An ultrahigh nonlinear photonic crystal fiber based on the slit effect | |
CN105759351B (en) | A Silicon-Based Slot Waveguide Polarizer Based on the Principle of Vertical Coupling | |
Yermakov et al. | Broadband polarization degeneracy of guided waves in subwavelength structured ZnO pattern | |
CN105116486A (en) | Octagonal photonic crystal optical-fiber polarization beam splitter | |
CN102279439A (en) | Hybrid light-guiding type single-polarization single-mode optical fiber | |
CN102662210B (en) | A plasmonic gain waveguide | |
Makino et al. | Slow-light-enhanced nonlinear characteristics in slot waveguides composed of photonic crystal nanobeam cavities | |
CN107422416A (en) | A kind of mixed type Bloch phasmon optical waveguide structure | |
CN111273398A (en) | Design method of M-type waveguide grating coupler with high coupling efficiency | |
CN207992483U (en) | A kind of mixing phasmon waveguide of radial polarisation optical waveguide mode | |
CN105954830A (en) | Broadband single polarization single-mode photonic crystal fiber | |
CN211426847U (en) | Negative refractive index waveguide fast optical device based on Dirac-like point | |
CN102565933B (en) | Sub-wavelength mixed type surface plasma optical waveguide | |
CN104597558A (en) | Novel high birefringence high non-linearirty photonic crystal fiber | |
CN102590940B (en) | Open type surface plasmon polariton slit optical waveguide | |
CN102608700A (en) | Hybrid slit optical waveguide | |
CN110749954A (en) | A kind of negative refractive index waveguide fast optical device and design method based on Dirac-like point | |
CN102565928B (en) | A Subwavelength Dielectric Loaded Surface Plasmon Optical Waveguide | |
CN108828714A (en) | A kind of strong local, low-loss hydridization surface plasma waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130918 Termination date: 20170306 |