CN102602911A - Method for preparing single-walled carbon nanotube by adopting controllability of low-pressure reactant gas - Google Patents
Method for preparing single-walled carbon nanotube by adopting controllability of low-pressure reactant gas Download PDFInfo
- Publication number
- CN102602911A CN102602911A CN2012100620880A CN201210062088A CN102602911A CN 102602911 A CN102602911 A CN 102602911A CN 2012100620880 A CN2012100620880 A CN 2012100620880A CN 201210062088 A CN201210062088 A CN 201210062088A CN 102602911 A CN102602911 A CN 102602911A
- Authority
- CN
- China
- Prior art keywords
- low
- reactive gas
- walled carbon
- pressure reactive
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002109 single walled nanotube Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000000376 reactant Substances 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 15
- 239000010439 graphite Substances 0.000 claims abstract description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 11
- 238000010891 electric arc Methods 0.000 claims abstract description 9
- 150000003624 transition metals Chemical class 0.000 claims abstract description 9
- 239000011593 sulfur Substances 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 36
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 7
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 3
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 2
- IKBUJAGPKSFLPB-UHFFFAOYSA-N nickel yttrium Chemical compound [Ni].[Y] IKBUJAGPKSFLPB-UHFFFAOYSA-N 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- -1 nitrogen oxide compound Chemical class 0.000 claims 2
- 239000007952 growth promoter Substances 0.000 claims 1
- 229910003481 amorphous carbon Inorganic materials 0.000 abstract 1
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 230000001568 sexual effect Effects 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 10
- 238000001237 Raman spectrum Methods 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种采用低压反应性气体可控性制备单壁碳纳米管的方法,在充有低压反应性气体的缓冲气氛中,以Ni/Y、Fe或Ni/Co/Fe等过渡性金属为催化剂,硫为生长促进剂与高纯石墨粉混合制得阳极,与纯石墨阴极进行电弧放电,通过控制放电电流/电压和低压反应性气体压力、种类等实现单壁碳纳米管的可控性制备。与现有技术相比,本发明的方法工艺简单灵活、所制备的单壁碳纳米管直径可控、且有利于抑制无定形碳的产生,便于大规模制备。
The invention relates to a method for controllably preparing single-walled carbon nanotubes by adopting low-pressure reactive gas. In a buffer atmosphere filled with low-pressure reactive gas, transition metals such as Ni/Y, Fe or Ni/Co/Fe are used As a catalyst, sulfur is used as a growth accelerator and mixed with high-purity graphite powder to make an anode, and arc discharge is performed with a pure graphite cathode. Controllable single-walled carbon nanotubes can be achieved by controlling the discharge current/voltage and low-pressure reactive gas pressure, type, etc. sexual preparation. Compared with the prior art, the method of the invention is simple and flexible, the diameter of the prepared single-wall carbon nanotube is controllable, and it is beneficial to suppress the generation of amorphous carbon, which is convenient for large-scale preparation.
Description
技术领域 technical field
本发明涉及一种纳米材料技术领域的制备方法,尤其是涉及一种采用低压反应性气体可控性制备单壁碳纳米管的方法。The invention relates to a preparation method in the technical field of nanomaterials, in particular to a method for preparing single-walled carbon nanotubes with low-pressure reactive gas controllability.
背景技术 Background technique
自1991年以来,碳纳米管(Carbon nanotubes;CNTs)因具有卓越的机械、热学、电学性能而引起了包括物理、化学和材料科学等诸多领域的广泛关注,目前将碳纳米管已经被应用于纳电子器件、场发射技术、生物载药、储氢技术等诸多领域。CNTs是由二维石墨烯片弯曲形成的一种新型中空管状纳米结构,按管壁层数可将碳纳米管可分为单璧碳纳米管(Single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(Multi-walled carbon nanotubes MWNTs)。其中SWNTs作为优良的准一维纳米材料,因其具有较高的载流子迁移率而被用作制造场效应晶体管(FET)、薄膜晶体管(TFT)等纳电子器件,有望取代硅材料而成为下一代微电子器件的关键材料。Since 1991, carbon nanotubes (Carbon nanotubes; CNTs) have attracted extensive attention in many fields including physics, chemistry, and material science due to their excellent mechanical, thermal, and electrical properties. Nanoelectronic devices, field emission technology, biological drug loading, hydrogen storage technology and many other fields. CNTs is a new type of hollow tubular nanostructure formed by bending two-dimensional graphene sheets. According to the number of tube wall layers, carbon nanotubes can be divided into single-walled carbon nanotubes (Single-walled carbon nanotubes, SWNTs) and multi-walled carbon nanotubes. Nanotubes (Multi-walled carbon nanotubes MWNTs). Among them, SWNTs, as excellent quasi-one-dimensional nanomaterials, are used to manufacture nanoelectronic devices such as field effect transistors (FETs) and thin film transistors (TFTs) because of their high carrier mobility, and are expected to replace silicon materials and become Key materials for next-generation microelectronic devices.
众所周知,SWNTs的光学、电学性质取决于它们的直径和手性分布,根据直径和手性的不同,SWNTs可表现为金属性;也可表现为半导体性,且半导体性SWNTs的带隙与其直径的倒数成线性关系。然而,目前绝大部分SWNTs样品是由多种具有不同直径和手性的SWNTs组成的,这些碳纳米管之间相互缠绕,难以分离,进而无法保证SWNTs基器件性能的均一性,这已经成为阻碍了SWNTs在纳电子器件中大规模应用的一个亟待解决的科学难题。近几年来,在SWNTs的可控性制备方面已经取得了不少进展(M.G.Hahm,et al.J.Phys.Chem.C 2008,112:17143-17147)。但这些可控性制备技术主要是利用化学气相沉积法(CVD)控制催化剂大小、碳源或生长条件等来实现SWNTs的可控性制备。而CVD法所制备的SWNTs具有结构缺陷、结晶度不高等缺点,不利于发挥SWNTs的优异电性能。It is well known that the optical and electrical properties of SWNTs depend on their diameter and chiral distribution. According to the difference in diameter and chirality, SWNTs can be metallic or semiconducting, and the band gap of semiconducting SWNTs is related to its diameter The reciprocal is linear. However, most of the current SWNTs samples are composed of a variety of SWNTs with different diameters and chiralities. These carbon nanotubes are intertwined and difficult to separate, so that the uniformity of the performance of SWNTs-based devices cannot be guaranteed, which has become an obstacle. It is an urgent scientific problem to be solved for the large-scale application of SWNTs in nanoelectronic devices. In recent years, a lot of progress has been made in the controllable preparation of SWNTs (M.G.Hahm, et al.J.Phys.Chem.C 2008, 112:17143-17147). However, these controllable preparation technologies mainly use chemical vapor deposition (CVD) to control the catalyst size, carbon source or growth conditions to achieve the controllable preparation of SWNTs. However, SWNTs prepared by CVD method have structural defects, low crystallinity and other disadvantages, which are not conducive to exerting the excellent electrical properties of SWNTs.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种电弧放电法与反应性气体相结合来可控性制备单壁碳纳米管的方法。The object of the present invention is to provide a method for controllably preparing single-walled carbon nanotubes by combining arc discharge method and reactive gas in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种采用低压反应性气体可控性制备单壁碳纳米管的方法,以硫为生长促进剂,将过渡金属催化剂、生长促进剂与高纯石墨粉混合后制得阳极,然后在充有低压反应性气体的缓冲气体中与纯石墨阴极进行电弧放电,通过调节放电电流、电压、低压反应性气体的种类及压力进行单壁碳纳米管的可控性制备。A method for preparing single-walled carbon nanotubes using low-pressure reactive gas controllability, using sulfur as a growth accelerator, mixing a transition metal catalyst, a growth accelerator and high-purity graphite powder to prepare an anode, and then filling it with a low-pressure The buffer gas of the reactive gas is arc-discharged with the pure graphite cathode, and the controllable preparation of single-walled carbon nanotubes is carried out by adjusting the discharge current, voltage, type and pressure of the low-pressure reactive gas.
所述的过渡金属催化剂为铁、钴、镍或钇的一种或几种,或是上述过渡金属元素的化合物中的一种或几种。The transition metal catalyst is one or more of iron, cobalt, nickel or yttrium, or one or more of the compounds of the above transition metal elements.
所述的过渡金属催化剂优选镍-钇的混合物、铁粉或铁-钴-镍的混合物。The transition metal catalyst is preferably a mixture of nickel-yttrium, iron powder or a mixture of iron-cobalt-nickel.
所述的阳极中的过渡金属催化剂的含量为1~6at%。The content of the transition metal catalyst in the anode is 1-6 at%.
所述的阳极中的生长促进剂的含量为0.2~2at%。The content of the growth accelerator in the anode is 0.2-2at%.
所述的低压反应性气体为二氧化碳、氮氧化合物或硫化氢,所述的氮氧化合物为NO2或N2O,低压反应性气体的压力为0.1~10kPa。The low-pressure reactive gas is carbon dioxide, nitrogen oxide or hydrogen sulfide, the nitrogen oxide is NO 2 or N 2 O, and the pressure of the low-pressure reactive gas is 0.1-10 kPa.
所述的缓冲气体为氦气、氩气或氢气中的一种或几种,缓冲气体的气压为20~40kPa。The buffer gas is one or more of helium, argon or hydrogen, and the pressure of the buffer gas is 20-40kPa.
放电电弧的电流70~120A,电压为30~70V。The current of the discharge arc is 70-120A, and the voltage is 30-70V.
与现有技术相比,本发明通过向缓冲气体中引入低压反应性气体,既可以对调控单壁碳纳米管的生长而实现直径可控,又可在一定程度上刻蚀制备过程中的无定形碳而提高产物纯度,同时还可以兼具电弧法制备单壁碳纳米管的低缺陷特点。Compared with the prior art, the present invention can not only control the growth of single-walled carbon nanotubes to achieve diameter controllable by introducing low-pressure reactive gas into the buffer gas, but also can etch the non-woven fabrics in the preparation process to a certain extent. The purity of the product can be improved by shaping the carbon, and at the same time, it can also have the low-defect characteristics of the single-walled carbon nanotubes prepared by the arc method.
附图说明 Description of drawings
图1为对比例所制备的单壁碳纳米管的拉曼光谱图;Fig. 1 is the Raman spectrogram of the single-walled carbon nanotube prepared by comparative example;
图2为实施例1所制备的单壁碳纳米管的拉曼光谱图;Fig. 2 is the Raman spectrogram of the single-wall carbon nanotube prepared in embodiment 1;
图3为添加不同含量CO2时所制备的单壁碳纳米管的拉曼光谱图;Fig. 3 is the Raman spectrogram of the prepared single-walled carbon nanotubes when adding different contents of CO ;
图4为实施例2所制备的单壁碳纳米管的拉曼光谱图。FIG. 4 is a Raman spectrum of the single-walled carbon nanotubes prepared in Example 2.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
对比例comparative example
将高纯石墨粉、Ni粉、Y2O3粉、硫粉按照摩尔比(C∶Ni∶Y∶S为93.5∶4.2∶1∶0.5)混合均匀后制成6mm阳极石墨棒。然后放入通有40kPa氦气(He)的电弧室内与进行直径为8mm纯石墨阴极相对进行电弧放电。放电电流为80~90A,电压为40~45V。放电时间为7分钟,制得约0.75g单壁碳纳米管。其拉曼光谱图如1所示,通过计算可得出产物中SWNTs的直径分别为1.49nm和1.35nm。Mix high-purity graphite powder, Ni powder, Y 2 O 3 powder, and sulfur powder according to the molar ratio (C:Ni:Y:S: 93.5:4.2:1:0.5) to make a 6mm anode graphite rod. Then put it into an arc chamber with 40kPa helium (He) and conduct arc discharge opposite to the pure graphite cathode with a diameter of 8mm. The discharge current is 80-90A, and the voltage is 40-45V. The discharge time was 7 minutes, and about 0.75 g of single-walled carbon nanotubes were produced. Its Raman spectrum is shown in Figure 1, and the diameters of SWNTs in the product can be calculated to be 1.49nm and 1.35nm, respectively.
实施例1Example 1
将高纯石墨粉、Ni粉、Y2O3粉、硫粉按照摩尔比(C∶Ni∶Y∶S为94.3∶4.2∶1∶0.5)混合均匀后制成6mm阳极石墨棒。然后在通有40kPa氦气(He)和4.8kPa二氧化碳(CO2)的电弧室内与进行直径为8mm纯石墨阴极相对进行电弧放电。放电电流为95~100A,电压为50~55V。放电时间为6分钟,制得约0.5g单壁碳纳米管。SWNTs样品的拉曼光谱图如2所示,从低频Raman谱上可以看出,CO2引入后所制备的样品中SWNTs直径分别为1.70nm和1.52nm,表明小直径SWNTs在样品中的含量减少,倾向于生长大直径SWNTs。图3为不同含量CO2条件下所制备SWNTs样品的Raman光谱,由图可知,引入CO2含量不同时所制备的SWNTs的直径分布也不尽相同,也即CO2对SWNTs的直径分布产生了调控作用。Mix high-purity graphite powder, Ni powder, Y 2 O 3 powder, and sulfur powder according to the molar ratio (C:Ni:Y:S: 94.3:4.2:1:0.5) to make a 6mm anode graphite rod. Then arc discharge is carried out opposite to a pure graphite cathode with a diameter of 8 mm in an arc chamber filled with 40 kPa helium (He) and 4.8 kPa carbon dioxide (CO 2 ). The discharge current is 95-100A, and the voltage is 50-55V. The discharge time was 6 minutes, and about 0.5 g of single-walled carbon nanotubes were prepared. The Raman spectrum of the SWNTs sample is shown in Figure 2. From the low-frequency Raman spectrum, it can be seen that the diameters of SWNTs in the samples prepared after the introduction of CO2 were 1.70nm and 1.52nm, indicating that the content of small-diameter SWNTs in the samples decreased , tend to grow large diameter SWNTs. Figure 3 is the Raman spectrum of SWNTs samples prepared under different CO 2 contents. It can be seen from the figure that the diameter distribution of SWNTs prepared under different CO 2 contents is also different, that is, CO 2 has a different effect on the diameter distribution of SWNTs. Regulation.
实施例2Example 2
将高纯石墨粉、Ni粉、Y2O3粉、硫粉按照摩尔比(C∶Ni∶Y∶S为93.5∶4.8∶1.2∶0.5)混合均匀后制成6mm阳极石墨棒。然后放入通有20kPa氦气(He)和0.8kPa二氧化氮(N2O)的电弧室内与进行直径为8mm纯石墨阴极相对进行电弧放电。放电电流为80~85A,电压为40~45V。放电时间为7分钟,制得约0.8g单壁碳纳米管。SWNTs样品的拉曼光谱图如4所示,N2O引入后所制备SWNTs样品的SWNTs直径分别为1.71nm、1.51nm和1.34nm,从低频Raman谱上可以看出,与对比例相比,181cm-1峰强度的降低意味着样品中小直径SWNTs(1.71nm)在样品中的含量减少。由此可知,通过向缓冲气体中引入N2O可对SWNTs的直径分布进行调控。Mix high-purity graphite powder, Ni powder, Y 2 O 3 powder, and sulfur powder according to the molar ratio (C:Ni:Y:S: 93.5:4.8:1.2:0.5) to make a 6mm anode graphite rod. Then put it into an arc chamber filled with 20kPa helium (He) and 0.8kPa nitrogen dioxide (N 2 O) to conduct arc discharge opposite to a pure graphite cathode with a diameter of 8mm. The discharge current is 80-85A, and the voltage is 40-45V. The discharge time was 7 minutes, and about 0.8 g of single-walled carbon nanotubes were produced. The Raman spectra of SWNTs samples are shown in Figure 4. The SWNTs diameters of SWNTs samples prepared after the introduction of N 2 O are 1.71nm, 1.51nm and 1.34nm respectively. It can be seen from the low-frequency Raman spectrum that compared with the comparative example, The decrease of 181cm -1 peak intensity means that the content of small-diameter SWNTs (1.71nm) in the sample decreases. It can be seen that the diameter distribution of SWNTs can be regulated by introducing N 2 O into the buffer gas.
实施例3Example 3
将高纯石墨粉、Fe粉、硫粉按照摩尔比(C∶Fe∶S为97.5∶2∶0.5)混合均匀后制成6mm阳极石墨棒。然后放入通有30kPa氦气/氢气(Ar/H2=3∶2)和10kPa二氧化碳(CO2)的电弧室内与进行直径为8mm纯石墨阴极相对进行电弧放电。放电电流为70~75A,电压为30~35V。放电时间为20分钟,制得约1.2g直径分布可控的单壁碳纳米管。Mix high-purity graphite powder, Fe powder, and sulfur powder according to the molar ratio (C:Fe:S is 97.5:2:0.5) to make a 6mm anode graphite rod. Then put it into an arc chamber filled with 30kPa helium/hydrogen (Ar/H 2 =3:2) and 10kPa carbon dioxide (CO 2 ) to conduct arc discharge against a pure graphite cathode with a diameter of 8mm. The discharge current is 70-75A, and the voltage is 30-35V. The discharge time was 20 minutes, and about 1.2 g of single-walled carbon nanotubes with controllable diameter distribution were prepared.
实施例4Example 4
将高纯石墨粉、Fe粉、Co粉、Ni粉、硫粉按照摩尔比(C∶Fe∶Co∶Ni∶S为96.5∶1∶0.5∶1.5∶0.5)混合均匀后制成6mm阳极石墨棒。然后放入通有35kPa氩气/氢气(比例为3∶2)和0.1kPa硫化氢(H2S)的电弧室内与进行直径为8mm纯石墨阴极相对进行电弧放电。放电电流为115~120A,电压为65~70V。放电时间为12分钟,制得约0.9g直径分布可控的单壁碳纳米管。Mix high-purity graphite powder, Fe powder, Co powder, Ni powder, and sulfur powder according to the molar ratio (C:Fe:Co:Ni:S: 96.5:1:0.5:1.5:0.5) to make a 6mm anode graphite rod . Then put it into an arc chamber filled with 35kPa argon/hydrogen (ratio: 3:2) and 0.1kPa hydrogen sulfide (H 2 S) and conduct arc discharge opposite to a pure graphite cathode with a diameter of 8mm. The discharge current is 115-120A, and the voltage is 65-70V. The discharge time was 12 minutes, and about 0.9 g of single-walled carbon nanotubes with controllable diameter distribution were prepared.
实施例5Example 5
一种采用低压反应性气体可控性制备单壁碳纳米管的方法,以硫为生长促进剂,将金属Fe催化剂、硫粉与高纯石墨粉混合后制得阳极,其中,金属Fe催化剂的含量为1at%,硫粉的含量为0.2at%,然后在充有二氧化碳气体的氩气/氢气中与纯石墨阴极进行电弧放电,二氧化碳气体的压力为0.1kPa,氩气/氢气(比例为3∶2)的压力为20kPa,调节放电电流为70A,电压为30V,即可以进行单壁碳纳米管的可控性制备。A method for preparing single-walled carbon nanotubes using low-pressure reactive gas controllability, using sulfur as a growth accelerator, mixing metal Fe catalyst, sulfur powder and high-purity graphite powder to prepare an anode, wherein the metal Fe catalyst Content is 1at%, and the content of sulfur powder is 0.2at%, then carries out electric arc discharge with pure graphite cathode in the argon/hydrogen that is filled with carbon dioxide gas, the pressure of carbon dioxide gas is 0.1kPa, argon/hydrogen (ratio is 3 : 2) the pressure is 20kPa, the discharge current is adjusted to 70A, and the voltage is 30V, that is, the controllable preparation of single-walled carbon nanotubes can be carried out.
实施例6Example 6
一种采用低压反应性气体可控性制备单壁碳纳米管的方法,以硫为生长促进剂,将金属Fe催化剂、硫粉与高纯石墨粉混合后制得阳极,其中,金属Fe催化剂的含量为6at%,硫粉的含量为2at%,然后在充有NO2气体的氩气/氢气中与纯石墨阴极进行电弧放电,二氧化碳气体的压力为10kPa,氩气/氢气(比例为3∶2)的压力为40kPa,调节放电电流为120A,电压为70V,即可以进行单壁碳纳米管的可控性制备。A method for preparing single-walled carbon nanotubes using low-pressure reactive gas controllability, using sulfur as a growth accelerator, mixing metal Fe catalyst, sulfur powder and high-purity graphite powder to prepare an anode, wherein the metal Fe catalyst Content is 6at%, and the content of sulfur powder is 2at%, is filled with NO then in the argon/hydrogen of gas and carries out electric arc discharge with pure graphite cathode, the pressure of carbon dioxide gas is 10kPa, and argon/hydrogen (ratio is 3: 2) The pressure is 40kPa, the discharge current is adjusted to 120A, and the voltage is 70V, that is, the controllable preparation of single-walled carbon nanotubes can be carried out.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100620880A CN102602911A (en) | 2012-03-07 | 2012-03-07 | Method for preparing single-walled carbon nanotube by adopting controllability of low-pressure reactant gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100620880A CN102602911A (en) | 2012-03-07 | 2012-03-07 | Method for preparing single-walled carbon nanotube by adopting controllability of low-pressure reactant gas |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102602911A true CN102602911A (en) | 2012-07-25 |
Family
ID=46520783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100620880A Pending CN102602911A (en) | 2012-03-07 | 2012-03-07 | Method for preparing single-walled carbon nanotube by adopting controllability of low-pressure reactant gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102602911A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104603051A (en) * | 2012-09-18 | 2015-05-06 | 埃克森美孚上游研究公司 | Reactor system for the production of carbon allotropes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1749156A (en) * | 2005-10-18 | 2006-03-22 | 南开大学 | A method for synthesizing controllable single-walled carbon nanotubes by arc method |
CN101671001A (en) * | 2009-10-15 | 2010-03-17 | 上海交通大学 | Preparation method for semiconductor single wall carbon nano tube |
CN101905880A (en) * | 2010-07-23 | 2010-12-08 | 上海交通大学 | Preparation method of diameter-controllable single-walled carbon nanotubes |
WO2010143585A1 (en) * | 2009-06-11 | 2010-12-16 | Dowaホールディングス株式会社 | Carbon nanotubes and process for producing same |
CN102351171A (en) * | 2011-09-15 | 2012-02-15 | 上海交通大学 | Method for selectively preparing single-walled carbon nanotube in magnetic field |
-
2012
- 2012-03-07 CN CN2012100620880A patent/CN102602911A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1749156A (en) * | 2005-10-18 | 2006-03-22 | 南开大学 | A method for synthesizing controllable single-walled carbon nanotubes by arc method |
WO2010143585A1 (en) * | 2009-06-11 | 2010-12-16 | Dowaホールディングス株式会社 | Carbon nanotubes and process for producing same |
CN101671001A (en) * | 2009-10-15 | 2010-03-17 | 上海交通大学 | Preparation method for semiconductor single wall carbon nano tube |
CN101905880A (en) * | 2010-07-23 | 2010-12-08 | 上海交通大学 | Preparation method of diameter-controllable single-walled carbon nanotubes |
CN102351171A (en) * | 2011-09-15 | 2012-02-15 | 上海交通大学 | Method for selectively preparing single-walled carbon nanotube in magnetic field |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104603051A (en) * | 2012-09-18 | 2015-05-06 | 埃克森美孚上游研究公司 | Reactor system for the production of carbon allotropes |
CN104603051B (en) * | 2012-09-18 | 2017-06-09 | 埃克森美孚上游研究公司 | Produce the reactor assembly of carbon allotrope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shang et al. | Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods | |
US10071360B2 (en) | Class of tunable gas storage and sensor materials | |
Wang et al. | Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment | |
CN101585525B (en) | Preparation method of single-walled carbon nano-tube with adjustable diameter | |
CN101671001B (en) | Preparation method for semiconductor single wall carbon nano tube | |
CN101386408A (en) | A kind of semiconducting single-walled carbon nanotube and its preparation method | |
Chang et al. | Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates | |
Rouhi et al. | Three separated growth sequences of vertically-aligned carbon nanotubes on porous silicon: field emission applications | |
Zhao et al. | Carbon nanotube growth in the pores of expanded graphite by chemical vapor deposition | |
CN1768002A (en) | Method for preparing carbon nanotubes from liquid carbon source | |
Uh et al. | Improved field emission properties from carbon nanotubes grown onto micron-sized arrayed silicon pillars with pyramidal bases | |
CN102351171B (en) | A method for the selective preparation of single-walled carbon nanotubes by a magnetic field | |
Bonard et al. | Influence of the deposition conditions on the field emission properties of patterned nitrogenated carbon nanotube films | |
KR101679693B1 (en) | Method for preparing carbon nanotube and hybrid carbon nanotube composite | |
CN102602911A (en) | Method for preparing single-walled carbon nanotube by adopting controllability of low-pressure reactant gas | |
Wu et al. | Field emission from geometrically modulated tungsten-nickel sulfide/graphitic carbon nanobelts on Si microchannel plates | |
Liu et al. | Synthesis of well-aligned carbon nanotubes with open tips | |
CN103466594A (en) | Temperature control CVD furnace and method for controllably preparing single-wall carbon nano tubes with temperature control CVD furnace | |
CN205645738U (en) | Coaxial nanotube field emission negative pole of nitrogen doping graphite xi @SiO2 | |
CN101549863A (en) | Preparation method of double-wall carbon nano-tube with good thermal stability | |
Singh et al. | Synthesis of MWNTs using Fe–Mo bimetallic catalyst by CVD method for field emission application | |
CN101905880B (en) | Method for preparing diameter-controllable single-walled carbon nanotube | |
Ghosh et al. | Growth of Y-junction bamboo-shaped CNx nanotubes on GaAs substrate using single feedstock | |
Srivastava et al. | Carbon Nanowalls: A potential 2-Dimensional material for field emission and energy-related applications | |
CN101723355B (en) | Amorphous carbon coated single-walled carbon nano tube line and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120725 |