CN102593508B - Lithium ion battery - Google Patents
Lithium ion battery Download PDFInfo
- Publication number
- CN102593508B CN102593508B CN201210041031.2A CN201210041031A CN102593508B CN 102593508 B CN102593508 B CN 102593508B CN 201210041031 A CN201210041031 A CN 201210041031A CN 102593508 B CN102593508 B CN 102593508B
- Authority
- CN
- China
- Prior art keywords
- electrolyte
- content
- ion battery
- molecular formula
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 239000003792 electrolyte Substances 0.000 claims abstract description 62
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 34
- 150000001875 compounds Chemical class 0.000 claims abstract description 31
- 150000005676 cyclic carbonates Chemical class 0.000 claims abstract description 14
- 239000006182 cathode active material Substances 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 239000006183 anode active material Substances 0.000 claims abstract description 4
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 3
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 3
- 239000003960 organic solvent Substances 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 4
- 125000001188 haloalkyl group Chemical group 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 125000005155 haloalkylene group Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 2
- 229910013100 LiNix Inorganic materials 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910013418 LiNixCoyM1-x-yO2 Inorganic materials 0.000 abstract 1
- -1 ester compound Chemical class 0.000 description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910012742 LiNi0.5Co0.3Mn0.2O2 Inorganic materials 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000007600 charging Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000006245 Carbon black Super-P Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910011628 LiNi0.7Co0.15Mn0.15O2 Inorganic materials 0.000 description 1
- 229910015515 LiNi0.8Co0.15 Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- 229910015915 LiNi0.8Co0.2O2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
本发明提供一种锂离子电池,所述锂离子电池具有优良的循环寿命特性和高温储存性能。其包括:包含阴极活性物质的阴极;包含阳极活性物质的阳极;置于阴极与阳极之间的隔板;以及电解液,其含有:锂盐、有机溶剂、卤代环状碳酸酯、环状二磺酸酯化合物;所述阴极活性物质为:里LiNixCoyM1‑X‑YO2,其中M选自Mn、Al、Ti、Zn中的一种或多种,0.5≤x≤1,0≤y≤0.5,同时1‑x‑y≥0。The present invention provides a lithium ion battery, which has excellent cycle life characteristics and high temperature storage performance. It includes: a cathode containing a cathode active material; an anode containing an anode active material; a separator interposed between the cathode and the anode; and an electrolyte containing: a lithium salt, an organic solvent, a halogenated cyclic carbonate, a cyclic Disulfonate compound; the cathode active material is: LiNixCoyM1 -X- YO2 , wherein M is selected from one or more of Mn, Al, Ti, Zn, 0.5≤x≤ 1, 0≤y≤0.5, while 1‑x‑y≥0.
Description
技术领域technical field
本发明涉及电化学领域,尤其涉及锂离子二次电池领域。The invention relates to the field of electrochemistry, in particular to the field of lithium ion secondary batteries.
背景技术Background technique
近年来,便携式电子产品,例如照相机,数码摄像机,移动电话,笔记本电脑等在人们的日常生活中得到广泛的应用,并且有强烈要求朝减小尺寸,重量更轻,更长寿命的趋势发展。因此,要求开发与便携式电子产品相配套的移动电源,尤其是能够提供高能量密度的轻量化二次电池。与铅酸电池,镍镉电池,镍氢电池相比,锂离子电池因其能量密度大、工作电压高、寿命长、绿色环保等特点,广泛应用于上述便携式电池产品中。In recent years, portable electronic products, such as cameras, digital video cameras, mobile phones, and notebook computers, have been widely used in people's daily life, and there is a strong demand for smaller size, lighter weight, and longer life. Therefore, it is required to develop a mobile power source that is compatible with portable electronic products, especially a lightweight secondary battery that can provide high energy density. Compared with lead-acid batteries, nickel-cadmium batteries, and nickel-metal hydride batteries, lithium-ion batteries are widely used in the above-mentioned portable battery products because of their high energy density, high working voltage, long life, and environmental protection.
锂离子电池主要由正、负极、电解液及隔膜组成。正极主要是锂的金属氧化物,负极主要是炭材料。由于锂离子电池的平均放电电压约为3.6-3.7V,需要在0-4.2V的充电/放电电压内稳定的电解液组分。为此,锂离子电池所用电解液必须是非水电解液,例如通常使用包含环状碳酸酯溶剂(如碳酸亚乙酯)和线性碳酸酯溶剂(如碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯)的混合物作为电解液。Lithium-ion batteries are mainly composed of positive and negative electrodes, electrolyte and separator. The positive electrode is mainly lithium metal oxide, and the negative electrode is mainly carbon material. Since the average discharge voltage of a Li-ion battery is approximately 3.6-3.7V, an electrolyte composition that is stable within a charge/discharge voltage of 0-4.2V is required. For this reason, the electrolyte used in lithium-ion batteries must be a non-aqueous electrolyte, such as usually using a solvent containing cyclic carbonate (such as ethylene carbonate) and a linear carbonate solvent (such as dimethyl carbonate, diethyl carbonate, methyl carbonate, etc.) ethyl ester) as the electrolyte.
锂离子电池在首次充电过程中,锂离子从阴极活性物质的锂金属氧化物中脱嵌出来,在电压的驱动下向阳极碳电极迁移,然后潜入到碳材料中。在该过程中,电解液与碳阳极表面发生反应,生产Li2CO3,Li2O,LiOH等物质,从而在碳阳极表面形成一层钝化膜,该钝化膜称之为固体电解液界面(SEI)膜。由于不管是充电还是放电,锂离子必须通过这层SEI膜,所以SEI膜的性能决定了电池的许多性能(如循环性能,高温性能,倍率性能)。During the first charging process of lithium-ion batteries, lithium ions are deintercalated from the lithium metal oxide of the cathode active material, migrate to the anode carbon electrode under the drive of voltage, and then sneak into the carbon material. In this process, the electrolyte reacts with the surface of the carbon anode to produce Li 2 CO 3 , Li 2 O, LiOH and other substances, thereby forming a passivation film on the surface of the carbon anode, which is called a solid electrolyte Interfacial (SEI) film. Since lithium ions must pass through this SEI film regardless of charging or discharging, the performance of the SEI film determines many properties of the battery (such as cycle performance, high temperature performance, rate performance).
SEI膜在首次充放电过程中形成后,能够进一步阻止电解液溶剂分子的分解,并在随后的充放电循环中形成离子通道。然而,随着充放电的进行,电极重复的膨胀和收缩,在这种情况下,SEI膜可能发生破裂或逐渐溶解,随之暴露的阳极继续与电解液发生反应,同时产生气体,从而增加电池的内压并大大降低电池的循环寿命特性。根据电解液使用的碳酸酯的种类和阳极活性物质的类型,产生的气体主要包括CO,CO2,CH4,C2H6等。After the SEI film is formed during the first charge-discharge process, it can further prevent the decomposition of electrolyte solvent molecules and form ion channels in subsequent charge-discharge cycles. However, as the charge and discharge progress, the electrode repeatedly expands and contracts. In this case, the SEI film may rupture or gradually dissolve, and the exposed anode continues to react with the electrolyte while generating gas, thereby increasing the battery capacity. The internal pressure and greatly reduce the cycle life characteristics of the battery. According to the type of carbonate used in the electrolyte and the type of anode active material, the gas produced mainly includes CO, CO 2 , CH 4 , C 2 H 6 and so on.
由于电极表面膜影响到锂离子电池的首次充放电效率、循环寿命和安全性,因此控制电极表面膜的形成对于实现高性能锂离子电池的是必要的。通过往电解液中添加某些添加剂可以实现对电极表面膜的调控,由于这些添加剂分子能够优先于电解液溶剂分子在阳极表面被还原形成钝化膜,该钝化膜既能阻止电解液溶剂分子进一步在阳极表面继续分解及溶剂分子的共嵌入,同时在随后的循环中能够稳定存在。在首次充电过程中,FEC能够优先于溶剂在负极表面发生还原反应,抑制溶剂的进一步分解,同时提高了SEI膜的稳定性,从而改善了电池的循环性能。Since the electrode surface film affects the initial charge-discharge efficiency, cycle life, and safety of the lithium-ion battery, controlling the formation of the electrode surface film is necessary to realize a high-performance lithium-ion battery. The regulation of the electrode surface film can be achieved by adding certain additives to the electrolyte, because these additive molecules can be preferentially reduced on the anode surface to form a passivation film on the anode surface, which can prevent the electrolyte solvent molecules from Further, the decomposition and co-intercalation of solvent molecules continue on the surface of the anode, and can exist stably in subsequent cycles. During the first charging process, FEC can preferentially reduce the solvent on the surface of the negative electrode, inhibit the further decomposition of the solvent, and improve the stability of the SEI film, thereby improving the cycle performance of the battery.
然而,FEC虽然能够提高电池的循环性能,但却降低了电池的高温性能,电池在高温储存或高温循环时,电池产生气胀,严重影响了电池的安全性能。尤其当阴极材料为含镍的复合氧化物时,高温性能更差。这是因为含镍复合氧化物阴极材料在充电后期表面活性更高,且随镍含量越大,其表面活性也更高,溶剂分子在其表面发生分解反应,从而使电池产生鼓胀。However, although FEC can improve the cycle performance of the battery, it reduces the high-temperature performance of the battery. When the battery is stored or cycled at high temperature, the battery will swell, which seriously affects the safety performance of the battery. Especially when the cathode material is a composite oxide containing nickel, the high temperature performance is even worse. This is because the surface activity of the nickel-containing composite oxide cathode material is higher in the later stage of charging, and the higher the nickel content, the higher the surface activity, and the decomposition reaction of solvent molecules on the surface causes the battery to bulge.
因此锂离子电池领域技术人员积极寻找合适的添加剂用于改善锂电池的性能,例如公开号为:CN 101978548A,名称为“用于锂二次电池的非水电解质溶液和包含其的锂二次电池”的中国专利申请中公开了在电解液中添加如含氟磺酸酯化合物的技术方案,以达到抑制电池内部产生气体现象的发生,进而达到改善电池性能的目的。Therefore, those skilled in the art of lithium-ion batteries are actively looking for suitable additives to improve the performance of lithium batteries. "The Chinese patent application of "disclosed the technical scheme of adding fluorine-containing sulfonate compounds in the electrolyte to suppress the occurrence of gas generation inside the battery, thereby achieving the purpose of improving battery performance.
但是,单纯添加磺酸酯类化合物,还不能达到令人满意的技术效果。However, simply adding sulfonate compounds cannot achieve satisfactory technical effects.
发明内容Contents of the invention
本发明的目的在于提供一种锂离子电池,所述锂离子电池具有优良的循环寿命特性和高温储存性能。The object of the present invention is to provide a lithium ion battery which has excellent cycle life characteristics and high temperature storage performance.
为实现上述发明目的,本发明提供了一种锂离子电池,其包括:In order to achieve the above-mentioned purpose of the invention, the present invention provides a lithium ion battery, which includes:
包含阴极活性物质的阴极;a cathode comprising a cathode active material;
包含阳极活性物质的阳极;an anode comprising an anode active material;
置于阴极与阳极之间的隔板;a separator placed between the cathode and the anode;
以及电解液,其含有:锂盐、有机溶剂、卤代环状碳酸酯、环状二磺酸酯化合物;And electrolyte solution, which contains: lithium salt, organic solvent, halogenated cyclic carbonate, cyclic disulfonate compound;
所述环状二磺酸酯化合物化学结构如结构式I所示:The chemical structure of the cyclic disulfonate compound is shown in structural formula I:
其中,A是选自1-5个碳原子的直链或带有支链的亚烷基、直链或带有支链的卤代亚烷基;B是选自亚磺酰基、羰基或以下基团之一:含有1-5个碳原子的亚烷基、卤代亚烷基;Among them, A is selected from a straight-chain or branched alkylene group, a straight-chain or branched haloalkylene group with 1-5 carbon atoms; B is selected from sulfinyl, carbonyl or the following One of the groups: alkylene, haloalkylene containing 1-5 carbon atoms;
所述卤代环状碳酸酯化学结构如结构式II所示:The chemical structure of the halogenated cyclic carbonate is shown in structural formula II:
其中,其中R1,R2,R3及R4彼此独立地选自氢原子、卤素原子、1-2个碳原子的烷基或卤代烷基,且R1,R2,R3及R4中至少一个选自卤素原子或卤代烷基。Wherein, wherein R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a halogen atom, an alkyl group or a haloalkyl group with 1-2 carbon atoms, and R 1 , R 2 , R 3 and R 4 At least one of them is selected from a halogen atom or a haloalkyl group.
所述阴极活性物质为:LiNixCoyM1-X-YO2,其中M选自Mn、Al、Ti、Zn中的一种或多种,0.5≤x≤1,0≤y≤0.5,同时1-x-y≥0。The cathode active material is: LiNi x Co y M 1-XY O 2 , wherein M is selected from one or more of Mn, Al, Ti, Zn, 0.5≤x≤1, 0≤y≤0.5, and at the same time 1-xy ≥ 0.
作为本发明的优选方案,所述环状二磺酸酯化合物选自下列分子式1-分子式5所示化合物中一种或多种:As a preferred version of the present invention, the cyclic disulfonate compound is selected from one or more of the compounds shown in the following molecular formula 1-molecular formula 5:
除此之外,还可以选自化合物:In addition, compounds can also be selected from:
作为本发明的优选方案,所述环状二磺酸酯化合物在电解液中的含量按电解液的总重量计为0.1%-5%。As a preferred solution of the present invention, the content of the cyclic disulfonate ester compound in the electrolyte is 0.1%-5% based on the total weight of the electrolyte.
作为本发明的优选方案,所述环状二磺酸酯化合物在电解液中的含量按电解液的总重量计为1%-5%。As a preferred solution of the present invention, the content of the cyclic disulfonic acid ester compound in the electrolyte is 1%-5% based on the total weight of the electrolyte.
作为本发明的优选方案,所述卤代环状碳酸酯选自下列分子式6-分子式10所示化合物中一种或多种:As a preferred version of the present invention, the halogenated cyclic carbonate is selected from one or more of the compounds shown in the following molecular formula 6-molecular formula 10:
除此之外,还可以选自化合物:In addition, compounds can also be selected from:
作为本发明的优选方案,所述卤代环状碳酸酯在电解液中的含量按电解液的总重量计为0.1-10重量%。As a preferred solution of the present invention, the content of the halogenated cyclic carbonate in the electrolyte is 0.1-10% by weight based on the total weight of the electrolyte.
作为本发明的优选方案,所述卤代环状碳酸酯在电解液中的含量按电解液的总重量计为2-5重量%。As a preferred solution of the present invention, the content of the halogenated cyclic carbonate in the electrolyte is 2-5% by weight based on the total weight of the electrolyte.
作为本发明的优选方案,所述环状二磺酸酯化合物在电解液中的含量:所述卤代环状碳酸酯在电解液中的含量为1∶1-1∶5。As a preferred solution of the present invention, the content of the cyclic disulfonate compound in the electrolyte: the content of the halogenated cyclic carbonate in the electrolyte is 1:1-1:5.
本发明的锂离子电池相比传统的锂离子电池具有优良的循环寿命特性和高温储存性能。Compared with the traditional lithium ion battery, the lithium ion battery of the present invention has excellent cycle life characteristics and high temperature storage performance.
具体实施方式detailed description
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式详予说明。In order to describe in detail the technical content, structural features, achieved objectives and effects of the present invention, the following will be described in detail in conjunction with the embodiments.
实施例1Example 1
锂离子电池制作:Li-ion battery production:
正极制作:按93∶4∶3的质量比混合正极活性材料锂镍钴锰氧化物(LiNi0.5Co0.3Mn0.2O2),导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm。Positive electrode production: mix positive electrode active material lithium nickel cobalt manganese oxide (LiNi 0.5 Co 0.3 Mn 0.2 O 2 ), conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) at a mass ratio of 93:4:3 ), and then they were dispersed in N-methyl-2-pyrrolidone (NMP) to obtain positive electrode slurry. The slurry is uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum-dried, and an aluminum lead-out wire is welded on by an ultrasonic welder to obtain a positive plate with a thickness of 120-150 μm.
负极制作:按94∶1∶2.5∶2.5的质量比混合负极活性材料改性天然石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm。Negative electrode production: mix negative electrode active material modified natural graphite, conductive carbon black Super-P, binding agent styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) by the mass ratio of 94: 1: 2.5: 2.5, then They were dispersed in deionized water to obtain negative electrode slurry. The slurry is coated on both sides of the copper foil, dried, calendered and vacuum dried, and a nickel lead wire is welded with an ultrasonic welder to obtain a negative plate, the thickness of which is 120-150 μm.
电解液的配制:将碳酸亚乙酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按重量比为EC∶DEC∶EMC=1∶1∶1进行混合,混合后,然后加入六氟磷酸锂(LiPF6)至摩尔浓度为1mol/L,再加入按电解液的总质量计2%的分子式1的环状二磺酸酯化合物及按电解液的总质量计1%的分子式6的卤代碳酸酯化合物。Preparation of electrolyte: mix ethylene carbonate (EC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC) in a weight ratio of EC:DEC:EMC=1:1:1, after mixing, Then add lithium hexafluorophosphate (LiPF6) to a molar concentration of 1mol/L, then add 2% of the cyclic disulfonic acid ester compound of the molecular formula 1 by the total mass of the electrolyte and 1% of the compound of the molecular formula 6 by the total mass of the electrolyte Halocarbonate compounds.
隔膜制作:采用聚丙烯/聚乙烯/聚丙烯三层隔离膜,厚度为20μm。Diaphragm production: Polypropylene/polyethylene/polypropylene three-layer isolation film with a thickness of 20 μm is used.
电芯的制备在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入方形铝制金属壳中,将正负极的引出线分别焊接在盖板的相应位置上,并用激光焊接机将盖板和金属壳焊接为一体,得到待注液的电芯。The preparation of the battery core places a polyethylene microporous membrane with a thickness of 20 μm as a separator between the positive plate and the negative plate, and then winds the sandwich structure composed of the positive plate, negative plate and separator, and then flattens the wound body Put it into a square aluminum metal shell, weld the lead wires of the positive and negative electrodes to the corresponding positions of the cover plate, and use a laser welding machine to weld the cover plate and the metal shell into one body to obtain the battery cell to be injected.
电芯的注液和化成在露点控制在-40℃以下的手套箱中,将上述制备的电解液通过注液孔注入电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.05C恒流充电3min,0.2C恒流充电5min,0.5C恒流充电25min,搁置1hr后整形封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。The liquid injection and formation of the battery core is in a glove box with a dew point controlled below -40°C. The electrolyte solution prepared above is injected into the battery core through the liquid injection hole. The amount of electrolyte solution must ensure that the gap in the battery core is filled. Then carry out the formation according to the following steps: 0.05C constant current charging for 3 minutes, 0.2C constant current charging for 5 minutes, 0.5C constant current charging for 25 minutes, after shelving for 1 hour and then shaping and sealing, then further charging with a constant current of 0.2C to 4.2V, and shelving at room temperature After 24 hours, discharge to 3.0V with a constant current of 0.2C.
常温循环性能测试Normal temperature cycle performance test
以1C的电流恒流充电至4.2V然后恒压充电至电流下降至0.1C,然后以1C的电流恒流放电至3.0V,如此循环200周,记录第1周的放电容量和第200周的放电容量,按下式计算容量保持率:Charge at a constant current of 1C to 4.2V, then charge at a constant voltage until the current drops to 0.1C, then discharge at a constant current of 1C to 3.0V, and cycle for 200 cycles, record the discharge capacity of the first week and the discharge capacity of the 200th week Discharge capacity, the capacity retention rate is calculated according to the following formula:
容量保持率=第200周的放电容量/第1周的放电容量*100%高温储存性能测试Capacity retention rate = discharge capacity in the 200th week / discharge capacity in the first week * 100% high temperature storage performance test
在室温下以1C的电流恒流充电至4.2V然后恒压充电至电流下降至0.1C,测量电池的厚度,然后将电池置于恒温85℃的烘箱中储存4h,取出后让电池冷却到室温,测量电池的厚度,按下式计算电池的厚度膨胀率:Charge at room temperature with a constant current of 1C to 4.2V, then charge at a constant voltage until the current drops to 0.1C, measure the thickness of the battery, and then store the battery in an oven with a constant temperature of 85°C for 4 hours. After taking it out, let the battery cool down to room temperature , measure the thickness of the battery, and calculate the thickness expansion rate of the battery according to the following formula:
厚度膨胀率=(储存后的电池厚度-储存前的电池厚度)/储存前的电池厚度*100%Thickness expansion rate = (battery thickness after storage - battery thickness before storage) / battery thickness before storage * 100%
实施例2Example 2
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式2,所述卤代碳酸酯化合物为分子式7。This embodiment is similar to embodiment 1, except that: the cyclic disulfonate compound is of molecular formula 2, and the halogenated carbonate compound is of molecular formula 7.
实施例3Example 3
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式3,所述卤代碳酸酯化合物为分子式8。This example is similar to Example 1, except that: the cyclic disulfonate compound is of molecular formula 3, and the halogenated carbonate compound is of molecular formula 8.
实施例4Example 4
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式4,所述卤代碳酸酯化合物为分子式9。This example is similar to Example 1, except that: the cyclic disulfonate compound is of molecular formula 4, and the halogenated carbonate compound is of molecular formula 9.
实施例5Example 5
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式5,所述卤代碳酸酯为分子式10。This example is similar to Example 1, except that: the cyclic disulfonate compound is of molecular formula 5, and the halogenated carbonate is of molecular formula 10.
比较例1Comparative example 1
本比较例类似于实施例1,不同之处在于:环状二磺酸酯化合物不添加到电解液中。This comparative example is similar to Example 1, except that the cyclic disulfonate compound is not added to the electrolytic solution.
比较例2Comparative example 2
本实施例类似于实施例1,不同之处在于:卤代碳酸酯不添加到电解液中。This example is similar to Example 1, except that the halocarbonate is not added to the electrolyte.
表一:Table I:
从表一数据可知,在电解液中添加卤代碳酸酯化合物,电池具有优异的循环性能,但高温储存时电池鼓胀严重,添加了环状二磺酸酯化合物的电池,虽然能够改善电池的高温性能。但降低了循环性能。当将卤代碳酸酯和环状二磺酸酯化合物同时添加到电解液中能够既保持好的循环性能,又不降低高温性能。From the data in Table 1, it can be seen that the battery has excellent cycle performance when halogenated carbonate compounds are added to the electrolyte, but the battery bulges severely when stored at high temperature, and the battery with the addition of cyclic disulfonate compounds can improve the high temperature of the battery. performance. However, the cycle performance is reduced. When the halocarbonate and the cyclic disulfonate compound are added to the electrolyte at the same time, good cycle performance can be maintained without reducing the high temperature performance.
实施例6Example 6
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式6,其含量按电解液总质量的5%,所述卤代碳酸酯化合物为分子式1,其含量按电解液总质量的0.1%。This embodiment is similar to Example 1, except that the cyclic disulfonic ester compound is of molecular formula 6, and its content is 5% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 1, which The content is 0.1% of the total mass of the electrolyte.
实施例7Example 7
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式6,其含量按电解液总质量的0.1%,所述卤代碳酸酯化合物为分子式1,其含量按电解液总质量的10%。This embodiment is similar to Example 1, except that the cyclic disulfonate compound is of molecular formula 6, and its content is 0.1% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 1, which The content is 10% of the total mass of the electrolyte.
实施例8Example 8
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式6,其含量按电解液总质量的2%,所述卤代碳酸酯化合物为分子式1,其含量按电解液总质量的5%。This embodiment is similar to Example 1, except that the cyclic disulfonic acid ester compound is of molecular formula 6, and its content is 2% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 1, which The content is 5% of the total mass of the electrolyte.
实施例9Example 9
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式6,其含量按电解液总质量的2%,所述卤代碳酸酯化合物为分子式1,其含量按电解液总质量的2%。This embodiment is similar to Example 1, except that the cyclic disulfonic acid ester compound is of molecular formula 6, and its content is 2% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 1, which The content is 2% of the total mass of the electrolyte.
实施例10Example 10
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式6,其含量按电解液总质量的1%,所述卤代碳酸酯化合物为分子式1,其含量按电解液总质量的3%。This embodiment is similar to Example 1, except that the cyclic disulfonic ester compound is of molecular formula 6, and its content is 1% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 1, which The content is 3% of the total mass of the electrolyte.
实施例11Example 11
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式6,其含量按电解液总质量的5%,所述卤代碳酸酯化合物为分子式1,其含量按电解液总质量的3%。This embodiment is similar to Example 1, except that the cyclic disulfonic ester compound is of molecular formula 6, and its content is 5% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 1, which The content is 3% of the total mass of the electrolyte.
实施例12Example 12
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式2,其含量按电解液总质量的3%,所述卤代碳酸酯化合物为分子式7,其含量按电解液总质量的0.1%。This embodiment is similar to Example 1, except that the cyclic disulfonic ester compound is of molecular formula 2, and its content is 3% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 7, which The content is 0.1% of the total mass of the electrolyte.
实施例13Example 13
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式3,其含量按电解液总质量的0.1%,所述卤代碳酸酯化合物为分子式8,其含量按电解液总质量的5%。This embodiment is similar to Example 1, except that the cyclic disulfonic ester compound is of molecular formula 3, and its content is 0.1% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 8, which The content is 5% of the total mass of the electrolyte.
实施例14Example 14
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式4,其含量按电解液总质量的3%,所述卤代碳酸酯化合物为分子式9,其含量按电解液总质量的2%。This embodiment is similar to Example 1, except that the cyclic disulfonate compound is of molecular formula 4, and its content is 3% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 9, which The content is 2% of the total mass of the electrolyte.
实施例15Example 15
本实施例类似于实施例1,不同之处在于:所述环状二磺酸酯化合物为分子式5,其含量按电解液总质量的1%,所述卤代碳酸酯化合物为分子式10,其含量按电解液总质量的5%。This embodiment is similar to Example 1, except that the cyclic disulfonic ester compound is of molecular formula 5, and its content is 1% of the total mass of the electrolyte, and the halogenated carbonate compound is of molecular formula 10, which The content is 5% of the total mass of the electrolyte.
比较例3Comparative example 3
本比较例与实施例1类似,不同之处在于:所述卤代碳酸酯化合物为分子式6,其含量按电解液总量的2%,环状二磺酸酯化合物不添加到电解液中。,This comparative example is similar to Example 1, except that: the halogenated carbonate compound is molecular formula 6, its content is 2% of the total amount of the electrolyte, and the cyclic disulfonate compound is not added to the electrolyte. ,
比较例4Comparative example 4
本比较例与实施例1类似,不同之处在于:所述环状二磺酸酯化合物为分子式3,其含量按电解液总量的1%,卤代碳酸酯化合物不添加到电解液中。This comparative example is similar to Example 1, except that the cyclic disulfonate compound is of molecular formula 3, and its content is 1% of the total amount of the electrolyte, and the halogenated carbonate compound is not added to the electrolyte.
表二Table II
从表二数据可以知道,当卤代碳酸酯添加过少时,由于不能在阳极表面形成有效的钝化膜,电池循环性能较差;当卤代碳酸酯添加过多时,虽然能够改善电池循环性能,但高温性能降低,电池鼓胀严重。当环状二磺酸酯化合物过少时,不能有效抑制电池鼓胀,但添加过多时,虽然能够抑制电池鼓胀,但严重降低了电池的循环性能。It can be known from the data in Table 2 that when the halocarbonate is added too little, the battery cycle performance is poor due to the inability to form an effective passivation film on the surface of the anode; when the halocarbonate is added too much, although the battery cycle performance can be improved, However, the high-temperature performance is reduced, and the battery bulges seriously. When the cyclic disulfonate compound is too small, the battery swelling cannot be effectively suppressed, but when it is added too much, although the battery swelling can be suppressed, the cycle performance of the battery is seriously reduced.
实施例16Example 16
本实施例类似于实施例1,不同之处在于:用LiNi0.7Co0.15Mn0.15O2代替LiNi0.5Co0.3Mn0.2O2。This example is similar to Example 1, except that LiNi 0.7 Co 0.15 Mn 0.15 O 2 is used instead of LiNi 0.5 Co 0.3 Mn 0.2 O 2 .
实施例17Example 17
本实施例类似于实施例1,不同之处在于:用LiNi0.8Co0.1Mn0.1O2代替LiNi0.5Co0.3Mn0.2O2。This embodiment is similar to embodiment 1, except that LiNi 0.8 Co 0.1 Mn 0.1 O 2 is used instead of LiNi 0.5 Co 0.3 Mn 0.2 O 2 .
实施例18Example 18
本实施例类似于实施例1,不同之处在于:用LiNi0.8Co0.2O2代替LiNi0.5Co0.3Mn0.2O2。This embodiment is similar to embodiment 1, except that LiNi 0.8 Co 0.2 O 2 is used instead of LiNi 0.5 Co 0.3 Mn 0.2 O 2 .
实施例19Example 19
本实施例类似于实施例1,不同之处在于:用LiNi0.8Co0.15Al0.55O2代替LiNi0.5Co0.3Mn0.2O2。This embodiment is similar to embodiment 1, except that LiNi 0.5 Co 0.3 Mn 0.2 O 2 is replaced by LiNi 0.8 Co 0.15 Al 0.55 O 2 .
表三Table three
从表示数据可以看出,随阴极材料中镍含量增加,电池高温性能降低,电池鼓胀越严重。It can be seen from the indicated data that as the nickel content in the cathode material increases, the high temperature performance of the battery decreases, and the battery bulge becomes more serious.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the content of the description of the present invention, or directly or indirectly used in other related technical fields, shall be The same reasoning is included in the patent protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210041031.2A CN102593508B (en) | 2012-02-22 | 2012-02-22 | Lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210041031.2A CN102593508B (en) | 2012-02-22 | 2012-02-22 | Lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102593508A CN102593508A (en) | 2012-07-18 |
CN102593508B true CN102593508B (en) | 2016-10-12 |
Family
ID=46481860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210041031.2A Expired - Fee Related CN102593508B (en) | 2012-02-22 | 2012-02-22 | Lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102593508B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180138551A1 (en) * | 2015-05-26 | 2018-05-17 | Mitsui Chemicals, Inc. | Non-aqueous electrolyte solution for battery and lithium secondary battery |
CN105895955A (en) * | 2016-06-02 | 2016-08-24 | 宁德新能源科技有限公司 | Electrolyte and lithium ion battery |
CN106025346B (en) * | 2016-07-21 | 2019-01-11 | 天津巴莫科技股份有限公司 | The battery of lithium ion battery composite cathode material and preparation method thereof and assembling |
EP3291352B1 (en) * | 2016-09-02 | 2019-05-08 | Samsung Electronics Co., Ltd | Electrolyte for lithium secondary battery and lithium secondary battery including the same |
CN109309252B (en) * | 2017-07-27 | 2021-05-04 | 宁德时代新能源科技股份有限公司 | Electrolyte and electrochemical energy storage device |
WO2019189670A1 (en) * | 2018-03-29 | 2019-10-03 | 三菱ケミカル株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
CN109037778A (en) * | 2018-08-01 | 2018-12-18 | 桑德集团有限公司 | A kind of electrolysis additive and electrolyte, lithium ion battery and equipment containing it |
CN112436189B (en) * | 2020-11-30 | 2022-02-11 | 广州天赐高新材料股份有限公司 | Composition, electrolyte containing composition and lithium ion battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1757134A (en) * | 2003-12-15 | 2006-04-05 | 日本电气株式会社 | Electrolyte solution for secondary battery and secondary battery using same |
CN101033323A (en) * | 2006-03-09 | 2007-09-12 | Nec东金株式会社 | Polymer gel electrolyte and polymer secondary battery using the same |
CN101197456A (en) * | 2006-12-07 | 2008-06-11 | 索尼株式会社 | Electrolyte solution and battery |
CN102244294A (en) * | 2006-06-02 | 2011-11-16 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008112722A (en) * | 2006-10-02 | 2008-05-15 | Nec Tokin Corp | Lithium polymer battery |
US9312073B2 (en) * | 2010-02-10 | 2016-04-12 | Nec Energy Devices, Ltd. | Nonaqueous electrolyte solution, and lithium ion secondary battery having the same |
-
2012
- 2012-02-22 CN CN201210041031.2A patent/CN102593508B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1757134A (en) * | 2003-12-15 | 2006-04-05 | 日本电气株式会社 | Electrolyte solution for secondary battery and secondary battery using same |
CN101033323A (en) * | 2006-03-09 | 2007-09-12 | Nec东金株式会社 | Polymer gel electrolyte and polymer secondary battery using the same |
CN102244294A (en) * | 2006-06-02 | 2011-11-16 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
CN101197456A (en) * | 2006-12-07 | 2008-06-11 | 索尼株式会社 | Electrolyte solution and battery |
Also Published As
Publication number | Publication date |
---|---|
CN102593508A (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102593508B (en) | Lithium ion battery | |
CN103367804B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
CN103107363B (en) | Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof | |
CN103151559A (en) | Non-aqueous electrolyte solution for lithium ion battery and corresponding lithium ion battery | |
CN104300174A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
WO2017004885A1 (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN111403807B (en) | A kind of lithium-ion battery non-aqueous electrolyte and lithium-ion battery | |
KR20160085783A (en) | Electrolyte of high-voltage lithium ion battery and high-voltage lithium ion battery | |
CN105336987A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
TW200840114A (en) | Nonaqueous electrolyte secondary battery | |
WO2016110123A1 (en) | Non-aqueous electrolyte and lithium ion secondary battery | |
CN103594727B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
CN105161763A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN111384443B (en) | Battery electrolyte additive and electrolyte and lithium-ion battery using the additive | |
CN105977525A (en) | Lithium ion battery employing non-aqueous electrolyte | |
CN108370068A (en) | The nonaqueous electrolyte of nonaqueous electrolyte additive including the nonaqueous electrolyte additive and the lithium secondary battery including the nonaqueous electrolyte | |
CN105428715B (en) | A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery | |
WO2017101141A1 (en) | Electrolyte for lithium-ion battery and lithium-ion battery | |
WO2017020430A1 (en) | Non-aqueous electrolyte of lithium-ion battery and lithium-ion battery | |
CN107591557A (en) | A kind of non-aqueous electrolyte for lithium ion cell and the lithium ion battery using the electrolyte | |
CN108028425A (en) | Non-aqueous electrolytic solution and the lithium secondary battery including the non-aqueous electrolytic solution | |
CN105789698A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN102668222A (en) | Method for manufacturing lithium ion secondary battery | |
CN114420933A (en) | Anodes, Electrochemical Devices and Electronic Devices | |
CN105140565A (en) | Nonaqueous electrolyte for high-voltage lithium-ion battery and lithium-ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Address after: 518118 Guangdong province Shenzhen City Pingshan sand Tang with rich industrial area Applicant after: SHENZHEN CAPCHEM TECHNOLOGY Co.,Ltd. Address before: Longgang District of Shenzhen City, Guangdong province 518118 sand Tang Pingshan with rich industrial area Applicant before: SHENZHEN CAPCHEM TECHNOLOGY Co.,Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161012 |
|
CF01 | Termination of patent right due to non-payment of annual fee |