CN102593439B - Silicon-based composite material for lithium ion battery and preparation method of silicon-based composite material - Google Patents
Silicon-based composite material for lithium ion battery and preparation method of silicon-based composite material Download PDFInfo
- Publication number
- CN102593439B CN102593439B CN201210065826.7A CN201210065826A CN102593439B CN 102593439 B CN102593439 B CN 102593439B CN 201210065826 A CN201210065826 A CN 201210065826A CN 102593439 B CN102593439 B CN 102593439B
- Authority
- CN
- China
- Prior art keywords
- silicon
- composite material
- phthalocyanine
- preparation
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 28
- 239000010703 silicon Substances 0.000 title claims abstract description 28
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title abstract description 9
- 229910001416 lithium ion Inorganic materials 0.000 title abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims abstract description 22
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 11
- 239000003960 organic solvent Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 238000012719 thermal polymerization Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 229910008006 Si-M-C Inorganic materials 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 claims description 5
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 239000011149 active material Substances 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910007933 Si-M Inorganic materials 0.000 claims description 2
- 229910008318 Si—M Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 4
- RCEAADKTGXTDOA-UHFFFAOYSA-N OS(O)(=O)=O.CCCCCCCCCCCC[Na] Chemical compound OS(O)(=O)=O.CCCCCCCCCCCC[Na] RCEAADKTGXTDOA-UHFFFAOYSA-N 0.000 claims 2
- 235000013339 cereals Nutrition 0.000 claims 2
- 235000013312 flour Nutrition 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 239000002210 silicon-based material Substances 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 229910021487 silica fume Inorganic materials 0.000 claims 1
- 238000010025 steaming Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 abstract description 24
- 239000011863 silicon-based powder Substances 0.000 abstract description 13
- 239000012300 argon atmosphere Substances 0.000 abstract description 8
- 239000007787 solid Substances 0.000 abstract description 8
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 abstract description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 abstract description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 230000002441 reversible effect Effects 0.000 abstract description 2
- 229910052708 sodium Inorganic materials 0.000 abstract description 2
- 239000011734 sodium Substances 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 12
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910018615 Si-Fe-C Inorganic materials 0.000 description 3
- 229910008461 Si—Co—C Inorganic materials 0.000 description 3
- 229910008300 Si—Fe—C Inorganic materials 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 239000006173 Good's buffer Substances 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
锂离子电池负极用硅基复合材料及其制备方法,属于锂离子电池负极材料技术领域。复合材料标记为Si-M-C,包括纳米硅、非石墨化碳和金属,并含有微量的N、S和Na元素。其制备方法,将硅粉、金属酞菁、吡嗪和十二烷基硫酸钠超声分散在N,N-二甲基甲酰胺溶剂中;然后将所得液体转移入聚四氟乙烯内胆的自压反应釜中加热;接下来将上述热聚合产物真空旋蒸,除去有机溶剂;所得固体粉末于真空烘箱中烘干后在氩气气氛保护下进行热处理,最终得到Si-M-C复合物。所制备的复合材料在0.05V~3.0V的电压范围内,100mAg-1的充放电倍率下,其稳定可逆比容量最低可达到700mAhg-1以上,具有较好的应用前景。The invention discloses a silicon-based composite material for lithium-ion battery negative poles and a preparation method thereof, belonging to the technical field of lithium-ion battery negative pole materials. The composite material is marked as Si-MC, including nano-silicon, non-graphitizable carbon and metal, and contains trace amounts of N, S and Na elements. Its preparation method is to ultrasonically disperse silicon powder, metal phthalocyanine, pyrazine and sodium lauryl sulfate in N,N-dimethylformamide solvent; Heating in a pressure reactor; next, the above-mentioned thermal polymerization product was vacuum rotary evaporated to remove the organic solvent; the obtained solid powder was dried in a vacuum oven and then heat-treated under the protection of an argon atmosphere to finally obtain a Si-MC composite. The prepared composite material has a stable and reversible specific capacity of at least 700mAhg -1 in the voltage range of 0.05V-3.0V and a charge-discharge rate of 100mAg -1 , which has a good application prospect.
Description
技术领域 technical field
本发明属于锂离子电池材料领域,具体涉及一种硅基负极材料及其制备方法。The invention belongs to the field of lithium ion battery materials, and in particular relates to a silicon-based negative electrode material and a preparation method thereof.
背景技术 Background technique
锂离子电池因具有工作电压高、比能量大、无记忆效应及对环境污染小等优点而成为能源领域研究开发的热点之一。随着社会和科技的发展,人们对锂离子电池的性能提出了更高的要求,而电极材料在电池性能改进中起着关键性作用。目前商业化负极主要是石墨类材料,其理论容量只有372mAhg-1,实际应用时容量会更低。在这种情况下,研究研究具有更高容量和更好循环性能的锂离子电池负极材料具有重大意义。Lithium-ion batteries have become one of the research and development hotspots in the energy field because of their advantages such as high working voltage, high specific energy, no memory effect, and little environmental pollution. With the development of society and technology, people put forward higher requirements on the performance of lithium-ion batteries, and electrode materials play a key role in the improvement of battery performance. At present, the commercial negative electrode is mainly made of graphite materials, and its theoretical capacity is only 372mAhg -1 , and the capacity will be lower in practical application. In this case, it is of great significance to study anode materials for lithium-ion batteries with higher capacity and better cycle performance.
Si能与Li形成Li22Si5合金,理论容量可达到4200mAhg-1,远远高于石墨负极;硅对Li+/Li的电位平均为0.25V,与正极配对可以保证电池的高电压;再者硅的储量丰富,且对环境友好。因此硅是一种很有前景的锂离子电池负极材料。然而硅在充放电循环中,体积会发生剧烈的变化,破坏材料的结构,引起电极的粉碎,从而导致电极循环性能恶化。另一方面,硅负极的首次效率通常很低,限制了其实际的应用。目前,文献中通常采用的改善硅电极电化学性能方法可分为两类:一是将硅与碳复合使用,利用碳层作为保护层和缓冲基体,抑制硅的团聚并缓冲其体积变化,从而维持电极的循环稳定性;二是利用金属掺杂提供导电网络,从而提高硅与锂的电荷传递反应,以增强硅电极的电化学性能。Si can form Li 22 Si 5 alloy with Li, and the theoretical capacity can reach 4200mAhg -1 , which is much higher than that of graphite negative electrode; the average potential of silicon to Li + /Li is 0.25V, and the pairing with the positive electrode can ensure the high voltage of the battery; Silicon is rich in reserves and environmentally friendly. Therefore, silicon is a promising anode material for lithium-ion batteries. However, during the charge-discharge cycle of silicon, the volume will change drastically, destroying the structure of the material, causing the electrode to be pulverized, and deteriorating the cycle performance of the electrode. On the other hand, the initial efficiency of silicon anodes is usually very low, which limits their practical applications. At present, the methods commonly used in the literature to improve the electrochemical performance of silicon electrodes can be divided into two categories: one is to use silicon and carbon in combination, and use the carbon layer as a protective layer and buffer matrix to inhibit the agglomeration of silicon and buffer its volume change, thereby To maintain the cycle stability of the electrode; the second is to use metal doping to provide a conductive network, thereby improving the charge transfer reaction between silicon and lithium, so as to enhance the electrochemical performance of silicon electrodes.
然而,传统的碳包覆硅的方法诸如电弧放电、激光沉积、化学气相沉积等,通常使用的设备复杂,耗能大、成本高、操作繁琐,难以实现大规模生产。另外一些碳源为有毒的有机试剂,操作条件要求高,易造成环境污染。而单纯的金属掺杂虽然提高了电极的电导率,但往往不能取得较好的循环性能。However, traditional carbon-coated silicon methods, such as arc discharge, laser deposition, and chemical vapor deposition, usually use complex equipment, high energy consumption, high cost, and cumbersome operations, making it difficult to achieve large-scale production. Other carbon sources are toxic organic reagents, which require high operating conditions and are likely to cause environmental pollution. Although pure metal doping improves the conductivity of the electrode, it often cannot achieve better cycle performance.
发明内容 Contents of the invention
本发明的目的在于针对现有技术中存在的不足,提供一种首次效率高、比容量高、循环稳定性好的硅基复合材料及其制备该材料的方法。The object of the present invention is to provide a silicon-based composite material with high efficiency, high specific capacity and good cycle stability for the first time and a method for preparing the material in view of the deficiencies in the prior art.
本发明制备的锂离子电池负极用硅基复合材料,标记为Si-M-C,主要包括纳米硅、非石墨化碳和金属,硅在复合材料中的质量含量在20%~60%的范围内,并含有微量的N、S和Na元素,这三种元素在复合材料中的质量比例小于1%。其中,硅的平均粒径为50nm,为主要嵌脱锂活性物质,均匀分散在非石墨化碳层中;非石墨化碳既属于活性材料,又对硅嵌脱锂时的体积变化起到缓冲作用;M为Co、Fe或Mn,存在形式为金属单质或Si-M合金,提高了电极的导电性。The silicon-based composite material for the lithium ion battery negative electrode prepared by the present invention is marked as Si-M-C, mainly includes nano-silicon, non-graphitizable carbon and metal, and the mass content of silicon in the composite material is in the range of 20% to 60%. It also contains trace elements of N, S and Na, and the mass ratio of these three elements in the composite material is less than 1%. Among them, the average particle size of silicon is 50nm, which is the main active material for lithium intercalation and desorption, and is evenly dispersed in the non-graphitized carbon layer; non-graphitized carbon is not only an active material, but also buffers the volume change when silicon intercalates and delithiates Function; M is Co, Fe or Mn, and exists in the form of metal element or Si-M alloy, which improves the conductivity of the electrode.
本发明提供的Si-M-C复合材料的制备方法,具体包括以下步骤:The preparation method of Si-M-C composite material provided by the invention specifically comprises the following steps:
1)将硅粉和金属酞菁按照一定质量比混合,并加入一定量的吡嗪和十二烷基硫酸钠,超声分散在N,N-二甲基甲酰胺溶剂中;1) Mix silicon powder and metal phthalocyanine according to a certain mass ratio, add a certain amount of pyrazine and sodium lauryl sulfate, and ultrasonically disperse them in N,N-dimethylformamide solvent;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于150℃~180℃烘箱中保温3~6小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reaction kettle with a polytetrafluoroethylene liner, and then place the reaction kettle in an oven at 150° C. to 180° C. for 3 to 6 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为600℃-800℃,最终得到Si-M-C复合物。4) The solid powder obtained in step 3) is heat-treated for 1 h under the protection of an argon atmosphere at a temperature of 600° C. to 800° C. to finally obtain a Si-M-C composite.
其中,步骤1)中所述的硅为纳米硅粉,平均粒径为50nm;金属酞菁为铁酞菁、钴酞菁或锰酞菁中的一种;金属酞菁的纯度在90%以上;硅粉与金属酞菁的质量比在1∶2~1∶8之间;金属酞菁与吡嗪的摩尔比为1∶2;金属酞菁与十二烷基硫酸钠的摩尔比为10∶1。步骤4)中所述的氩气纯度在99%以上。Wherein, the silicon described in step 1) is nano-silicon powder with an average particle diameter of 50nm; the metal phthalocyanine is one of iron phthalocyanine, cobalt phthalocyanine or manganese phthalocyanine; the purity of metal phthalocyanine is more than 90%. The mass ratio of silicon powder to metal phthalocyanine is between 1:2 and 1:8; the molar ratio of metal phthalocyanine to pyrazine is 1:2; the molar ratio of metal phthalocyanine to sodium lauryl sulfate is 10 : 1. The argon purity described in step 4) is above 99%.
与现有技术相比较,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明所制备的Si-M-C复合材料中,Si与金属及其C的结合更为牢固,使得S i具有好的导电网络的同时,又存在于好的缓冲基体中,保证了复合材料具有良好的电化学性能;如所制备的复合材料在0.05V~3.0V的电压范围内,100mAg-1的充放电倍率下,其稳定可逆比容量最低可达到700mAhg-1以上,具有较好的应用前景。1) In the Si-MC composite material prepared by the present invention, the combination of Si and metal and its C is more firm, so that Si has a good conductive network and is present in a good buffer matrix, ensuring that the composite material It has good electrochemical performance; if the prepared composite material is in the voltage range of 0.05V ~ 3.0V, under the charge and discharge rate of 100mAg -1 , its stable and reversible specific capacity can reach at least 700mAhg -1 , which has a good Application prospect.
2)本发明制备Si-M-C复合材料的过程简单,对硅的金属掺杂和碳包覆一步实现,适于大规模生产。2) The process of preparing the Si-M-C composite material in the present invention is simple, and the metal doping and carbon coating of silicon can be realized in one step, which is suitable for large-scale production.
附图说明 Description of drawings
图1、实施例1、2、3中所制备样品和商业纳米硅粉的X射线衍射图;The X-ray diffraction figure of prepared sample and commercial nano silicon powder in Fig. 1, embodiment 1,2,3;
图2、实施例1、2、3中所制备样品和商业纳米硅粉的透射电镜图;The transmission electron microscope figure of prepared sample and commercial nano silicon powder in Fig. 2, embodiment 1,2,3;
(a)Si;(b)Si-Co-C;(c)Si-Fe-C和(d)Si-Mn-C;(a) Si; (b) Si-Co-C; (c) Si-Fe-C and (d) Si-Mn-C;
图3、实施例1、2、3中所制备样品和商业纳米硅粉的充放电循环性能图;The charge-discharge cycle performance figure of prepared sample and commercial nano-silicon powder in Fig. 3, embodiment 1, 2, 3;
图4、实施例4中所制备样品的充放电循环性能图。Figure 4, the charge-discharge cycle performance graph of the sample prepared in Example 4.
具体实施方式 Detailed ways
实施例1Example 1
1)分别称量约0.11克硅粉、0.55克酞菁钴、0.16克吡嗪和0.028克十二烷基磺酸钠溶解在35mL的N,N-二甲基甲酰胺中,超声搅拌60分钟;1) Weigh about 0.11g of silicon powder, 0.55g of cobalt phthalocyanine, 0.16g of pyrazine and 0.028g of sodium dodecylsulfonate, dissolve them in 35mL of N,N-dimethylformamide, and stir them ultrasonically for 60 minutes ;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于160℃烘箱中保温4.5小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reaction kettle with a polytetrafluoroethylene liner, and then place the reaction kettle in an oven at 160° C. for 4.5 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为700℃,最终得到Si-Co-C复合物。4) The solid powder obtained in step 3) was heat-treated for 1 h under the protection of an argon atmosphere at a temperature of 700° C. to finally obtain a Si-Co-C composite.
实施例2Example 2
1)分别称量约0.11克硅粉、0.55克酞菁铁、0.16克吡嗪和0.028克十二烷基磺酸钠溶解在35mL的N,N-二甲基甲酰胺中,超声搅拌60分钟;1) Weigh about 0.11 g of silicon powder, 0.55 g of iron phthalocyanine, 0.16 g of pyrazine and 0.028 g of sodium dodecylsulfonate, dissolve them in 35 mL of N,N-dimethylformamide, and stir them ultrasonically for 60 minutes ;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于160℃烘箱中保温4.5小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reaction kettle with a polytetrafluoroethylene liner, and then place the reaction kettle in an oven at 160° C. for 4.5 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为700℃,最终得到Si-Fe-C复合物。4) The solid powder obtained in step 3) is heat-treated for 1 h under the protection of an argon atmosphere at a temperature of 700° C. to finally obtain a Si-Fe-C composite.
实施例3Example 3
1)分别称量约0.11克硅粉、0.55克酞菁锰、0.16克吡嗪和0.028克十二烷基磺酸钠溶解在35mL的N,N-二甲基甲酰胺中,超声搅拌60分钟;1) Weigh about 0.11 g of silicon powder, 0.55 g of manganese phthalocyanine, 0.16 g of pyrazine and 0.028 g of sodium dodecylsulfonate, dissolve them in 35 mL of N,N-dimethylformamide, and stir them ultrasonically for 60 minutes ;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于160℃烘箱中保温4.5小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reaction kettle with a polytetrafluoroethylene liner, and then place the reaction kettle in an oven at 160° C. for 4.5 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为700℃,最终得到Si-Mn-C复合物。4) The solid powder obtained in step 3) was heat-treated for 1 h under the protection of an argon atmosphere at a temperature of 700° C. to finally obtain a Si-Mn-C composite.
实施例4Example 4
1)分别称量约0.07克硅粉、0.56克酞菁钴、0.16克吡嗪和0.028克十二烷基磺酸钠溶解在35mL的N,N-二甲基甲酰胺中,超声搅拌60分钟;1) Weigh about 0.07 g of silicon powder, 0.56 g of cobalt phthalocyanine, 0.16 g of pyrazine and 0.028 g of sodium dodecylsulfonate and dissolve them in 35 mL of N,N-dimethylformamide, and stir ultrasonically for 60 minutes ;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于160℃烘箱中保温5小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reaction kettle with a polytetrafluoroethylene liner, and then place the reaction kettle in an oven at 160° C. for 5 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为700℃,最终得到Si-Co-C复合物4) The solid powder obtained in step 3) is heat-treated for 1 h under the protection of an argon atmosphere at a temperature of 700 ° C to finally obtain a Si-Co-C composite
实施例5Example 5
1)分别称量约0.55克0.11克硅粉、酞菁铁、0.16克吡嗪和0.028克十二烷基磺酸钠溶解在35mL的N,N-二甲基甲酰胺中,超声搅拌60分钟;1) Weigh about 0.55 g, 0.11 g of silicon powder, 0.11 g of iron phthalocyanine, 0.16 g of pyrazine and 0.028 g of sodium dodecylsulfonate, dissolve them in 35 mL of N,N-dimethylformamide, and stir them ultrasonically for 60 minutes ;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于180℃烘箱中保温4.5小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reactor with a polytetrafluoroethylene liner, and then place the reactor in an oven at 180° C. for 4.5 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为700℃,最终得到Si-Fe-C复合物。4) The solid powder obtained in step 3) is heat-treated for 1 h under the protection of an argon atmosphere at a temperature of 700° C. to finally obtain a Si-Fe-C composite.
实施例6Example 6
1)分别称量约0.11克硅粉、0.55克酞菁锰、0.16克吡嗪和0.028克十二烷基磺酸钠溶解在35mL的N,N-二甲基甲酰胺中,超声搅拌60分钟;1) Weigh about 0.11 g of silicon powder, 0.55 g of manganese phthalocyanine, 0.16 g of pyrazine and 0.028 g of sodium dodecylsulfonate, dissolve them in 35 mL of N,N-dimethylformamide, and stir them ultrasonically for 60 minutes ;
2)将步骤(1)所得液体转移入聚四氟乙烯内胆的自压反应釜中,然后将反应釜置于160℃烘箱中保温4.5小时;2) Transfer the liquid obtained in step (1) into a self-pressurized reaction kettle with a polytetrafluoroethylene liner, and then place the reaction kettle in an oven at 160° C. for 4.5 hours;
3)将上述热聚合产物真空旋蒸,除去有机溶剂,然后在80℃真空烘箱中烘干;3) The above thermal polymerization product is vacuum rotary evaporated to remove the organic solvent, and then dried in a vacuum oven at 80°C;
4)将步骤3)中所得固体粉末在氩气气氛保护下进行热处理1h,温度为800℃,最终得到Si-Mn-C复合物4) Heat-treat the solid powder obtained in step 3) under the protection of an argon atmosphere for 1 h at a temperature of 800° C. to finally obtain a Si-Mn-C composite
图1是实施例1、2、3中所制备样品和商业纳米硅粉的X射线衍射图谱。从图中可以看出,硅的特征衍射峰有六个,2θ值分别为28.6°、47.5°、56.2°、69.3°、76.6°和88.2°。△标注的宽的衍射峰对应着非石墨化碳;*标注的衍射峰对应着Co;◆标注的衍射峰对应着Fe2Si;标注的衍射峰对应着MnSi。Fig. 1 is the X-ray diffraction pattern of sample and commercial nano silicon powder prepared in embodiment 1,2,3. It can be seen from the figure that there are six characteristic diffraction peaks of silicon, and the 2θ values are 28.6°, 47.5°, 56.2°, 69.3°, 76.6° and 88.2° respectively. The broad diffraction peak marked by △ corresponds to non-graphitizable carbon; the diffraction peak marked by * corresponds to Co; the diffraction peak marked by ◆ corresponds to Fe 2 Si; The marked diffraction peaks correspond to MnSi.
图2是实施例1、2、3中所制备样品和商业纳米硅粉的透射电镜图。从图中可以看出,Si纳米粒子分散地嵌入在所制备的Si-M-C复合材料的碳层中。Fig. 2 is the transmission electron microscope picture of the sample prepared in embodiment 1, 2, 3 and commercial nano silicon powder. It can be seen from the figure that Si nanoparticles are dispersedly embedded in the carbon layer of the prepared Si-M-C composite.
本发明制得的硅基复合材料和作为参比的商业硅粉的电化学性能评价采用CR2032型扣式电池在新威测试仪上进行。在电极制备中,将所得Si-M-C材料(或商业硅粉)、炭黑(Super P)和海藻酸钠按照质量比70∶20∶10均匀混合制浆涂在不锈钢集流体上,然后在80℃真空烘箱干燥12h。扣式电池的装配在充满氩气的手套箱中进行(水氧含量均保持在0.5ppm以下),金属锂片作为对电极和参比电极,含有1M LiPF6的EC/DMC(1∶1wt%)作为电解液,Whatman GF/D硼硅酸盐玻璃纤维滤纸作为隔膜。The electrochemical performance evaluation of the silicon-based composite material prepared in the present invention and commercial silicon powder as a reference is carried out on a Xinwei tester by using a CR2032 button cell. In the electrode preparation, the obtained Si-MC material (or commercial silicon powder), carbon black (Super P) and sodium alginate were uniformly mixed and slurry-coated on the stainless steel current collector according to the mass ratio of 70:20:10, and then 80 ℃ vacuum oven for 12h. The assembly of the button cell was carried out in a glove box full of argon (the content of water and oxygen was kept below 0.5ppm), the metal lithium sheet was used as the counter electrode and the reference electrode, and the EC/DMC (1: 1wt%) containing 1M LiPF6 ) as the electrolyte, and Whatman GF/D borosilicate glass fiber filter paper as the diaphragm.
图3为实施例1、2、3中所制备样品和商业纳米硅粉的充放电循环性能图。从图中可以看出,与商业硅粉相比,本发明制备的Si-M-C复合材料表现出良好的循环稳定性,并能够提供比商业石墨碳负极高得多的比容量。Fig. 3 is the charge-discharge cycle performance diagram of samples prepared in Examples 1, 2, and 3 and commercial nano-silicon powder. It can be seen from the figure that compared with the commercial silicon powder, the Si-M-C composite material prepared by the present invention exhibits good cycle stability and can provide a much higher specific capacity than the commercial graphite carbon anode.
图4为实施例4中所制备样品的充放电循环性能图。由图可看出,在硅粉和酞菁钴投料质量比为1∶8时,所制备复合材料电极0.05V~3.0V的电压范围内,100mAg-1的充放电倍率下,比容量在70次循环后仍然能保持在700mAhg-1以上;电极的首次效率为65%,从第二次循环开始接近并保持在100%。FIG. 4 is a charge-discharge cycle performance graph of the sample prepared in Example 4. FIG. It can be seen from the figure that when the mass ratio of silicon powder and cobalt phthalocyanine is 1:8, the prepared composite electrode has a specific capacity of 70 at a charge and discharge rate of 100 mAg -1 within a voltage range of 0.05 V to 3.0 V. After the second cycle, it can still keep above 700mAhg -1 ; the first efficiency of the electrode is 65%, and it approaches and maintains at 100% from the second cycle.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210065826.7A CN102593439B (en) | 2012-03-13 | 2012-03-13 | Silicon-based composite material for lithium ion battery and preparation method of silicon-based composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210065826.7A CN102593439B (en) | 2012-03-13 | 2012-03-13 | Silicon-based composite material for lithium ion battery and preparation method of silicon-based composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102593439A CN102593439A (en) | 2012-07-18 |
CN102593439B true CN102593439B (en) | 2014-08-06 |
Family
ID=46481804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210065826.7A Expired - Fee Related CN102593439B (en) | 2012-03-13 | 2012-03-13 | Silicon-based composite material for lithium ion battery and preparation method of silicon-based composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102593439B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9337478B2 (en) * | 2012-02-14 | 2016-05-10 | Shailesh Upreti | Composite silicon or composite tin particles |
JP5801775B2 (en) * | 2012-08-03 | 2015-10-28 | 信越化学工業株式会社 | Silicon-containing particles, negative electrode material for non-aqueous electrolyte secondary battery using the same, non-aqueous electrolyte secondary battery, and method for producing silicon-containing particles |
CN103833076A (en) * | 2012-11-27 | 2014-06-04 | 王泰林 | Nickel oxide-titanium dioxide nano composite material |
CN103682251B (en) * | 2013-12-10 | 2016-06-15 | 浙江大学 | A kind of porous iron sesquioxide/carbon nanosheet composite and preparation method thereof and its application in preparing lithium ion battery |
CN104900843A (en) * | 2015-06-13 | 2015-09-09 | 田东 | Preparation method of silicon carbon composite anode material |
CN105742589B (en) * | 2016-02-29 | 2018-09-18 | 中国有色桂林矿产地质研究院有限公司 | A kind of negative electrode of lithium ion battery silicon-cobalt-carbon composite and preparation method thereof |
CN106941171B (en) * | 2017-04-26 | 2020-02-11 | 中能国盛动力电池技术(北京)股份公司 | Lithium battery cathode composite material based on nano silicon carbon and preparation method thereof |
CN106920951B (en) * | 2017-04-26 | 2020-02-11 | 中能国盛动力电池技术(北京)股份公司 | Nano silicon-carbon composite material for lithium battery cathode and preparation method thereof |
CN109103443B (en) * | 2018-08-08 | 2020-10-27 | 欣旺达电子股份有限公司 | Silicon-based negative electrode material and preparation method thereof |
CN111354934B (en) * | 2020-03-23 | 2021-03-16 | 珠海冠宇电池股份有限公司 | Silicon-based negative electrode material and application thereof |
CN114639828B (en) * | 2020-12-16 | 2024-04-30 | 南京大学 | A multi-layer flower-like network structure silicon-carbon composite material and its preparation method and use |
CN113206231B (en) * | 2021-04-25 | 2022-06-10 | 浙江锂宸新材料科技有限公司 | Silicon-carbon-cobalt composite material and preparation method and application thereof |
CN115863572A (en) * | 2022-12-05 | 2023-03-28 | 浙江新安化工集团股份有限公司 | A kind of silicon carbon composite material, battery negative electrode and preparation method |
-
2012
- 2012-03-13 CN CN201210065826.7A patent/CN102593439B/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
徐宇虹等.碳热还原法制备锂离子电池Si-Co-C复合负极材料.《2009年第十五次全国电化学学术会议论文集》.2009,第1页. |
碳热还原法制备锂离子电池Si-Co-C复合负极材料;徐宇虹等;《2009年第十五次全国电化学学术会议论文集》;20091201;第1页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102593439A (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102593439B (en) | Silicon-based composite material for lithium ion battery and preparation method of silicon-based composite material | |
CN112420999B (en) | Phosphorus-based negative electrode material with coating structure and preparation method and application thereof | |
Tang et al. | High-performance LiMn2O4 with enwrapped segmented carbon nanotubes as cathode material for energy storage | |
CN107742702A (en) | Three-dimensional "face-line-face" structure of carbon nanotubes and tin dioxide modified titanium carbide lithium ion battery negative electrode material and preparation method | |
CN101521276A (en) | Method for producing lithium ion battery positive material coated with carbon | |
CN107887638A (en) | A kind of full battery of sodium ion with overlength cycle life and good low temperature performance | |
CN110993944A (en) | Aqueous ion battery and application thereof | |
CN104979535A (en) | Graphene porous nanometer silicon composite material as well as preparation method and application thereof | |
CN103700842B (en) | A kind of NiFe 2o 4/ C lithium ion battery cathode material and its preparation method | |
CN104600296A (en) | Preparation method of Se-C positive electrode composite material of lithium-selenium battery | |
CN107611425B (en) | A fusiform zinc ferrite/carbon lithium ion battery nanocomposite negative electrode material and its preparation method and application | |
CN115911525A (en) | Solid electrolyte interface modification method and all-solid-state sodium battery | |
CN104868121A (en) | Graphene-and-carbon-coated lithium iron phosphate lithium ion battery positive electrode material and production method thereof | |
CN102157727B (en) | Preparation method for nano MnO of negative electrode material of lithium ion battery | |
CN110048099A (en) | Electrode material of sodium-ion battery and its preparation method and application | |
CN106898754B (en) | Application of heteroatom in preparation of carbon-phosphorus material of lithium-phosphorus battery, material and preparation method thereof | |
CN114583137B (en) | Method for modifying carbon surface by sulfur doped phosphorus and application thereof | |
CN107946548A (en) | Store up the preparation method of oxide/lithium ferrite and the compound lithium ion battery negative material of carbon | |
CN112599738B (en) | A kind of tin-carbon composite material for negative electrode of lithium ion battery, preparation method and application thereof | |
CN102544511A (en) | Lithium ion battery positive electrode lithium ferrous phosphate material wrapped with strontium cerium doped cobaltate (SCC) and carbon, and preparation method for lithium ion battery positive electrode lithium ferrous phosphate material | |
CN113871605A (en) | Pre-lithiated silicon-based negative electrode material and preparation method and application thereof | |
CN108091835A (en) | Lithium-sulfur battery composite cathode material of cobalt ferrite sulfur loaded and preparation method thereof | |
CN115939361B (en) | Copper phosphide doped hard carbon composite material and preparation method thereof | |
CN114203994B (en) | Preparation method and application of positive electrode material of lithium-sulfur battery | |
CN113224291B (en) | Preparation method and application of nitrogen-sulfur-doped carbon-supported Fe7S8 battery anode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140806 Termination date: 20170313 |