CN102580571A - Method for preparing ultra high molecular weight polyethylene micro-filtration membrane - Google Patents
Method for preparing ultra high molecular weight polyethylene micro-filtration membrane Download PDFInfo
- Publication number
- CN102580571A CN102580571A CN2012100695590A CN201210069559A CN102580571A CN 102580571 A CN102580571 A CN 102580571A CN 2012100695590 A CN2012100695590 A CN 2012100695590A CN 201210069559 A CN201210069559 A CN 201210069559A CN 102580571 A CN102580571 A CN 102580571A
- Authority
- CN
- China
- Prior art keywords
- molecular weight
- high molecular
- ultra
- weight polyethylene
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 title claims abstract description 92
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 title claims abstract description 92
- 239000012528 membrane Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000001471 micro-filtration Methods 0.000 title claims abstract description 32
- 239000012982 microporous membrane Substances 0.000 claims abstract description 50
- 238000001035 drying Methods 0.000 claims abstract description 37
- 239000002667 nucleating agent Substances 0.000 claims abstract description 35
- 238000000465 moulding Methods 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 31
- 239000003963 antioxidant agent Substances 0.000 claims abstract description 26
- 230000003078 antioxidant effect Effects 0.000 claims abstract description 20
- 239000003085 diluting agent Substances 0.000 claims abstract description 20
- 238000002360 preparation method Methods 0.000 claims abstract description 16
- 238000001125 extrusion Methods 0.000 claims abstract description 11
- 238000010008 shearing Methods 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000000137 annealing Methods 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 27
- 229940057995 liquid paraffin Drugs 0.000 claims description 20
- 239000000155 melt Substances 0.000 claims description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 claims description 8
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 4
- KCXZNSGUUQJJTR-UHFFFAOYSA-N Di-n-hexyl phthalate Chemical compound CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCC KCXZNSGUUQJJTR-UHFFFAOYSA-N 0.000 claims description 4
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 claims description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 4
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 claims description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 4
- 125000005498 phthalate group Chemical class 0.000 claims description 4
- 239000000344 soap Substances 0.000 claims description 4
- 239000000600 sorbitol Substances 0.000 claims description 4
- MJPRYKBMEQUDDW-VEYOIHGOSA-N (1r,2r,4s)-2-[(1r)-1,2-dihydroxyethyl]-3,6-bis(4-methylphenyl)bicyclo[2.2.0]hexane-1,2,4,5-tetrol Chemical compound C1=CC(C)=CC=C1C1[C@]2(O)[C@](O)([C@H](O)CO)C(C=3C=CC(C)=CC=3)[C@]2(O)C1O MJPRYKBMEQUDDW-VEYOIHGOSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- FMZUHGYZWYNSOA-VVBFYGJXSA-N (1r)-1-[(4r,4ar,8as)-2,6-diphenyl-4,4a,8,8a-tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl]ethane-1,2-diol Chemical compound C([C@@H]1OC(O[C@@H]([C@@H]1O1)[C@H](O)CO)C=2C=CC=CC=2)OC1C1=CC=CC=C1 FMZUHGYZWYNSOA-VVBFYGJXSA-N 0.000 claims description 2
- HZVFRKSYUGFFEJ-YVECIDJPSA-N (2r,3r,4s,5r)-7-phenylhept-6-ene-1,2,3,4,5,6-hexol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=CC1=CC=CC=C1 HZVFRKSYUGFFEJ-YVECIDJPSA-N 0.000 claims description 2
- SIXWIUJQBBANGK-UHFFFAOYSA-N 4-(4-fluorophenyl)-1h-pyrazol-5-amine Chemical compound N1N=CC(C=2C=CC(F)=CC=2)=C1N SIXWIUJQBBANGK-UHFFFAOYSA-N 0.000 claims description 2
- NNRVHEGGJZTRKR-WTUPQPTJSA-L C(CCC)/C(/C(=O)[O-])=C/C(=O)[O-].C(CCC)[Sn+2]CCCC Chemical compound C(CCC)/C(/C(=O)[O-])=C/C(=O)[O-].C(CCC)[Sn+2]CCCC NNRVHEGGJZTRKR-WTUPQPTJSA-L 0.000 claims description 2
- VOWAEIGWURALJQ-UHFFFAOYSA-N Dicyclohexyl phthalate Chemical compound C=1C=CC=C(C(=O)OC2CCCCC2)C=1C(=O)OC1CCCCC1 VOWAEIGWURALJQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000005662 Paraffin oil Substances 0.000 claims description 2
- VJAHJNCIPPOVSB-UHFFFAOYSA-K [6-methylheptyl-bis[(2-sulfanylacetyl)oxy]stannyl] 2-sulfanylacetate Chemical compound [O-]C(=O)CS.[O-]C(=O)CS.[O-]C(=O)CS.CC(C)CCCCC[Sn+3] VJAHJNCIPPOVSB-UHFFFAOYSA-K 0.000 claims description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 2
- XQBCVRSTVUHIGH-UHFFFAOYSA-L [dodecanoyloxy(dioctyl)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCCCCCCC XQBCVRSTVUHIGH-UHFFFAOYSA-L 0.000 claims description 2
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 claims description 2
- 229940083916 aluminum distearate Drugs 0.000 claims description 2
- 229940063655 aluminum stearate Drugs 0.000 claims description 2
- RDIVANOKKPKCTO-UHFFFAOYSA-K aluminum;octadecanoate;hydroxide Chemical compound [OH-].[Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O RDIVANOKKPKCTO-UHFFFAOYSA-K 0.000 claims description 2
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 claims description 2
- FBDBBRIVIAEKGN-UHFFFAOYSA-N bis(2-methylhexyl) benzene-1,2-dicarboxylate Chemical compound CCCCC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)CCCC FBDBBRIVIAEKGN-UHFFFAOYSA-N 0.000 claims description 2
- NNHZAIOFDBXPGV-UHFFFAOYSA-N bis(8-methylnonyl) benzene-1,2-dicarboxylate;phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O.CC(C)CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC(C)C NNHZAIOFDBXPGV-UHFFFAOYSA-N 0.000 claims description 2
- PZGVVCOOWYSSGB-UHFFFAOYSA-L but-2-enedioate;dioctyltin(2+) Chemical compound CCCCCCCC[Sn]1(CCCCCCCC)OC(=O)C=CC(=O)O1 PZGVVCOOWYSSGB-UHFFFAOYSA-L 0.000 claims description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 2
- 235000013539 calcium stearate Nutrition 0.000 claims description 2
- 239000008116 calcium stearate Substances 0.000 claims description 2
- HIAAVKYLDRCDFQ-UHFFFAOYSA-L calcium;dodecanoate Chemical compound [Ca+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O HIAAVKYLDRCDFQ-UHFFFAOYSA-L 0.000 claims description 2
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 claims description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 2
- UERLTBIOCMSZMC-UHFFFAOYSA-N diethyl benzene-1,2-dicarboxylate;phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O.CCOC(=O)C1=CC=CC=C1C(=O)OCC UERLTBIOCMSZMC-UHFFFAOYSA-N 0.000 claims description 2
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 claims description 2
- 229960001826 dimethylphthalate Drugs 0.000 claims description 2
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 claims description 2
- 235000019359 magnesium stearate Nutrition 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- TXSUIVPRHHQNTM-UHFFFAOYSA-N n'-(3-methylanilino)-n-phenyliminobenzenecarboximidamide Chemical compound CC1=CC=CC(NN=C(N=NC=2C=CC=CC=2)C=2C=CC=CC=2)=C1 TXSUIVPRHHQNTM-UHFFFAOYSA-N 0.000 claims description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims description 2
- XIVNZHXRIPJOIZ-UHFFFAOYSA-N octadecanoic acid;zinc Chemical compound [Zn].CCCCCCCCCCCCCCCCCC(O)=O XIVNZHXRIPJOIZ-UHFFFAOYSA-N 0.000 claims description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 229940098697 zinc laurate Drugs 0.000 claims description 2
- IFNXAMCERSVZCV-UHFFFAOYSA-L zinc;2-ethylhexanoate Chemical compound [Zn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O IFNXAMCERSVZCV-UHFFFAOYSA-L 0.000 claims description 2
- GPYYEEJOMCKTPR-UHFFFAOYSA-L zinc;dodecanoate Chemical compound [Zn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O GPYYEEJOMCKTPR-UHFFFAOYSA-L 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 239000004408 titanium dioxide Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 24
- 239000011148 porous material Substances 0.000 abstract description 11
- 230000004907 flux Effects 0.000 abstract description 8
- 238000009826 distribution Methods 0.000 abstract description 5
- 238000005303 weighing Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 56
- 229920000642 polymer Polymers 0.000 description 18
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- 238000002145 thermally induced phase separation Methods 0.000 description 11
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- LUZSPGQEISANPO-UHFFFAOYSA-N butyltin Chemical compound CCCC[Sn] LUZSPGQEISANPO-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- YWEWWNPYDDHZDI-JJKKTNRVSA-N (1r)-1-[(4r,4ar,8as)-2,6-bis(3,4-dimethylphenyl)-4,4a,8,8a-tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl]ethane-1,2-diol Chemical compound C1=C(C)C(C)=CC=C1C1O[C@H]2[C@@H]([C@H](O)CO)OC(C=3C=C(C)C(C)=CC=3)O[C@H]2CO1 YWEWWNPYDDHZDI-JJKKTNRVSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- JTTIOYHBNXDJOD-UHFFFAOYSA-N 2,4,6-triaminopyrimidine Chemical compound NC1=CC(N)=NC(N)=N1 JTTIOYHBNXDJOD-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及一种超高分子量聚乙烯微滤膜的制备方法,该方法包括以下步骤:(1)按重量份含量称取超高分子量聚乙烯10-30重量份、稀释剂67-89.4重量份、成核剂0.1-2重量份和抗氧剂0.5-1重量份混合,所得混合物通过模压工艺或挤出工艺得到平板薄膜;(2)采用剪切工艺或拉伸工艺,使成核剂发生取向,得到取向平板薄膜;(3)使用萃取剂除去稀释剂,经洗涤、干燥后即形成微孔膜;(4)对微孔膜进行干燥和退火定型,即制备得到超高分子量聚乙烯微滤膜。与现有技术相比,本发明制备得到的超高分子量聚乙烯微孔膜形态更规整、孔径分布更均匀、水通量更高。同时具有突出的力学性能,尤其在取向方向上,断裂伸长率更高。
The invention relates to a preparation method of ultra-high molecular weight polyethylene microfiltration membrane, which comprises the following steps: (1) weighing 10-30 parts by weight of ultra-high molecular weight polyethylene and 67-89.4 parts by weight of diluent , 0.1-2 parts by weight of nucleating agent and 0.5-1 part by weight of antioxidant are mixed, and the gained mixture obtains a flat film through molding process or extrusion process; (2) adopt shearing process or stretching process to make nucleating agent Orientation to obtain an oriented flat film; (3) Use an extractant to remove the diluent, and form a microporous film after washing and drying; (4) Dry and anneal the microporous film to obtain an ultra-high molecular weight polyethylene microporous film. filter membrane. Compared with the prior art, the ultra-high molecular weight polyethylene microporous membrane prepared by the invention has more regular shape, more uniform pore size distribution and higher water flux. At the same time, it has outstanding mechanical properties, especially in the direction of orientation, and the elongation at break is higher.
Description
技术领域 technical field
本发明属于膜分离技术领域,尤其涉及一种超高分子量聚乙烯微孔膜的制备,制得的超高分子量聚乙烯微孔膜满足于水处理过程中的微滤膜材料的要求。The invention belongs to the technical field of membrane separation, and in particular relates to the preparation of an ultrahigh molecular weight polyethylene microporous membrane. The prepared ultrahigh molecular weight polyethylene microporous membrane meets the requirements of microfiltration membrane materials in the water treatment process.
背景技术 Background technique
微滤是一种重要的膜分离过程,广泛地应用于工业污水处理、饮用水制备、食品工业、医疗卫生、军工等行业。膜分离过程的基本要件是过滤组件,核心是组件中的过滤膜,并以有机高分子材料制成的微孔过滤膜与组件为主。根据膜孔的平均大小或者截留颗粒尺寸大小,膜分离可以分为多种过程,其中微滤的定义孔径大小约为0.1-100um,主要截留水中的微粒、蛋白质和细菌等。常见的分离膜有平板膜、管式膜、中空纤维膜三种。Microfiltration is an important membrane separation process, widely used in industrial sewage treatment, drinking water preparation, food industry, medical and health, military industry and other industries. The basic element of the membrane separation process is the filter module, the core of which is the filter membrane in the module, and the microporous filter membrane and module made of organic polymer materials are the main ones. According to the average size of the membrane pores or the size of the retained particles, membrane separation can be divided into various processes. The defined pore size of microfiltration is about 0.1-100um, which mainly intercepts particles, proteins and bacteria in water. Common separation membranes include flat sheet membranes, tubular membranes, and hollow fiber membranes.
制备聚合物微孔膜的方法很多,例如浸没沉淀法、相分离法、拉伸法等。其中热致相分离法(TIPS)是重要而且广泛应用的方法,它适用于制备在常温下找不到良溶剂的聚合物,尤其是许多结晶或者带有氢键的聚合物;同时TIPS法通过快速的热交换来诱导聚合物溶液分相,控制工艺条件可以得到多样的孔结构。TIPS过程简述为:将一些热塑性、结晶性的高聚物与某些高沸点的稀释剂在高温下先形成均相溶液,然后降低体系温度,诱导体系发生固-液(S-L)或液-液(L-L)相分离;体系冷却固化后萃取脱除稀释剂后即可制备聚合物多孔膜。所述的稀释剂,是指对于聚合物材料而言是种潜在的溶剂,在常温下是非溶剂但高温时是溶剂,即“高温相容,低温分相”。稀释剂种类与含量是TIPS成膜工艺中最重要的因素,对最终的膜结构和膜性能有重要的影响。往往通过聚合物-稀释剂的相图的绘制,来详尽地研究不同聚合物-稀释剂体系的成孔动力学过程。There are many methods for preparing polymer microporous membranes, such as immersion precipitation method, phase separation method, stretching method and so on. Among them, thermally induced phase separation (TIPS) is an important and widely used method. It is suitable for preparing polymers that cannot find good solvents at room temperature, especially many crystallization or polymers with hydrogen bonds; Rapid heat exchange induces phase separation of the polymer solution, and various pore structures can be obtained by controlling the process conditions. The TIPS process is briefly described as: some thermoplastic, crystalline polymers and some high-boiling diluents are first formed into a homogeneous solution at high temperature, and then the temperature of the system is lowered to induce the system to undergo solid-liquid (S-L) or liquid- The liquid (L-L) phase is separated; the polymer porous membrane can be prepared after the system is cooled and solidified, and the diluent is extracted and removed. The diluent refers to a potential solvent for polymer materials, which is a non-solvent at room temperature but a solvent at high temperature, that is, "compatibility at high temperature, phase separation at low temperature". The type and content of diluent are the most important factors in the TIPS film forming process, which have an important impact on the final film structure and film performance. The pore-forming kinetics of different polymer-diluent systems are often studied in detail by drawing polymer-diluent phase diagrams.
目前,采用TIPS法制备聚合物膜材料主要集中在高密度聚乙烯(HDPE)、聚丙烯(PP)、聚偏氟乙烯(PVDF)等。超高分子量聚乙烯由于其优异的力学性能、生物相容性和化学稳定性,极好的耐摩擦和抗冲击性能,使制备得到的超高分子量聚乙烯微孔膜机械强度大,在污水处理中长期使用性能稳定,不易降解等综合特性。由于超高分子量聚乙烯在熔融时为高弹态,几乎无流动性。TIPS法为超高分子量聚乙烯微孔膜的制备提供了可能。但TIPS法通过快速的热交换来诱导聚合物溶液分相,使制备得到的微孔膜孔径分布不均匀。At present, the preparation of polymer membrane materials by TIPS method mainly focuses on high-density polyethylene (HDPE), polypropylene (PP), polyvinylidene fluoride (PVDF), etc. Due to its excellent mechanical properties, biocompatibility and chemical stability, excellent friction resistance and impact resistance, ultra-high molecular weight polyethylene makes the prepared ultra-high molecular weight polyethylene microporous membrane have high mechanical strength and is suitable for sewage treatment. Medium and long-term use performance is stable, not easy to degrade and other comprehensive characteristics. Since ultra-high molecular weight polyethylene is highly elastic when melted, it has almost no fluidity. The TIPS method provides the possibility for the preparation of ultra-high molecular weight polyethylene microporous membranes. However, the TIPS method induces phase separation of the polymer solution through rapid heat exchange, which makes the pore size distribution of the prepared microporous membrane uneven.
发明内容 Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种孔径分布均匀、水通量高、力学性能优异的超高分子量聚乙烯微滤膜的制备方法。The object of the present invention is to provide a method for preparing an ultra-high molecular weight polyethylene microfiltration membrane with uniform pore size distribution, high water flux and excellent mechanical properties in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:一种超高分子量聚乙烯微滤膜的制备方法,其特征在于,该方法包括以下步骤:The object of the present invention can be achieved through the following technical scheme: a kind of preparation method of ultra-high molecular weight polyethylene microfiltration membrane, it is characterized in that, the method comprises the following steps:
(1)按重量份含量称取超高分子量聚乙烯10-30重量份、稀释剂67-89.4重量份、成核剂0.1-2重量份和抗氧剂0.5-1重量份混合,所得混合物通过模压工艺或挤出工艺得到平板薄膜;(1) Take 10-30 parts by weight of ultra-high molecular weight polyethylene, 67-89.4 parts by weight of diluent, 0.1-2 parts by weight of nucleating agent and 0.5-1 parts by weight of antioxidant by parts by weight and mix the obtained mixture through Flat film obtained by molding process or extrusion process;
(2)采用剪切工艺或拉伸工艺,使成核剂发生取向,得到取向平板薄膜;(2) Using a shearing process or a stretching process to orient the nucleating agent to obtain an oriented flat film;
(3)使用萃取剂除去稀释剂,经洗涤、干燥后即形成微孔膜;(3) Use the extractant to remove the diluent, and form a microporous membrane after washing and drying;
(4)对微孔膜进行干燥和退火定型,即制备得到超高分子量聚乙烯微滤膜。(4) Drying and annealing the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane.
所述的超高分子量聚乙烯的分子量在150~500万。The molecular weight of the ultra-high molecular weight polyethylene is 1.5 to 5 million.
所述的成核剂为二氧化硅(SiO2),二氧化钛(TiO2),碳纳米管(CNT),石墨烯,2,4,6-三氨基嘧啶(TP)、丙二酰脲(BA)或山梨醇类成核剂中的一种;Described nucleating agent is silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), carbon nanotube (CNT), graphene, 2,4,6-triaminopyrimidine (TP), malonylurea (BA ) or one of the sorbitol nucleating agents;
所述的稀释剂选自短链烷烃类溶剂或邻苯二甲酸酯类溶剂中的一种或几种;The diluent is selected from one or more of short-chain alkanes solvents or phthalates solvents;
所述的抗氧剂选自有机锡类抗氧剂和/或金属皂类抗氧剂中的任一种或几种的组合。The antioxidant is selected from any one or a combination of organotin antioxidants and/or metal soap antioxidants.
所述的山梨醇类成核剂包括1,3:2,4-二苄叉山梨醇(DBS)、1,3:2,4-二对甲基苄叉山梨醇(MDBS)或1,3:2,4-二(3,4-二甲基)苄叉山梨醇(DMDBS);The sorbitol nucleating agent includes 1,3:2,4-dibenzylidene sorbitol (DBS), 1,3:2,4-di-p-methylbenzylidene sorbitol (MDBS) or 1,3 : 2,4-bis(3,4-dimethyl)benzylidene sorbitol (DMDBS);
所述的短链烷烃类溶剂包括辛烷、癸烷、石蜡油、固体石蜡或液体石蜡;所述的邻苯二甲酸酯类溶剂包括邻苯二甲酸酯二甲酯、邻苯二甲酸酯二乙酯、邻苯二甲酸酯二丁酯、邻苯二甲酸酯二己酯、邻苯二甲酸酯二辛酯、邻苯二甲酸酯二异辛酯、邻苯二甲酸酯二异癸酯、邻苯二甲酸酯二(2-甲基己酯)或邻苯二甲酸二环己酯;Described short chain alkanes solvent comprises octane, decane, paraffin oil, solid paraffin or liquid paraffin; Described phthalates solvent comprises dimethyl phthalate, phthalic acid Diethyl phthalate, dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, diisooctyl phthalate, phthalate Diisodecyl phthalate, bis(2-methylhexyl) phthalate or dicyclohexyl phthalate;
所述的有机锡类抗氧剂包括二月桂酸二丁基锡、马来酸二正辛基锡、双(马来酸单丁酯)二丁锡、双(月桂基硫醇)二丁基锡、S,S’-双(硫代甘醇酸异辛锡)二丁基锡或二月桂酸二正辛基锡;所述的金属皂类抗氧剂包括硬脂酸钙、硬脂酸镁、硬脂酸锂、硬脂酸锌、硬脂酸铝、双硬脂酸铝、月桂酸钙、月桂酸锌、蓖麻醇酸钙或2-乙基己酸锌。Described organotin antioxidant comprises dibutyltin dilaurate, di-n-octyltin maleate, two (monobutyl maleate) dibutyltin, two (lauryl mercaptan) dibutyltin, S, S' - two (isooctyltin thioglycolate) dibutyltin or di-n-octyltin dilaurate; the metal soap antioxidants include calcium stearate, magnesium stearate, lithium stearate, stearic acid Zinc, aluminum stearate, aluminum distearate, calcium laurate, zinc laurate, calcium ricinoleate, or zinc 2-ethylhexanoate.
步骤(1)所述的模压工艺采用以下步骤:采用Haake转矩流变仪直接熔融混合物,再通过压膜机模压成型平板薄膜,Haake转矩流变仪熔融混合温度为160~180℃,模压温度为160~170℃。The molding process described in step (1) adopts the following steps: adopt the Haake torque rheometer to directly melt the mixture, and then mold a flat film through a film pressing machine. The temperature is 160-170°C.
步骤(1)所述的挤出工艺采用以下步骤:将混合物在双螺杆挤出机中熔融、混合并挤出,得到注膜液,然后将注膜液通过T型口膜,流延在金属辊筒上成型平板薄膜,双螺杆挤机的加工温度为170~200℃,螺杆转速为200~400rpm。The extrusion process described in step (1) adopts the following steps: melting, mixing and extruding the mixture in a twin-screw extruder to obtain a film injection liquid, and then passing the film injection liquid through a T-shaped mouth film and casting it on the metal The flat film is formed on the roller, the processing temperature of the twin-screw extruder is 170-200°C, and the screw speed is 200-400rpm.
步骤(2)所述的剪切工艺采用以下步骤:通过转矩流变仪将平板薄膜加热到剪切温度125~145℃,控制剪切速率为10~50s-1,应变幅度为20~100%,得到取向平板薄膜。The shearing process described in step (2) adopts the following steps: heating the flat film to a shearing temperature of 125-145°C through a torque rheometer, controlling the shear rate to be 10-50s -1 , and the strain amplitude to be 20-100 %, to obtain an oriented flat film.
步骤(2)所述的拉伸工艺采用以下步骤:通过拉伸温度可控的万能电子拉力机将平板薄膜拉伸取向,拉伸温度为40~100℃,拉伸速率为50~100mm/min,拉伸应变为100~300%。The stretching process described in step (2) adopts the following steps: the flat film is stretched and oriented by a universal electronic stretching machine with controllable stretching temperature, the stretching temperature is 40-100°C, and the stretching rate is 50-100mm/min , The tensile strain is 100-300%.
步骤(3)所述的萃取剂选自无水乙醇、甘油、正丁醇或氯仿中的一种或几种组合。The extractant in step (3) is selected from one or more combinations of absolute ethanol, glycerol, n-butanol or chloroform.
步骤(4)所述的干燥和退火定型的干燥温度为80℃,干燥时间为3h,退火温度为110℃,退火时间为10h。The drying temperature for drying and annealing for setting in step (4) is 80° C., the drying time is 3 hours, the annealing temperature is 110° C., and the annealing time is 10 hours.
在TIPS法中,添加成核剂对于结晶性聚合物,其作用有三:一是加快聚合物的结晶速率,从而控制相分离,进而影响成膜的动力学过程;二是提高聚合物的结晶度,有助于提高材料的机械强度和耐热性等;三是提高晶核密度,从而降低最后微孔膜的孔径。众所周知,微孔膜孔径降低,必然伴随着水在膜内流通路径的增加,水通量降低。再者,纳米无机成核剂极易发生团聚,一般情况下很难实现初级粒子级别的分散,因而难以体现纳米粒子的特殊性能。因此,简单地混合聚合物/稀释剂/成核剂,不但无法提高水通量,而且更难以实现成核剂良好分散。同时,存在的不相容相界面也会造成薄膜制品力学性能的恶化。因此提高成核剂的分散,制备水流通道短的聚合物微孔膜是TIPS法制备微孔膜的关键技术之一。In the TIPS method, adding a nucleating agent has three effects on crystalline polymers: one is to accelerate the crystallization rate of the polymer, thereby controlling the phase separation, and then affecting the kinetic process of film formation; the other is to increase the crystallinity of the polymer , help to improve the mechanical strength and heat resistance of the material, etc.; the third is to increase the density of crystal nuclei, thereby reducing the pore size of the final microporous membrane. As we all know, the reduction of the pore size of the microporous membrane is bound to be accompanied by the increase of the water flow path in the membrane, and the water flux decreases. Furthermore, nano inorganic nucleating agents are prone to agglomeration, and generally it is difficult to achieve dispersion at the primary particle level, so it is difficult to reflect the special properties of nanoparticles. Therefore, simply mixing polymer/diluent/nucleating agent not only fails to improve water flux, but also makes it more difficult to achieve good dispersion of nucleating agent. At the same time, the existing incompatible phase interface will also cause the deterioration of the mechanical properties of thin film products. Therefore, improving the dispersion of nucleating agents and preparing polymer microporous membranes with short water flow channels is one of the key technologies for preparing microporous membranes by TIPS method.
本发明采用在稀释剂和超高分子量聚乙烯熔体中自组装成纳米纤维的有机小分子化合物、CNT和SiO2作为成核剂,在一定温度下,施加的剪切或拉伸流场使成核剂发生取向,诱导UHMWPE结晶,并利用TIPS法制备超高分子量聚乙烯微孔膜。成核剂在高温条件下,可以在大多数稀释剂和聚合物熔体中生成均相溶液。施加剪切或拉伸流场后,不仅提高了成核剂的分散,且使成核剂形成取向结构。取向的成核剂不仅起到诱导结晶的作用,而且使聚合物片晶垂直成核剂取向方向生长,得到取向的聚合物微孔膜。因此,针对取向超高分子量聚乙烯微孔膜的TIPS工艺,本发明选择的成核剂和加工工艺具有如下特性:(1)选择三种不同形状的成核剂(球状,棒状和纤维状);(2)对于超高分子量聚乙烯、稀释剂、成核剂和抗氧剂均相溶液,在聚合物结晶前,施加的流场使成核剂发生取向;(3)在有效控制取向超高分子量聚乙烯微孔膜孔结构和膜性能的前提下,尽可能使用少量的成核剂。The present invention adopts organic small molecular compound, CNT and SiO2 self-assembled into nanofibers in diluent and UHMWPE melt as nucleating agents, and at a certain temperature, the applied shear or extensional flow field makes The nucleating agent is oriented to induce the crystallization of UHMWPE, and the ultra-high molecular weight polyethylene microporous membrane is prepared by TIPS method. Nucleating agents can form homogeneous solutions in most diluents and polymer melts at elevated temperatures. After applying a shear or extensional flow field, not only the dispersion of the nucleating agent is improved, but also the nucleating agent forms an oriented structure. The oriented nucleating agent not only induces crystallization, but also makes the polymer lamellae grow vertically to the oriented direction of the nucleating agent to obtain an oriented polymer microporous membrane. Therefore, for the TIPS process of oriented ultra-high molecular weight polyethylene microporous membrane, the nucleating agent selected by the present invention and the processing technology have the following characteristics: (1) select three kinds of nucleating agents of different shapes (spherical, rod-like and fibrous) (2) For the homogeneous solution of ultra-high molecular weight polyethylene, diluent, nucleating agent and antioxidant, before the crystallization of the polymer, the applied flow field makes the nucleating agent orientate; (3) when the orientation is effectively controlled beyond Under the premise of high molecular weight polyethylene microporous membrane pore structure and membrane performance, use a small amount of nucleating agent as much as possible.
与现有技术相比,本发明在聚合物和稀释剂中加入成核剂,然后高温施加剪切或拉伸流场使成核剂取向,不仅提高了成核剂在聚合物/稀释剂中分散,而且取向的成核剂诱导UHMWPE附生结晶,得到表面高度取向的UHMWPE微孔膜。与没有取向的UHMWPE微孔膜相比,取向后的UHMWPE微孔膜孔径分布更小、水通量高、力学性能更加优异。因此,本发明制备的微孔膜可以用于食品、医药、超纯水的制备,满足分离、提纯、浓缩和净化的要求。Compared with the prior art, the present invention adds a nucleating agent to the polymer and diluent, and then applies a shear or extensional flow field at high temperature to orient the nucleating agent, which not only improves the nucleating agent in the polymer/diluent The dispersed and oriented nucleating agent induces UHMWPE epitaxial crystallization to obtain a UHMWPE microporous membrane with a highly oriented surface. Compared with the UHMWPE microporous membrane without orientation, the oriented UHMWPE microporous membrane has smaller pore size distribution, higher water flux and better mechanical properties. Therefore, the microporous membrane prepared by the present invention can be used in the preparation of food, medicine and ultrapure water, meeting the requirements of separation, purification, concentration and purification.
附图说明 Description of drawings
图1为对比例1得到的没有取向UHMWPE微孔膜表面SEM形态图;Fig. 1 is the SEM morphology diagram of the UHMWPE microporous membrane surface without orientation obtained in Comparative Example 1;
图2为实施例1得到的取向UHMWPE微孔膜表面SEM形态图;Fig. 2 is the surface SEM morphology figure of the orientation UHMWPE microporous membrane that
图3为对比例1、实施例1和对比例得到的不同成核剂对UHMWPE微孔膜水通量的影响;Fig. 3 is the impact of the different nucleating agents that comparative example 1,
图4为对比例3、实施例2、实施例4、实施例6得到的不同成核剂对UHMWPE微孔膜力学性能的影响。Figure 4 shows the influence of different nucleating agents obtained in Comparative Example 3, Example 2, Example 4, and Example 6 on the mechanical properties of UHMWPE microporous membranes.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
对比例1Comparative example 1
(1)通过Haake转矩流变仪将10%重量分数的超高分子量聚乙烯、0.1%重量分数的DBS、89.4%重量分数的液体石蜡、0.5%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。Haake转矩流变仪的熔融混合温度为160℃,熔融混合时间为12min,转子转速为80rpm。(1) by Haake torque rheometer the antioxidant dibutyltin maleate of the ultra-high molecular weight polyethylene of 10% weight fraction, the DBS of 0.1% weight fraction, the liquid paraffin of 89.4% weight fraction, 0.5% weight fraction Melt mixing to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature of the Haake torque rheometer is 160° C., the melt mixing time is 12 min, and the rotor speed is 80 rpm.
(2)然后将超高分子量聚乙烯混合物在压膜机上成型平板薄膜。膜厚度控制在200um,模压温度为160℃,模压时间为5min。(2) Then the ultra-high molecular weight polyethylene mixture is formed into a flat film on a laminator. The film thickness is controlled at 200um, the molding temperature is 160°C, and the molding time is 5min.
(3)接着使用无水乙醇萃取液体石蜡,用去离子水反复洗涤,干燥后即形成微孔膜。(3) Then use absolute ethanol to extract the liquid paraffin, wash it repeatedly with deionized water, and form a microporous membrane after drying.
(4)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(4) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
对比例2Comparative example 2
(1)通过Haake转矩流变仪将20%重量分数的超高分子量聚乙烯、1%重量分数的CNT、78%重量分数的液体石蜡、1%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为12min,转子转速为80rpm。(1) by Haake torque rheometer, the antioxidant dibutyltin maleate of the ultra-high molecular weight polyethylene of 20% weight fraction, the CNT of 1% weight fraction, the liquid paraffin of 78% weight fraction, 1% weight fraction Melt mixing to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 12 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,模压温度为170℃,模压时间为5min,压强为5MPa。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the molding temperature is 170°C, the molding time is 5min, and the pressure is 5MPa.
(3)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(3) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(4)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(4) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
对比例3Comparative example 3
(1)通过Haake转矩流变仪将30%重量分数的超高分子量聚乙烯、2%重量分数的SiO2、67%重量分数的液体石蜡、1%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为12min,转子转速为80rpm。(1) by Haake torque rheometer, the ultra-high molecular weight polyethylene of 30% by weight, the SiO of 2% by weight 2 , the liquid paraffin of 67% by weight, the antioxidant maleic acid two of 1% by weight Butyl tin is melt mixed to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 12 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,模压温度为170℃,模压时间为5min,压强为5MPa。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the molding temperature is 170°C, the molding time is 5min, and the pressure is 5MPa.
(3)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(3) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(4)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(4) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例1Example 1
(1)通过Haake转矩流变仪将10%重量分数的超高分子量聚乙烯、0.1%重量分数的DBS,89.4%重量分数的液体石蜡、0.5%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为16min,转子转速为80rpm。(1) by Haake torque rheometer, the ultra-high molecular weight polyethylene of 10% weight fraction, the DBS of 0.1% weight fraction, the liquid paraffin of 89.4% weight fraction, the antioxidant dibutyltin maleate of 0.5% weight fraction Melt mixing to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 16 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,压强为5MPa,模压温度为170℃,模压时间为6min。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the pressure is 5MPa, the molding temperature is 170°C, and the molding time is 6min.
(3)使用转矩流变仪对成型平板薄膜施加剪切流场。剪切温度为125℃,剪切速率为50s-1,应变幅度为100%。(3) A torque rheometer is used to apply a shear flow field to the formed flat film. The shear temperature is 125°C, the shear rate is 50s -1 , and the strain amplitude is 100%.
(4)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例2Example 2
(1)通过Haake转矩流变仪将30%重量分数的超高分子量聚乙烯、1%重量分数的DMDBS、68%重量分数的液体石蜡、1%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为16min,,转子转速为80rpm。(1) by Haake torque rheometer the antioxidant dibutyltin maleate of the ultra-high molecular weight polyethylene of 30% weight fraction, the DMDBS of 1% weight fraction, the liquid paraffin of 68% weight fraction, 1% weight fraction Melt mixing to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 16 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,压强为5MPa,模压温度为170℃,模压时间为6min。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the pressure is 5MPa, the molding temperature is 170°C, and the molding time is 6min.
(3)使用电子万能拉伸试验机对成型平板薄膜施加拉伸流场。拉伸温度为40℃,拉伸速率为100mm/min,拉伸应变为300%。(3) An electronic universal tensile testing machine is used to apply a tensile flow field to the formed flat film. The stretching temperature was 40° C., the stretching rate was 100 mm/min, and the stretching strain was 300%.
(4)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例3Example 3
(1)通过Haake转矩流变仪将10%重量分数的超高分子量聚乙烯、0.5%重量分数的CNT,89%重量分数的液体石蜡、0.5%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为16min,转子转速为80rpm。(1) by Haake torque rheometer, the ultra-high molecular weight polyethylene of 10% weight fraction, the CNT of 0.5% weight fraction, the liquid paraffin of 89% weight fraction, the antioxidant dibutyltin maleate of 0.5% weight fraction Melt mixing to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 16 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,压强为5MPa,模压温度为170℃,模压时间为6min。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the pressure is 5MPa, the molding temperature is 170°C, and the molding time is 6min.
(3)使用转矩流变仪对成型平板薄膜施加剪切流场。剪切温度为130℃,剪切速率为50s-1,应变幅度为100%。(3) A torque rheometer is used to apply a shear flow field to the formed flat film. The shear temperature is 130°C, the shear rate is 50s -1 , and the strain amplitude is 100%.
(4)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例4Example 4
(1)通过Haake转矩流变仪将30%重量分数的超高分子量聚乙烯、2%重量分数的CNT、67%重量分数的液体石蜡、1%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为16min,转子转速为80rpm。(1) by Haake torque rheometer the antioxidant dibutyltin maleate of the ultra-high molecular weight polyethylene of 30% weight fraction, the CNT of 2% weight fraction, the liquid paraffin of 67% weight fraction, 1% weight fraction Melt mixing to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 16 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,压强为5MPa,模压温度为170℃,模压时间为6min。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the pressure is 5MPa, the molding temperature is 170°C, and the molding time is 6min.
(3)使用电子万能拉伸试验机对成型平板薄膜施加拉伸流场。拉伸温度为40℃,拉伸速率为100mm/min,拉伸应变为300%。(3) An electronic universal tensile testing machine is used to apply a tensile flow field to the formed flat film. The stretching temperature was 40° C., the stretching rate was 100 mm/min, and the stretching strain was 300%.
(4)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例5Example 5
(1)通过Haake转矩流变仪将10%重量分数的超高分子量聚乙烯、0.5%重量分数的SiO2,89%重量分数的液体石蜡、0.5%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为16min,转子转速为80rpm。(1) by Haake torque rheometer, the ultra-high molecular weight polyethylene of 10% weight fraction, the SiO of 0.5% weight fraction 2 , the liquid paraffin of 89% weight fraction, the antioxidant maleic acid two of 0.5% weight fraction Butyl tin is melt mixed to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 16 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,压强为5MPa,模压温度为170℃,模压时间为6min。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the pressure is 5MPa, the molding temperature is 170°C, and the molding time is 6min.
(3)使用转矩流变仪对成型平板薄膜施加剪切流场。剪切温度为130℃,剪切速率为50s-1,应变幅度为100%。(3) A torque rheometer is used to apply a shear flow field to the formed flat film. The shear temperature is 130°C, the shear rate is 50s -1 , and the strain amplitude is 100%.
(4)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例6Example 6
(1)通过Haake转矩流变仪将30%重量分数的超高分子量聚乙烯、2%重量分数的SiO2、67%重量分数的液体石蜡、1%重量分数的抗氧剂马来酸二丁基锡熔融混合,得到超高分子量聚乙烯混合物。熔融混合温度为170℃,熔融混合时间为16min,转子转速为80rpm。(1) by Haake torque rheometer, the ultra-high molecular weight polyethylene of 30% by weight, the SiO of 2% by weight 2 , the liquid paraffin of 67% by weight, the antioxidant maleic acid two of 1% by weight Butyl tin is melt mixed to obtain ultra-high molecular weight polyethylene mixture. The melt mixing temperature is 170° C., the melt mixing time is 16 min, and the rotor speed is 80 rpm.
(2)将超高分子量聚乙烯混合物模压成型平板薄膜。膜厚度控制在200um,压强为5MPa,模压温度为170℃,模压时间为6min。(2) Molding the ultra-high molecular weight polyethylene mixture into a flat film. The film thickness is controlled at 200um, the pressure is 5MPa, the molding temperature is 170°C, and the molding time is 6min.
(3)使用电子万能拉伸试验机对成型平板薄膜施加拉伸流场。拉伸温度为40℃,拉伸速率为100mm/min,拉伸应变为300%.(3) An electronic universal tensile testing machine is used to apply a tensile flow field to the formed flat film. The stretching temperature was 40°C, the stretching rate was 100mm/min, and the stretching strain was 300%.
(4)接着使用无水乙醇萃取液体石蜡,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Next, the liquid paraffin is extracted with absolute ethanol, washed with deionized water, and dried to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例7Example 7
(1)首先利用双螺杆挤出机挤出工艺熔融混合15%重量分数的超高分子量聚乙烯、0.5%重量分数的MDBS、84%重量分数的邻苯二甲酸酯二辛酯、0.5%重量分数的抗氧剂马来酸二丁基锡,得到注膜液。螺杆挤出温度为170~190℃,螺杆转速350rpm。(1) First utilize twin-screw extruder extrusion process to melt mix 15% by weight of ultra-high molecular weight polyethylene, 0.5% by weight of MDBS, 84% by weight of dioctyl phthalate, 0.5% by weight Antioxidant dibutyltin maleate in weight fraction to obtain film injection solution. The extrusion temperature of the screw is 170-190° C., and the rotational speed of the screw is 350 rpm.
(2)使注膜液在压力作用下通过一个T-型口膜,流延在金属辊筒上成型平板薄膜。口模温度为130~140℃,金属辊筒温度为25~35℃。(2) Make the film injection liquid pass through a T-shaped mouth film under pressure, and cast it on a metal roller to form a flat film. The die temperature is 130-140°C, and the metal roller temperature is 25-35°C.
(3)使用转矩流变仪对成型平板薄膜施加剪切流场。剪切温度为130℃,剪切速率为50s-1,应变幅度为100%。(3) A torque rheometer is used to apply a shear flow field to the formed flat film. The shear temperature is 130°C, the shear rate is 50s -1 , and the strain amplitude is 100%.
(4)接着使用无水乙醇萃取邻苯二甲酸酯二辛酯,经去离子水适当洗涤,干燥后即形成微孔膜。(4) Then use absolute ethanol to extract dioctyl phthalate, wash properly with deionized water, and form a microporous membrane after drying.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例8Example 8
(1)首先利用双螺杆挤出机挤出工艺熔融混合20%重量分数的超高分子量聚乙烯、1%重量分数的CNT、78%重量分数的邻苯二甲酸酯二辛酯、1%重量分数的抗氧剂马来酸二丁基锡,得到注膜液。螺杆挤出温度为170~190℃,螺杆转速350rpm。(1) Firstly utilize twin-screw extruder extrusion process to melt mix 20% by weight of ultra-high molecular weight polyethylene, 1% by weight of CNT, 78% by weight of dioctyl phthalate, 1% Antioxidant dibutyltin maleate in weight fraction to obtain film injection solution. The extrusion temperature of the screw is 170-190° C., and the rotational speed of the screw is 350 rpm.
(2)使注膜液在压力作用下通过一个T-型口膜,流延在金属辊筒上成型平板薄膜。口模温度为130~140℃,金属辊筒温度为25~35℃。(2) Make the film injection liquid pass through a T-shaped mouth film under pressure, and cast it on a metal roller to form a flat film. The die temperature is 130-140°C, and the metal roller temperature is 25-35°C.
(3)使用电子万能拉伸试验机对成型平板薄膜施加拉伸流场。拉伸温度为40℃,拉伸速率为100mm/min,拉伸应变为300%.(3) An electronic universal tensile testing machine is used to apply a tensile flow field to the formed flat film. The stretching temperature was 40°C, the stretching rate was 100mm/min, and the stretching strain was 300%.
(4)接着使用无水乙醇萃取邻苯二甲酸酯二辛酯,经去离子水适当洗涤、干燥后即形成微孔膜。(4) Then use absolute ethanol to extract dioctyl phthalate, wash properly with deionized water, and dry to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
实施例9Example 9
(1)首先利用双螺杆挤出机挤出工艺熔融混合20%重量分数的超高分子量聚乙烯、1%重量分数的SiO2、78%重量分数的邻苯二甲酸酯二辛酯、1%重量分数的抗氧剂马来酸二丁基锡,得到注膜液。螺杆挤出温度为170~190℃,螺杆转速350rpm。(1) First utilize twin-screw extruder extrusion process to melt mix 20% by weight of ultra-high molecular weight polyethylene, 1% by weight of SiO 2 , 78% by weight of dioctyl phthalate, 1 % weight fraction of the antioxidant dibutyltin maleate to obtain a film injection solution. The extrusion temperature of the screw is 170-190° C., and the rotational speed of the screw is 350 rpm.
(2)使注膜液在压力作用下通过一个T-型口膜,流延在金属辊筒上成型平板薄膜。口模温度为130~140℃,金属辊筒温度为25~35℃。(2) Make the film injection liquid pass through a T-shaped mouth film under pressure, and cast it on a metal roller to form a flat film. The die temperature is 130-140°C, and the metal roller temperature is 25-35°C.
(3)使用电子万能拉伸试验机对成型平板薄膜施加拉伸流场。拉伸温度为40℃,拉伸速率为100mm/min,拉伸应变为300%。(3) An electronic universal tensile testing machine is used to apply a tensile flow field to the formed flat film. The stretching temperature was 40° C., the stretching rate was 100 mm/min, and the stretching strain was 300%.
(4)接着使用无水乙醇萃取邻苯二甲酸酯二辛酯,经去离子水适当洗涤、干燥后即形成微孔膜。(4) Then use absolute ethanol to extract dioctyl phthalate, wash properly with deionized water, and dry to form a microporous membrane.
(5)最后使用烘箱对微孔膜进行干燥和退火定型,即可得到超高分子量聚乙烯微滤膜。干燥温度为80℃,干燥时间为3小时,退火温度110℃,退火时间为10小时。(5) Finally, an oven is used to dry and anneal the microporous membrane to obtain an ultra-high molecular weight polyethylene microfiltration membrane. The drying temperature is 80°C, the drying time is 3 hours, the annealing temperature is 110°C, and the annealing time is 10 hours.
本发明超高分子量聚乙烯微滤膜还可在以下条件下制备:采用与实施例1~9一样的步骤,不同之处在于不同的剪切或拉伸条件,具体加工过程见表1-2:The ultra-high molecular weight polyethylene microfiltration membrane of the present invention can also be prepared under the following conditions: using the same steps as in Examples 1 to 9, the difference lies in different shearing or stretching conditions, and the specific processing process is shown in Table 1-2 :
表1Table 1
表2Table 2
图1和2分别为对比例1和实施例1得到的10%UHMWPE微孔膜表面SEM照片。从照片中可以看出,实施例1中由于DBS纤维的取向诱导UHMWPE附生结晶,得到孔径分布更加均匀的各向异性UHMWPE微孔膜。Figures 1 and 2 are SEM photos of the surface of the 10% UHMWPE microporous membrane obtained in Comparative Example 1 and Example 1, respectively. It can be seen from the photos that in Example 1, due to the orientation of the DBS fibers to induce the epigenetic crystallization of UHMWPE, an anisotropic UHMWPE microporous membrane with a more uniform pore size distribution was obtained.
图3是对10%UHMWPE,没有取向和取向对UHMWPE微孔膜水通量的影响。由图明显可以看出,取向膜水通量提高了3~4倍。Figure 3 is for 10% UHMWPE, no orientation and the effect of orientation on water flux of UHMWPE microporous membrane. It can be clearly seen from the figure that the water flux of the oriented film is increased by 3 to 4 times.
图4是对30%UHMWPE,没有取向和取向对UHMWPE微孔膜取向方向力学性能的影响。对于取向膜,沿着取向方向,应力和应变都有一定程度的提高。Figure 4 is for 30% UHMWPE, no orientation and the influence of orientation on the mechanical properties of the orientation direction of UHMWPE microporous membrane. For oriented films, both stress and strain increase to some extent along the orientation direction.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210069559.0A CN102580571B (en) | 2012-03-15 | 2012-03-15 | Method for preparing ultra high molecular weight polyethylene micro-filtration membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210069559.0A CN102580571B (en) | 2012-03-15 | 2012-03-15 | Method for preparing ultra high molecular weight polyethylene micro-filtration membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102580571A true CN102580571A (en) | 2012-07-18 |
CN102580571B CN102580571B (en) | 2014-04-16 |
Family
ID=46470129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210069559.0A Expired - Fee Related CN102580571B (en) | 2012-03-15 | 2012-03-15 | Method for preparing ultra high molecular weight polyethylene micro-filtration membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102580571B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103143272A (en) * | 2013-03-08 | 2013-06-12 | 北京德源通环保科技有限公司 | Method for preparing polyethylene microporous film |
CN103182250A (en) * | 2013-03-13 | 2013-07-03 | 北京德源通环保科技有限公司 | Preparation method of high-molecular-weight polyethylene microporous membrane |
CN103253736A (en) * | 2013-04-20 | 2013-08-21 | 马彰原 | Fluid hollow microfiltration membrane element |
CN103801274A (en) * | 2014-02-28 | 2014-05-21 | 天津工业大学 | Preparation method of oil-absorbing hollow fiber porous membrane |
CN104437118A (en) * | 2014-11-14 | 2015-03-25 | 东华大学 | Preparation method of ultra-high molecular weight polyethylene composite microporous membrane |
CN105169965A (en) * | 2015-09-29 | 2015-12-23 | 深圳市星源材质科技股份有限公司 | Ultra-high molecular weight polyethylene micro-porous membrane and preparation method thereof |
CN106566056A (en) * | 2016-11-09 | 2017-04-19 | 青岛中科华联新材料股份有限公司 | Ultrahigh molecular weight polyethylene electric-conductive thin film composite material, and production process and electric-conductive thin film |
CN106948182A (en) * | 2017-03-16 | 2017-07-14 | 东华大学 | A kind of cool fabric with higher human body infrared permeability and preparation method thereof |
CN110197884A (en) * | 2019-06-10 | 2019-09-03 | 张雪花 | A kind of lithium battery diaphragm polyethene microporous membrane and preparation method |
CN115501762A (en) * | 2022-10-27 | 2022-12-23 | 上海恩捷新材料科技有限公司 | Filter membrane with small aperture and high aperture concentration and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4620955A (en) * | 1984-04-27 | 1986-11-04 | Toa Nenryo Kogyo Kabushiki Kaisha | Polyethylene microporous membrane and a process for the production of the same |
JPH0398632A (en) * | 1989-09-08 | 1991-04-24 | Tonen Chem Corp | Separation membrane and separation method |
CN1196697A (en) * | 1995-09-20 | 1998-10-21 | 危邦诺有限公司 | Oriented polymeric products |
CN101164677A (en) * | 2006-10-18 | 2008-04-23 | 中国科学院化学研究所 | Method for preparing super high molecular polythene porous membrane by thermally phase separation method |
CN101695634A (en) * | 2009-10-30 | 2010-04-21 | 天津工业大学 | Preparation method of hybrid hollow fiber film of ultrahigh molecular weight polyethylene/inorganic particles |
CN101724170A (en) * | 2009-11-16 | 2010-06-09 | 深圳市星源材质科技股份有限公司 | Method for preparing polyolefin microporous membrane with symmetrical upper and lower surface structures |
-
2012
- 2012-03-15 CN CN201210069559.0A patent/CN102580571B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4620955A (en) * | 1984-04-27 | 1986-11-04 | Toa Nenryo Kogyo Kabushiki Kaisha | Polyethylene microporous membrane and a process for the production of the same |
JPH0398632A (en) * | 1989-09-08 | 1991-04-24 | Tonen Chem Corp | Separation membrane and separation method |
CN1196697A (en) * | 1995-09-20 | 1998-10-21 | 危邦诺有限公司 | Oriented polymeric products |
CN101164677A (en) * | 2006-10-18 | 2008-04-23 | 中国科学院化学研究所 | Method for preparing super high molecular polythene porous membrane by thermally phase separation method |
CN101695634A (en) * | 2009-10-30 | 2010-04-21 | 天津工业大学 | Preparation method of hybrid hollow fiber film of ultrahigh molecular weight polyethylene/inorganic particles |
CN101724170A (en) * | 2009-11-16 | 2010-06-09 | 深圳市星源材质科技股份有限公司 | Method for preparing polyolefin microporous membrane with symmetrical upper and lower surface structures |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103143272A (en) * | 2013-03-08 | 2013-06-12 | 北京德源通环保科技有限公司 | Method for preparing polyethylene microporous film |
CN103143272B (en) * | 2013-03-08 | 2016-04-06 | 北京德源通环保科技有限公司 | A kind of preparation method of polyethene microporous membrane |
CN103182250A (en) * | 2013-03-13 | 2013-07-03 | 北京德源通环保科技有限公司 | Preparation method of high-molecular-weight polyethylene microporous membrane |
CN103253736A (en) * | 2013-04-20 | 2013-08-21 | 马彰原 | Fluid hollow microfiltration membrane element |
CN103801274A (en) * | 2014-02-28 | 2014-05-21 | 天津工业大学 | Preparation method of oil-absorbing hollow fiber porous membrane |
CN104437118A (en) * | 2014-11-14 | 2015-03-25 | 东华大学 | Preparation method of ultra-high molecular weight polyethylene composite microporous membrane |
CN105169965A (en) * | 2015-09-29 | 2015-12-23 | 深圳市星源材质科技股份有限公司 | Ultra-high molecular weight polyethylene micro-porous membrane and preparation method thereof |
CN106566056A (en) * | 2016-11-09 | 2017-04-19 | 青岛中科华联新材料股份有限公司 | Ultrahigh molecular weight polyethylene electric-conductive thin film composite material, and production process and electric-conductive thin film |
CN106948182A (en) * | 2017-03-16 | 2017-07-14 | 东华大学 | A kind of cool fabric with higher human body infrared permeability and preparation method thereof |
CN110197884A (en) * | 2019-06-10 | 2019-09-03 | 张雪花 | A kind of lithium battery diaphragm polyethene microporous membrane and preparation method |
CN115501762A (en) * | 2022-10-27 | 2022-12-23 | 上海恩捷新材料科技有限公司 | Filter membrane with small aperture and high aperture concentration and preparation method thereof |
CN115501762B (en) * | 2022-10-27 | 2023-08-08 | 上海恩捷新材料科技有限公司 | Filter membrane with small pore diameter and high pore diameter concentration and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102580571B (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102580571A (en) | Method for preparing ultra high molecular weight polyethylene micro-filtration membrane | |
US11603443B2 (en) | Composite porous membrane and preparation method therefor and use thereof | |
CN103772902B (en) | A polyoxymethylene nanoporous film with micro-nano double continuous porous structure and preparation method thereof | |
CN100579638C (en) | A modified polyvinyl chloride hollow fiber microporous membrane and its preparation method | |
CN101342465B (en) | Hollow fiber porous film and process for producing same | |
WO2005073302A1 (en) | Porous film and method for preparation thereof | |
US20120168976A1 (en) | Microporous polyolefin and method of producing the same | |
CN102179187A (en) | Polyvinylidene fluoride ultrafiltration membrane and preparation method thereof | |
JP3965954B2 (en) | Porous film | |
CN103464003B (en) | A kind of method for preparing polypropylene hollow fiber porous membrane | |
CN102336941A (en) | Microporous high density polyethylene film and preparing method thereof | |
CN105315533A (en) | Manufacturing method of polyolefin-based multilayer composite porous film | |
CN103990388A (en) | Polypropylene microporous membrane with three-layer compound structure and preparation method thereof | |
CN102500248A (en) | Preparation method for ultrahigh molecular weight polyethylene microporous membrane | |
CN110350131B (en) | Method for preparing composite polypropylene microporous membrane by phase inversion method, product and application thereof | |
CN104857864A (en) | Poly(4-methyl-1-pentene) microporous membrane and preparation method thereof | |
CN102908910A (en) | Preparing method of polyvinylidene fluoride porous membrane | |
CN104607061B (en) | Method for preparing ethylene-tetrafluoroethylene copolymer film | |
CN107599435A (en) | A kind of MIcroporous polyolefin film and preparation method thereof | |
CN106310971B (en) | The film formula and preparation method of chlorine-containing copolymer hollow-fibre membrane | |
Ferreira et al. | Coagulation bath in the production of membranes of nanocomposites polyamide 6/Clay | |
CN102825805B (en) | Polypropylene microporous membrane preparation method | |
US20150144551A1 (en) | Polymer resin composition for preparing hollow fiber membrane, preparation method of hollow fiber membrane, and hollow fiber membrane | |
Yang et al. | TIPS behavior for IPP/nano-SiO2 blend membrane formation and its contribution to membrane morphology and performance | |
CN106621861A (en) | Preparation method of polyvinylidene fluoride microporous membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 Termination date: 20190315 |