[go: up one dir, main page]

CN102571178A - Beam forming method used in equivalent isotropic radiated power limited systems - Google Patents

Beam forming method used in equivalent isotropic radiated power limited systems Download PDF

Info

Publication number
CN102571178A
CN102571178A CN2012100471373A CN201210047137A CN102571178A CN 102571178 A CN102571178 A CN 102571178A CN 2012100471373 A CN2012100471373 A CN 2012100471373A CN 201210047137 A CN201210047137 A CN 201210047137A CN 102571178 A CN102571178 A CN 102571178A
Authority
CN
China
Prior art keywords
lambda
beam vector
antenna
antennas
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100471373A
Other languages
Chinese (zh)
Inventor
成先涛
韩授
武刚
岳光荣
李少谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2012100471373A priority Critical patent/CN102571178A/en
Publication of CN102571178A publication Critical patent/CN102571178A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种EIRP受限系统中的波束成形方法,是为解决现有的波束成形方法误码率性能较低的问题而提出的。本发明的方法首先进行天线选择和压缩初始波束矢量,然后通过穷举搜索的方法得到数值解来逼近最优解。与现有技术相比,本发明的波束成形方法通过选择利用更多的天线,因而更加充分地利用了信道矩阵信息,能够进一步降低辐射峰值方向的功率损耗,与平滑削减方案相比,得到的接收功率更大,系统的误码率性能更优。本发明的波束成形方法适用于EIRP受限系统,不仅适用于超宽带系统,同样适用于60GHz系统。

The invention discloses a beam forming method in an EIRP limited system, which is proposed for solving the problem of low bit error rate performance of the existing beam forming method. The method of the invention first selects the antenna and compresses the initial beam vector, and then obtains a numerical solution through an exhaustive search method to approach the optimal solution. Compared with the prior art, the beamforming method of the present invention makes full use of the channel matrix information by selecting and utilizing more antennas, and can further reduce the power loss in the radiation peak direction. Compared with the smooth reduction scheme, the obtained The greater the received power, the better the bit error rate performance of the system. The beamforming method of the present invention is suitable for EIRP limited systems, not only for ultra-wideband systems, but also for 60GHz systems.

Description

一种EIRP受限系统中的波束成形方法A Beamforming Method in EIRP Constrained Systems

技术领域 technical field

本发明属于无线通信技术领域,具体涉及等效全向辐射功率(EIRP,Equivalent IsotropicRadiated Power)受限系统中的波束成形方法。The invention belongs to the technical field of wireless communication, and in particular relates to a beamforming method in an Equivalent Isotropic Radiated Power (EIRP, Equivalent Isotropic Radiated Power) limited system.

背景技术 Background technique

在多天线多载波的超宽带(UWB)系统中,由于美国联邦通讯委员会(FCC)对正交频分复用(OFDM,Orthogonal Frequency Division Multiple)多载波超宽带系统的功率谱密度有严格要求,即对于每个子载波,等效全向辐射功率不大于-41.3dBm/MHz。因为传统理想发射波束成形算法(本征波束成形),利用信道特征值来产生具有方向性的空间波束,而仅仅简单限制总发射功率并不能使所有方向的功率满足EIRP限制,所以,本征波束成形算法不适用于EIRP受限系统。针对上述问题,已经存在一些适用于EIRP受限超宽带系统的发射波束成形方案,这些方法进一步限制了发射功率,其中包括了压缩本征波束成形方案和天线选择方案,不过这些方案使系统的误码率性能很差。在压缩本征波束成形的基础上提出了压缩算法和快速平滑迭代算法来设计发射波束成形矢量,进一步提高接收信噪比。与压缩本征波束成形方案相比,这些算法降低了误码率改进了系统性能。对于多载波UWB系统,在EIPR受限条件下继续改善系统性能是具有挑战性的任务。In the multi-antenna multi-carrier ultra-wideband (UWB) system, because the US Federal Communications Commission (FCC) has strict requirements on the power spectral density of the Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiple) multi-carrier UWB system, That is, for each subcarrier, the equivalent isotropic radiated power is not greater than -41.3dBm/MHz. Because the traditional ideal transmit beamforming algorithm (eigenbeamforming) uses channel eigenvalues to generate directional spatial beams, and simply limiting the total transmit power cannot make the power in all directions meet the EIRP limit, so the eigenbeam Shaping algorithms are not suitable for EIRP constrained systems. In view of the above problems, there are already some transmit beamforming schemes suitable for EIRP-limited ultra-wideband systems. These methods further limit the transmit power, including compressed eigenbeamforming schemes and antenna selection schemes, but these schemes make the system error Bit rate performance is poor. On the basis of compressed eigenbeamforming, a compression algorithm and a fast smoothing iterative algorithm are proposed to design the transmit beamforming vector and further improve the receive signal-to-noise ratio. Compared with compressive intrinsic beamforming schemes, these algorithms reduce bit error rate and improve system performance. For multi-carrier UWB systems, it is a challenging task to continuously improve system performance under EIPR-limited conditions.

关于EIRP限制的数学分析:对发射端天线为均匀直线阵(ULA)的情况进行分析。假设λc为传输载波波长,天线间距为dT,阵元数目为nT,阵元沿着z轴方向排列,与z轴的夹角为θ。nT元直线阵如图1所示,天线阵向量 a ( θ ) = ( 1 , e jΩ , e j 2 Ω , . . . , e j ( n T - 1 ) Ω ) H , 其中Ω=(2π/λc)dTcos(θ)。假设dT≥λc/2,θ∈(-π,π],显然Ω∈(-π,π]。假设接收端天线数为nR=1,发射端已知信道状态信息,即第k个子载波上信道矩阵信息Hk,第k个子载波上的接收信号yk=Hkwkxk+nk,xk是均值为0,方差为1复标量符号,nk是循环对称复高斯噪声矢量,nk的每个元素独立同分布,且均值为0,方差为N0。wk表示第k个子载波上的波束矢量。Mathematical analysis on EIRP limitation: analyze the case where the antenna at the transmitting end is a uniform linear array (ULA). Suppose λ c is the transmission carrier wavelength, the antenna spacing is d T , the number of array elements is n T , the array elements are arranged along the z-axis direction, and the included angle with the z-axis is θ. The n T -element linear array is shown in Figure 1, and the antenna array vector a ( θ ) = ( 1 , e jΩ , e j 2 Ω , . . . , e j ( no T - 1 ) Ω ) h , where Ω=(2π/λ c )d T cos(θ). Suppose d T ≥ λ c /2, θ∈(-π, π], obviously Ω∈(-π, π]. Assume that the number of antennas at the receiving end is n R = 1, and the channel state information is known at the transmitting end, that is, the kth The channel matrix information H k on the subcarrier, the received signal on the kth subcarrier y k =H k w k x k +n k , x k is a complex scalar symbol with a mean value of 0 and a variance of 1, and n k is a cyclic symmetric complex Gaussian noise vector, each element of n k is independently and identically distributed, with a mean value of 0 and a variance of N 0 . w k represents the beam vector on the kth subcarrier.

第k个子载波上的EIRP限制归一化可表示为: P EIRP ( θ ) = max θ ∈ ( 0,2 π ] | a ( θ ) H w k | ≤ 1 , 上式还可以表示为P(Ω)=|a(Ω)Hwk|2≤1。P(Ω)可以看成是wk的傅里叶反变换的模的平方。对于均匀直线阵,可以看成是波束矢量wk进行IDFT采样。nT×1维波束矢量wk对应长度为K的IDFT为rk=(r1,r2,…,rK)T,其中

Figure BDA0000138991630000021
(j=1,2,…,K)。因此,rk与wk可以表示: r k = Θ K × n T w k . 其中,The EIRP-limited normalization on the kth subcarrier can be expressed as: P EIRP ( θ ) = max θ ∈ ( 0,2 π ] | a ( θ ) h w k | ≤ 1 , The above formula can also be expressed as P(Ω)=|a(Ω) H w k | 2 ≤1. P(Ω) can be regarded as the square of the modulus of the inverse Fourier transform of w k . For a uniform linear array, it can be regarded as a beam vector w k for IDFT sampling. n T ×1-dimensional beam vector w k corresponds to the IDFT of length K as r k =(r 1 ,r 2 ,…,r K ) T , where
Figure BDA0000138991630000021
(j=1, 2, . . . , K). Therefore, r k and w k can express: r k = Θ K × no T w k . in,

ΘΘ KK ×× nno TT == 11 11 .. .. .. 11 11 ee jj 22 ππ // KK .. .. .. ee jj 22 ππ (( nno tt -- 11 )) // KK Mm Mm Oo Mm 11 ee jj 22 ππ (( KK -- 11 )) // KK .. .. .. ee jj 22 ππ (( nno TT -- 11 )) (( KK -- 11 )) // KK KK ×× nno TT

是wk对应的IDFT矩阵,K表示所取的空间方向数目,在取定的方向上满足EIRP限制。K的取值可以改变,K值越大,计算越精确,不过K必须是有限值。is the IDFT matrix corresponding to w k , K represents the number of spatial directions taken, and the EIRP restriction is satisfied in the chosen direction. The value of K can be changed, the larger the value of K, the more accurate the calculation, but K must be a finite value.

P EIRP ( θ ) = max θ ∈ ( 0,2 π ] | a ( θ ) H w k | ≤ 1 可以得到 | | Θ K × n T w k | | ∞ 2 ≤ 1 . 为了改善系统误码率性能,需要考虑如何设计发送波束矢量wk来提高接收信噪比或使接收端的信噪比最大化。问题等价于:Depend on P EIRP ( θ ) = max θ ∈ ( 0,2 π ] | a ( θ ) h w k | ≤ 1 can get | | Θ K × no T w k | | ∞ 2 ≤ 1 . In order to improve the bit error rate performance of the system, it is necessary to consider how to design the transmitting beam vector w k to improve the receiving SNR or maximize the SNR at the receiving end. The problem is equivalent to:

maxmax ww kk ρρ (( ww kk )) || || Hh kk ww kk || || 22 22

subjecttosubject to || || ΘΘ KK ×× nno TT ww kk || || ∞∞ 22 ≤≤ 11

由于

Figure BDA0000138991630000028
只有在取等号时,ρ(wk)才会得到最优解。因此,because
Figure BDA0000138991630000028
Only when the equal sign is taken, ρ(w k ) will get the optimal solution. therefore,

ρρ (( ww kk )) == || || Hh kk ww kk || || 22 22 || || ΘΘ KK ×× nno TT ww kk || || ∞∞ 22 ..

天线选择(Antenna Selection)包括发射天线选择和接收天线选择,天线选择准则主要包括信道容量最大准则和接收误码率最小准则。这里考虑的发射天线选择方法选择了唯一的天线,并采用接收误码率最小准则,即使接收信噪比(SNR)最大化。天线选择:单位矢量el表示第l个元素为1,天线选择方法中波束矢量

Figure BDA00001389916300000210
其中
Figure BDA00001389916300000211
其方法详细描述可以参考文献:Cheran M.Vithanage,Steve C.J.Parker,Magnus Sandell.Antenna selection with phase precoding for high performance UWB communication with legacyWiMedia multi-band OFDM devices.Proc.IEEE Int.Conf.Communications,pp.3938-3942,May 2008。其优点在于:当发射天线数目为两个时,发射天线选择能够在EIRP限制条件下使系统误码率最小;当发射天线数超过两个时,天线选择方法易于实现,复杂度很低。其缺点在于:当发射天线数超过两个时,系统误码率性能较差。Antenna selection (Antenna Selection) includes the selection of the transmitting antenna and the selection of the receiving antenna, and the antenna selection criteria mainly include the maximum channel capacity criterion and the minimum reception bit error rate criterion. The transmit antenna selection method considered here selects the only antenna and adopts the minimum criterion of the receive bit error rate, ie the receive signal-to-noise ratio (SNR) is maximized. Antenna selection: the unit vector e l indicates that the lth element is 1, and the beam vector in the antenna selection method
Figure BDA00001389916300000210
in
Figure BDA00001389916300000211
For a detailed description of the method, please refer to: Cheran M.Vithanage, Steve CJParker, Magnus Sandell.Antenna selection with phase precoding for high performance UWB communication with legacyWiMedia multi-band OFDM devices.Proc.IEEE Int.Conf.Communications, pp.3938- 3942, May 2008. The advantage is that: when the number of transmitting antennas is two, the selection of transmitting antennas can minimize the bit error rate of the system under the condition of EIRP restriction; when the number of transmitting antennas exceeds two, the antenna selection method is easy to implement and the complexity is very low. Its disadvantage is that when the number of transmitting antennas exceeds two, the performance of the bit error rate of the system is poor.

压缩本征波束成形算法(Scaled Eigen-beamforming),对本征波束矢量进行压缩,使发射功率满足EIRP限制要求。由本征波束成形可以得到本征波束矢量wEB,wEB

Figure BDA0000138991630000031
的最大特征值对应的特征向量,压缩后的波束矢量
Figure BDA0000138991630000032
能够适用于EIRP受限系统。该方法详细描述可以参考文献:C.M.Vithanage,Y.Wang,and J.P.Coon.Transmitbeamforming methods for improved received signal-to-noise ratio in equivalent isotropic radiatedpower-constrained systems.IET Communications,Vol.3,PP.38-47,2009。其缺点在于仅仅简单地限制发射功率而造成接收信噪比很小,从而使系统的误码率性能很差。Scaled Eigen-beamforming algorithm (Scaled Eigen-beamforming) compresses the eigenbeam vector so that the transmission power meets the EIRP limit requirement. The eigenbeam vector w EB can be obtained by eigenbeamforming, and w EB is
Figure BDA0000138991630000031
The eigenvector corresponding to the largest eigenvalue of , the compressed beam vector
Figure BDA0000138991630000032
Can be applied to EIRP restricted systems. For a detailed description of the method, please refer to: CMVithanage, Y.Wang, and JPCoon.Transmitbeamforming methods for improved received signal-to-noise ratio in equivalent isotropic radiatedpower-constrained systems.IET Communications, Vol.3, PP.38-47, 2009 . Its shortcoming is that the received signal-to-noise ratio is very small only by simply limiting the transmission power, so that the bit error rate performance of the system is very poor.

平滑削减方案(Soft clipping method)类似于将时域OFDM系统中抑制峰均功率比(PAPR)的原理应用于空域。该方法先确定压缩本征波束矢量的辐射峰值方向,然后改变峰值方向,类似于OFDM系统的限幅滤波技术,将频域的波束矢量变换到时域,再对相应时域向量的幅度进行一定处理,即幅度的峰均功率比进行平滑迭代压缩以满足特定要求,迭代处理后的时域向量再变换到频域,频域矢量再对辐射方向作对应处理后可以得到平滑削减方案的波束矢量。平滑削减方案通过多次迭代降低辐射峰值方向的功率损失,从而获得更高的接收功率,改善系统性能。有关此方法更详细的叙述,可以参考文献:C.M.Vithanage,Y.Wang,and J.P.Coon.Transmit beamforming methods for improved receivedsignal-to-noise ratio in equivalent isotropic radiated power-constrained systems.IETCommunications,Vol.3,PP.38-47,2009。The smooth clipping method (Soft clipping method) is similar to applying the principle of suppressing the peak-to-average power ratio (PAPR) in the time-domain OFDM system to the space domain. This method first determines the radiation peak direction of the compressed eigenbeam vector, and then changes the peak direction, similar to the limiting filter technology of the OFDM system, transforms the beam vector in the frequency domain to the time domain, and then performs a certain adjustment on the amplitude of the corresponding time domain vector. Processing, that is, the peak-to-average power ratio of the amplitude is smoothed and iteratively compressed to meet specific requirements, and the time-domain vector after iterative processing is transformed into the frequency domain, and the frequency-domain vector is processed correspondingly to the radiation direction to obtain the beam vector of the smooth reduction scheme . The smooth curtailment scheme reduces the power loss in the radiation peak direction through multiple iterations, so as to obtain higher received power and improve system performance. For a more detailed description of this method, refer to: C.M.Vithanage, Y.Wang, and J.P.Coon.Transmit beamforming methods for improved receivedsignal-to-noise ratio in equivalent isotropic radiated power-constrained systems.IETCommunications, Vol.3, PP .38-47, 2009.

总体而言,上述三种方法的误码率性能都达不到要求,天线选择方法和压缩本征波束成形算法误码率性能比较差,平滑削减方案虽然提高了误码率性能,但改善的幅度不大。Overall, the BER performance of the above three methods cannot meet the requirements. The BER performance of the antenna selection method and the compressed intrinsic beamforming algorithm is relatively poor. Although the smooth reduction scheme improves the BER performance, the improved Not much.

发明内容 Contents of the invention

本发明的目的是为了解决现有的波束成形方法误码率性能较低的问题,提出了一种EIRP受限系统中的波束成形方法,在平滑削减方案的基础上进一步改善系统误码率性能。The purpose of the present invention is to solve the problem of low bit error rate performance of the existing beamforming method, and propose a beamforming method in an EIRP limited system to further improve the system bit error rate performance on the basis of the smooth reduction scheme .

本发明的技术方案是:一种EIRP受限系统中的波束成形方法,具体流程示意图如图2所示,包括如下步骤:The technical solution of the present invention is: a beamforming method in an EIRP limited system, the specific flow diagram is shown in Figure 2, including the following steps:

步骤1:天线选择:从EIRP受限系统中的nT根天线中选择出最大和次大的信道增益对应的两根天线S和T,其中,nT>2,天线S和T的权值分别为:p、λp,其余所有nT-2根天线的权值均为0,nT根天线概率分配记为

Figure BDA0000138991630000033
其中,λ为天线T的权值系数,大小范围为:0<λ≤1,则第i根天线的初始波束矢量1≤i≤nT,(Hk)i为第i根天线上第k个子载波上的信道增益,∠表示求相位运算,(·)i表示取第i个元素;Step 1: Antenna selection: Select two antennas S and T corresponding to the largest and second largest channel gains from the n T antennas in the EIRP limited system, where n T > 2, the weights of antennas S and T They are: p, λp, the weights of all other n T -2 antennas are 0, and the probability distribution of n T antennas is recorded as
Figure BDA0000138991630000033
Among them, λ is the weight coefficient of the antenna T, and the size range is: 0<λ≤1, then the initial beam vector of the i-th antenna 1≤i≤n T , (H k ) i is the channel gain on the kth subcarrier on the i-th antenna, ∠ means to calculate the phase operation, (·) i means to take the i-th element;

步骤2:压缩初始波束矢量:选择在第k个子载波上的压缩初始波束矢量

Figure BDA0000138991630000041
其中,w0,k对应的方向旋转矩阵
Figure BDA0000138991630000043
Figure BDA0000138991630000044
&Theta; K &times; n T = 1 1 . . . 1 1 e j 2 &pi; / K . . . e j 2 &pi; ( n T - 1 ) / K M M O M 1 e j 2 &pi; ( K - 1 ) / K . . . e j 2 &pi; ( n T - 1 ) ( K - 1 ) / K , K表示所取的空间方向数目,||||表示无穷范数运算;得到k个子载波上的初始接收功率||||2表示2范数运算;Step 2: Compress the initial beam vector: Select the compressed initial beam vector on the kth subcarrier
Figure BDA0000138991630000041
in, The direction rotation matrix corresponding to w 0, k
Figure BDA0000138991630000043
Figure BDA0000138991630000044
&Theta; K &times; no T = 1 1 . . . 1 1 e j 2 &pi; / K . . . e j 2 &pi; ( no T - 1 ) / K m m o m 1 e j 2 &pi; ( K - 1 ) / K . . . e j 2 &pi; ( no T - 1 ) ( K - 1 ) / K , K represents the number of spatial directions taken, |||| represents the infinite norm operation; get the initial received power on k subcarriers |||| 2 means 2-norm operation;

步骤3:设置循环迭代次数J和M,初始化循环变量j=1,

Figure BDA0000138991630000047
λj为第j次循环时天线T的权值系数,w0,kj)为第j次循环时第k个子载波上的压缩初始波束矢量,初始化循环变量m=1;Step 3: Set the number of loop iterations J and M, initialize the loop variable j=1,
Figure BDA0000138991630000047
λ j is the weight coefficient of the antenna T during the j-th cycle, w 0, kj ) is the compressed initial beam vector on the k-th subcarrier during the j-th cycle, and the initialization cycle variable m=1;

步骤4:计算 r k , m = &Theta; n T &times; n T w m - 1 , k ( &lambda; j ) , 其中,rk,m为nT×1的列向量,rk,m幅度的峰均功率比为

Figure BDA0000138991630000049
ri=(rk,m)i表示rk,m的第i个元素,1≤i≤nT,PAPR0=0,Δ=|PAPRm-PAPRm-1|;Step 4: Calculate r k , m = &Theta; no T &times; no T w m - 1 , k ( &lambda; j ) , Among them, r k, m is a column vector of n T × 1, and the peak-to-average power ratio of r k, m amplitude is
Figure BDA0000138991630000049
r i =(r k, m ) i means r k, the ith element of m , 1≤i≤n T , PAPR 0 =0, Δ=|PAPR m -PAPR m-1 |;

如果Δ>ε,其中,ε为预设的阈值, ( r k , m + 1 ) i = ( | ( r k , m ) i | - | ( r k , m ) i | 3 3 ) exp ( j &angle; ( r k , m ) i ) ,

Figure BDA00001389916300000411
Figure BDA00001389916300000412
得到
Figure BDA00001389916300000413
空间辐射的峰值方向由
Figure BDA00001389916300000414
值确定,
Figure BDA00001389916300000415
计算出
Figure BDA00001389916300000416
&rho; ( w m , k ( &lambda; j ) ) = | | H k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; n T w m , k ( &lambda; j ) | | &infin; 2 ; 否则,wm,kj)=wm-1,k(λj), &rho; ( w m , k ( &lambda; j ) ) = | | H k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; n T w m , k ( &lambda; j ) | | &infin; 2 ; If Δ>ε, where ε is the preset threshold, ( r k , m + 1 ) i = ( | ( r k , m ) i | - | ( r k , m ) i | 3 3 ) exp ( j &angle; ( r k , m ) i ) ,
Figure BDA00001389916300000411
Figure BDA00001389916300000412
get
Figure BDA00001389916300000413
The peak direction of space radiation is given by
Figure BDA00001389916300000414
value is determined,
Figure BDA00001389916300000415
Calculate
Figure BDA00001389916300000416
and &rho; ( w m , k ( &lambda; j ) ) = | | h k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; no T w m , k ( &lambda; j ) | | &infin; 2 ; Otherwise, w m,kj )=w m-1 ,k(λ j ), &rho; ( w m , k ( &lambda; j ) ) = | | h k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; no T w m , k ( &lambda; j ) | | &infin; 2 ;

步骤5:m=m+1,若m≤M,重复步骤4;否则,得到

Figure BDA0000138991630000053
Figure BDA0000138991630000054
若j<J,则j=j+1,m=1,重复步骤4,否则,转到步骤6;Step 5: m=m+1, if m≤M, repeat step 4; otherwise, get
Figure BDA0000138991630000053
and
Figure BDA0000138991630000054
If j<J, then j=j+1, m=1, repeat step 4, otherwise, go to step 6;

步骤6:计算

Figure BDA0000138991630000055
其中 arg max x f ( x ) : = { x | &ForAll; y : f ( y ) &le; f ( x ) } ; Step 6: Calculate
Figure BDA0000138991630000055
in arg max x f ( x ) : = { x | &ForAll; the y : f ( the y ) &le; f ( x ) } ;

步骤7:如果

Figure BDA0000138991630000057
则波束矢量为
Figure BDA0000138991630000058
否则,波束矢量为wASS=wAS,其中,wAS为天线选择方法得到的波束矢量,ρ(wAS)为波束矢量wAS对应的接受功率。Step 7: If
Figure BDA0000138991630000057
Then the beam vector is
Figure BDA0000138991630000058
Otherwise, the beam vector is w ASS =w AS , where w AS is the beam vector obtained by the antenna selection method, and ρ(w AS ) is the received power corresponding to the beam vector w AS .

步骤3中仅以典型的均匀搜索方法作为参考,对其它可降低复杂度的搜索方法如二分法、单峰函数搜索法(又称黄金分割法或0.618法)等亦可使用。因为上述方案是对λ进行均匀搜索,计算的复杂度比较高,为了减少计算次数,可以通过二分法(即折半查找的方法)获得使ρ(wk(λ))最优的λ。这样采用二分法的天线子集选择方案与采用均匀搜索法的天线子集选择方案相比,步骤3的循环次数有明显的降低。步骤3中,因为ρ(wk(λ))在区间0<λj≤1是单峰函数,利用单峰函数搜索方法,在进一步降低计算复杂度的情况下,能够保证系统性能。In step 3, only a typical uniform search method is used as a reference, and other search methods that can reduce complexity such as dichotomy, unimodal function search (also known as golden section method or 0.618 method) can also be used. Because the above scheme is a uniform search for λ, the calculation complexity is relatively high. In order to reduce the number of calculations, the optimal λ for ρ(w k (λ)) can be obtained through the binary method (that is, the half-search method). In this way, compared with the antenna subset selection scheme using the dichotomy method, the number of cycles in step 3 is significantly reduced. In step 3, because ρ(w k (λ)) is a unimodal function in the interval 0<λ j ≤1, using the unimodal function search method can guarantee the system performance while further reducing the computational complexity.

下面以二分法为例,相应的步骤3做出如下修改:Taking the dichotomy as an example, the corresponding step 3 is modified as follows:

步骤3:设置循环迭代次数J和M,初始化循环变量j=1,λ0=0,λ1=1,

Figure BDA0000138991630000059
Figure BDA00001389916300000510
λj+1=(λab)/2,λj为第j次循环时天线T的权值系数,w0,kj)为第j次循环时第k个子载波上的压缩初始波束矢量,初始化循环变量m=1。Step 3: Set the number of loop iterations J and M, initialize the loop variable j=1, λ 0 =0, λ 1 =1,
Figure BDA0000138991630000059
Figure BDA00001389916300000510
λ j+1 =(λ ab )/2, λ j is the weight coefficient of the antenna T in the j-th cycle, w 0, kj ) is the weight coefficient on the k-th subcarrier in the j-th cycle Compress the initial beam vector and initialize the loop variable m=1.

本发明的有益效果:本发明的方法首先进行天线选择和压缩初始波束矢量,然后通过穷举搜索的方法得到数值解来逼近最优解,能够进一步降低辐射峰值方向的功率损耗,与平滑削减方案相比,得到的接收功率更大,系统的误码率性能更优。与现有技术相比,本发明具有以下优点:Beneficial effects of the present invention: the method of the present invention first selects the antenna and compresses the initial beam vector, and then obtains the numerical solution through the method of exhaustive search to approach the optimal solution, which can further reduce the power loss in the direction of the radiation peak, and smooth reduction scheme In comparison, the received power obtained is larger, and the bit error rate performance of the system is better. Compared with the prior art, the present invention has the following advantages:

(1)本发明的波束成形方法通过选择利用更多的天线,因而更加充分地利用了信道矩阵信息;(1) The beamforming method of the present invention makes full use of the channel matrix information by selecting and utilizing more antennas;

(2)本发明的波束成形方法适用于EIRP受限系统,不仅适用于超宽带系统,同样适用于60GHz系统。(2) The beamforming method of the present invention is suitable for EIRP limited systems, not only for ultra-wideband systems, but also for 60GHz systems.

本发明的波束成形方法与传统方法相比,能够进一步提高系统性能。Compared with the traditional method, the beamforming method of the present invention can further improve the system performance.

附图说明 Description of drawings

图1是本发明的N元直线阵的天线阵列示意图。FIG. 1 is a schematic diagram of an antenna array of an N-element linear array of the present invention.

图2是本发明的波束成形方法流程示意图。Fig. 2 is a schematic flow chart of the beamforming method of the present invention.

图3是超宽带系统CM3信道环境下本发明的波束成形方法与传统方法的误比特性能对比图。Fig. 3 is a comparison diagram of the bit error performance between the beamforming method of the present invention and the traditional method under the CM3 channel environment of the ultra-wideband system.

图4是超宽带系统CM3信道环境下本发明的波束成形方法采用不同搜索间距的误比特性能对比图。FIG. 4 is a comparison diagram of the bit error performance of the beamforming method of the present invention using different search distances under the CM3 channel environment of the ultra-wideband system.

图5是60GHz系统CM1信道环境下本发明的波束成形方法的误比特性能示意图。FIG. 5 is a schematic diagram of the bit error performance of the beamforming method of the present invention under the CM1 channel environment of the 60GHz system.

具体实施方式 Detailed ways

下面将结合附图,给出本发明的具体实施例。需要说明的是:实施例中的参数并不影响本发明的一般性。Specific embodiments of the present invention will be given below in conjunction with the accompanying drawings. It should be noted that the parameters in the examples do not affect the generality of the present invention.

图3和图4中采用的信道均为802.15.3a标准信道模型中的CM3信道,有关此信道更详细的叙述,可以参考文献:IEEE P802.15 Working Group for Wireless Personal AreaNetworks,Channel Modeling Sub-committee Report Final,IEEE P802.15-02/368r5-SG3a,Dec.2002。图5中采用的信道为802.15.3c标准信道模型中的CM1信道,有关此信道更详细的叙述,可以参考文献:IEEE P802.15 Working Group for Wireless Personal Area Networks,TG3cChannel Modeling Sub-committee Report Final,IEEE 15-07-0584-01-003c,Sep.2010。The channels used in Figure 3 and Figure 4 are both CM3 channels in the 802.15.3a standard channel model. For a more detailed description of this channel, please refer to the literature: IEEE P802.15 Working Group for Wireless Personal AreaNetworks, Channel Modeling Sub-committee Report Final, IEEE P802.15-02/368r5-SG3a, Dec.2002. The channel used in Figure 5 is the CM1 channel in the 802.15.3c standard channel model. For a more detailed description of this channel, refer to the literature: IEEE P802.15 Working Group for Wireless Personal Area Networks, TG3cChannel Modeling Sub-committee Report Final, IEEE 15-07-0584-01-003c, Sep. 2010.

如图3所示,在超宽带系统CM3信道环境下,本发明的波束成形方法与传统方法的误比特性能对比。其中,波束成形方法采用均匀搜索方法,搜索间距为0.1,搜索次数为10次,即最大循环次数为J=10。当搜索间距为0.1时,在第j次循环时,λj的取值为

Figure BDA0000138991630000061
λj值可以从0.1,0.2,0.3一直取到1,在BER=10-4时,其误比特性能与平滑削减方案相比改善了约0.7dB。As shown in FIG. 3 , in the ultra-wideband system CM3 channel environment, the bit error performance of the beamforming method of the present invention is compared with that of the traditional method. Wherein, the beamforming method adopts a uniform search method, the search interval is 0.1, and the number of searches is 10, that is, the maximum number of cycles is J=10. When the search distance is 0.1, at the jth cycle, the value of λ j is
Figure BDA0000138991630000061
The value of λ j can be taken from 0.1, 0.2, 0.3 to 1. When BER=10 -4 , its bit error performance is improved by about 0.7dB compared with the smooth reduction scheme.

如图4所示,在超宽带系统CM3信道环境下,本发明的波束成形方法在采用不同搜索间距时的误比特性能对比,采用的不同搜索间距分别为:0.5,0.2,0.1,0.05;对应的最大循环次数分别为2,5,10,20。随着搜索间距的缩小,对λ的定位就越准确,就更能够找到使ρ(wk(λ))的值更大所对应的λ值,其对应的系统误比特性能就更好。从图中可以看出,当搜索间距为0.5时,λj值只能取0.5和1,其误比特性能甚至比平滑削减方案的误比特性能要差。不过,当搜索间距为0.05时,λj值可以从0.05,0.1,0.15,0.2一直取到1,在BER=10-4时,其误比特性能与平滑削减方案相比改善了约0.8dB。As shown in Figure 4, under the CM3 channel environment of the ultra-wideband system, the bit error performance comparison of the beamforming method of the present invention when using different search distances, the different search distances adopted are respectively: 0.5, 0.2, 0.1, 0.05; The maximum number of cycles are 2, 5, 10, 20 respectively. With the narrowing of the search distance, the location of λ is more accurate, and the value of λ corresponding to the larger value of ρ(w k (λ)) can be found, and the corresponding bit error performance of the system is better. It can be seen from the figure that when the search distance is 0.5, the value of λj can only be 0.5 and 1, and its bit error performance is even worse than that of the smooth reduction scheme. However, when the search interval is 0.05, the value of λ j can be taken from 0.05, 0.1, 0.15, 0.2 to 1. When BER=10 -4 , its bit error performance is improved by about 0.8dB compared with the smooth reduction scheme.

如图5所示,在60GHz系统CM1信道环境下,采用不同搜索方法的波束成形方法的误比特性能示意图,其中,ASS(均匀搜索法)表示采用均匀搜索方法的波束成形方法,ASS(二分法)表示采用二分法的波束成形方法。As shown in Figure 5, in the CM1 channel environment of the 60GHz system, the bit error performance diagram of the beamforming method using different search methods, wherein, ASS (uniform search method) means the beamforming method using uniform search method, ASS (dichotomy method ) represents the beamforming method using dichotomy.

以上实例仅为本发明的优选例子而已,本发明的使用并不局限于该实例,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above example is only a preferred example of the present invention, and the use of the present invention is not limited to this example. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should be included in this document. within the scope of protection of the invention.

Claims (2)

1.一种EIRP受限系统中的波束成形方法,包括如下步骤:1. A beamforming method in an EIRP limited system, comprising the steps of: 步骤1:天线选择:从EIRP受限系统中的nT根天线中选择出最大和次大的信道增益对应的两根天线S和T,其中,nT>2,天线S和T的权值分别为:p、λp,其余所有nT-2根天线的权值均为0,nT根天线概率分配记为
Figure FDA0000138991620000011
其中,λ为天线T的权值系数,大小范围为:0<λ≤1,则第i根天线的初始波束矢量1≤i≤nT,(Hk)i为第i根天线上第k个子载波上的信道增益,∠表示求相位运算,(·)i表示取第i个元素;
Step 1: Antenna selection: Select two antennas S and T corresponding to the largest and second largest channel gains from the n T antennas in the EIRP limited system, where n T > 2, the weights of antennas S and T They are: p, λp, the weights of all other n T -2 antennas are 0, and the probability distribution of n T antennas is recorded as
Figure FDA0000138991620000011
Among them, λ is the weight coefficient of the antenna T, and the size range is: 0<λ≤1, then the initial beam vector of the i-th antenna 1≤i≤n T , (H k ) i is the channel gain on the kth subcarrier on the i-th antenna, ∠ means to calculate the phase operation, (·) i means to take the i-th element;
步骤2:压缩初始波束矢量:选择在第k个子载波上的压缩初始波束矢量
Figure FDA0000138991620000013
其中,
Figure FDA0000138991620000014
w0,k对应的方向旋转矩阵
Figure FDA0000138991620000015
&Theta; K &times; n T = 1 1 . . . 1 1 e j 2 &pi; / K . . . e j 2 &pi; ( n T - 1 ) / K M M O M 1 e j 2 &pi; ( K - 1 ) / K . . . e j 2 &pi; ( n T - 1 ) ( K - 1 ) / K , K表示所取的空间方向数目,||||表示无穷范数运算;得到k个子载波上的初始接收功率||||2表示2范数运算;
Step 2: Compress the initial beam vector: Select the compressed initial beam vector on the kth subcarrier
Figure FDA0000138991620000013
in,
Figure FDA0000138991620000014
The direction rotation matrix corresponding to w 0, k
Figure FDA0000138991620000015
&Theta; K &times; no T = 1 1 . . . 1 1 e j 2 &pi; / K . . . e j 2 &pi; ( no T - 1 ) / K m m o m 1 e j 2 &pi; ( K - 1 ) / K . . . e j 2 &pi; ( no T - 1 ) ( K - 1 ) / K , K represents the number of spatial directions taken, |||| represents the infinite norm operation; get the initial received power on k subcarriers |||| 2 means 2-norm operation;
步骤3:设置循环迭代次数J和M,初始化循环变量j=1,
Figure FDA0000138991620000019
λj为第j次循环时天线T的权值系数,w0,kj)为第j次循环时第k个子载波上的压缩初始波束矢量,初始化循环变量m=1;
Step 3: Set the number of loop iterations J and M, initialize the loop variable j=1,
Figure FDA0000138991620000019
λ j is the weight coefficient of the antenna T during the j-th cycle, w 0, kj ) is the compressed initial beam vector on the k-th subcarrier during the j-th cycle, and the initialization cycle variable m=1;
步骤4:计算 r k , m = &Theta; n T &times; n T w m - 1 , k ( &lambda; j ) , 其中,rk,m为nT×1的列向量,rk,m幅度的峰均功率比为
Figure FDA00001389916200000111
ri=(rk,m)i表示rk,m的第i个元素,1≤i≤nT,PAPR0=0,Δ=|PAPRm-PAPRm-1|;
Step 4: Calculate r k , m = &Theta; no T &times; no T w m - 1 , k ( &lambda; j ) , Among them, r k, m is a column vector of n T × 1, and the peak-to-average power ratio of r k, m amplitude is
Figure FDA00001389916200000111
r i =(r k, m ) i means r k, the ith element of m , 1≤i≤n T , PAPR 0 =0, Δ=|PAPR m -PAPR m-1 |;
如果Δ>ε,其中,ε为预设的阈值, ( r k , m + 1 ) i = ( | ( r k , m ) i | - | ( r k , m ) i | 3 3 ) exp ( j &angle; ( r k , m ) i ) ,
Figure FDA0000138991620000021
Figure FDA0000138991620000022
得到空间辐射的峰值方向由
Figure FDA0000138991620000024
值确定,
Figure FDA0000138991620000025
计算出
Figure FDA0000138991620000026
&rho; ( w m , k ( &lambda; j ) ) = | | H k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; n T w m , k ( &lambda; j ) | | &infin; 2 ; 否则,wm,kj)=wm-1,kj), &rho; ( w m , k ( &lambda; j ) ) = | | H k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; n T w m , k ( &lambda; j ) | | &infin; 2 ;
If Δ>ε, where ε is the preset threshold, ( r k , m + 1 ) i = ( | ( r k , m ) i | - | ( r k , m ) i | 3 3 ) exp ( j &angle; ( r k , m ) i ) ,
Figure FDA0000138991620000021
Figure FDA0000138991620000022
get The peak direction of space radiation is given by
Figure FDA0000138991620000024
value is determined,
Figure FDA0000138991620000025
Calculate
Figure FDA0000138991620000026
and &rho; ( w m , k ( &lambda; j ) ) = | | h k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; no T w m , k ( &lambda; j ) | | &infin; 2 ; Otherwise, w m,kj )=w m-1,kj ), &rho; ( w m , k ( &lambda; j ) ) = | | h k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; no T w m , k ( &lambda; j ) | | &infin; 2 ;
步骤5:m=m+1,若m≤M,重复步骤4;否则,
Figure FDA0000138991620000029
得到
Figure FDA00001389916200000210
Figure FDA00001389916200000211
若j<J,则j=j+1,m=1,重复步骤4,否则,转到步骤6;
Step 5: m=m+1, if m≤M, repeat step 4; otherwise,
Figure FDA0000138991620000029
get
Figure FDA00001389916200000210
and
Figure FDA00001389916200000211
If j<J, then j=j+1, m=1, repeat step 4, otherwise, go to step 6;
步骤6:计算
Figure FDA00001389916200000212
其中 arg max x f ( x ) : = { x | &ForAll; y : f ( y ) &le; f ( x ) } ;
Step 6: Calculate
Figure FDA00001389916200000212
in arg max x f ( x ) : = { x | &ForAll; the y : f ( the y ) &le; f ( x ) } ;
步骤7:如果
Figure FDA00001389916200000214
则波束矢量为
Figure FDA00001389916200000215
否则,波束矢量为wASS=wAS,其中,wAS为天线选择方法得到的波束矢量,ρ(wAS)为波束矢量wAS对应的接受功率。
Step 7: If
Figure FDA00001389916200000214
Then the beam vector is
Figure FDA00001389916200000215
Otherwise, the beam vector is w ASS =w AS , where w AS is the beam vector obtained by the antenna selection method, and ρ(w AS ) is the received power corresponding to the beam vector w AS .
2.一种EIRP受限系统中的波束成形方法,包括如下步骤:2. A beamforming method in an EIRP limited system, comprising the steps of: 步骤1:天线选择:从EIRP受限系统中的nT根天线中选择出最大和次大的信道增益对应的两根天线S和T,其中,nT>2,天线S和T的权值分别为:p、λp,其余所有nT-2根天线的权值均为0,nT根天线概率分配记为
Figure FDA00001389916200000216
其中,λ为天线T的权值系数,大小范围为:0<λ≤1,则第i根天线的初始波束矢量1≤i≤nT,(Hk)i为第i根天线上第k个子载波上的信道增益,∠表示求相位运算,(·)i表示取第i个元素;
Step 1: Antenna selection: Select two antennas S and T corresponding to the largest and second largest channel gains from the n T antennas in the EIRP limited system, where n T > 2, the weights of antennas S and T They are: p, λp, the weights of all other n T -2 antennas are 0, and the probability distribution of n T antennas is recorded as
Figure FDA00001389916200000216
Among them, λ is the weight coefficient of the antenna T, and the size range is: 0<λ≤1, then the initial beam vector of the i-th antenna 1≤i≤n T , (H k ) i is the channel gain on the kth subcarrier on the i-th antenna, ∠ means to calculate the phase operation, (·) i means to take the i-th element;
步骤2:压缩初始波束矢量:选择在第k个子载波上的压缩初始波束矢量
Figure FDA00001389916200000218
其中,w0,k对应的方向旋转矩阵
Figure FDA0000138991620000031
Figure FDA0000138991620000032
&Theta; K &times; n T = 1 1 . . . 1 1 e j 2 &pi; / K . . . e j 2 &pi; ( n T - 1 ) / K M M O M 1 e j 2 &pi; ( K - 1 ) / K . . . e j 2 &pi; ( n T - 1 ) ( K - 1 ) / K , K表示所取的空间方向数目,||||表示无穷范数运算;得到k个子载波上的初始接收功率
Figure FDA0000138991620000034
||||2表示2范数运算;
Step 2: Compress the initial beam vector: Select the compressed initial beam vector on the kth subcarrier
Figure FDA00001389916200000218
in, The direction rotation matrix corresponding to w 0, k
Figure FDA0000138991620000031
Figure FDA0000138991620000032
&Theta; K &times; no T = 1 1 . . . 1 1 e j 2 &pi; / K . . . e j 2 &pi; ( no T - 1 ) / K m m o m 1 e j 2 &pi; ( K - 1 ) / K . . . e j 2 &pi; ( no T - 1 ) ( K - 1 ) / K , K represents the number of spatial directions taken, |||| represents the infinite norm operation; get the initial received power on k subcarriers
Figure FDA0000138991620000034
|||| 2 means 2-norm operation;
步骤3:设置循环迭代次数J和M,初始化循环变量j=1,λ0=0,λ1=1,
Figure FDA0000138991620000035
Figure FDA0000138991620000036
λj+1=(λab)/2,λj为第j次循环时天线T的权值系数,w0,kj)为第j次循环时第k个子载波上的压缩初始波束矢量,初始化循环变量m=1;
Step 3: Set the number of loop iterations J and M, initialize the loop variable j=1, λ 0 =0, λ 1 =1,
Figure FDA0000138991620000035
Figure FDA0000138991620000036
λ j+1 =(λ ab )/2, λ j is the weight coefficient of the antenna T in the j-th cycle, w 0, kj ) is the weight coefficient on the k-th subcarrier in the j-th cycle Compress the initial beam vector and initialize the loop variable m=1;
步骤4:计算 r k , m = &Theta; n T &times; n T w m - 1 , k ( &lambda; j ) , 其中,rk,m为nT×1的列向量,rk,m幅度的峰均功率比为
Figure FDA0000138991620000038
ri=(rk,m)i表示rk,m的第i个元素,1≤i≤nT,PAPR0=0,Δ=|PAPRm-PAPRm-1|;
Step 4: Calculate r k , m = &Theta; no T &times; no T w m - 1 , k ( &lambda; j ) , Among them, r k, m is a column vector of n T × 1, and the peak-to-average power ratio of r k, m amplitude is
Figure FDA0000138991620000038
r i =(r k, m ) i means r k, the ith element of m , 1≤i≤n T , PAPR 0 =0, Δ=|PAPR m -PAPR m-1 |;
如果Δ>ε,其中,ε为预设的阈值, ( r k , m + 1 ) i = ( | ( r k , m ) i | - | ( r k , m ) i | 3 3 ) exp ( j &angle; ( r k , m ) i ) ,
Figure FDA00001389916200000310
Figure FDA00001389916200000311
得到
Figure FDA00001389916200000312
空间辐射的峰值方向由
Figure FDA00001389916200000313
值确定,
Figure FDA00001389916200000314
计算出
Figure FDA00001389916200000315
&rho; ( w m , k ( &lambda; j ) ) = | | H k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; n T w m , k ( &lambda; j ) | | &infin; 2 ; 否则,wm,kj)=wm-1,kj), &rho; ( w m , k ( &lambda; j ) ) = | | H k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; n T w m , k ( &lambda; j ) | | &infin; 2 ;
If Δ>ε, where ε is the preset threshold, ( r k , m + 1 ) i = ( | ( r k , m ) i | - | ( r k , m ) i | 3 3 ) exp ( j &angle; ( r k , m ) i ) ,
Figure FDA00001389916200000310
Figure FDA00001389916200000311
get
Figure FDA00001389916200000312
The peak direction of space radiation is given by
Figure FDA00001389916200000313
value is determined,
Figure FDA00001389916200000314
Calculate
Figure FDA00001389916200000315
and &rho; ( w m , k ( &lambda; j ) ) = | | h k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; no T w m , k ( &lambda; j ) | | &infin; 2 ; Otherwise, w m,kj )=w m-1,kj ), &rho; ( w m , k ( &lambda; j ) ) = | | h k w m , k ( &lambda; j ) | | 2 2 | | &Theta; K &times; no T w m , k ( &lambda; j ) | | &infin; 2 ;
步骤5:m=m+1,若m≤M,重复步骤4;否则,
Figure FDA00001389916200000318
得到
Figure FDA00001389916200000319
Figure FDA00001389916200000320
若j<J,则j=j+1,m=1,重复步骤4,否则,转到步骤6;
Step 5: m=m+1, if m≤M, repeat step 4; otherwise,
Figure FDA00001389916200000318
get
Figure FDA00001389916200000319
and
Figure FDA00001389916200000320
If j<J, then j=j+1, m=1, repeat step 4, otherwise, go to step 6;
步骤6:计算其中 arg max x f ( x ) : = { x | &ForAll; y : f ( y ) &le; f ( x ) } ; Step 6: Calculate in arg max x f ( x ) : = { x | &ForAll; the y : f ( the y ) &le; f ( x ) } ; 步骤7:如果
Figure FDA0000138991620000043
则波束矢量为
Figure FDA0000138991620000044
否则,波束矢量为wASS=wAS,其中,wAS为天线选择方法得到的波束矢量,ρ(wAS)为波束矢量wAS对应的接受功率。
Step 7: If
Figure FDA0000138991620000043
Then the beam vector is
Figure FDA0000138991620000044
Otherwise, the beam vector is w ASS =w AS , where w AS is the beam vector obtained by the antenna selection method, and ρ(w AS ) is the received power corresponding to the beam vector w AS .
CN2012100471373A 2012-02-28 2012-02-28 Beam forming method used in equivalent isotropic radiated power limited systems Pending CN102571178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100471373A CN102571178A (en) 2012-02-28 2012-02-28 Beam forming method used in equivalent isotropic radiated power limited systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100471373A CN102571178A (en) 2012-02-28 2012-02-28 Beam forming method used in equivalent isotropic radiated power limited systems

Publications (1)

Publication Number Publication Date
CN102571178A true CN102571178A (en) 2012-07-11

Family

ID=46415743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100471373A Pending CN102571178A (en) 2012-02-28 2012-02-28 Beam forming method used in equivalent isotropic radiated power limited systems

Country Status (1)

Country Link
CN (1) CN102571178A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779985A (en) * 2015-04-27 2015-07-15 电子科技大学 Iterative beam forming method based on channel space sparse characteristic
CN104779988A (en) * 2015-04-27 2015-07-15 电子科技大学 Quick iteration beam forming method
CN104935367A (en) * 2015-04-27 2015-09-23 电子科技大学 A Fast Iterative Beamforming Method Based on Spatial Spatial Sparsity of Channel
WO2016116026A1 (en) * 2015-01-19 2016-07-28 Huawei Technologies Co., Ltd. Frequency-division multiplexing (fdm) using soft clipping (sc)
CN108432153A (en) * 2015-10-23 2018-08-21 新生组织网络有限公司 Method and apparatus for controlling equivalent isotropically radiated power
CN109155663A (en) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 Adjust the method, apparatus and storage medium of antenna modules
CN109792270A (en) * 2016-09-23 2019-05-21 瑞典爱立信有限公司 The method of network node and the wave beam that will emit at least the first user equipment for determination
CN112217541A (en) * 2019-07-12 2021-01-12 华为技术有限公司 Beam configuration method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138206A (en) * 2005-03-08 2008-03-05 艾利森电话股份有限公司 Method and arrangement for advanced routing metrics in multihop networks
CN101283525A (en) * 2005-08-31 2008-10-08 提捷洛技术股份有限公司 Average eirp control of multiple antenna transmission signals
GB2458324A (en) * 2008-03-14 2009-09-16 Toshiba Res Europ Ltd Communication system with an iteratively processed eigen-beamforming vector
US20110210892A1 (en) * 2010-02-28 2011-09-01 Yaron Shany Method for single stream beamforming with mixed power constraints

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138206A (en) * 2005-03-08 2008-03-05 艾利森电话股份有限公司 Method and arrangement for advanced routing metrics in multihop networks
CN101283525A (en) * 2005-08-31 2008-10-08 提捷洛技术股份有限公司 Average eirp control of multiple antenna transmission signals
GB2458324A (en) * 2008-03-14 2009-09-16 Toshiba Res Europ Ltd Communication system with an iteratively processed eigen-beamforming vector
US20110210892A1 (en) * 2010-02-28 2011-09-01 Yaron Shany Method for single stream beamforming with mixed power constraints

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOU HAN, XIANTAO CHENG, GANG WU, GUANGRONG YUE: "A Novel Transmit Beamforming Scheme for BER", 《WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2011 INTERNATIONAL CONFERENCE ON IEEE》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116026A1 (en) * 2015-01-19 2016-07-28 Huawei Technologies Co., Ltd. Frequency-division multiplexing (fdm) using soft clipping (sc)
US9967882B2 (en) 2015-01-19 2018-05-08 Futurewei Technologies, Inc. Frequency-division multiplexing (FDM) using soft clipping (SC)
CN104779985A (en) * 2015-04-27 2015-07-15 电子科技大学 Iterative beam forming method based on channel space sparse characteristic
CN104779988A (en) * 2015-04-27 2015-07-15 电子科技大学 Quick iteration beam forming method
CN104935367A (en) * 2015-04-27 2015-09-23 电子科技大学 A Fast Iterative Beamforming Method Based on Spatial Spatial Sparsity of Channel
CN104779985B (en) * 2015-04-27 2017-12-01 电子科技大学 A kind of iteration beam-forming method based on channel space sparse characteristic
CN104779988B (en) * 2015-04-27 2018-02-06 电子科技大学 A kind of method of iteratively faster beam forming
CN104935367B (en) * 2015-04-27 2018-03-02 电子科技大学 A kind of iteratively faster beam-forming method based on channel space sparse characteristic
CN108432153A (en) * 2015-10-23 2018-08-21 新生组织网络有限公司 Method and apparatus for controlling equivalent isotropically radiated power
CN108432153B (en) * 2015-10-23 2021-09-28 新生组织网络有限公司 Method and apparatus for controlling equivalent omni-directional radiated power
CN113747560A (en) * 2015-10-23 2021-12-03 新生组织网络有限公司 Method for controlling EIRP and access point of wireless communication network
CN109792270A (en) * 2016-09-23 2019-05-21 瑞典爱立信有限公司 The method of network node and the wave beam that will emit at least the first user equipment for determination
CN109792270B (en) * 2016-09-23 2022-03-29 瑞典爱立信有限公司 Network node and method for determining a beam to be transmitted for at least a first user equipment
CN109155663A (en) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 Adjust the method, apparatus and storage medium of antenna modules
CN109155663B (en) * 2018-08-10 2022-06-03 北京小米移动软件有限公司 Method and device for adjusting antenna module and storage medium
US11956054B2 (en) 2018-08-10 2024-04-09 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for adjusting antenna module, and storage medium
CN112217541A (en) * 2019-07-12 2021-01-12 华为技术有限公司 Beam configuration method and device
CN112217541B (en) * 2019-07-12 2021-12-31 华为技术有限公司 Beam configuration method and device
US11962388B2 (en) 2019-07-12 2024-04-16 Huawei Technologies Co., Ltd. Beam configuration method and apparatus

Similar Documents

Publication Publication Date Title
CN102571178A (en) Beam forming method used in equivalent isotropic radiated power limited systems
US20230352847A1 (en) Large intelligent surfaces with sparse channel sensors
CN108933745B (en) Broadband channel estimation method based on super-resolution angle and time delay estimation
CN106302274B (en) A Multi-User Channel Estimation and Tracking Method for Massive MIMO Systems
CN104052691B (en) MIMO-OFDM system channel estimation method based on compressed sensing
Hu et al. Hybrid-field channel estimation for extremely large-scale massive MIMO system
CN107483091B (en) A Channel Information Feedback Algorithm in FDD Massive MIMO-OFDM System
US8442590B2 (en) Wireless communications apparatus
CN105891771B (en) It is a kind of improve estimated accuracy based on continuously distributed angle estimating method and equipment
CN105763234B (en) Millimeter wave MIMO time-domain finites channel state information feedback method and device
CN112187323A (en) IRS-based large-scale MIMO (multiple input multiple output) cascade channel estimation method under mixed low-precision architecture
TW201707394A (en) Method and apparatus for hybrid beamforming
CN104793187B (en) A Digital Shaped Beam Design Method for Digital Array Radar
CN107508774A (en) Channel Estimation Method for Millimeter-Wave MIMO Using Joint Channel Representation and Beam Design
Yan et al. Hybrid precoding for 6G terahertz communications: Performance evaluation and open problems
Cui et al. Low complexity joint hybrid precoding for millimeter wave MIMO systems
CN108259397B (en) Large-scale MIMO system channel estimation method based on adaptive regularization subspace tracking compressed sensing algorithm
CN104168047B (en) Single-ended time domain beam searching method based on compressed sensing
CN104537171A (en) MIMO channel spatial fading correlation calculation method and multi-antenna system
Kaushik et al. Sparse hybrid precoding and combining in millimeter wave MIMO systems
CN102130709B (en) A Multiple Input Multiple Output Multicast Beamforming Method
CN110212951B (en) A Massive MIMO Channel Estimation Method Based on Butler Matrix
CN114726686B (en) A Uniform Area Array Millimeter-Wave Massive MIMO Channel Estimation Method
Ren et al. Sensing-assisted sparse channel recovery for massive antenna systems
CN104168046A (en) Single-ended frequency domain beam searching method based on compressed sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120711