CN102571009A - Feedforward automatic gain control circuit working in extremely low voltage current mode - Google Patents
Feedforward automatic gain control circuit working in extremely low voltage current mode Download PDFInfo
- Publication number
- CN102571009A CN102571009A CN2010105914044A CN201010591404A CN102571009A CN 102571009 A CN102571009 A CN 102571009A CN 2010105914044 A CN2010105914044 A CN 2010105914044A CN 201010591404 A CN201010591404 A CN 201010591404A CN 102571009 A CN102571009 A CN 102571009A
- Authority
- CN
- China
- Prior art keywords
- output
- digital
- fully differential
- differential operational
- operational amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 230000003321 amplification Effects 0.000 claims abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 238000003491 array Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Control Of Amplification And Gain Control (AREA)
Abstract
Description
技术领域 technical field
本发明涉及麦克风传感器技术领域,涉及高精度的适用于微声电系统(MEMS)麦克风传感器的读出电路芯片,是数字助听器麦克风读出电路芯片的自动增益控制电路。The invention relates to the technical field of microphone sensors, relates to a high-precision readout circuit chip suitable for a microacoustic electric system (MEMS) microphone sensor, and is an automatic gain control circuit for a digital hearing aid microphone readout circuit chip.
背景技术 Background technique
随着微声电系统(MEMS)技术的不断进步,微声电助听器麦克风传感器应运而生,它具有体积小、功耗低、失真小和抗噪声能力强等优点,其所对应的读出电路成为工业界研究的热点。With the continuous advancement of micro-acoustic electric system (MEMS) technology, micro-acoustic electric hearing aid microphone sensors have emerged at the historic moment. It has the advantages of small size, low power consumption, small distortion and strong anti-noise ability. The corresponding readout circuit become a research hotspot in the industry.
这种传感器通常可等效为一个较为理想的电压源:理想电压源串上一个很小的电阻。但麦克风微机电传感器输出的信号非常微弱,一般仅在μV~mV量级之间,这对读出电路的设计提出了非常苛刻的要求。读出电路的噪声水平和精度决定了其所能检测的最小信号幅度,低噪声和高精度的读出电路设计成为了实现高精度的关键,尤其在数字麦克风极低的电源电压情况下。This kind of sensor can usually be equivalent to a relatively ideal voltage source: a small resistance on the ideal voltage source string. However, the signal output by the microelectromechanical sensor of the microphone is very weak, generally only in the order of μV ~ mV, which puts forward very strict requirements for the design of the readout circuit. The noise level and precision of the readout circuit determine the minimum signal amplitude it can detect. Low noise and high-precision readout circuit design is the key to high precision, especially in the case of extremely low power supply voltage for digital microphones.
目前国际上麦克风读出电路的自动增益控制设计主要可分为模拟反馈控制运放前向开环增益,即模拟反馈控制运放偏置电流(参考:琼斯,马丁内斯:“一种CMOS助听器”,模拟集成电路和信号处理,21,163-172(1999);贝克:‘一种针对仿真耳的低功耗单环和双环自动增益控制’,固态电路,SC-41(9),pp.1983-1996,2006)和模拟反馈控制可控MOS管等效电阻的栅源电压(参考:霍曼:“一种低噪声CMOS自动增益控制技术”,固态电路,SC-27(7),pp.974-981,1992;金淑永:“一种亚1V数字助听器的高效前端模拟电路”,固态电路,SC-41(4),pp.876-882,2006.)和电流模反馈控制MOS管跨导(参考:格拉雷斯:“低压亚阈值指数放大与自动增益控制”,电路,器件与系统,Vol.152,No.1,Feb 2005)两种方案。而以上自动增益控制电路在模拟助听器领域获得广泛的应用。但前者缺点在于其线性度会受到工艺和电源电压的限制,特别在电源电压较低的情况下。模拟反馈的优点在于其信号具有较强的连续性。但模拟反馈的难点在于低电压的运放输出精度的实现。通常运放的放大倍数在模拟反馈的控制下已实现较理想的精度,而在集成电路中实现很高的精度是极其困难的,通常需要复杂的补偿电路或者非常大的功耗。电流模反馈方式的缺点在于运放本身没有负反馈结构,从而系统对信号处理的精度较低。而数字助听器又要求读出电路具有非常好的读出精度,这给读出电路的设计提出了挑战。At present, the automatic gain control design of the microphone readout circuit in the world can be mainly divided into analog feedback control op amp forward open-loop gain, that is, analog feedback control op amp bias current (reference: Jones, Martinez: "A CMOS hearing aid ", Analog Integrated Circuits and Signal Processing, 21, 163-172 (1999); Baker: 'A Low-Power Single- and Dual-Loop Automatic Gain Control for Artificial Ears', Solid State Circuits, SC-41(9), pp .1983-1996, 2006) and analog feedback to control the gate-source voltage of the equivalent resistance of the controllable MOS tube (reference: Hörmann: "A low-noise CMOS automatic gain control technology", solid-state circuits, SC-27(7), pp.974-981, 1992; Jin Shuyong: "A high-efficiency front-end analog circuit for a sub-1V digital hearing aid", Solid State Circuits, SC-41(4), pp.876-882, 2006.) and current mode feedback control MOS Tube transconductance (Reference: Grales: "Low Voltage Subthreshold Exponential Amplification and Automatic Gain Control", Circuits, Devices and Systems, Vol.152, No.1, Feb 2005) Two schemes. The above automatic gain control circuit is widely used in the field of analog hearing aids. But the disadvantage of the former is that its linearity will be limited by the process and power supply voltage, especially when the power supply voltage is low. The advantage of analog feedback is that its signal has strong continuity. But the difficulty of analog feedback lies in the realization of the output accuracy of the low-voltage op amp. Usually, the magnification of the operational amplifier has achieved ideal precision under the control of analog feedback, but it is extremely difficult to achieve high precision in integrated circuits, and usually requires complex compensation circuits or very large power consumption. The disadvantage of the current mode feedback method is that the operational amplifier itself does not have a negative feedback structure, so the accuracy of the system for signal processing is low. The digital hearing aid requires the readout circuit to have very good readout accuracy, which poses a challenge to the design of the readout circuit.
发明内容 Contents of the invention
本发明的目的是公开一种工作于极低电源电压电流模前馈自动增益控制电路,是电流模前馈的麦克风读出电路,以克服现有技术的不足,不但能够有效的实现自动增益控制的功能,更通过采用无源电阻阵列实现极低电压下的高精度读出。同时具备低电源电压工作下,随着音量的增加,功耗随之减小,达到功耗高效率利用的功能。本发明为数字助听器麦克风提供了一种高精度、低电压的自动增益控制读出电路。The purpose of the present invention is to disclose a current-mode feed-forward automatic gain control circuit that works on an extremely low power supply voltage, which is a microphone readout circuit for current-mode feed-forward, so as to overcome the deficiencies in the prior art and not only effectively realize automatic gain control The function, and realize high-precision readout under extremely low voltage by using passive resistor array. At the same time, it has the function of reducing power consumption as the volume increases under low power supply voltage to achieve high-efficiency utilization of power consumption. The invention provides a high-precision, low-voltage automatic gain control readout circuit for the digital hearing aid microphone.
为达到上述目的,本发明的技术解决方案是:For achieving the above object, technical solution of the present invention is:
一种工作于极低电源电压电流模前馈自动增益控制电路,用于助听器;其包括:全差分运放单元、容阻器件、电阻阵列、阵列控制开关、整流器、滤波器、数字参考表、数字控制器、数字比较器和加减计数器;A current-mode feed-forward automatic gain control circuit that works on an extremely low power supply voltage and is used for hearing aids; it includes: a fully differential operational amplifier unit, a capacitive resistance device, a resistor array, an array control switch, a rectifier, a filter, a digital reference meter, Digital controllers, digital comparators and up and down counters;
一全差分运放单元,用于对麦克风输出信号的放大;A fully differential operational amplifier unit for amplifying the microphone output signal;
全差分运放单元的两个输入端分别经两个容阻器件同麦克风输出端和地相连,用以构成对输入信号的高通滤波;The two input terminals of the fully differential operational amplifier unit are respectively connected to the microphone output terminal and the ground through two capacitive resistance devices to form a high-pass filter for the input signal;
两个电阻阵列分别跨接于全差分运放单元的两输出端、两输入端之间,用以确定全差分运放对信号的增益值;Two resistor arrays are respectively connected between the two output terminals and the two input terminals of the fully differential operational amplifier unit to determine the gain value of the fully differential operational amplifier to the signal;
两电阻阵列控制开关分别并接于两个电阻阵列一侧,用以控制全差分运放单元的增益值;The two resistor array control switches are respectively connected in parallel to one side of the two resistor arrays to control the gain value of the fully differential operational amplifier unit;
一整流器用于对麦克风输出小信号进行整流;A rectifier is used to rectify the small output signal of the microphone;
整流器和一滤波器构成包络检测电路,用以对整流信号进行滤波得到检测麦克风输出信号的能量;The rectifier and a filter form an envelope detection circuit, which is used to filter the rectified signal to obtain the energy of the output signal of the detection microphone;
一数字控制器,对峰值检测电路的输出值和参考电平进行比较;a digital controller, which compares the output value of the peak detection circuit with the reference level;
一数字参考表,用以查找对应的数字参考码;A digital reference table, used to look up the corresponding digital reference code;
一加减计数器,用以自动增益控制对信号的压缩与恢复;An up-down counter, used for automatic gain control to compress and restore the signal;
一数字比较器,控制加减计数器进行加减操作,其将加减计数器的输出编码与参考编码进行比较以输出压缩与恢复的使能逻辑。A digital comparator controls the addition and subtraction counter to perform addition and subtraction operations, and compares the output code of the addition and subtraction counter with the reference code to output the enabling logic of compression and restoration.
所述的电流模前馈自动增益控制电路,其具体电路如下:全差分运放单元的第一和第二输入端分别经第一和第二容阻器件同地和麦克风输出端相连,第一电阻阵列跨接于全差分运放单元的第一输入端和第二输出端,第二电阻阵列跨接于全差分运放单元的第二输入端和第一输出端;第一电阻阵列控制开关跨接于第一电阻阵列和全差分运放单元一输出端,第二电阻阵列控制开关跨接于第二电阻阵列和全差分运放单元另一输出端;Described current mode feed-forward automatic gain control circuit, its specific circuit is as follows: the first and the second input terminal of fully differential op-amp unit are connected with the microphone output terminal through the first and the second capacitive resistance device respectively, the first The resistor array is connected across the first input terminal and the second output terminal of the fully differential operational amplifier unit, and the second resistor array is connected across the second input terminal and the first output terminal of the fully differential operational amplifier unit; the first resistor array controls the switch Connected across the first resistor array and an output end of the fully differential operational amplifier unit, the second resistor array control switch is connected across the second resistor array and the other output end of the fully differential operational amplifier unit;
整流器输入端连接麦克风输出端,整流器顺序和低通滤波器、数字控制器、数字参考表、数字比较器一输入端电连接,数字控制器另一输出端与全差分运放单元电连接;The input end of the rectifier is connected to the output end of the microphone, the order of the rectifier is electrically connected to one input end of the low-pass filter, the digital controller, the digital reference meter, and the digital comparator, and the other output end of the digital controller is electrically connected to the fully differential operational amplifier unit;
加减计数器输入端分别与两时钟、数字比较器两输出端电连接,加减计数器输出端分别和第一阵列控制开关、第二阵列控制开关、数字比较器的另一输入端电连接。The input terminal of the addition and subtraction counter is electrically connected with the two clocks and the two output terminals of the digital comparator, and the output terminal of the addition and subtraction counter is respectively electrically connected with the first array control switch, the second array control switch, and the other input end of the digital comparator.
所述的电流模前馈自动增益控制电路,其所述全差分运放单元,根据放大倍数的不同调节偏置电流,使在音量较大的情况下对运放功耗进行减小;其中,M1,M2MOS管工作于亚阈值区,使有恒定的带宽。In the current-mode feedforward automatic gain control circuit, the fully differential op-amp unit adjusts the bias current according to the magnification, so that the power consumption of the op-amp is reduced when the volume is high; wherein, M1 and M2MOS tubes work in the sub-threshold region, so that they have a constant bandwidth.
所述的电流模前馈自动增益控制电路,其所述整流器和滤波器,在0.8V的极低电源电压下,对麦克风输出的100uV以上的微弱信号进行整流和滤波,且整流器与滤波器的传输信号为电流模信号;滤波器电路的M8,M9MOS管工作于亚阈值区。In the current mode feedforward automatic gain control circuit, the rectifier and filter rectify and filter the weak signal above 100uV output by the microphone under the extremely low power supply voltage of 0.8V, and the rectifier and filter The transmission signal is a current mode signal; the M8 and M9 MOS tubes of the filter circuit work in the sub-threshold region.
所述的电流模前馈自动增益控制电路,其所述数字控制器,在0.8V的极低电源电压下,对麦克风输出的100uV以上的微弱信号进行逻辑控制输出。In the current-mode feedforward automatic gain control circuit, the digital controller performs logic control output on the weak signal above 100uV output by the microphone under the extremely low power supply voltage of 0.8V.
本发明的一种工作于极低电源电压电流模前馈自动增益控制电路,是可以用于数字助听器的电流模前馈的自动增益控制读出电路,其通过前馈的方式使麦克风输出信号的能量转换为数字控制信号,由数字控制电路控制电阻阵列从而对运放的增益进行控制,有效的解决了其连续性和精度的问题。本发明的电路适用于极低工作电源电压(如,0.8V以下),其有助于提供一种低电压,低功耗和高精度的使用于便携式数字助听器的读出电路,实现了自动控制增益数字前馈的方法和相应的在低电压下工作的电路。A current-mode feed-forward automatic gain control circuit of the present invention, which works on an extremely low power supply voltage, is an automatic gain control readout circuit that can be used for a current-mode feed-forward of a digital hearing aid. The energy is converted into a digital control signal, and the digital control circuit controls the resistor array to control the gain of the operational amplifier, which effectively solves the problems of continuity and precision. The circuit of the present invention is suitable for very low operating power supply voltage (such as, below 0.8V), which helps to provide a low voltage, low power consumption and high precision readout circuit used in portable digital hearing aids, and realizes automatic control Gain digital feed-forward method and corresponding circuit working at low voltage.
附图说明 Description of drawings
图1为本发明的工作于极低电源电压电流模前馈自动增益控制电路图,其中,主要元件标号说明:Fig. 1 is the circuit diagram of the feed-forward automatic gain control of current mode feedforward working in the very low supply voltage of the present invention, wherein, the main component label description:
全差分运放单元1 第一容阻器件2Fully differential operational amplifier unit 1 The first capacitive resistance device 2
第二容阻器件3 第一电阻阵列4The second capacitive resistance device 3 The first resistor array 4
第二电阻阵列5 第一电阻阵列控制开关6The
第二电阻阵列控制开关7 整流器8The second resistor array controls the
滤波器9 数字参考表10
数字控制器11 数字比较器12Digital Controller 11 Digital Comparator 12
加减计数器13;Addition and
图2为本发明中工作于极低电源电压的全差分运放电路图;Fig. 2 is a circuit diagram of a fully differential operational amplifier working at an extremely low power supply voltage in the present invention;
图3为本发明中工作于极低电源电压的整流器电路图;Fig. 3 is the circuit diagram of a rectifier working at a very low power supply voltage in the present invention;
图4为本发明中工作于极低电源电压的滤波器电路图;Fig. 4 is the filter circuit diagram that works in very low supply voltage among the present invention;
图5为本发明中工作于极低电源电压的数字控制器电路图。Fig. 5 is a circuit diagram of a digital controller operating at an extremely low power supply voltage in the present invention.
具体实施方式 Detailed ways
本发明给出了一种工作于极低电源电压电流模前馈自动增益控制电路,通过采用工作于低电源电压的电路模块,电流模前馈和数字电路控制的方式有效解决了现有技术存在的非线性问题。The present invention provides a current mode feed-forward automatic gain control circuit that works at extremely low power supply voltage, and effectively solves the existing problems in the prior art by adopting a circuit module that works at low power supply voltage, current mode feedforward and digital circuit control. non-linear problem.
本发明是由容阻器件2、3对麦克风直流信号进行高通,滤除麦克风直流信号,由全差分运放电路1读出麦克风微弱信号;同时整流器8和滤波器9组成的包络检测电路检测麦克风微弱信号的能量,数字控制器11对能量进行处理得到数字控制信号,数字参考表10根据数字控制信号查到相对应的增益控制码,施加到数字比较器12,得到使能信号,实现加减计数器13的加减计数功能,即实现了信号压缩与恢复的功能。加减计数分别和时钟22和33同步。而不同声音量级对应不同的增益控制码,最终运放增益由增益控制码通过电阻阵列4,5和电阻阵列控制开关6,7控制电阻阵列4,5实现。In the present invention, capacitive resistance devices 2 and 3 perform high-pass on the microphone DC signal, filter the microphone DC signal, and read out the weak signal of the microphone by the fully differential operational amplifier circuit 1; at the same time, the envelope detection circuit composed of the
该电路由于采用电阻阵列的方式实现了低电源电压下高精度的麦可风信号读出,同时通过电流前馈,数字控制的方式实现了低电源电压下的自动增益控制。The circuit realizes high-precision microphone signal readout under low power supply voltage by adopting the method of resistor array, and at the same time realizes automatic gain control under low power supply voltage through current feedforward and digital control.
图1为本发明的工作于极低电源电压电流模前馈自动增益控制电路。自动增益控制电路分成以下几个部分,包括:全差分运放单元1、容阻器件、电阻阵列、阵列控制开关、整流器8、滤波器9、数字参考表10、数字控制器11、数字比较器12加减计数器13;Fig. 1 is the current mode feed-forward automatic gain control circuit of the present invention working in extremely low power supply voltage. The automatic gain control circuit is divided into the following parts, including: fully differential operational amplifier unit 1, capacitive resistance device, resistor array, array control switch,
全差分运放单元1第一和第二输入端分别经第一和第二容阻器件2、3同地和麦克风输出端相连,第一电阻阵列4跨接于全差分运放单元1第一输入端和第二输出端,第二电阻阵列5跨接于全差分运放单元1第二输入端和第一输出端,第一电阻阵列控制开关6跨接于第一电阻阵列4和全差分运放单元1输出端,第二电阻阵列控制开关7跨接于第二电阻阵列单元5和全差分运放单元1输出端。整流器8输入端连接麦克风输入端、输出端顺序和低通滤波器9、数字控制器11、数字参考表10、数字比较器12输入端电连接,数字控制器11另一输出端与全差分运放单元1电连接。加减计数器13输入端分别与两时钟22、33、数字比较器12输出端电连接,加减计数器13输出端分别和第一阵列控制开关6、第二阵列控制开关7、数字比较器12的另一输入端电连接。The first and second input terminals of the fully differential operational amplifier unit 1 are connected to the microphone output terminal via the first and second capacitive resistance devices 2 and 3 respectively, and the first resistor array 4 is connected across the first fully differential operational amplifier unit 1. The input terminal and the second output terminal, the
参考图2,在实际应用中,考虑较低的电源电压和较低的功耗下,全差分运放单元1的偏置电流设计为可编程偏置电流源14,其由数字控制器11进行控制,且差分输入对M1,M2MOS管工作在亚阈值区15,同时采用了级联的电路拓扑结构。此电路同时具备共模输出检测电路,共模输入检测电路和在音量较大的情况下对运放功耗进行减小的功能。为了防止由于共模输出电平瞬态输出过高造成输入共模电平超出运放的共模输入范围,图2中,由M6,M7,M8,M12,M13MOS管构成的输入共模检测电路将使得全差分运放的输入共模电平始踪跟踪于输出共模电平。而输出共模电平由M9,M10,M11,M14,M16MOS管构成的输出共模反馈环路进行确定。当音量等级不同时,数字控制器对由M3,M4,M5,M6,M11MOS管构成的可编程偏置电流源进行减小或增大,从而达到具有高效率的全差分运放的目的,其增益带宽为:Referring to FIG. 2 , in practical applications, considering lower power supply voltage and lower power consumption, the bias current of the fully differential operational amplifier unit 1 is designed as a programmable bias
ωAGC=βiωOTA=βigm/Ccomp ω AGC = β i ω OTA = β i g m /C comp
其中βi为全差分反馈系数,由反馈回路决定,gm,Ccomp为M1,M2MOS管的跨导和全差分运放补偿电容。由于M1,M2MOS管工作于亚阈值区,则可实现对跨导的线性控制实现不同增益下恒定增益带宽。Among them, β i is the full differential feedback coefficient, determined by the feedback loop, g m , C comp is M1, the transconductance of the M2MOS transistor and the full differential operational amplifier compensation capacitor. Since M1 and M2MOS transistors work in the subthreshold region, linear control of the transconductance can be realized to achieve constant gain bandwidth under different gains.
同时麦克风的输出信号由整流器对其进行整流,参考图3。考虑此整流器工作在低电源电压状态,此整流器采用电流模电路级联形式,即采用阻容C,R使电压转换为电流,同时用两个级联反馈环路分别对转换的正向电流和负向电流进行整流。其管子都工作于饱和区,能承受最小的工作电压为:At the same time, the output signal of the microphone is rectified by the rectifier, refer to FIG. 3 . Considering that the rectifier works in a low power supply voltage state, the rectifier adopts the cascaded form of the current mode circuit, that is, the resistors and capacitors C and R are used to convert the voltage into a current, and at the same time, two cascaded feedback loops are used to respectively control the converted forward current and The negative current is rectified. Its tubes all work in the saturation region, and the minimum working voltage they can withstand is:
VDD-MIN=2VGS-VTH VDD-MIN = 2VGS - VTH
其中VGS为MOS管栅源电压,VTH为MOS管阈值电压。Among them, V GS is the gate-source voltage of the MOS tube, and V TH is the threshold voltage of the MOS tube.
图3中,对正向电流进行整流的反馈环路由M1,M2,M3,M4MOS管构成,其为电压-电流负反馈的跨阻运放结构,目的为降低跨阻运放的输入电阻,使得电流能够流入。该跨阻运放的输入阻抗可由下面公式确定:In Figure 3, the feedback loop for rectifying the forward current is composed of M1, M2, M3, and M4MOS transistors, which are transimpedance operational amplifier structures with voltage-current negative feedback, and the purpose is to reduce the input resistance of the transimpedance operational amplifier, so that current can flow in. The input impedance of this transimpedance op amp can be determined by the following formula:
公式中gmd,gmg分别为管子的栅跨导,漏跨导,Ccomp为补偿电容。In the formula, g md and g mg are the gate transconductance and drain transconductance of the tube respectively, and C comp is the compensation capacitance.
对负向电流进行整流的反馈环路由M5,M6,M7,M8MOS管构成,当电流为负向电流时,信号将通过正向电流反馈回路级联负向电流反馈回路对负向电流进行整流,Ccomp1为负向电流反馈回路的补偿电容。为使正向电流整流的响应时间与负向电流整流的响应时间相等,Ccomp与Ccomp1的关系可由下面公式确定:The feedback loop for rectifying the negative current is composed of M5, M6, M7, and M8 MOS tubes. When the current is a negative current, the signal will be rectified by cascading the negative current feedback loop through the positive current feedback loop. C comp1 is the compensation capacitance of the negative current feedback loop. In order to make the response time of positive current rectification equal to the response time of negative current rectification, the relationship between C comp and C comp1 can be determined by the following formula:
公式中Ibias和I分别是M4,M5MOS管的偏置电流。随后该整流信号被滤波器滤波得到输入电流的能量信号。此滤波器采用了电流-电压-电流的滤波方式对该整流电流信号进行滤波,参考图4。M6,M7,M8,M9,M10MOS管构成滤波器的核心电路,其类似于传统有源运放滤波器电路,不同的是,该电路的M8,M9MOS管工作于亚阈值区.为了精确镜像M1和M2的电流,在电路中加入缓冲器1.其输入和输出的关系为In the formula, I bias and I are the bias currents of M4 and M5 MOS tubes respectively. Then the rectified signal is filtered by a filter to obtain the energy signal of the input current. This filter uses the current-voltage-current filtering method to filter the rectified current signal, refer to Figure 4. M6, M7, M8, M9, M10 MOS tubes constitute the core circuit of the filter, which is similar to the traditional active op amp filter circuit, the difference is that the M8 and M9 MOS tubes of this circuit work in the sub-threshold region. In order to accurately mirror M1 and the current of M2, add buffer 1 in the circuit. The relationship between its input and output is
其中I为调节电容C充放电的参数。Among them, I is a parameter for adjusting the charging and discharging of the capacitor C.
图4中,M1,M2MOS管分别起到电流-电压和电压-电流转换的功能。M1,M2MOS管工作于亚阈值区。结合上面的关系式,可得到整体滤波器的-3dB的截止频率表达式为In Figure 4, M1 and M2MOS transistors perform the functions of current-voltage and voltage-current conversion respectively. M1, M2MOS tubes work in the sub-threshold region. Combined with the above relational expression, the -3dB cut-off frequency expression of the overall filter can be obtained as
得到滤波电流的能量后,为了等到数字控制参考码,可与参考电平通过数字控制器比较得到。After obtaining the energy of the filter current, in order to wait for the digital control reference code, it can be obtained by comparing with the reference level through the digital controller.
数字控制器参考图5,其利用前级电流模的输出与参考电流I1-8的比较得到逻辑控制电平,然后由编码器16得到用于数字电路的控制码17和全差分运放偏置电流的调节的控制码18。而参考电流由相同的整流器8和滤波器9得到。其目的是为了防止工艺角(PVT)对参考流的影响。同时为了防止数字控制器11在临界状态发生振荡,用I0作为数字控制器11的迟滞电流,以保证数字控制器11的稳定工作。Referring to Figure 5, the digital controller uses the comparison between the output of the previous stage current module and the reference current I1-8 to obtain the logic control level, and then the
数字比较器提供加减计数器加减的使能信号。而加减计数器提供控制运放电阻阵列的控制编码信号。当音量由低等级变成高等级时,自动增益控制电路对信号进行压缩时,计数器为减计数操作,减到指定的参考编码时,数字电路将通过数字比较器输出使能信号使得计数器停止减计数;当音量由高等级变成高等级时,自动增益控制电路将对信号进行恢复或者保持到初始值。具体实施可以通过数字比较器输出使能信号使得计数器停止加计数完成。The digital comparator provides the enable signal for the addition and subtraction of the up-down counter. The up-down counter provides the control code signal to control the op amp resistor array. When the volume changes from a low level to a high level, when the automatic gain control circuit compresses the signal, the counter will count down. Count; when the volume changes from a high level to a high level, the automatic gain control circuit will restore the signal or maintain it to the initial value. In a specific implementation, the digital comparator may output an enabling signal so that the counter stops counting up and the counting is completed.
从以上描述可知,本发明的工作于极低电源电压电流模前馈自动增益控制电路将麦克风的输出端与自动增益控制闭环运放输入端相连,同时将麦克风输出端与整流器的输入端相连。由全差分运放将麦克风的输出电压按电阻阵列的比率实现对其的放大。同时为了得到不同音量级别对应的不同的数字控制信号,需将麦克风输出信号进行量化处理,首先由整流器对麦克风输出电压信号进行整流,其整流输出信号由滤波器对其进行滤波得到的输入信号能量。能量信号由数字控制器和参考电平进行比较处理,得到数字控制信号,由数字控制信号在数字参考表上找出对应音量级别的数字参考编码。当音量为正常音量级别时,计数器不工作,信号正常放大;在从低音量级别往高音量级别过渡时,计数器为减计数,计数器由上一个编码状态减计数到现在这个参考编码状态,则全差分运放的放大倍数由大变小,实现对信号的压缩。在从高音量级别往低音量级别过渡时,计数器为加计数,计数器由上一个编码状态加计数到现在这个参考编码状态,则全差分运放的放大倍数由小变大,实现对信号的恢复放大。当计数器输出编码与数字参考编码相同时,停止计数器的加计数和减计数。自动增益控制的增益值由数字参考表里的数字参考编码来确定,实现音量在不同等级对应不同的数字参考编码:这就实现了麦克风读出电路根据音量的级别实现自动增益控制的功能。As can be seen from the above description, the current mode feed-forward automatic gain control circuit of the present invention, which operates at extremely low supply voltage, connects the output end of the microphone to the input end of the closed-loop operational amplifier of automatic gain control, and simultaneously connects the output end of the microphone to the input end of the rectifier. The output voltage of the microphone is amplified by the ratio of the resistor array by the fully differential operational amplifier. At the same time, in order to obtain different digital control signals corresponding to different volume levels, the microphone output signal needs to be quantized. First, the rectifier rectifies the microphone output voltage signal, and the rectified output signal is filtered by the filter to obtain the input signal energy. . The energy signal is compared and processed by the digital controller and the reference level to obtain a digital control signal, and the digital reference code corresponding to the volume level is found on the digital reference table by the digital control signal. When the volume is at the normal volume level, the counter does not work, and the signal is amplified normally; when the transition from low volume level to high volume level, the counter counts down, and the counter counts down from the previous coding state to the current reference coding state, then all The magnification of the differential op amp changes from large to small to achieve signal compression. When transitioning from a high volume level to a low volume level, the counter counts up, and the counter counts up from the previous encoding state to the current reference encoding state, then the magnification of the fully differential op amp changes from small to large, realizing the recovery of the signal enlarge. Stops counting up and down of the counter when the counter output code is the same as the digital reference code. The gain value of the automatic gain control is determined by the digital reference code in the digital reference table, so that the volume corresponds to different digital reference codes at different levels: this realizes the function of the microphone readout circuit to realize the automatic gain control according to the volume level.
以上是对本发明的工作于极低电源电压电流模前馈自动增益控制电路,使麦克风工作于极低电源电压电流模前馈自动增益控制的实施方式的描述,对本领域的技术人员来说,已经获得该电路的某些优点是显而易见的。也应当理解,在本发明的范围和精神内可以进行各种变更、修改及替换实施例。本发明的保护范围完全由权利要求书所划定的保护范围为界限。The above is the description of the embodiment of the feedforward automatic gain control circuit working on the extremely low power supply voltage and current mode of the present invention to make the microphone work on the very low power supply voltage and current mode feedforward automatic gain control. For those skilled in the art, it is already Certain advantages of obtaining this circuit are obvious. It should also be understood that various alterations, modifications and alternative embodiments can be made within the scope and spirit of the invention. The protection scope of the present invention is completely limited by the protection scope defined by the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010591404.4A CN102571009B (en) | 2010-12-08 | 2010-12-08 | Current Mode Feedforward Automatic Gain Control Circuit Working at Very Low Power Supply Voltage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010591404.4A CN102571009B (en) | 2010-12-08 | 2010-12-08 | Current Mode Feedforward Automatic Gain Control Circuit Working at Very Low Power Supply Voltage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102571009A true CN102571009A (en) | 2012-07-11 |
CN102571009B CN102571009B (en) | 2014-04-23 |
Family
ID=46415603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010591404.4A Active CN102571009B (en) | 2010-12-08 | 2010-12-08 | Current Mode Feedforward Automatic Gain Control Circuit Working at Very Low Power Supply Voltage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102571009B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183241A (en) * | 2013-05-28 | 2014-12-03 | 无锡华润矽科微电子有限公司 | Control circuit and method for improving volume adjustment of audio signal |
CN104660194A (en) * | 2015-03-06 | 2015-05-27 | 东南大学 | Four-input transconductance amplifier for fully differential Gm-C filter |
CN105915192A (en) * | 2016-05-25 | 2016-08-31 | 东南大学 | Stepping-type automatic gain control system |
CN106533276A (en) * | 2016-12-07 | 2017-03-22 | 天津易哲微电子技术有限公司 | Method and circuit for detecting position of servo motor |
CN107317563A (en) * | 2017-08-21 | 2017-11-03 | 四川西南交大铁路发展股份有限公司 | A kind of difference selection filter circuit and method |
CN107408921A (en) * | 2015-02-27 | 2017-11-28 | Tdk株式会社 | For the integrated circuit arrangement of microphone, the method for microphone system and one or more circuit parameters for adjusting microphone system |
CN107426125A (en) * | 2016-05-24 | 2017-12-01 | 德克萨斯仪器股份有限公司 | Envelope detector based on fast current |
CN111490739A (en) * | 2019-01-25 | 2020-08-04 | 杭州海康威视数字技术股份有限公司 | Device and equipment for amplifying audio signal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5061900A (en) * | 1989-06-19 | 1991-10-29 | Raytheon Company | Self-zeroing amplifier |
CN101102097A (en) * | 2006-07-07 | 2008-01-09 | 美国凹凸微系有限公司 | Fixed gain amplifier for automatic gain control and variable gain amplifier |
CN101171745A (en) * | 2005-03-10 | 2008-04-30 | Nxp股份有限公司 | Receiver having a gain-controllable input amplifier |
-
2010
- 2010-12-08 CN CN201010591404.4A patent/CN102571009B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5061900A (en) * | 1989-06-19 | 1991-10-29 | Raytheon Company | Self-zeroing amplifier |
CN101171745A (en) * | 2005-03-10 | 2008-04-30 | Nxp股份有限公司 | Receiver having a gain-controllable input amplifier |
CN101102097A (en) * | 2006-07-07 | 2008-01-09 | 美国凹凸微系有限公司 | Fixed gain amplifier for automatic gain control and variable gain amplifier |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183241A (en) * | 2013-05-28 | 2014-12-03 | 无锡华润矽科微电子有限公司 | Control circuit and method for improving volume adjustment of audio signal |
CN104183241B (en) * | 2013-05-28 | 2017-09-29 | 无锡华润矽科微电子有限公司 | Improve the control circuit and method of audio signal volume regulation |
CN107408921B (en) * | 2015-02-27 | 2021-02-26 | Tdk株式会社 | Integrated circuit arrangement for a microphone, system and method for adjusting a parameter |
CN107408921A (en) * | 2015-02-27 | 2017-11-28 | Tdk株式会社 | For the integrated circuit arrangement of microphone, the method for microphone system and one or more circuit parameters for adjusting microphone system |
CN104660194A (en) * | 2015-03-06 | 2015-05-27 | 东南大学 | Four-input transconductance amplifier for fully differential Gm-C filter |
CN107426125B (en) * | 2016-05-24 | 2021-10-29 | 德克萨斯仪器股份有限公司 | Envelope detector based on fast current |
CN107426125A (en) * | 2016-05-24 | 2017-12-01 | 德克萨斯仪器股份有限公司 | Envelope detector based on fast current |
CN105915192A (en) * | 2016-05-25 | 2016-08-31 | 东南大学 | Stepping-type automatic gain control system |
CN106533276A (en) * | 2016-12-07 | 2017-03-22 | 天津易哲微电子技术有限公司 | Method and circuit for detecting position of servo motor |
CN106533276B (en) * | 2016-12-07 | 2019-09-06 | 芯愿景软件有限公司 | A kind of method and circuit of servo motor position detection |
CN107317563A (en) * | 2017-08-21 | 2017-11-03 | 四川西南交大铁路发展股份有限公司 | A kind of difference selection filter circuit and method |
CN107317563B (en) * | 2017-08-21 | 2024-02-13 | 四川西南交大铁路发展股份有限公司 | Differential selection filter circuit and method |
CN111490739A (en) * | 2019-01-25 | 2020-08-04 | 杭州海康威视数字技术股份有限公司 | Device and equipment for amplifying audio signal |
CN111490739B (en) * | 2019-01-25 | 2023-09-26 | 杭州海康威视数字技术股份有限公司 | Device and equipment for amplifying audio signal |
Also Published As
Publication number | Publication date |
---|---|
CN102571009B (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102571009A (en) | Feedforward automatic gain control circuit working in extremely low voltage current mode | |
CN101471632B (en) | Self-biased low-voltage operational transconductance amplifier circuit with controllable loop gain | |
WO2022179195A1 (en) | Bias circuit and amplifier | |
CN101217279A (en) | A Low Power Comparator with Offset Calibration | |
CN106877830B (en) | Analog front-end circuit for detecting physiological potential signals | |
WO2020143197A1 (en) | Inverting pseudo-fully differential amplifier having common-mode feedback control circuit | |
CN108233884A (en) | A kind of adjustable signal and programmable gain amplifier circuit and its control method | |
CN108023557A (en) | A kind of switched-capacitor CMFB structure | |
CN106301242A (en) | Current multiplexing type radio-frequency amplifier circuit | |
CN103944569B (en) | A kind of analog-digital converter | |
CN102790594B (en) | Dual-mode automatic gain control circuit working at ultra-low supply voltage | |
CN216490404U (en) | Operation amplifying circuit with self-adaptive slew rate enhancement | |
CN106160730B (en) | Small-signal receiving front-end and method of reseptance | |
CN107623493A (en) | A high-efficiency high-fidelity envelope modulator | |
CN111416623B (en) | Low-Offset Wide-Range Comparator Circuit Based on Fish Swarm Algorithm | |
CN103338028B (en) | Triple oscillatory feedback Weak Signal Processing circuit | |
CN107896096A (en) | Sampling hold circuit front-end wideband amplifier | |
CN104811181A (en) | Current-to-voltage conversion circuit with input bias and active power filtering effects and current-to-voltage conversion method | |
CN114337552B (en) | Operational amplifier circuit with self-adaptive slew rate enhancement | |
CN206611390U (en) | A kind of analog front circuit for physiology potential signal detection | |
CN204559542U (en) | A kind of current-to-voltage converting circuit with inputting biased and active power filtering | |
CN206698188U (en) | The amplifier of low-voltage high linearity | |
KR20110068613A (en) | Analog circuit with improved response speed | |
CN206164477U (en) | Current reuse type high frequency amplifier circuit | |
CN116761116A (en) | Full-dynamic gain adjustable digital microphone interface circuit powered by low voltage domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |