CN102570998B - High-frequency power amplifier device - Google Patents
High-frequency power amplifier device Download PDFInfo
- Publication number
- CN102570998B CN102570998B CN201110421051.8A CN201110421051A CN102570998B CN 102570998 B CN102570998 B CN 102570998B CN 201110421051 A CN201110421051 A CN 201110421051A CN 102570998 B CN102570998 B CN 102570998B
- Authority
- CN
- China
- Prior art keywords
- power amplifier
- amplifier circuit
- transistor
- transmission line
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 129
- 238000010168 coupling process Methods 0.000 claims abstract description 51
- 230000008878 coupling Effects 0.000 claims abstract description 50
- 238000005859 coupling reaction Methods 0.000 claims abstract description 50
- 239000004065 semiconductor Substances 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 31
- 241001125929 Trisopterus luscus Species 0.000 description 14
- 101150071434 BAR1 gene Proteins 0.000 description 9
- 101100378536 Ovis aries ADRB1 gene Proteins 0.000 description 9
- 230000004907 flux Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 101100004179 Schizophyllum commune BAR2 gene Proteins 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 101150090657 ADRB3 gene Proteins 0.000 description 4
- 101100004181 Schizophyllum commune (strain H4-8 / FGSC 9210) BAR3 gene Proteins 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Abstract
公开了一种能够降低通话电流的高频功率放大器设备。例如,高频功率放大器设备具有第一和第二功率放大器电路、第一和第二传输线以及其中第一和第二传输线被彼此靠近地布置的区域。根据输出电平,第一或第二功率放大器电路被激活。当第二功率放大器电路被激活时,在第一和第二传输线中流动的电流在相同方向上传输从而磁耦合发生以加强每个传输线的磁力。另一方面,当第一功率放大器电路被激活时,在第一和第二传输线中流动的电流在相反方向上传输从而磁耦合发生以减弱每个传输线的磁力。
A high-frequency power amplifier device capable of reducing call current is disclosed. For example, a high-frequency power amplifier device has first and second power amplifier circuits, first and second transmission lines, and a region in which the first and second transmission lines are arranged close to each other. Depending on the output level, the first or second power amplifier circuit is activated. When the second power amplifier circuit is activated, currents flowing in the first and second transmission lines are transmitted in the same direction so that magnetic coupling occurs to strengthen the magnetic force of each transmission line. On the other hand, when the first power amplifier circuit is activated, currents flowing in the first and second transmission lines are transmitted in opposite directions so that magnetic coupling occurs to weaken the magnetic force of each transmission line.
Description
相关申请的交叉引用Cross References to Related Applications
通过引用将于2010年12月16日提交的日本专利申请No.2010-280296的公开内容,包括说明书、附图以及摘要全部并入于此。The disclosure of Japanese Patent Application No. 2010-280296 filed on December 16, 2010 including specification, drawings and abstract is hereby incorporated by reference in its entirety.
技术领域technical field
本发明涉及一种高频功率放大器设备,并且更具体地涉及一种可应用于高频功率放大器设备的有效技术,其根据用于传输的输出电平设置来改变将被使用的晶体管。The present invention relates to a high-frequency power amplifier device, and more particularly, to an effective technique applicable to a high-frequency power amplifier device that changes a transistor to be used according to an output level setting for transmission.
背景技术Background technique
在所描述的构造中,例如,在美国专利No.7135919中,第一放大器和第二放大器与公共输出节点耦合。互补地激活第一和第二放大器。在第二放大器与公共输出节点之间提供具有λ/4长度的传输线。In the described construction, for example, in US Patent No. 7,135,919, the first amplifier and the second amplifier are coupled to a common output node. The first and second amplifiers are activated complementary. A transmission line having a length of λ/4 is provided between the second amplifier and the common output node.
近年来,需要实现例如移动电话的传输功能的高频功率放大器设备(高频功率放大器模块)尺寸变得更小并且降低通话电流。通话电流是用于传输的每个输出电平使用频率的概率分布和每个输出电平的消耗电流的积分值。例如,降低通话电流可降低例如移动电话的功耗并且可提高其电池的寿命。图10示出了W-CDMA(宽带码分多址)移动电话中的每个输出电平使用频率的概率分布的示例。如图10所示,以0dBm为中心的低至中输出电平经常用在例如W-CDMA移动电话中。因此,提高在低至中输出电平上的高频功率放大器模块的功率附加效率(PAE)有益于降低通话电流。In recent years, high-frequency power amplifier devices (high-frequency power amplifier modules) required to realize transmission functions such as mobile phones have become smaller in size and reduced call current. The call current is the probability distribution of the usage frequency per output level for transmission and the integrated value of the consumption current per output level. For example, reducing the call current reduces the power consumption of, for example, a mobile phone and increases the life of its battery. FIG. 10 shows an example of the probability distribution of each output level usage frequency in a W-CDMA (Wideband Code Division Multiple Access) mobile phone. As shown in Figure 10, low to medium output levels centered around 0 dBm are often used in eg W-CDMA mobile phones. Therefore, improving the power-added efficiency (PAE) of the high-frequency power amplifier module at low to medium output levels is beneficial to reduce talk current.
例如,通过利用如图11A至11C所示的构造可提高在低至中输出电平上的功率附加效率。图11A至11C示出了作为本发明的前提来研究的高频功率放大器设备。图11A是用于对高频功率放大器设备的基本部件的示例构造进行说明的示意图。图11B示出图11A所示的主路径的示例性特性。图11C示出图11A所示的子路径的示例性特性。图11A所示的高频功率放大器设备包括对通过电容C1从公共输入节点N2输入的信号进行放大的主功率放大器电路(功率放大器电路)PA2m以及对通过电容C2从公共输入节点N2输入的信号进行放大的子功率放大器电路PA2s。For example, power added efficiency at low to medium output levels can be improved by utilizing the configuration shown in FIGS. 11A to 11C. 11A to 11C show a high-frequency power amplifier device investigated as a premise of the present invention. FIG. 11A is a schematic diagram for explaining an example configuration of essential parts of a high-frequency power amplifier device. FIG. 11B shows exemplary characteristics of the main path shown in FIG. 11A . FIG. 11C illustrates exemplary properties of the subpaths shown in FIG. 11A . The high-frequency power amplifier device shown in FIG. 11A includes a main power amplifier circuit (power amplifier circuit) PA2m that amplifies a signal input from a common input node N2 through a capacitor C1 and a signal that is input from the common input node N2 through a capacitor C2. Amplified sub-power amplifier circuit PA2s.
主功率放大器电路PA2m的输出与传输线LNmn的一端耦合,而子功率放大器电路PA2s的输出通过传输线LNsub与传输线LNmn的一端耦合。电容C5耦合在传输线LNmn的另一端与输出节点Pout之间。电容C4耦合在传输线LNmn的另一端与接地电源电压GND之间。电容C3和NMOS晶体管MNsw顺序地与子功率放大器电路PA2s的输出节点(传输线LNsub的一端)耦合并且指向接地电源电压GND。包含在主功率放大器电路PA2m之中的晶体管的尺寸大于包含在子功率放大器电路PA2s之中的晶体管。通过激活主功率放大器电路PA2m、对子功率放大器电路PA2s去激活、执行控制以利用控制信号Vsw断开NMOS晶体管MNsw并且通过传输线LNmn将主功率放大器电路PA2m的输出功率传送到输出节点Pout可将高输出电平传送到输出节点Pout。通过激活子功率放大器电路PA2s、对主功率放大器电路PA2m去激活、执行控制以利用控制信号Vsw导通NMOS晶体管MNsw并且通过传输线LNsub和传输线LNmn将子功率放大器电路PA2s的输出功率传送到输出节点Pout可将低至中输出电平传送到输出节点Pout。The output of the main power amplifier circuit PA2m is coupled to one end of the transmission line LNmn, and the output of the sub power amplifier circuit PA2s is coupled to one end of the transmission line LNmn through the transmission line LNsub. The capacitor C5 is coupled between the other end of the transmission line LNmn and the output node Pout. The capacitor C4 is coupled between the other end of the transmission line LNmn and the ground power supply voltage GND. The capacitor C3 and the NMOS transistor MNsw are sequentially coupled to the output node (one end of the transmission line LNsub) of the sub power amplifier circuit PA2s and directed to the ground power supply voltage GND. The transistors included in the main power amplifier circuit PA2m are larger in size than the transistors included in the sub power amplifier circuit PA2s. High power can be transmitted by activating the main power amplifier circuit PA2m, deactivating the sub power amplifier circuit PA2s, performing control to turn off the NMOS transistor MNsw with the control signal Vsw, and transmitting the output power of the main power amplifier circuit PA2m to the output node Pout through the transmission line LNmn. The output level is sent to the output node Pout. By activating the sub power amplifier circuit PA2s, deactivating the main power amplifier circuit PA2m, performing control to turn on the NMOS transistor MNsw with the control signal Vsw and transmit the output power of the sub power amplifier circuit PA2s to the output node Pout through the transmission line LNsub and the transmission line LNmn Low to medium output levels can be delivered to output node Pout.
如上所述,当使用图11A所示的示例构造时,晶体管尺寸小的功率放大器电路PA2s可实现在低至中输出电平上的功率放大。因此,可提高功率附加效率(PAE)。然而,已发现该示例构造可能难以使传输线LNsub的设计最佳。首先,当由于激活主功率放大器电路PA2m而使主路径操作时,从主功率放大器电路PA2m的输出节点朝向传输线LNsub的方向所观察到的阻抗高,因为执行了控制使NMOS晶体管MNsw断开。因此,理想地,通过传输线LNsub不会发生功率损耗。然而,实际上,NMOS晶体管MNsw具有断开电容(Coff)。因此,由于由传输线LNsub、电容C3以及断开电容(Coff)所形成的串联共振电路很难完全避免通过传输线LNsub的功率损耗。如图11B所示,功率损耗随着传输线LNsub的长度增加(随电感器部件的数量增加)而增大(从而降低PAE),因为这使串联共振电路的共振频率朝向载波频率降低。As described above, when using the example configuration shown in FIG. 11A , the power amplifier circuit PA2 s with a small transistor size can realize power amplification at low to middle output levels. Therefore, power added efficiency (PAE) can be improved. However, it has been found that this example configuration may make it difficult to optimize the design of the transmission line LNsub. First, when the main path is operated due to activation of the main power amplifier circuit PA2m, the impedance observed from the output node of the main power amplifier circuit PA2m toward the transmission line LNsub is high because control is performed to turn off the NMOS transistor MNsw. Therefore, ideally, no power loss occurs through the transmission line LNsub. Actually, however, the NMOS transistor MNsw has an off capacitance (Coff). Therefore, due to the series resonant circuit formed by the transmission line LNsub, the capacitor C3 and the off capacitance (Coff), it is difficult to completely avoid the power loss through the transmission line LNsub. As shown in FIG. 11B , the power loss increases (thus reducing the PAE) as the length of the transmission line LNsub increases (as the number of inductor components increases) because this lowers the resonant frequency of the series resonant circuit towards the carrier frequency.
同时,当由于子功率放大器电路PA2s的激活而使子路径操作时,通过电容C3、传输线LNsub、传输线LNmn、电容C4以及电容C5将子功率放大器电路PA2s的输出阻抗(例如,几十欧姆)转换成预定阻抗(例如,50欧姆),这是因为执行了控制使NMOS晶体管MNsw导通。在这种情况下,如图11C所示PAE随着传输线LNsub长度的增加而增大。理由是当传输线LNsub的长度增加时(当电感器部件的数量增加时)可在如图12所示的史密斯图(导抗图)中获得足够量的顺时针旋转。然后可将所获得量的顺时针旋转与电容C3组合以实现足够的阻抗转换。Meanwhile, when the sub-path is operated due to the activation of the sub-power amplifier circuit PA2s, the output impedance (for example, tens of ohms) of the sub-power amplifier circuit PA2s is converted by the capacitor C3, the transmission line LNsub, the transmission line LNmn, the capacitor C4, and the capacitor C5. to a predetermined impedance (for example, 50 ohms) because control is performed to turn on the NMOS transistor MNsw. In this case, PAE increases as the length of the transmission line LNsub increases as shown in FIG. 11C. The reason is that a sufficient amount of clockwise rotation can be obtained in the Smith chart (impedance chart) shown in FIG. 12 when the length of the transmission line LNsub is increased (when the number of inductor components is increased). The resulting amount of clockwise rotation can then be combined with capacitor C3 to achieve sufficient impedance transformation.
如上所述,优选地在主路径操作期间传输线LNsub短以提高功率附加效率(PAE)。相反地,在子路径操作期间,优选地传输线LNsub长以提高PAE。为了降低通话电流并且提高总PAE,有必要设计一种将解决上述平衡问题的方案。应该注意的是在传输线LNsub的长度例如是λ/4时,在主路径操作期间传输线LNsub可用作短截线(stub)。然而,例如当使用2GHz的W-CDMA频率时,值λ/4表示大约几厘米。因此,可能不能减小高频功率放大器模块的尺寸。As mentioned above, the transmission line LNsub is preferably short during main path operation to improve power added efficiency (PAE). Conversely, during sub-path operation, it is preferred that the transmission line LNsub be long to improve PAE. In order to reduce the talk current and improve the overall PAE, it is necessary to devise a scheme that will solve the above-mentioned balance problem. It should be noted that when the length of the transmission line LNsub is eg λ/4, the transmission line LNsub can be used as a stub during the main path operation. However, for example when using a W-CDMA frequency of 2 GHz, the value λ/4 represents approximately several centimeters. Therefore, it may not be possible to reduce the size of the high-frequency power amplifier module.
发明内容Contents of the invention
鉴于上述情况做出了本发明并且提供了一种能够降低通话电流的高频功率放大器设备。通过以下详细描述和附图,本发明的前述和其他优点及新颖特征将变得显而易见。The present invention has been made in view of the above circumstances and provides a high-frequency power amplifier device capable of reducing call current. The foregoing and other advantages and novel features of the invention will become apparent from the following detailed description and accompanying drawings.
在下面概述了在该文档中所公开的本发明的代表性实施例。Representative embodiments of the invention disclosed in this document are outlined below.
根据本发明的代表性实施例的高频功率放大器设备包括第一功率放大器电路、第二功率放大器电路、第一传输线、第二传输线、第一电容、第二电容、晶体管开关以及控制电路。第一和第二功率放大器电路两者对第一输入信号进行放大。第一传输线在一端与第一功率放大器电路的输出节点相耦合并且在另一端与第一电容相耦合。第二传输线在一端与第一功率放大器电路的输出节点相耦合并且在另一端与第二功率放大器电路的输出节点相耦合。第二电容和晶体管开关被串联布置在第二功率放大器电路的输出节点与接地电源电压之间。控制电路根据模式设置信号激活第一功率放大器电路或第二功率放大器电路。当第一功率放大器电路被激活时,控制电路驱动晶体管开关使其断开。另一方面,当第二功率放大器电路被激活时,控制电路驱动晶体管开关使其导通。第一和第二传输线包括靠近第一和第二传输线以引起磁耦合的磁耦合区域。在磁耦合区域中,第一和第二传输线被布置使得源自第一功率放大器电路的输出节点侧的第一传输线在与源自第二功率放大器电路的输出节点侧的第二传输线相同的方向上延伸。A high-frequency power amplifier device according to a representative embodiment of the present invention includes a first power amplifier circuit, a second power amplifier circuit, a first transmission line, a second transmission line, a first capacitor, a second capacitor, a transistor switch, and a control circuit. Both the first and second power amplifier circuits amplify the first input signal. The first transmission line is coupled at one end to the output node of the first power amplifier circuit and at the other end to the first capacitor. The second transmission line is coupled at one end to the output node of the first power amplifier circuit and at the other end to the output node of the second power amplifier circuit. The second capacitor and the transistor switch are arranged in series between the output node of the second power amplifier circuit and the ground supply voltage. The control circuit activates the first power amplifier circuit or the second power amplifier circuit according to the mode setting signal. When the first power amplifier circuit is activated, the control circuit drives the transistor switch to turn off. On the other hand, when the second power amplifier circuit is activated, the control circuit drives the transistor switch to conduct. The first and second transmission lines include magnetic coupling regions proximate to the first and second transmission lines to induce magnetic coupling. In the magnetic coupling region, the first and second transmission lines are arranged so that the first transmission line originating from the output node side of the first power amplifier circuit is in the same direction as the second transmission line originating from the output node side of the second power amplifier circuit Extend up.
当在使用上述构造期间第一功率放大器电路被激活时,在磁耦合区域中磁耦合发生从而减弱每个传输线的磁力。另一方面,当在使用上述构造期间第二功率放大器电路被激活时,在磁耦合区域中磁耦合发生从而加强每个传输线的磁力。其结果是,当第一功率放大器电路被激活时第二传输线看起来短,并且当第二功率放大器电路被激活时看起来长。因此,可解决上述平衡问题以降低通话电流并且降低高频功率放大器设备的功耗。When the first power amplifier circuit is activated during use of the above configuration, magnetic coupling occurs in the magnetic coupling region to weaken the magnetic force of each transmission line. On the other hand, when the second power amplifier circuit is activated during use of the above configuration, magnetic coupling occurs in the magnetic coupling region to strengthen the magnetic force of each transmission line. As a result, the second transmission line appears short when the first power amplifier circuit is activated and appears long when the second power amplifier circuit is activated. Therefore, the above-mentioned balance problem can be solved to reduce the call current and reduce the power consumption of the high-frequency power amplifier device.
总之,在该文档中所公开的本发明的代表性实施例是有利的,因为它可降低高频功率放大器设备中的通话电流。In conclusion, the representative embodiment of the present invention disclosed in this document is advantageous because it reduces the talk current in a high frequency power amplifier device.
附图说明Description of drawings
图1是用于对根据本发明的第一实施例的高频功率放大器设备的示例构造进行说明的方框图;FIG. 1 is a block diagram for explaining an example configuration of a high-frequency power amplifier device according to a first embodiment of the present invention;
图2A和2B是电路图,其中图2A是用于对图1所示的高频功率放大器设备的基本部件的示例构造进行详细说明的电路图,并且图2B是用于对图2A的某些部分的示例构造进行进一步的详细说明的电路图;2A and 2B are circuit diagrams, wherein FIG. 2A is a circuit diagram for explaining in detail an example configuration of basic parts of the high-frequency power amplifier device shown in FIG. Example configurations for further detailed circuit diagrams;
图3A和3B示出图2A所示的高频功率放大器设备的操作原理,其中图3A是用于对当使用子路径时所执行的操作的示例进行说明的图,并且图3B是用于对当使用主路径时所执行的操作的示例进行说明的图;3A and 3B show the operating principle of the high-frequency power amplifier device shown in FIG. 2A, wherein FIG. 3A is a diagram for explaining an example of an operation performed when a sub-path is used, and FIG. Diagram illustrating an example of what to do when using the main path;
图4A至4C示出在使用图2A和2B所示的高频功率放大器设备的子路径期间磁耦合的示例效果,其中图4A是用于对这种磁耦合的前提条件进行说明的补充示意图,并且图4B和4C是用于对验证结果进行说明的图;4A to 4C show example effects of magnetic coupling during use of the subpaths of the high-frequency power amplifier devices shown in FIGS. 2A and 2B , wherein FIG. 4A is a supplementary schematic diagram for illustrating the prerequisites for such magnetic coupling, And FIGS. 4B and 4C are diagrams for explaining verification results;
图5A和5B示出在使用图2A和2B所示的高频功率放大器设备期间所呈现的各种特性,其中图5A是用于对功率附加效率(PAE)的特性进行说明的图,并且图5B是用于对相邻信道泄漏比的特性进行说明的图;5A and 5B show various characteristics exhibited during use of the high-frequency power amplifier device shown in FIGS. 2A and 2B, wherein FIG. 5A is a diagram for explaining characteristics of power-added efficiency (PAE), and 5B is a diagram for explaining the characteristics of the adjacent channel leakage ratio;
图6是与根据本发明的第二实施例的高频功率放大器设备有关并且对基于图2A和2B所示的构造示例的示例安装结构进行说明的示意图;FIG. 6 is a schematic diagram related to a high-frequency power amplifier device according to a second embodiment of the present invention and illustrating an example mounting structure based on the configuration example shown in FIGS. 2A and 2B;
图7是与根据本发明的第三实施例的高频功率放大器设备有关并且对基于图2A和2B所示的构造示例的示例安装结构进行说明的示意图;FIG. 7 is a schematic diagram related to a high-frequency power amplifier device according to a third embodiment of the present invention and illustrating an example mounting structure based on the configuration example shown in FIGS. 2A and 2B;
图8是用于对使用图7所示的安装结构的布线电路板布局的示例进行详细说明的示意图;8 is a schematic diagram for explaining in detail an example of a wiring circuit board layout using the mounting structure shown in FIG. 7;
图9是与根据本发明的第四实施例的高频功率放大器设备有关并且对图1所示的第二级功率放大器电路部分的示例构造进行详细说明的电路图;9 is a circuit diagram relating to a high-frequency power amplifier device according to a fourth embodiment of the present invention and illustrating in detail an example configuration of a second-stage power amplifier circuit portion shown in FIG. 1;
图10是用于对W-CDMA移动电话中的每个输出电平使用频率的概率分布的示例进行说明的图;FIG. 10 is a diagram for explaining an example of a probability distribution of each output level usage frequency in a W-CDMA mobile phone;
图11A至11C说明了作为本发明的前提所研究的高频功率放大器设备,其中图11A是用于对高频功率放大器设备的基本部件的示例构造进行说明的示意图,图11B是用于对图11A所示的主路径的示例性特性进行说明的图,并且图11C是用于对图11A所示的子路径的示例性特性进行说明的图;11A to 11C illustrate the high-frequency power amplifier device studied as a premise of the present invention, wherein FIG. 11A is a diagram illustrating exemplary characteristics of the main path, and FIG. 11C is a diagram illustrating exemplary characteristics of the sub-path shown in FIG. 11A;
图12是图11A至11C的补充示意图。Fig. 12 is a supplementary schematic diagram of Figs. 11A to 11C.
具体实施方式detailed description
在下述实施例中,为了方便起见在必要时,通过将本发明分成多个部分或实施例来对本发明进行说明。然而,除非另有明确声明,这些部分或实施例并非彼此不相关。存在这样的一种关系,例如,一个部分或实施例是对另一部分或实施例的一部分或整体的修改、详细描述或者补充说明。此外,在下述实施例中,当涉及元件数目等等(包括例如,块数目、数值、数量以及范围)时,除非另有特别指定或者该数目在原理上显然局限于指定数目,该数目不局限于指定数目并且可被设置为比指定数目高或低的值。In the following embodiments, the present invention is described by dividing the present invention into a plurality of parts or embodiments where necessary for convenience. However, these parts or embodiments are not independent of each other unless explicitly stated otherwise. There is such a relationship that, for example, one part or embodiment is a modification, detailed description, or supplementary explanation of a part or the whole of another part or embodiment. In addition, in the following embodiments, when referring to the number of elements and the like (including, for example, the number of blocks, numerical values, quantities, and ranges), unless otherwise specifically specified or the number is obviously limited to the specified number in principle, the number is not limited at the specified number and can be set to a value higher or lower than the specified number.
此外,在下述实施例中,显然地是部件(包括元件步骤)不总是必不可少的,除非另有说明或者除了该部件在原理上显然是必不可少的情况以外。类似地,在下述实施例中,例如当提到部件的形状以及部件之间的位置关系时,基本上近似或相似形状等等被包括在其中,除非另有说明或者除了可以想得到它们显然在原理上被排除的情况以外。这同样适用于上述数值和范围。Furthermore, in the embodiments described below, it is obvious that a component (including element steps) is not always indispensable unless otherwise specified or except for the case where the component is obviously essential in principle. Similarly, in the following embodiments, for example, when referring to the shapes of parts and the positional relationship between parts, substantially approximate or similar shapes and the like are included therein, unless otherwise specified or unless they can be conceived obviously in principle Except for the cases excluded above. The same applies to the above numerical values and ranges.
虽然在该实施例中使用MOSFET(金属氧化物半导体场效应晶体管)(缩写为MOS晶体管)作为MISFET(金属绝缘体半导体场效应晶体管)(缩写为MIS晶体管)的示例,但是不排除非氧化膜作为栅极绝缘膜。虽然在附图中没有特别指出MOS晶体管的衬底电势的耦合方法,但是不对其特别限制,只要它允许MOS晶体管正常地操作即可。Although a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) (abbreviated as MOS transistor) is used as an example of a MISFET (Metal Insulator Semiconductor Field Effect Transistor) (abbreviated as MIS transistor) in this embodiment, a non-oxide film as a gate transistor is not excluded. pole insulating film. Although the coupling method of the substrate potential of the MOS transistor is not particularly indicated in the drawings, it is not particularly limited as long as it allows the MOS transistor to operate normally.
现在参考附图对本发明的实施例进行详细描述。在用于对实施例进行说明的所有附图中,由相同附图标记表示相似元件并且不对其进行冗余地描述。Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In all the drawings for explaining the embodiments, similar elements are denoted by the same reference numerals and are not described redundantly.
第一实施例first embodiment
图1是用于对根据本发明的第一实施例的高频功率放大器设备的示例构造进行说明的方框图。图1所示的高频功率放大器设备(高频功率放大器模块)HPAMD包括例如陶瓷布线电路板(PCB)。将高频功率放大器芯片HPAIC和控制芯片CTLIC安装在PCB上。此外,PCB上的布线层用于形成输出匹配电路MNT_O。高频功率放大器设备HPAMD用于W-CDMA和TDS-CDMA(时分同步码分多址),但是不特别局限于W-CDMA和TDS-CDMA。高频功率放大器芯片HPAIC是所谓的MMIC(单片微波集成电路)并且包括输入匹配电路MNT_I、第一级功率放大器电路(功率放大器电路)PA1、中间级匹配电路MNT_S以及第二级功率放大器电路PA2m、PA2s。FIG. 1 is a block diagram for explaining an example configuration of a high-frequency power amplifier device according to a first embodiment of the present invention. The high-frequency power amplifier device (high-frequency power amplifier module) HPAMD shown in FIG. 1 includes, for example, a ceramic wiring circuit board (PCB). Install the high-frequency power amplifier chip HPAIC and the control chip CTLIC on the PCB. In addition, the wiring layer on the PCB is used to form the output matching circuit MNT_O. The high-frequency power amplifier device HPAMD is used for W-CDMA and TDS-CDMA (Time Division Synchronous Code Division Multiple Access), but is not particularly limited to W-CDMA and TDS-CDMA. The high-frequency power amplifier chip HPAIC is a so-called MMIC (Monolithic Microwave Integrated Circuit) and includes an input matching circuit MNT_I, a first-stage power amplifier circuit (power amplifier circuit) PA1, an intermediate-stage matching circuit MNT_S, and a second-stage power amplifier circuit PA2m , PA2s.
输入匹配电路MNT_I提供了高频功率放大器设备HPAMD的外部端子(输入功率信号Pin)与第一级功率放大器电路PA1的输入节点之间的阻抗匹配。第一级功率放大器电路PA1通过高频功率放大器设备HPAMD的外部端子接收电源电压Vcc1并且对通过输入匹配电路MNT_I从输入功率信号Pin输入的信号进行放大。中间级匹配电路MNT_S提供了用作第一级的第一级功率放大器电路PA1的输出节点与用作第二级的第二级功率放大器电路PA2m、PA2s的输入节点之间的阻抗匹配。第二级功率放大器电路PA2m、PA2s通过高频功率放大器设备HPAMD的外部端子接收电源电压,使它们的输入节点和输出节点共同耦合,并且对通过中间级匹配电路MNT_S从第一级功率放大器电路PA1输入的信号进行放大。在该实例中,根据来自控制芯片CTLIC的控制信号来选择第二级功率放大器电路PA2m或第二级功率放大器电路PA2s。然后所选的第二级功率放大器电路用于执行放大操作。The input matching circuit MNT_I provides impedance matching between the external terminal (input power signal Pin) of the high frequency power amplifier device HPAMD and the input node of the first stage power amplifier circuit PA1. The first-stage power amplifier circuit PA1 receives the power supply voltage Vcc1 through the external terminal of the high-frequency power amplifier device HPAMD and amplifies a signal input from the input power signal Pin through the input matching circuit MNT_I. The middle-stage matching circuit MNT_S provides impedance matching between the output node of the first-stage power amplifier circuit PA1 serving as the first stage and the input nodes of the second-stage power amplifier circuits PA2m, PA2s serving as the second stage. The second-stage power amplifier circuits PA2m, PA2s receive the power supply voltage through the external terminals of the high-frequency power amplifier device HPAMD, have their input nodes and output nodes commonly coupled, and receive the power supply voltage from the first-stage power amplifier circuit PA1 through the intermediate-stage matching circuit MNT_S The input signal is amplified. In this instance, the second-stage power amplifier circuit PA2m or the second-stage power amplifier circuit PA2s is selected according to a control signal from the control chip CTLIC. The selected second stage power amplifier circuit is then used to perform the amplification operation.
输出匹配电路MNT_O提供第二级功率放大器电路PA2m、PA2s的公共输出节点与高频功率放大器设备HPAMD的外部端子(输出功率信号Pout)之间的阻抗匹配。控制芯片CTLIC通过高频功率放大器设备HPAMD的外部端子接收电源电压Vbat并且必要时根据通过高频功率放大器设备HPAMD的外部端子所输入的模式设置信号Vmode和使能信号Ven对高频功率放大器芯片HPAIC进行控制。更具体地,例如当使能信号Ven在高电平(激活)时,控制芯片CTLIC将偏置电压提供给第一级功率放大器电路PA1和第二级功率放大器电路PA2m(或者第二级功率放大器电路PA2s)(即,激活(启用)功率放大器电路)。当使能信号Ven在低电平(去激活)时,控制芯片CTLIC切断偏置电压的供给(即,去激活(禁用)功率放大器电路)。在这种情况下,根据模式设置信号Vmode的逻辑电平将偏置电压提供给第二级功率放大器电路PA2m或第二级功率放大器电路PA2s。例如,具有调制功能等等的高频信号处理设备(未示出)位于输入功率信号Pin的上游,并且双工器、天线开关以及天线位于输出功率信号Pout的下游。例如,由位于上游的基带处理电路产生模式设置信号Vmode和使能信号Ven。The output matching circuit MNT_O provides impedance matching between the common output node of the second stage power amplifier circuits PA2m, PA2s and the external terminal (output power signal Pout) of the high frequency power amplifier device HPAMD. The control chip CTLIC receives the power supply voltage Vbat through the external terminal of the high-frequency power amplifier device HPAMD and, if necessary, sets the signal Vmode and the enable signal Ven to the high-frequency power amplifier chip HPAIC according to the mode input through the external terminal of the high-frequency power amplifier device HPAMD Take control. More specifically, for example, when the enable signal Ven is at a high level (activated), the control chip CTLIC provides a bias voltage to the first-stage power amplifier circuit PA1 and the second-stage power amplifier circuit PA2m (or the second-stage power amplifier circuit PA2m). circuit PA2s) (ie, activates (enables) the power amplifier circuit). When the enable signal Ven is at a low level (deactivated), the control chip CTLIC cuts off the supply of the bias voltage (ie, deactivates (disables) the power amplifier circuit). In this case, the bias voltage is supplied to the second-stage power amplifier circuit PA2m or the second-stage power amplifier circuit PA2s according to the logic level of the mode setting signal Vmode. For example, a high-frequency signal processing device (not shown) having a modulation function and the like is located upstream of the input power signal Pin, and a duplexer, antenna switch, and antenna are located downstream of the output power signal Pout. For example, the mode setting signal Vmode and the enable signal Ven are generated by a baseband processing circuit located upstream.
图2A是用于对图1所示的高频功率放大器设备的基本部件的示例构造进行详细说明的电路图。图2B是用于对图2A的某些部分的示例构造进行进一步的详细说明的电路图。参考图2A,除了上述第二级功率放大器电路PA2m、PA2s和形成中间级匹配电路MNT_S的电容C1、C2之外,高频功率放大器芯片HPAIC还包括电容C3。通过电容C1将从上述第一级功率放大器电路PA1输出的信号输入到第二级功率放大器电路PA2m中并且通过电容C2输入到第二级功率放大器电路PA2s中。电容C3的一端与第二级功率放大器电路PA2s的输出节点相耦合。控制芯片CTLIC包括切换N沟道MOS晶体管(NMOS晶体管)MNsw。NMOS晶体管MNsw包括例如LDMOS(横向扩散MOS)。由输入到其栅极的控制信号Vsw对NMOS晶体管MNsw的导通/断开操作进行控制。其源极与接地电源电压GND相耦合,并且其漏极与电容C3的另一端相耦合。根据图1所示的模式设置信号Vmode产生控制信号Vsw。FIG. 2A is a circuit diagram for explaining in detail an example configuration of essential parts of the high-frequency power amplifier device shown in FIG. 1 . FIG. 2B is a circuit diagram for further detailing an example configuration of certain portions of FIG. 2A . Referring to FIG. 2A , in addition to the second-stage power amplifier circuits PA2m and PA2s and the capacitors C1 and C2 forming the middle-stage matching circuit MNT_S, the high-frequency power amplifier chip HPAIC also includes a capacitor C3. The signal output from the above-mentioned first-stage power amplifier circuit PA1 is input into the second-stage power amplifier circuit PA2m through the capacitor C1 and input into the second-stage power amplifier circuit PA2s through the capacitor C2. One end of the capacitor C3 is coupled to the output node of the second stage power amplifier circuit PA2s. The control chip CTLIC includes switching N-channel MOS transistors (NMOS transistors) MNsw. The NMOS transistor MNsw includes, for example, LDMOS (Laterally Diffused MOS). The on/off operation of the NMOS transistor MNsw is controlled by a control signal Vsw input to its gate. Its source is coupled to the ground supply voltage GND, and its drain is coupled to the other end of the capacitor C3. The control signal Vsw is generated according to the mode setting signal Vmode shown in FIG. 1 .
如图2B所示,例如由发射极接地的npn异质结双极晶体管(HBT)Q2m、Q2s实现第二级功率放大器电路PA2m、PA2s。异质结双极晶体管Q2m的晶体管尺寸比异质结双极晶体管Q2s大,并且具有例如大约4倍于异质结双极晶体管Q2s的发射极尺寸,虽然其发射极尺寸并不特别限于此。控制芯片CTLIC将偏置电流IBS2m提供给异质结双极晶体管Q2m的基极并且将偏置电流IBS2s提供给异质结双极晶体管Q2s的基极。根据图1所示的模式设置信号Vmode,控制芯片CTLIC可选择是否提供偏置电流IBS2m、IBS2s。As shown in FIG. 2B , the second-stage power amplifier circuits PA2m, PA2s are realized by, for example, emitter-grounded npn heterojunction bipolar transistors (HBT) Q2m, Q2s. The heterojunction bipolar transistor Q2m has a larger transistor size than the heterojunction bipolar transistor Q2s, and has, for example, about 4 times the emitter size of the heterojunction bipolar transistor Q2s, although its emitter size is not particularly limited thereto. The control chip CTLIC supplies the bias current IBS2m to the base of the heterojunction bipolar transistor Q2m and supplies the bias current IBS2s to the base of the heterojunction bipolar transistor Q2s. According to the mode setting signal Vmode shown in Figure 1, the control chip CTLIC can choose whether to provide bias current IBS2m, IBS2s.
如上所述,将包括例如砷化镓(GaAs)和硅化锗(SiGe)的化合物半导体工艺应用于高频功率放大器芯片HPAIC,并且将硅(Si)工艺(CMOS工艺)应用于控制芯片CTLIC。因此,将高频功率放大器芯片HPAIC和控制芯片CTLIC准备为独立的半导体芯片。然而,如果可通过利用例如特性劣于HBT的LDMOS实现功率放大器电路,那么可将高频功率放大器芯片HPAIC和控制芯片CTLIC集成到单个半导体芯片中。此外,电容C3可形成于输出匹配电路MNT_O或控制芯片CTLIC中。然而,当电容C3形成于高频功率放大器芯片HPAIC中时,结果是有利的,因为它降低了所需面积并且实现了高Q值。可将NMOS晶体管MNsw构造为高频功率放大器芯片HPAIC之内的双极晶体管。然而,当将NMOS晶体管MNsw构造为控制芯片CTLIC之内的MOS晶体管时,与使用双极晶体管的情况相比,它可例如降低所需面积和功耗。As described above, a compound semiconductor process including, for example, gallium arsenide (GaAs) and silicide (SiGe) is applied to the high-frequency power amplifier chip HPAIC, and a silicon (Si) process (CMOS process) is applied to the control chip CTLIC. Therefore, the high-frequency power amplifier chip HPAIC and the control chip CTLIC are prepared as separate semiconductor chips. However, if the power amplifier circuit can be realized by using, for example, LDMOS whose characteristics are inferior to those of HBT, the high-frequency power amplifier chip HPAIC and the control chip CTLIC can be integrated into a single semiconductor chip. In addition, the capacitor C3 can be formed in the output matching circuit MNT_O or the control chip CTLIC. However, when the capacitor C3 is formed in the high-frequency power amplifier chip HPAIC, it turns out to be advantageous because it reduces the required area and realizes a high Q value. The NMOS transistor MNsw can be configured as a bipolar transistor within the high-frequency power amplifier chip HPAIC. However, when the NMOS transistor MNsw is constructed as a MOS transistor within the control chip CTLIC, it can, for example, reduce the required area and power consumption compared to the case of using bipolar transistors.
参考图2A,输出匹配电路MNT_O包括传输线LNmn、LNsub和电容C4、C5。电容C4、C5的一端共同耦合。电容C4的另一端与接地电源电压GND相耦合,并且电容C5的另一端与外部端子(输出功率信号Pout)相耦合。传输线LNmn、LNsub的一端与第二级功率放大器电路PA2m的输出节点共同耦合。传输线LNmn的另一端与电容C4、C5的一端耦合。传输线LNsub的另一端与第二级功率放大器电路PA2s的输出节点(电容C3的一端)耦合。在特定区域中,传输线LNmn、LNsub彼此靠近并且平行地被布置以引起磁耦合(MC)。此外,在该磁耦合区域中,传输线LNmn、Lnsub被布置成使得源自第二级功率放大器电路PA2m的输出节点侧的传输线LNmn在与源自第二级功率放大器电路PA2s的输出节点侧的传输线LNsub相同的方向上延伸。该磁耦合部分的构造与图11A至11C所示的上述示例构造不同。Referring to FIG. 2A, the output matching circuit MNT_O includes transmission lines LNmn, LNsub and capacitors C4, C5. One ends of the capacitors C4 and C5 are coupled together. The other end of the capacitor C4 is coupled to the ground power supply voltage GND, and the other end of the capacitor C5 is coupled to the external terminal (output power signal Pout). One end of the transmission lines LNmn, LNsub is commonly coupled to the output node of the second-stage power amplifier circuit PA2m. The other end of the transmission line LNmn is coupled to one end of the capacitors C4 and C5. The other end of the transmission line LNsub is coupled to the output node of the second-stage power amplifier circuit PA2s (one end of the capacitor C3). In a certain area, the transmission lines LNmn, LNsub are arranged close to each other and in parallel to induce magnetic coupling (MC). Also, in this magnetic coupling region, the transmission lines LNmn, Lnsub are arranged so that the transmission line LNmn originating from the output node side of the second-stage power amplifier circuit PA2m is in the same position as the transmission line originating from the output node side of the second-stage power amplifier circuit PA2s. LNsub extends in the same direction. The configuration of this magnetic coupling portion is different from the above-described example configuration shown in FIGS. 11A to 11C .
图3A和3B示出了图2A所示的高频功率放大器设备的操作原理。图3A是用于对当使用子路径时所执行的操作的示例进行说明的图。图3B是用于对当使用主路径时所执行的操作的示例进行说明的图。首先,当外部端子的电能(Pout)将被设置在低至中输出电平上时,通过利用如图3A所示的子路径来执行操作。当使用子路径时,上述控制芯片CTLIC执行控制以启用第二级功率放大器电路PA2s、禁用第二级功率放大器电路PA2m并且导通NMOS晶体管MNsw。在该实例下,通过传输线LNsub将从第二级功率放大器电路PA2s输出的信号传送到传输线LNmn的一端(第二级功率放大器电路PA2m的输出节点侧),并且然后通过传输线LNmn将其转送到外部端子(Pout)。在这种情况下,NMOS晶体管MNsw导通以便通过由电容C3、传输线LNsub、传输线LNmn、电容C4以及电容C5所形成的匹配电路将第二级功率放大器电路PA2s的输出阻抗(例如,几十欧姆)转换成预定阻抗(例如,50欧姆)。3A and 3B show the principle of operation of the high-frequency power amplifier device shown in FIG. 2A. FIG. 3A is a diagram for explaining an example of operations performed when subpaths are used. FIG. 3B is a diagram for explaining an example of operations performed when the main path is used. First, when the power (Pout) of the external terminal is to be set at a low to middle output level, an operation is performed by using the sub-path as shown in FIG. 3A. When the sub-path is used, the above-mentioned control chip CTLIC performs control to enable the second-stage power amplifier circuit PA2s, disable the second-stage power amplifier circuit PA2m, and turn on the NMOS transistor MNsw. In this instance, the signal output from the second-stage power amplifier circuit PA2s is transmitted to one end of the transmission line LNmn (the output node side of the second-stage power amplifier circuit PA2m) through the transmission line LNsub, and then transferred to the outside through the transmission line LNmn Terminal (Pout). In this case, the NMOS transistor MNsw is turned on so that the output impedance of the second-stage power amplifier circuit PA2s (for example, tens of ohms ) into a predetermined impedance (for example, 50 ohms).
当如上所述使用子路径时,在传输线LNsub中流动的信号(电流)和在传输线LNmn中流动的信号(电流)在传输方向上一致使得电流在相同方向上流动。然后在由传输线LNmn所生成的磁通与由传输线LNsub所生成的磁通之间发生磁耦合从而加强每个磁通。其结果是,总磁通量增大。当在传输线LNsub(LNmn)中流动的电流是I时,传输线LNsub的感抗L等于因此,由于由上述磁耦合所造成的磁通量的增加相当于增大了感抗L。因此,当使用子路径时,可利用磁耦合从而看起来相当于增大了传输线LNsub的长度。When the sub-path is used as described above, the signal (current) flowing in the transmission line LNsub and the signal (current) flowing in the transmission line LNmn coincide in the transmission direction so that the current flows in the same direction. Magnetic coupling then occurs between the magnetic flux generated by the transmission line LNmn and the magnetic flux generated by the transmission line LNsub to strengthen each magnetic flux. As a result, the total magnetic flux increase. When the current flowing in the transmission line LNsub(LNmn) is I, the inductive reactance L of the transmission line LNsub is equal to Therefore, due to the magnetic flux caused by the above-mentioned magnetic coupling The increase of is equivalent to increasing the inductive reactance L. Therefore, when sub-paths are used, magnetic coupling can be utilized thereby appearing to increase the length of the transmission line LNsub equivalently.
其次,当外部端子(Pout)的电能将被设置在高输出电平上时,通过利用如图3B所示的主路径来执行操作。当使用主路径时,上述控制芯片CTLIC执行控制以启用第二级功率放大器电路PA2m、禁用第二级功率放大器电路PA2s并且断开NMOS晶体管MNsw。在该实例中,将从第二级功率放大器电路PA2m输出的信号传送到外部端子(Pout),并且通过由传输线LNmn、电容C4以及电容C5所形成的匹配电路将第二级功率放大器电路PA2m的输出阻抗(例如,几欧姆)转换成预定阻抗(例如,50欧姆)。在该情况下,NMOS晶体管MNsw断开。然而,实际上,如前所述存在NMOS晶体管MNsw的断开电容。因此,可能存在通过传输线LNsub、电容C3以及NMOS晶体管MNsw的泄漏路径。然而,当如上所述使用主路径时,在相反方向上传送在传输线LNmn中流动的信号(电流)和在传输线LNsub中流动的信号(漏电流)使得电流在相反方向上流动。然后在由传输线LNmn所生成的磁通与在由传输线LNsub所生成的磁通之间发生磁耦合使得每个磁通减弱。其结果是,与图3A所示的情况相反,相当于降低了传输线LNsub中的感抗L。因此,当使用主路径时,可利用磁耦合使得看起来相当于降低了传输线LNsub的长度。Next, when the power of the external terminal (Pout) is to be set at a high output level, an operation is performed by utilizing the main path as shown in FIG. 3B. When the main path is used, the control chip CTLIC described above performs control to enable the second-stage power amplifier circuit PA2m, disable the second-stage power amplifier circuit PA2s, and turn off the NMOS transistor MNsw. In this example, the signal output from the second-stage power amplifier circuit PA2m is transmitted to the external terminal (Pout), and the output signal of the second-stage power amplifier circuit PA2m is transmitted through the matching circuit formed by the transmission line LNmn, the capacitor C4, and the capacitor C5. The output impedance (for example, several ohms) is converted into a predetermined impedance (for example, 50 ohms). In this case, the NMOS transistor MNsw is turned off. Actually, however, there is an off-capacitance of the NMOS transistor MNsw as described above. Therefore, there may be a leakage path through the transmission line LNsub, the capacitor C3, and the NMOS transistor MNsw. However, when the main path is used as described above, transmitting the signal (current) flowing in the transmission line LNmn and the signal (leakage current) flowing in the transmission line LNsub in opposite directions causes the current to flow in the opposite direction. Magnetic coupling then occurs between the magnetic flux generated by the transmission line LNmn and the magnetic flux generated by the transmission line LNsub such that each magnetic flux is weakened. As a result, contrary to the case shown in FIG. 3A , the inductance L in the transmission line LNsub is reduced. Therefore, when the main path is used, the magnetic coupling can be utilized so that the length of the transmission line LNsub appears to be reduced equivalently.
因此,当使用子路径时看起来相当于增加了传输线LNsub的长度并且当使用主路径时看起来相当于降低了传输线LNsub的长度。这可解决上述平衡问题。换句话说,当使用子路径时,传输线LNsub看起来长从而可提供足够的阻抗匹配。另一方面,当使用主路径时,传输线LNsub看起来短从而可降低通过传输线LNsub的功率泄漏。在另一方面,例如当就主路径的特性而言,存在可允许的传输线LNsub的长度的一定裕量时(也就是说,当功率泄漏不会引起实际问题时),可将传输线LNsub设计成在使用磁耦合时比不使用磁耦合时短。这可降低所需面积。Therefore, it appears to be equivalent to increasing the length of the transmission line LNsub when using the sub-path and decreasing the length of the transmission line LNsub when using the main path. This solves the balance problem described above. In other words, when sub-paths are used, the transmission line LNsub appears long to provide sufficient impedance matching. On the other hand, when the main path is used, the transmission line LNsub appears short so that power leakage through the transmission line LNsub can be reduced. On the other hand, for example when there is a certain margin of permissible length of the transmission line LNsub in terms of the characteristics of the main path (that is, when power leakage does not cause practical problems), the transmission line LNsub can be designed as Shorter when using magnetic coupling than when not using magnetic coupling. This reduces the required area.
图4A至4C示出了在使用图2A和2B所示的高频功率放大器设备的子路径期间磁耦合的示例效果。图4A是对这种磁耦合的前提条件进行说明的补充示意图。图4B和4C是用于对验证结果进行说明的图。首先,通过对三种不同情况进行比较来验证磁耦合的效果。更准确地说,对在与图4A所示的相同方向上传送线路中的信号的情况(当执行图3A中所示的操作时)、在与图4A所示的相反方向上传送线路中的信号的情况(当图3A所示的传输线LNsub的输入与输出目的地互换时)以及不是以并行方式来传送线路中的信号的情况(当如图11A至11C所示的构造示例所示不使用磁耦合时)进行比较。Figures 4A to 4C show example effects of magnetic coupling during sub-paths using the high-frequency power amplifier device shown in Figures 2A and 2B. Figure 4A is a supplemental schematic illustrating the preconditions for such magnetic coupling. 4B and 4C are diagrams for explaining verification results. First, the effect of magnetic coupling is verified by comparing three different cases. More precisely, for the case where the signal in the line is transmitted in the same direction as shown in FIG. 4A (when the operation shown in FIG. 3A is performed), the signal in the line is transmitted in the opposite direction as shown in FIG. 4A The case of the signal (when the input and output destinations of the transmission line LNsub shown in FIG. 3A are interchanged) and the case of not transmitting the signal in the line in parallel (when not when using magnetic coupling) for comparison.
其结果是,如图4B所示已发现与在相反方向上传送线路中的信号或者不是以并行方式来传送线路中的信号时相比当在相同方向上传送线路中的信号时功率附加效率(PAE)更高。参考图4B,在1950MHz的频率和3.4V的电源电压Vcc2下执行该验证。当在相同方向上传送线路中的信号时,与不是以并行方式来传送线路中的信号时相比,可用输出电平(Pout)的范围更宽。因此,与第二级功率放大器电路PA2m相比,可更频繁地使用第二级功率放大器电路PA2s。这可降低功耗。此外,如图4C所示,当试图相对于第二级功率放大器电路PA2s使输出阻抗Zsub匹配时,在相同方向上传送线路中的信号时实现了相对于目标阻抗的阻抗匹配,因为对于传输线LNsub获得了充足量的顺时针旋转。然而,当在相反方向上传送线路中的信号时,很难实现相对于目标阻抗的阻抗匹配,因为旋转量不足。这些发现指示产生了磁耦合的效果。As a result, as shown in FIG. 4B , it has been found that the power added efficiency ( PAE) is higher. Referring to FIG. 4B , the verification was performed at a frequency of 1950 MHz and a power supply voltage Vcc2 of 3.4V. When the signals in the lines are transmitted in the same direction, the range of available output levels (Pout) is wider than when the signals in the lines are not transmitted in parallel. Therefore, the second-stage power amplifier circuit PA2s can be used more frequently than the second-stage power amplifier circuit PA2m. This reduces power consumption. Furthermore, as shown in FIG. 4C, when trying to match the output impedance Zsub with respect to the second-stage power amplifier circuit PA2s, impedance matching with respect to the target impedance is achieved when the signal in the line is transmitted in the same direction, because for the transmission line LNsub Ample amount of clockwise rotation is obtained. However, when the signal in the line is transmitted in the opposite direction, it is difficult to achieve impedance matching with respect to the target impedance because the amount of rotation is insufficient. These findings indicate that an effect of magnetic coupling occurs.
图5A和5B示出了在使用图2A和2B所示的高频功率放大器设备期间所呈现的各种特性。图5A是用于对功率附加效率(PAE)的特性进行说明的图。图5B是用于对相邻信道泄漏比(ACLR)的特性进行说明的图。参考图5A和5B,将使用图2A和2B所示的示例构造的情况与下述情况进行比较:其中,使用图11A至11C所示的示例构造,同时将传输线LNsub的长度适当地设计成在使用主路径时相同特性存在。如图5A所示,如果在使用主路径期间相同PAE存在,那么在使用子路径期间存在的PAE在使用图2A和2B所示的示例构造时(当在相同方向上传送线路中的信号时)比使用图11A至11C所示的示例构造时(当不是以并行方式来传送线路中的信号时)高。这可降低通话电流并且可降低高频功率放大器设备的功耗。此外,如图5B所示,图2A和2B以及图11A至11C在表示失真量的相邻信道泄漏比(ACLR)方面不是显著不同。将用于在子路径与主路径之间进行切换的输出电平(Pout)设置为在下述范围内尽可能高:在该范围之内图5B所示的失真量符合预定标准并且子路径的PAE保持不饱和。5A and 5B show various characteristics exhibited during use of the high-frequency power amplifier device shown in FIGS. 2A and 2B. FIG. 5A is a diagram for explaining characteristics of power-added efficiency (PAE). FIG. 5B is a diagram for explaining the characteristics of adjacent channel leakage ratio (ACLR). Referring to FIGS. 5A and 5B , the case of using the example configuration shown in FIGS. 2A and 2B is compared with the case in which the example configuration shown in FIGS. 11A to 11C is used while appropriately designing the length of the transmission line LNsub to be at The same behavior exists when using the main path. As shown in Figure 5A, if the same PAE exists during the use of the main path, the PAE that exists during the use of the sub-path will be different when using the example configuration shown in Figures 2A and 2B (when the signals in the line are transmitted in the same direction) Higher than when using the example configuration shown in FIGS. 11A to 11C (when the signals in the lines are not transmitted in parallel). This reduces the call current and reduces the power consumption of the high-frequency power amplifier device. Furthermore, as shown in FIG. 5B , FIGS. 2A and 2B and FIGS. 11A to 11C are not significantly different in adjacent channel leakage ratio (ACLR) representing the amount of distortion. The output level (Pout) for switching between the sub path and the main path is set as high as possible within the range within which the amount of distortion shown in FIG. 5B meets a predetermined standard and the PAE of the sub path Stay unsaturated.
如上所述,使用根据第一实施例的高频功率放大器设备可典型地降低通话电流。在因为特别需要例如降低通话电流而使用W-CDMA的高频功率放大器设备的假定之下对第一实施例进行了描述。然而,显然的是第一实施例也适用于例如GSM(全球移动通信系统)和DCS(数字蜂窝系统)的高频功率放大器设备。此外,在使用单频带W-CDMA高频功率放大器模块的假定之下对第一实施例进行了描述。然而,替代的是使图1所示的高频功率放大器芯片HPAIC包括诸如第一级功率放大器电路PA1和第二级功率放大器电路PA2m、PA2s这样的多个功率放大器电路或者使高频功率放大器设备HPAMD包括附加高频功率放大器芯片HPAIC以提供多频带支持。As described above, the call current can typically be reduced using the high-frequency power amplifier device according to the first embodiment. The first embodiment has been described on the assumption that the high-frequency power amplifier device of W-CDMA is used because of special needs such as reduction of call current. However, it is obvious that the first embodiment is also applicable to high-frequency power amplifier devices such as GSM (Global System for Mobile Communications) and DCS (Digital Cellular System). Furthermore, the first embodiment has been described on the assumption that a single-band W-CDMA high-frequency power amplifier module is used. However, instead of making the high-frequency power amplifier chip HPAIC shown in FIG. HPAMD includes additional high-frequency power amplifier chip HPAIC to provide multi-band support.
第二实施例second embodiment
现在结合基于对第一实施例进行描述的图2A和2B所示的构造示例的示例安装结构对本发明的第二实施例进行描述。图6是与根据第二实施例的高频功率放大器设备有关并且对基于图2A和2B所示的构造示例的示例安装结构进行说明的示意图。图6所示的高频功率放大器设备是通过向图2A和2B所示的构造示例中的高频功率放大器芯片HPAIC与传输线LNmn、LNsub之间的接合处给予特定形式而获得的。不对图6所示的高频功率放大器设备的电路的构造进行详细的描述,因为它与图2A和2B所示相同。A second embodiment of the present invention will now be described with reference to an exemplary mounting structure based on the configuration example shown in FIGS. 2A and 2B describing the first embodiment. 6 is a schematic diagram related to a high-frequency power amplifier device according to a second embodiment and illustrating an example mounting structure based on the configuration example shown in FIGS. 2A and 2B . The high-frequency power amplifier device shown in FIG. 6 is obtained by giving a specific form to junctions between the high-frequency power amplifier chip HPAIC and the transmission lines LNmn, LNsub in the configuration example shown in FIGS. 2A and 2B . The configuration of the circuit of the high-frequency power amplifier device shown in FIG. 6 will not be described in detail because it is the same as that shown in FIGS. 2A and 2B.
在高频功率放大器芯片HPAIC中,功率放大器电路PA2m的输出与外部端子(电极焊盘)P2m相耦合,而功率放大器电路PA2s的输出与外部端子(电极焊盘)P2s相耦合。在传输线LNmn的一端形成了接合区BAR1。传输线LNsub的一端与接合区BAR1相耦合。在传输线LNsub的另一端形成了接合区BAR2。外部端子P2m通过多个接合线BW1与接合区BAR1相耦合。外部端子P2s通过接合线BW2与接合区BAR2相耦合。外部端子P2m、P2s彼此靠近地被布置,同时接合区BAR1靠近接合区BAR2从而在接合线BW1与接合线BW2之间磁耦合发生。In the high-frequency power amplifier chip HPAIC, the output of the power amplifier circuit PA2m is coupled to the external terminal (electrode pad) P2m, and the output of the power amplifier circuit PA2s is coupled to the external terminal (electrode pad) P2s. A bonding area BAR1 is formed at one end of the transmission line LNmn. One end of the transmission line LNsub is coupled to the bonding area BAR1. A land BAR2 is formed at the other end of the transmission line LNsub. The external terminal P2m is coupled to the bonding region BAR1 through a plurality of bonding wires BW1. The external terminal P2s is coupled to the bonding region BAR2 through the bonding wire BW2. The external terminals P2m, P2s are arranged close to each other while the bonding area BAR1 is close to the bonding area BAR2 so that magnetic coupling occurs between the bonding wire BW1 and the bonding wire BW2.
当在上述构造中使用主路径时(当功率放大器电路PA2m操作时),如上所述不但在传输线LNmn、LNsub之间发生磁耦合,而且在与上述磁耦合相同的方向上在接合线BW1与接合线BW2之间也发生磁耦合。换句话说,当使用主路径时,磁耦合按照使两侧的磁力减弱的方式在接合线BW1与接合线BW2之间发生。因此,在使用主路径期间在传输线LNsub侧的视在电感与在使用子路径期间(在功率放大器电路PA2s操作期间)传输线LNsub侧的视在电感之间的差大于当使用图2A和2B所示的构造示例时。这可进一步解决上述平衡问题。When the main path is used in the above-mentioned configuration (when the power amplifier circuit PA2m is operating), not only magnetic coupling occurs between the transmission lines LNmn, LNsub as described above, but also between the bonding wire BW1 and the bonding wire BW1 in the same direction as the above-mentioned magnetic coupling. Magnetic coupling also occurs between wires BW2. In other words, when the main path is used, magnetic coupling occurs between the bonding wire BW1 and the bonding wire BW2 in such a manner that the magnetic force on both sides is weakened. Therefore, the difference between the apparent inductance on the transmission line LNsub side during use of the main path and the apparent inductance on the transmission line LNsub side during use of the sub-path (during operation of the power amplifier circuit PA2s) is larger than when using the inductance shown in FIGS. 2A and 2B. When constructing an example of . This further addresses the balancing issues described above.
第三实施例third embodiment
现在结合用于对第二实施例进行描述的图6所示的安装结构的修改对本发明的第三实施例进行描述。图7是与根据本发明的第三实施例的高频功率放大器设备有关且对基于图2A和2B所示的构造示例的示例安装结构进行说明的示意图。与图6所示的高频功率放大器设备的情况一样,图7所示的高频功率放大器设备是通过向图2A和2B所示的高频功率放大器芯片HPAIC与传输线LNmn、LNsub之间的接合处给予特定形式而获得的。不对图7所示的高频功率放大器设备的电路构造进行详细的描述,因为它与图2A和2B所示相同。A third embodiment of the present invention will now be described in conjunction with a modification of the mounting structure shown in FIG. 6 used to describe the second embodiment. 7 is a schematic diagram illustrating an example mounting structure based on the configuration example shown in FIGS. 2A and 2B , relating to a high-frequency power amplifier device according to a third embodiment of the present invention. As in the case of the high-frequency power amplifier device shown in FIG. 6, the high-frequency power amplifier device shown in FIG. Obtained by giving a specific form. The circuit configuration of the high-frequency power amplifier device shown in FIG. 7 will not be described in detail because it is the same as that shown in FIGS. 2A and 2B.
在高频功率放大器芯片HPAIC中,功率放大器电路PA2m的输出与外部端子(电极焊盘)P2m相耦合,而功率放大器电路PA2s的输出与外部端子(电极焊盘)P2s相耦合。在传输线LNmn的一端形成了接合区BAR1。与图6所示的高频功率放大器设备不同,在传输线LNsub的一端形成了接合区BAR3,并且在另一端形成了接合区BAR2。外部端子P2m通过接合线BW1与接合区BAR1相耦合并且通过接合线BW3进一步与接合区BAR3相耦合。外部端子P2s通过接合线BW2与接合区BAR2相耦合。第三实施例的特征在于传输线LNsub(接合区BAR3)的一端通过接合线BW3与外部端子P2m相耦合而不是与如图6所示的接合区BAR1相耦合。此外,在接合线BW3与BW2之间提供了足够的空间以避免磁耦合。In the high-frequency power amplifier chip HPAIC, the output of the power amplifier circuit PA2m is coupled to the external terminal (electrode pad) P2m, and the output of the power amplifier circuit PA2s is coupled to the external terminal (electrode pad) P2s. A bonding area BAR1 is formed at one end of the transmission line LNmn. Unlike the high-frequency power amplifier device shown in FIG. 6, a land BAR3 is formed at one end of the transmission line LNsub, and a land BAR2 is formed at the other end. The external terminal P2m is coupled with the bonding region BAR1 through the bonding wire BW1 and further coupled with the bonding region BAR3 through the bonding wire BW3. The external terminal P2s is coupled to the bonding region BAR2 through the bonding wire BW2. The third embodiment is characterized in that one end of the transmission line LNsub (bonding area BAR3 ) is coupled to the external terminal P2m through the bonding wire BW3 instead of the bonding area BAR1 as shown in FIG. 6 . In addition, sufficient space is provided between the bonding wires BW3 and BW2 to avoid magnetic coupling.
图8是用于对使用图7所示的安装结构的布线电路板布局的示例进行详细说明的示意图。参考图8,将高频功率放大器芯片HPAIC和控制芯片CTLIC安装在形成高频功率放大器设备HPAMD的布线电路板(PCB)上。此外,在PCB上形成传输线LNmn、LNsub。PCB具有包括例如陶瓷电介质层和铜(Cu)布线层的多层结构。通过利用布线层形成传输线LNmn、LNsub。传输线LNmn的布线宽度比传输线LNsub大。在一定区域中传输线LNmn、LNsub彼此靠近并且平行。平行部分的长度是1mm或更小。在平行部分中,传输线LNmn、LNsub之间的空间是大约0.1mm。降低高频功率放大器设备HPAMD的尺寸使得其每侧的长度是几毫米。在这种情况下,如前所述,很难使用λ/4短截线布线等等。FIG. 8 is a schematic diagram for explaining in detail an example of a wiring circuit board layout using the mounting structure shown in FIG. 7 . Referring to FIG. 8, a high frequency power amplifier chip HPAIC and a control chip CTLIC are mounted on a wiring circuit board (PCB) forming a high frequency power amplifier device HPAMD. Furthermore, transmission lines LNmn, LNsub are formed on the PCB. The PCB has a multilayer structure including, for example, ceramic dielectric layers and copper (Cu) wiring layers. The transmission lines LNmn, LNsub are formed by using a wiring layer. The wiring width of the transmission line LNmn is larger than that of the transmission line LNsub. The transmission lines LNmn, LNsub are close to and parallel to each other in a certain area. The length of the parallel portion is 1 mm or less. In the parallel section, the space between the transmission lines LNmn, LNsub is about 0.1 mm. The high frequency power amplifier device HPAMD is downsized such that its length on each side is a few millimeters. In this case, it is difficult to use λ/4 stub wiring and so on, as mentioned earlier.
如上所述,当在使用图7和8所示的构造示例期间传输线LNsub的一端(接合区BAR3)通过接合线BW3与电极焊盘P2m相耦合时,可使在使用主路径期间的功率损耗低于在耦合目的地是接合区BAR1时。换句话说,电极焊盘P2m侧的阻抗低于接合区BAR1侧,因为功率放大器电路PA2m的输出阻抗例如是几欧姆并且通过传输线LNmn等等被转换成例如50欧姆的阻抗。当使用主路径时,传输线LNsub侧被认为是高阻抗电路。然而,当高阻抗电路与较低阻抗部相耦合时,由于阻抗比,所以向高阻抗电路侧的功率泄漏量小。因此,当传输线LNsub的一端与电极焊盘P2m侧相耦合时,在传输线LNmn、LNsub之间产生上述磁耦合效果的同时可降低高频功率放大器设备的功耗。As described above, when one end (bonding region BAR3) of the transmission line LNsub is coupled with the electrode pad P2m through the bonding wire BW3 during use of the configuration examples shown in FIGS. 7 and 8, the power loss during use of the main path can be made low. When the coupling destination is the bonding area BAR1. In other words, the electrode pad P2m side has lower impedance than the bonding area BAR1 side because the output impedance of the power amplifier circuit PA2m is, for example, several ohms and is converted to an impedance of, for example, 50 ohms through the transmission line LNmn or the like. When using the main path, the LNsub side of the transmission line is considered a high impedance circuit. However, when the high-impedance circuit is coupled with the lower-impedance portion, the amount of power leakage to the high-impedance circuit side is small due to the impedance ratio. Therefore, when one end of the transmission line LNsub is coupled to the electrode pad P2m side, the power consumption of the high-frequency power amplifier device can be reduced while the above-mentioned magnetic coupling effect is produced between the transmission lines LNmn, LNsub.
图7和8所示的构造示例不使用图6所示的接合线BW1、BW2之间的磁耦合。然而,在一些情况下,可采用下述替代构造,其中,接合线BW1、BW2彼此靠近地被布置以便附加地使用接合线BW1、BW2之间的磁耦合。然而,在这种情况下,与图6所示的情况不同,例如必须适当地确定传输线LNsub的路线。因此,从例如容易降低尺寸及阻抗匹配的观点来看,优选的是使用图7和8所示的构造示例。The configuration examples shown in FIGS. 7 and 8 do not use the magnetic coupling between the bonding wires BW1 , BW2 shown in FIG. 6 . In some cases, however, an alternative configuration may be employed in which the bond wires BW1 , BW2 are arranged close to each other in order to additionally use the magnetic coupling between the bond wires BW1 , BW2 . However, in this case, unlike the case shown in FIG. 6, for example, the routing of the transmission line LNsub must be properly determined. Therefore, it is preferable to use the configuration examples shown in FIGS. 7 and 8 from the viewpoints of, for example, ease of downsizing and impedance matching.
第四实施例Fourth embodiment
在结合先前实施例所述的示例构造中,通过选择第二级功率放大器电路PA2m、PA2s可使两个不同操作模式(低至中输出电平以及高输出电平)可用。可将这些示例构造扩大到三个或更多不同操作模式(例如,低输出电平、中输出电平以及高输出电平)是可用的这样的示例构造。现在结合高频功率放大器设备提供三个不同操作模式的示例构造来对本发明的第四实施例进行描述。图9是与根据本发明的第四实施例的高频功率放大器设备有关且对包括图1所示的第二级功率放大器电路PA2m、PA2s的相关部分的示例构造进行详细说明的电路图。In the example configuration described in connection with the previous embodiments, two different modes of operation (low to medium output level and high output level) are available by selection of the second stage power amplifier circuits PA2m, PA2s. These example configurations can be extended to example configurations where three or more different modes of operation (eg, low output level, medium output level, and high output level) are available. A fourth embodiment of the present invention will now be described in connection with an example configuration in which a high-frequency power amplifier device provides three different modes of operation. 9 is a circuit diagram relating to a high-frequency power amplifier device according to a fourth embodiment of the present invention and illustrating in detail an example configuration of relevant parts including the second-stage power amplifier circuits PA2m, PA2s shown in FIG. 1 .
如图9所示,第二级功率放大器电路PA2m、PA2s的每一个通常包括发射极、基极以及集电极共同耦合的多个单位晶体管。每个单位晶体管被称作叉指(finger)等等。因此可以说这些功率放大器电路的每一个具有多指结构等等。为了支持三个不同操作模式,功率放大器电路PA2m或功率放大器电路PA2s将多指结构分成两组从而可独立地将基极偏置电压提供给各组。As shown in FIG. 9 , each of the second-stage power amplifier circuits PA2m, PA2s generally includes a plurality of unit transistors whose emitters, bases, and collectors are commonly coupled. Each unit transistor is called a finger or the like. It can therefore be said that each of these power amplifier circuits has a multi-finger structure and the like. In order to support three different operation modes, the power amplifier circuit PA2m or PA2s divides the multi-finger structure into two groups so that the base bias voltage can be independently supplied to each group.
更具体地,功率放大器电路PA2m或功率放大器电路PA2s包括发射极和集电极共同耦合的2×n个异质结双极晶体管(单位晶体管)Q2a[1]-Q2a[n]、Q2b[1]-Q2b[n]。基极与晶体管Q2a[1]-Q2a[n]共同耦合。通过图1所示的控制芯片CTLIC将偏置电流IBS2a提供给这些晶体管。类似地,基极与晶体管Q2b[1]-Q2b[n]共同耦合。通过图1所示的控制芯片CTLIC将偏置电流IBS2b提供给这些晶体管。根据模式设置信号Vmode'对是否提供偏置电流IBS2a、IBS2b进行独立地控制。例如通过将1比特添加到先前所述的具有两个信息的模式设置信号Vmode(1比特)上,使模式设置信号Vmode'具备三值信息。More specifically, the power amplifier circuit PA2m or power amplifier circuit PA2s includes 2×n heterojunction bipolar transistors (unit transistors) Q2a[1]-Q2a[n], Q2b[1] whose emitters and collectors are commonly coupled -Q2b[n]. The bases are commonly coupled with transistors Q2a[1]-Q2a[n]. The bias current IBS2a is supplied to these transistors through the control chip CTLIC shown in FIG. 1 . Similarly, the bases are commonly coupled with transistors Q2b[1]-Q2b[n]. The bias current IBS2b is supplied to these transistors through the control chip CTLIC shown in FIG. 1 . Whether to supply the bias currents IBS2a, IBS2b is independently controlled according to the mode setting signal Vmode'. The mode setting signal Vmode' is provided with three-valued information, for example, by adding 1 bit to the aforementioned mode setting signal Vmode (1 bit) having two pieces of information.
例如,如果功率放大器电路PA2m与功率放大器电路PA2s之间的尺寸比(叉指的数目比)是4:1,那么当将功率放大器电路PA2m分成两组时可实现PA2m(两个组被激活):PA2m(一个组被激活):PA2s的尺寸比=4:2:1。尺寸值4、2和1被认为分别与高输出电平、中输出电平和低输出电平操作模式相对应。选择性地使用这些尺寸可降低通话电流并且在保持传输线LNmn、LNsub之间的磁耦合的上述效果的同时可降低高频功率放大器设备的功耗。这还防止高频功率放大器设备的尺寸增大。同时,如果采用用于通过添加另一功率放大器电路来实现三个不同操作模式的方案作为比较示例,那么由于例如布线电路板上的端子以及线路数目增加而不能降低高频功率放大器设备的尺寸。另外,需要精巧地设计出用于实现上述磁耦合的适当方法。虽然结合提供三个不同操作模式的示例构造已对第四实施例进行了描述,但是同样通过将功率放大器电路PA2s分成两个组还可实现四个不同操作模式。For example, if the size ratio (ratio of the number of fingers) between the power amplifier circuit PA2m and the power amplifier circuit PA2s is 4:1, PA2m can be realized when the power amplifier circuit PA2m is divided into two groups (two groups are activated) : PA2m (one group is activated): PA2s size ratio = 4:2:1. Dimension values of 4, 2 and 1 are considered to correspond to high output level, medium output level and low output level modes of operation, respectively. Selective use of these dimensions can reduce the talk current and reduce the power consumption of the high-frequency power amplifier device while maintaining the above-mentioned effect of the magnetic coupling between the transmission lines LNmn, LNsub. This also prevents the high-frequency power amplifier device from being increased in size. Meanwhile, if a scheme for realizing three different operation modes by adding another power amplifier circuit is taken as a comparative example, the high-frequency power amplifier device cannot be downsized due to, for example, an increase in the number of terminals and lines on a wiring circuit board. In addition, an appropriate method for achieving the above-mentioned magnetic coupling needs to be carefully devised. Although the fourth embodiment has been described in connection with an example configuration providing three different operation modes, four different operation modes can also be realized by dividing the power amplifier circuit PA2s into two groups as well.
虽然就优选实施例而言已对发明人可预想到的本发明进行了描述,但是应当理解本发明并不局限于那些优选实施例,而是可扩大到仍然属于所附权利要求的范围之内的各种修改。Whilst the invention contemplated by the inventors has been described in terms of preferred embodiments, it should be understood that the invention is not limited to those preferred embodiments but may be extended while still falling within the scope of the appended claims various modifications.
根据本发明的实施例的高频功率放大器设备是有用的,尤其是当其应用于W-CDMA或者TDS-CDMA移动电话的功率发射机时。然而,其还可应用于GSM、DCS、LTE(长期演进)以及基于各种标准的其他移动电话。此外,其不但可应用于移动电话,而且可广泛地应用于应被优选地提供多个输出功率模式且由于例如其电池驱动能力而具有低功耗的各种无线设备。A high frequency power amplifier device according to an embodiment of the present invention is useful especially when it is applied to a power transmitter of a W-CDMA or TDS-CDMA mobile phone. However, it is also applicable to GSM, DCS, LTE (Long Term Evolution) and other mobile phones based on various standards. Furthermore, it is applicable not only to mobile phones but also widely to various wireless devices that should preferably provide multiple output power modes and have low power consumption due to, for example, their battery driving capabilities.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010280296A JP5620804B2 (en) | 2010-12-16 | 2010-12-16 | High frequency power amplifier |
JP2010-280296 | 2010-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102570998A CN102570998A (en) | 2012-07-11 |
CN102570998B true CN102570998B (en) | 2016-12-14 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8564366B2 (en) | High-frequency power amplifier device | |
US9866178B2 (en) | Radio frequency circuitr having an integrated harmonic filter and a radio frequency circuit having transistors of different threshold voltages | |
US10903806B2 (en) | Radio frequency circuitr having an integrated harmonic filter and a radio frequency circuit having transistors of different threshold voltages | |
US9762192B2 (en) | CMOS RF switch device and method for biasing the same | |
US7358806B2 (en) | Method and apparatus for an improved power amplifier | |
JP5389989B2 (en) | CMOS transceiver with integrated power amplifier | |
CN100413212C (en) | High frequency power amplifier, high frequency power amplifier module and portable phone | |
US7242245B2 (en) | Method and apparatus for an improved power amplifier | |
JP5519558B2 (en) | High frequency power amplifier | |
Jeon et al. | A triple-mode balanced linear CMOS power amplifier using a switched-quadrature coupler | |
CN104733809A (en) | Switching Circuit And Semiconductor Module | |
US7332960B2 (en) | Method and apparatus for an improved power amplifier | |
Madan et al. | Fully integrated switch-LNA front-end IC design in CMOS: A systematic approach for WLAN | |
US8279010B2 (en) | Radio frequency power amplifier | |
US7268616B2 (en) | Method and apparatus for an improved power amplifier | |
US8269561B1 (en) | Systems and methods for CMOS power amplifiers with power mode control | |
Yamamoto et al. | A WCDMA multiband power amplifier module with Si-CMOS/GaAs-HBT hybrid power-stage configuration | |
US7248109B2 (en) | Method and apparatus for an improved power amplifier | |
CN102570998B (en) | High-frequency power amplifier device | |
US7999613B2 (en) | Method and apparatus for an improved power amplifier | |
US8860506B2 (en) | Amplifying apparatus | |
WO2006088604A2 (en) | Method and apparatus for an improved power amplifier | |
WO2006088605A2 (en) | Method and apparatus for an improved power amplifier | |
Lee et al. | Class-E CMOS PAs for GSM Applications | |
JP2006005811A (en) | High frequency integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Tokyo, Japan Applicant after: Renesas Electronics Corporation Address before: Kanagawa Applicant before: Renesas Electronics Corporation |
|
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161214 Termination date: 20181215 |