CN102570784B - Power on/reset circuit and control digital circuit on/reset state method - Google Patents
Power on/reset circuit and control digital circuit on/reset state method Download PDFInfo
- Publication number
- CN102570784B CN102570784B CN201010588188.8A CN201010588188A CN102570784B CN 102570784 B CN102570784 B CN 102570784B CN 201010588188 A CN201010588188 A CN 201010588188A CN 102570784 B CN102570784 B CN 102570784B
- Authority
- CN
- China
- Prior art keywords
- transistor
- semiconductor
- oxide
- metal
- type mos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title abstract description 15
- 230000003321 amplification Effects 0.000 claims abstract description 29
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 29
- 239000004065 semiconductor Substances 0.000 claims description 175
- 102100036285 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Human genes 0.000 description 17
- 101000875403 Homo sapiens 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Proteins 0.000 description 17
- 238000010586 diagram Methods 0.000 description 14
- 229910044991 metal oxide Inorganic materials 0.000 description 11
- 150000004706 metal oxides Chemical class 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- -1 VDD2 Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Electronic Switches (AREA)
Abstract
Description
技术领域 technical field
本发明公开一种电源开启/重置电路与相关的控制数字电路的开启/重置状态的方法,尤指一种包括有至少一个以串迭(Stack)方式串联的晶体管的电源开启/重置电路与相关的控制数字电路的开启/重置状态的方法。The present invention discloses a power on/reset circuit and a related method for controlling the on/reset state of a digital circuit, especially a power on/reset comprising at least one transistor connected in series in a stack manner. Circuits and associated methods of controlling the on/reset state of digital circuits.
背景技术 Background technique
一般的集成电路为了整合更多的功能,已多是系统单芯片(System-on-a-chip,SOC)与混合模式(mixed-mode)的型态,基本上包括数字电路与模拟电路,而数字电路部分除了提供控制、逻辑运算、数据储存等等功能外,也需包括集成电路初始状况(initial condition)的设定,而初始状况的初始值的设定需要有一所谓开启/重置信号(Power on/Reset Signal)。In order to integrate more functions, general integrated circuits are mostly in the form of System-on-a-chip (SOC) and mixed-mode (mixed-mode), basically including digital circuits and analog circuits, and In addition to providing functions such as control, logic operations, and data storage, the digital circuit part also needs to include the setting of the initial condition of the integrated circuit, and the setting of the initial value of the initial condition requires a so-called open/reset signal ( Power on/Reset Signal).
请参阅图1与图2,其为现有技术中所公开的二种集成电路的示意图。图1所图示的集成电路100包括电源开启/重置电路(Power On/Reset Circuit)110、稳压器(Regulator)120、电源开启/重置脉冲产生器130、及数字电路140。电源开启/重置电路110与稳压器120以直流电压源VDD来供应电源。电源开启/重置电路110用来产生开启/重置信号,以适时的决定开启或重置数字电路140的时机;电源开启/重置脉冲产生器130会根据电源开启/重置电路110所产生的开启/重置信号与稳压器120所提供的电源来产生重置脉冲,使得数字电路140可根据所述开启/重置信号对应的使能时间被启动或重置。同理,图2所图示的集成电路200包括电源开启/重置电路110、稳压器120、电源开启/重置脉冲产生器230、及数字电路140。电源开启/重置脉冲产生器230亦用来根据稳压器120提供的电源与电源开启/重置电路110所产生的所述开启/重置信号来产生所述重置脉冲,以决定数字电路140被开启或被重置的时机。一般集成电路以图1或图2所示的方式来实现其对数字电路的重置。Please refer to FIG. 1 and FIG. 2 , which are schematic diagrams of two integrated circuits disclosed in the prior art. The integrated circuit 100 shown in FIG. 1 includes a power on/reset circuit (Power On/Reset Circuit) 110, a voltage regulator (Regulator) 120, a power on/reset pulse generator 130, and a digital circuit 140. The power on/reset circuit 110 and the voltage regulator 120 are powered by a DC voltage source VDD. The power-on/reset circuit 110 is used to generate a start-up/reset signal to timely determine the timing of turning on or resetting the digital circuit 140; the power-on/reset pulse generator 130 will generate The start/reset signal and the power provided by the voltage regulator 120 generate a reset pulse, so that the digital circuit 140 can be started or reset according to the enable time corresponding to the start/reset signal. Similarly, the integrated circuit 200 shown in FIG. 2 includes a power-on/reset circuit 110 , a voltage regulator 120 , a power-on/reset pulse generator 230 , and a digital circuit 140 . The power on/reset pulse generator 230 is also used to generate the reset pulse according to the power provided by the voltage regulator 120 and the on/reset signal generated by the power on/reset circuit 110 to determine the digital circuit 140 is turned on or is reset. A general integrated circuit realizes the reset of the digital circuit in the manner shown in FIG. 1 or FIG. 2 .
在理想的情况下,供给集成电路100及200的电压源VDD只会被开启一次,接着并持续进行其运作。然而实际的使用或测试时,会有非理想的情形发生,使得电源开启与关闭连续重复产生。例如:提供给集成电路的电压源由起始状态被开启,电压源电位由0伏特上升至3伏特,然后再因电压源被关闭,所述电压源的电位由3伏特下降至0.9伏特,这时电压源刚好又被开启,电压源的电位由0.9伏特上升至3伏特,如此非理想的变化。Ideally, the voltage source VDD supplied to the integrated circuits 100 and 200 is only turned on once, and then continues to operate. However, in actual use or testing, non-ideal situations may occur, so that the power is turned on and off repeatedly. For example: the voltage source provided to the integrated circuit is turned on from the initial state, the potential of the voltage source rises from 0 volts to 3 volts, and then the voltage source is turned off, and the potential of the voltage source drops from 3 volts to 0.9 volts. When the voltage source is just turned on again, the potential of the voltage source rises from 0.9 volts to 3 volts, such an undesirable change.
请参阅图3,其为现有技术中常使用的电源开启/重置电路250用来产生上述的开启/重置信号的示意图。如图3所示,电源开启/重置电路250包括电压追随模块310、P型金氧半晶体管QS1、N型金氧半晶体管QS2、及反向器INV,其中电压追随模块310以一直流电压源VCC供电。电压追随模块310所产生的电压V1的电位会追随着直流电压源VCC的电位变化。P型金氧半晶体管QS1与N型金氧半晶体管QS2即对电压V1实施反向器的功能,使得所产生的电压V2的电位与电压V1相反。最后电压V2再经由反向器INV的运作而被转换为图3所示的开启/重置信号。例如在电源开启/重置电路250中,电压源VCC的电位由0伏特上升到3伏特,电压V1的电位会跟随着电压源VCC上升,当电压V1的电压准位尚未上升至足以触发由晶体管QS 1与晶体管QS2所组成的反向器时,电压V2的电位变化等同于电压源VCC的电位变化,使得耦接于其后的反向器INV此时的输出维持低电压准位0V,亦即开启/重置信号此时输出低电压准位重置后端的数字电路。而后电压V1上升至足以触发由晶体管QS1与晶体管QS2所组成的反向器时,电压V2转态为低电压准位,耦接于其后的反向器INV输出高电压准位3伏特,以结束电源开启/重置电路250对数字电路的重置。Please refer to FIG. 3 , which is a schematic diagram of a power on/reset circuit 250 commonly used in the prior art for generating the above-mentioned on/reset signal. As shown in Figure 3, the power on/reset circuit 250 includes a voltage following module 310, a P-type metal oxide semiconductor transistor QS1, an N-type metal oxide semiconductor transistor QS2, and an inverter INV, wherein the voltage following module 310 uses a DC voltage Source VCC power supply. The potential of the voltage V1 generated by the voltage tracking module 310 follows the potential variation of the DC voltage source VCC. The P-type MOS transistor QS1 and the N-type MOS transistor QS2 implement the function of an inverter for the voltage V1, so that the potential of the generated voltage V2 is opposite to that of the voltage V1. Finally, the voltage V2 is converted into the start/reset signal shown in FIG. 3 through the operation of the inverter INV. For example, in the power-on/reset circuit 250, the potential of the voltage source VCC rises from 0 volts to 3 volts, and the potential of the voltage V1 will follow the rise of the voltage source VCC. When the voltage level of the voltage V1 has not risen enough to trigger the transistor In the case of an inverter composed of QS 1 and transistor QS2, the potential change of the voltage V2 is equal to the potential change of the voltage source VCC, so that the output of the inverter INV coupled thereto maintains a low voltage level of 0V at this time, which is also That is, the start/reset signal outputs a low voltage level at this time to reset the digital circuit at the back end. Then, when the voltage V1 rises enough to trigger the inverter composed of the transistor QS1 and the transistor QS2, the voltage V2 turns to a low voltage level, and the inverter INV coupled thereafter outputs a high voltage level of 3 volts to The reset of the digital circuit by the power on/reset circuit 250 is ended.
但当接下来电压源VCC的电位产生如上所述由3伏特下降至0.9伏特再上升至3伏特的变化情况时,现有技术的电源开启/重置电路250将不会再次对后端的数字电路于以重置,然而电压源VCC在此电位变化过程中的最低电位0.9伏特对一般的数字电路来说,已低于可正常运作的最低电压准位,因此使得所述数字电路内所记录的数据进入一个未知状态(Unknown Status),最后导致所述数字电路无法继续正常运作,此乃因电源开启/重置电路250中的电压V1追随电压源VCC所变化的电压准位,不足以使得由晶体管QS1与晶体管QS2所组成的反向器再次触发转态所致。But when the potential of the voltage source VCC then drops from 3 volts to 0.9 volts and then rises to 3 volts as described above, the power on/reset circuit 250 of the prior art will no longer change the digital circuit at the back end. However, the lowest potential 0.9 volts of the voltage source VCC during this potential change process is already lower than the lowest voltage level for normal operation for general digital circuits, so that the recorded in the digital circuit The data enters into an unknown status (Unknown Status), which eventually causes the digital circuit to fail to continue normal operation. This is because the voltage V1 in the power on/reset circuit 250 follows the voltage level changed by the voltage source VCC, which is not enough to make the digital circuit continue to operate normally. The inverter formed by the transistor QS1 and the transistor QS2 triggers the transition again.
发明内容 Contents of the invention
本发明的目的在于提供一种电源开启电路及相关控制数字电路的开启/重置状态的方法,以使开启/重置讯号的电位可确实开启后端的数字电路,而解决已知技术中无法顺利重新开启数字电路的问题。The purpose of the present invention is to provide a power-on circuit and a related method for controlling the on/reset state of a digital circuit, so that the potential of the on/reset signal can indeed turn on the digital circuit at the back end, and solve the problems in the known technology. Re-opening the digital circuit problem.
基于上述目的,本发明公开一种电源开启/重置电路。所述电源开启/重置电路包括电压追随模块、反向放大模块、及至少一个以串迭方式串联的第一晶体管。所述电压追随模块耦接于第一直流电压源。所述电压追随模块产生第一模拟信号。所述第一模拟信号的电位高低变化跟随所述第一直流电压源的电位高低变化。所述反向放大模块用来接收所述第一模拟信号并产生第二模拟信号。所述第二模拟信号的电位逻辑与所述第一模拟信号的电位逻辑相反。所述电源开启/重置电路根据所述第二模拟信号来控制数字电路的开启/重置状态。所述反向放大模块利用串迭晶体管的方式去调整所述第二模拟信号。Based on the above purpose, the present invention discloses a power on/reset circuit. The power on/reset circuit includes a voltage following module, an inverse amplification module, and at least one first transistor connected in series in a cascaded manner. The voltage tracking module is coupled to a first DC voltage source. The voltage tracking module generates a first analog signal. The potential level change of the first analog signal follows the potential level change of the first DC voltage source. The reverse amplification module is used to receive the first analog signal and generate a second analog signal. The potential logic of the second analog signal is opposite to the potential logic of the first analog signal. The power on/reset circuit controls the on/reset state of the digital circuit according to the second analog signal. The inverse amplification module adjusts the second analog signal by cascading transistors.
所述反向放大模块包括一第一N型金氧半晶体管及一第一P型金氧半晶体管。所述第一N型金氧半晶体管的栅极耦接于所述电压追随模块的一输出端以接收所述第一模拟信号。所述第一P型金氧半晶体管的栅极耦接于所述第一N型金氧半晶体管的栅极。所述第一P型金氧半晶体管的源极耦接于一第二直流电压源。且所述第一P型金氧半晶体管的漏极耦接于所述第一N型金氧半晶体管的漏极并输出所述第二模拟信号。所述至少一个第一晶体管中耦接于所述反向放大模块的所述第一晶体管耦接于所述第一N型金氧半晶体管的源极。The reverse amplification module includes a first N-type metal-oxide-semiconductor transistor and a first P-type metal-oxide-semiconductor transistor. The gate of the first NMOS transistor is coupled to an output end of the voltage tracking module to receive the first analog signal. The gate of the first PMOS transistor is coupled to the gate of the first NMOS transistor. The source of the first P-type metal oxide semiconductor transistor is coupled to a second DC voltage source. And the drain of the first PMOS transistor is coupled to the drain of the first NMOS transistor and outputs the second analog signal. The first transistor of the at least one first transistor coupled to the reverse amplification module is coupled to the source of the first NMOS transistor.
所述第二直流电压源的电位高于所述第一直流电压源的电位。The potential of the second DC voltage source is higher than the potential of the first DC voltage source.
所述电源开启/重置电路另包括至少一个以串迭方式串联的第二晶体管,其中一第二晶体管耦接于所述第二直流电压源,且另有一第二晶体管耦接于所述第一P型金氧半晶体管的源极。The power on/reset circuit further includes at least one second transistor connected in cascade, wherein one second transistor is coupled to the second DC voltage source, and another second transistor is coupled to the first A source of a P-type metal oxide semiconductor transistor.
所述至少一个第一晶体管为N型金氧半晶体管,且所述至少一个第二晶体管为P型金氧半晶体管。The at least one first transistor is an N-type metal-oxide-semiconductor transistor, and the at least one second transistor is a P-type metal-oxide-semiconductor transistor.
所述至少一个第一晶体管为P型金氧半晶体管,且所述至少一个第二晶体管为N型金氧半晶体管。The at least one first transistor is a P-type metal-oxide-semiconductor transistor, and the at least one second transistor is an N-type metal-oxide-semiconductor transistor.
所述至少一个第一晶体管为npn型双极结型晶体管,且所述至少一个第二晶体管为pnp型双极结型晶体管。The at least one first transistor is an npn bipolar junction transistor, and the at least one second transistor is a pnp bipolar junction transistor.
所述至少一个第一晶体管为pnp型双极结型晶体管,且所述至少一个第二晶体管为npn型双极结型晶体管。The at least one first transistor is a pnp bipolar junction transistor, and the at least one second transistor is an npn bipolar junction transistor.
所述反向放大模块包括一第一N型金氧半晶体管及一第一P型金氧半晶体管。所述第一N型金氧半晶体管的栅极耦接于所述电压追随模块的一输出端以接收所述第一模拟信号。所述第一P型金氧半晶体管的栅极耦接于所述第一N型金氧半晶体管的栅极,所述第一P型金氧半晶体管的源极耦接于一第二直流电压源,且所述第一P型金氧半晶体管的漏极耦接于所述第一N型金氧半晶体管的漏极并输出所述第二模拟信号。所述至少一个第一晶体管中耦接于所述反向放大模块的所述第一晶体管耦接于所述第一P型金氧半晶体管的源极。The reverse amplification module includes a first N-type metal-oxide-semiconductor transistor and a first P-type metal-oxide-semiconductor transistor. The gate of the first NMOS transistor is coupled to an output end of the voltage tracking module to receive the first analog signal. The gate of the first P-type MOS transistor is coupled to the gate of the first N-type MOS transistor, and the source of the first P-type MOS transistor is coupled to a second DC A voltage source, and the drain of the first PMOS transistor is coupled to the drain of the first NMOS transistor and outputs the second analog signal. The first transistor of the at least one first transistor coupled to the reverse amplification module is coupled to the source of the first P-type metal-oxide-semiconductor transistor.
所述第二直流电压源的电位高于所述第一直流电压源的电位。The potential of the second DC voltage source is higher than the potential of the first DC voltage source.
所述电源开启/重置电路另包括至少一个以串迭方式串联的第二晶体管,其中一第二晶体管耦接于所述第一N型金氧半晶体管的源极。The power on/reset circuit further includes at least one second transistor connected in series in cascade, wherein one second transistor is coupled to the source of the first NMOS transistor.
所述至少一个第一晶体管为N型金氧半晶体管,且所述至少一个第二晶体管为P型金氧半晶体管。The at least one first transistor is an N-type metal-oxide-semiconductor transistor, and the at least one second transistor is a P-type metal-oxide-semiconductor transistor.
所述至少一个第一晶体管为P型金氧半晶体管,且所述至少一个第二晶体管为N型金氧半晶体管。The at least one first transistor is a P-type metal-oxide-semiconductor transistor, and the at least one second transistor is an N-type metal-oxide-semiconductor transistor.
所述至少一个第一晶体管为npn型双极结型晶体管,且所述至少一个第二晶体管为pnp型双极结型晶体管。The at least one first transistor is an npn bipolar junction transistor, and the at least one second transistor is a pnp bipolar junction transistor.
所述至少一个第一晶体管为pnp型双极结型晶体管,且所述至少一个第二晶体管为npn型双极结型晶体管。The at least one first transistor is a pnp bipolar junction transistor, and the at least one second transistor is an npn bipolar junction transistor.
所述电压追随模块包括一第一P型金氧半晶体管、一第二P型金氧半晶体管、一第三P型金氧半晶体管、一第一N型金氧半晶体管、一第二N型金氧半晶体管、一第三N型金氧半晶体管、一第四N型金氧半晶体管、及一第五N型金氧半晶体管。所述第一P型金氧半晶体管的源极耦接于所述第一直流电压源。所述第二P型金氧半晶体管的源极耦接于所述第一P型金氧半晶体管的漏极与栅极。所述第二P型金氧半晶体管的基极耦接于所述第一P型金氧半晶体管的基极。所述第三P型金氧半晶体管的源极耦接于所述第一P型金氧半晶体管的源极。所述第三P型金氧半晶体管的栅极耦接于所述第一P型金氧半晶体管的栅极。所述第三P型金氧半晶体管的漏极耦接于所述第二P型金氧半晶体管的栅极。所述第一N型金氧半晶体管的漏极耦接于所述第三P型金氧半晶体管的漏极与所述第二P型金氧半晶体管的栅极。所述第二N型金氧半晶体管的漏极耦接于所述第一N型金氧半晶体管的源极与所述第二N型金氧半晶体管的栅极,且所述第二N型金氧半晶体管的源极接地。所述第三N型金氧半晶体管的源极接地,所述第三N型金氧半晶体管的栅极耦接于所述第二N型金氧半晶体管的栅极,且所述第三N型金氧半晶体管的漏极耦接于所述第一N型金氧半晶体管的栅极。所述第四P型金氧半晶体管的漏极耦接于所述第三N型金氧半晶体管的漏极,且所述第四P型金氧半晶体管的栅极耦接于所述第二N型金氧半晶体管的栅极。所述第五P型金氧半晶体管的漏极耦接于所述第四P型金氧半晶体管的源极,所述第五P型金氧半晶体管的栅极耦接于所述第四P型金氧半晶体管的栅极,且所述第五P型金氧半晶体管的源极耦接于所述第一P型金氧半晶体管的源极。The voltage following module includes a first P-type metal oxide semiconductor transistor, a second P-type metal oxide semiconductor transistor, a third P-type metal oxide semiconductor transistor, a first N-type metal oxide semiconductor transistor, a second N N-type MOS transistor, a third N-type MOS transistor, a fourth N-type MOS transistor, and a fifth N-type MOS transistor. The source of the first PMOS transistor is coupled to the first DC voltage source. The source of the second PMOS transistor is coupled to the drain and gate of the first PMOS transistor. The base of the second PMOS transistor is coupled to the base of the first PMOS transistor. The source of the third PMOS transistor is coupled to the source of the first PMOS transistor. The gate of the third PMOS transistor is coupled to the gate of the first PMOS transistor. The drain of the third PMOS transistor is coupled to the gate of the second PMOS transistor. The drain of the first NMOS transistor is coupled to the drain of the third PMOS transistor and the gate of the second PMOS transistor. The drain of the second NMOS transistor is coupled to the source of the first NMOS transistor and the gate of the second NMOS transistor, and the second NMOS transistor The source of the type metal oxide semiconductor transistor is grounded. The source of the third NMOS transistor is grounded, the gate of the third NMOS transistor is coupled to the gate of the second NMOS transistor, and the third The drain of the NMOS transistor is coupled to the gate of the first NMOS transistor. The drain of the fourth P-type MOS transistor is coupled to the drain of the third N-type MOS transistor, and the gate of the fourth P-type MOS transistor is coupled to the first Gates of two N-type metal oxide semiconductor transistors. The drain of the fifth PMOS transistor is coupled to the source of the fourth PMOS transistor, and the gate of the fifth PMOS transistor is coupled to the fourth PMOS transistor. The gate of the P-type MOS transistor, and the source of the fifth P-type MOS transistor is coupled to the source of the first P-type MOS transistor.
所述电源开启/重置电路另包括一电流供给器及一反相逻辑模块。所述电流供给器耦接于所述第一直流电压源,并用来产生一电流。所述反相逻辑模块耦接于所述反向放大模块以接收所述第二模拟信号,并耦接于所述电流供给器以被所述电流所驱动。所述电流供给器亦用来控制所述电流的强度在一临界电流强度以下。所述反相逻辑模块反转所述第二模拟信号的电位逻辑以产生一开启/重置信号,使得所述电源开启/重置电路借由所述开启/重置信号来控制所述数字电路的开启/重置状态。The power on/reset circuit further includes a current supplier and an inverting logic module. The current supplier is coupled to the first DC voltage source and used to generate a current. The inversion logic module is coupled to the inversion amplification module to receive the second analog signal, and is coupled to the current supplier to be driven by the current. The current supplier is also used to control the intensity of the current below a critical current intensity. The inversion logic module inverts the potential logic of the second analog signal to generate a turn-on/reset signal, so that the power turn-on/reset circuit controls the digital circuit through the turn-on/reset signal on/reset state.
所述电流供给器包括一第二N型金氧半晶体管、一第三N型金氧半晶体管、一第四N型金氧半晶体管、一第五P型金氧半晶体管、一第六P型金氧半晶体管。所述第二N型金氧半晶体管的漏极耦接于所述第一直流电压源及所述第二N型金氧半晶体管的栅极。所述第三N型金氧半晶体管的栅极耦接于所述第二N型金氧半晶体管的栅极。所述第四N型金氧半晶体管的栅极耦接于所述第三N型金氧半晶体管的栅极。所述第五P型金氧半晶体管的栅极与漏极耦接于所述第三N型金氧半晶体管的漏极,且所述第五P型金氧半晶体管的源极耦接于所述第一直流电压源。所述第六P型金氧半晶体管的栅极耦接于所述第五P型金氧半晶体管的栅极,且所述第六P型金氧半晶体管的源极耦接于所述第一直流电压源。所述反相逻辑模块包括一第七P型金氧半晶体管及一第五N型金氧半晶体管。所述第七P型金氧半晶体管的栅极耦接于所述互补式金氧半晶体管。所述第七P型金氧半晶体管的源极耦接于所述第六P型金氧半晶体管的漏极。所述第五N型金氧半晶体管的栅极耦接于所述第七P型金氧半晶体管的栅极。所述第五N型金氧半晶体管的漏极耦接于所述第七P型金氧半晶体管的漏极。所述第五N型金氧半晶体管的源极耦接于所述第四N型金氧半晶体管的漏极。所述第七P型金氧半晶体管的基极耦接于所述第一直流电压源,且所述第五N型金氧半晶体管的基极耦接于所述第四N型金氧半晶体管的基极。The current supplier includes a second NMOS transistor, a third NMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, and a sixth PMOS transistor. type metal oxide semiconductor transistor. The drain of the second NMOS transistor is coupled to the first DC voltage source and the gate of the second NMOS transistor. The gate of the third NMOS transistor is coupled to the gate of the second NMOS transistor. The gate of the fourth NMOS transistor is coupled to the gate of the third NMOS transistor. The gate and drain of the fifth P-type MOS transistor are coupled to the drain of the third N-type MOS transistor, and the source of the fifth P-type MOS transistor is coupled to The first DC voltage source. The gate of the sixth PMOS transistor is coupled to the gate of the fifth PMOS transistor, and the source of the sixth PMOS transistor is coupled to the first PMOS transistor. a DC voltage source. The inverting logic module includes a seventh P-type metal-oxide-semiconductor transistor and a fifth N-type metal-oxide-semiconductor transistor. The gate of the seventh PMOS transistor is coupled to the CMOS transistor. The source of the seventh PMOS transistor is coupled to the drain of the sixth PMOS transistor. The gate of the fifth NMOS transistor is coupled to the gate of the seventh PMOS transistor. The drain of the fifth NMOS transistor is coupled to the drain of the seventh PMOS transistor. The source of the fifth NMOS transistor is coupled to the drain of the fourth NMOS transistor. The base of the seventh P-type MOS transistor is coupled to the first DC voltage source, and the base of the fifth N-type MOS transistor is coupled to the fourth N-type MOS transistor. base of the transistor.
基于上述目的,本发明公开一种控制数字电路的开启/重置状态的方法。所述方法包括使第一模拟信号的电位高低变化跟随第一直流电压源的电位高低变化;反转所述第一模拟信号的电位逻辑,并提高或降低已反转电位逻辑的所述第一模拟信号的电位,以产生第二模拟信号;调整反转时的启始条件,并以串迭晶体管的方式调整所述第二模拟信号;以及以所述第二模拟信号控制一开启/重置信号,并借由所述开启/重置信号控制一数字电路的开启/重置状态。Based on the above purpose, the present invention discloses a method for controlling the on/reset state of a digital circuit. The method includes making the potential level change of the first analog signal follow the potential level change of the first DC voltage source; inverting the potential logic of the first analog signal, and increasing or decreasing the first voltage level of the inverted potential logic. the potential of the analog signal to generate a second analog signal; adjust the start condition during inversion, and adjust the second analog signal in a cascaded transistor manner; and control a turn-on/reset with the second analog signal signal, and the on/reset state of a digital circuit is controlled by the on/reset signal.
所述方法另包括反转所述第二模拟信号的电位逻辑以产生所述开启/重置信号,以借由所述开启/重置信号来控制所述数字电路的开启/重置状态。The method further includes inverting the potential logic of the second analog signal to generate the turn-on/reset signal, so as to control the turn-on/reset state of the digital circuit by the turn-on/reset signal.
根据上述技术方案,本发明的扫描装置至少具有下列优点及有益效果:反转第一模拟信号的电位逻辑以产生第二模拟信号,并以第一晶体管调整第二模拟信号,使得第二模拟信号所控制的开启/重置信号的电位足以正确运作后端的数字电路。According to the above technical solution, the scanning device of the present invention has at least the following advantages and beneficial effects: invert the potential logic of the first analog signal to generate the second analog signal, and use the first transistor to adjust the second analog signal so that the second analog signal The potential of the controlled turn-on/reset signal is sufficient to properly operate the back-end digital circuits.
附图说明 Description of drawings
图1与图2为现有技术中所揭露的二种集成电路的示意图。1 and 2 are schematic diagrams of two integrated circuits disclosed in the prior art.
图3为现有技术中常使用电源开启/重置电路的示意图。FIG. 3 is a schematic diagram of a power on/reset circuit commonly used in the prior art.
图4为根据本发明的实施例所揭露图3所示的电源开启/重置电路的详细示意图。FIG. 4 is a detailed schematic diagram of the power on/reset circuit shown in FIG. 3 disclosed according to an embodiment of the present invention.
图8-13为图4所示反向放大模块的不同实施例的示意图。8-13 are schematic diagrams of different embodiments of the reverse amplification module shown in FIG. 4 .
图5为图8所示的反向放大模块包含的晶体管组借由包含至少一个以串迭方式串联的晶体管,将反相放大模块的电压转换特征曲线向右移动的示意图。5 is a schematic diagram of shifting the voltage conversion characteristic curve of the inverting amplifying module to the right by including at least one cascaded transistor group included in the inverting amplifying module shown in FIG. 8 .
图6与图7示意分别输入一非理想的电压源到图3所示的电源开启/重置电路与图4所示的电源开启/重置电路后,各自输出开启/重置讯号的波形示意图。Figure 6 and Figure 7 show the waveform diagrams of the respective output on/reset signals after inputting a non-ideal voltage source to the power on/reset circuit shown in Figure 3 and the power on/reset circuit shown in Figure 4 respectively .
图14为图4-13所揭露电源开启/重置电路的运作方法的概略示意图。FIG. 14 is a schematic diagram of the operation method of the power on/reset circuit disclosed in FIGS. 4-13 .
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100、200 集成电路100, 200 integrated circuits
250、300 电源开启/重置电路250, 300 Power on/reset circuit
120 稳压器120 voltage regulator
130 电源开启/重置脉冲产生器130 Power On/Reset Pulse Generator
140 数字电路140 Digital circuit
230 电源开启/重置脉冲产生器230 Power On/Reset Pulse Generator
310 电压追随模块310 Voltage Follower Module
330 电流供给器330 Current Provider
340 反相逻辑模块340 Inverting logic module
402、404、406、408 步骤402, 404, 406, 408 steps
I1、I2、I3 等效电流源I1, I2, I3 Equivalent current source
C1、C2、C3 电容C1, C2, C3 capacitors
Q11、Q12、Q13、Q14、Q15、Q16、晶体管Q11, Q12, Q13, Q14, Q15, Q16, transistor
Q17、Q18、Q21、Q22、Q31、Q32、Q17, Q18, Q21, Q22, Q31, Q32,
Q33、Q34、Q35、Q36、Q37、Q38、Q33, Q34, Q35, Q36, Q37, Q38,
Q39、Q40、QN1、QNm、QP1、QPm、Q39, Q40, QN1, QNm, QP1, QPm,
Qnpn1、Qnpnm、Qpnp1、Qpnpm、Qnpn1, Qnpnm, Qpnp1, Qpnpm,
QS 1、QS2QS1, QS2
V1、V2 模拟电压V1, V2 Analog voltage
Vout 开启/重置信号Vout Open/Reset Signal
TN、TP、Tnpn、Tpnp 晶体管组TN, TP, Tnpn, Tpnp Transistor group
VDD1、VDD2、VCC 直流电压源VDD1, VDD2, VCC DC voltage source
CM、INV 反向器CM, INV Inverter
具体实施方式 Detailed ways
请参阅图4,其为本发明所公开的电源开启/重置电路300的示意图。如图4所示,电源开启/重置电路300包括电压追随模块310、反向放大模块320、电流供给器330、及反相逻辑模块340。请同时参阅图8,其为根据本发明的实施例所公开的图4所示的反向放大模块320的详细示意图。如图8所示,反向放大模块320包括反向器CM及晶体管组TN。Please refer to FIG. 4 , which is a schematic diagram of a power on/reset circuit 300 disclosed in the present invention. As shown in FIG. 4 , the power on/reset circuit 300 includes a voltage tracking module 310 , an inverse amplification module 320 , a current supplier 330 , and an inversion logic module 340 . Please also refer to FIG. 8 , which is a detailed schematic diagram of the reverse amplification module 320 shown in FIG. 4 according to an embodiment of the present invention. As shown in FIG. 8 , the reverse amplification module 320 includes an inverter CM and a transistor group TN.
电压追随模块310包括P型金氧半晶体管Q12、Q13、Q14、Q17、Q18、N型金氧半晶体管Q11、Q15、Q16及电容C1,并耦接于直流电压源VDD1以形成图4所示的等效电流源I1。P型金氧半晶体管Q12的源极耦接于直流电压源VDD1。P型金氧半晶体管Q13的源极耦接于P型金氧半晶体管Q12的漏极与栅极。P型金氧半晶体管Q13的基极耦接于P型金氧半晶体管Q12的基极。P型金氧半晶体管Q14的源极耦接于P型金氧半晶体管Q12的源极。P型金氧半晶体管Q14的栅极耦接于P型金氧半晶体管Q12的栅极。P型金氧半晶体管Q14的漏极耦接于P型金氧半晶体管Q13的栅极。N型金氧半晶体管Q11的漏极耦接于P型金氧半晶体管Q14的漏极与P型金氧半晶体管Q13的栅极。N型金氧半晶体管Q15的漏极耦接于N型金氧半晶体管Q11的源极与N型金氧半晶体管Q15的栅极。N型金氧半晶体管Q15的源极接地。N型金氧半晶体管Q16的源极接地。N型金氧半晶体管Q16的栅极耦接于N型金氧半晶体管Q15的栅极。N型金氧半晶体管Q16的漏极耦接于N型金氧半晶体管Q11的栅极。P型金氧半晶体管Q17的漏极耦接于N型金氧半晶体管Q16的漏极。P型金氧半晶体管Q17的栅极耦接于N型金氧半晶体管Q15的栅极。P型金氧半晶体管Q18的漏极耦接于P型金氧半晶体管Q17的源极。P型金氧半晶体管Q18的栅极耦接于P型金氧半晶体管Q17的栅极。P型金氧半晶体管Q18的源极耦接于P型金氧半晶体管Q12的源极。在电压追随模块310中,模拟信号V1的电位变化会跟随直流电压源VDD1的电位变化,亦即如现有技术中所述开启/重置信号Trig1的电位跟随直流电压源VDD1的电位的情形。The voltage following module 310 includes P-type metal-oxide-semiconductor transistors Q12, Q13, Q14, Q17, Q18, N-type metal-oxide-semiconductor transistors Q11, Q15, Q16 and capacitor C1, and is coupled to a DC voltage source VDD1 to form the The equivalent current source I1. The source of the PMOS transistor Q12 is coupled to the DC voltage source VDD1. The source of the PMOS transistor Q13 is coupled to the drain and gate of the PMOS transistor Q12. The base of the PMOS transistor Q13 is coupled to the base of the PMOS transistor Q12. The source of the PMOS transistor Q14 is coupled to the source of the PMOS transistor Q12. The gate of the PMOS transistor Q14 is coupled to the gate of the PMOS transistor Q12. The drain of the PMOS transistor Q14 is coupled to the gate of the PMOS transistor Q13. The drain of the NMOS transistor Q11 is coupled to the drain of the PMOS transistor Q14 and the gate of the PMOS transistor Q13 . The drain of the NMOS transistor Q15 is coupled to the source of the NMOS transistor Q11 and the gate of the NMOS transistor Q15 . The source of the NMOS transistor Q15 is grounded. The source of the NMOS transistor Q16 is grounded. The gate of the NMOS transistor Q16 is coupled to the gate of the NMOS transistor Q15. The drain of the NMOS transistor Q16 is coupled to the gate of the NMOS transistor Q11. The drain of the PMOS transistor Q17 is coupled to the drain of the NMOS transistor Q16. The gate of the PMOS transistor Q17 is coupled to the gate of the NMOS transistor Q15. The drain of the PMOS transistor Q18 is coupled to the source of the PMOS transistor Q17. The gate of the PMOS transistor Q18 is coupled to the gate of the PMOS transistor Q17. The source of the PMOS transistor Q18 is coupled to the source of the PMOS transistor Q12. In the voltage tracking module 310 , the potential variation of the analog signal V1 follows the potential variation of the DC voltage source VDD1 , that is, the potential of the turn-on/reset signal Trig1 follows the potential of the DC voltage source VDD1 as described in the prior art.
晶体管组TN包括至少一个以串迭方式(Stack)串联的N型金氧半晶体管QN1、…、QNm。其中晶体管QN1耦接于互补式金氧半晶体管CM,晶体管QNm的源极接地。反向器CM包括P型金氧半晶体管Q21及N型金氧半晶体管Q22。N型金氧半晶体管Q22的栅极耦接于电压追随模块310的输出端以接收模拟信号V1。P型金氧半晶体管Q21的栅极耦接于N型金氧半晶体管Q22的栅极。P型金氧半晶体管Q21的源极耦接于直流电压源VDD2,且P型金氧半晶体管的Q21漏极耦接于N型金氧半晶体管Q22的漏极并输出模拟信号V2,其中模拟信号V2的电位极性相反于模拟信号V1,且模拟信号V2为后端的数字电路控制其开启/重置状态的依据。晶体管QN1的漏极耦接于N型金氧半晶体管Q22的源极。The transistor group TN includes at least one N-type metal-oxide-semiconductor transistor QN1 , . . . , QNm connected in series in a stack manner. The transistor QN1 is coupled to the CMOS transistor CM, and the source of the transistor QNm is grounded. The inverter CM includes a P-type MOS transistor Q21 and an N-type MOS transistor Q22. The gate of the NMOS transistor Q22 is coupled to the output end of the voltage tracking module 310 to receive the analog signal V1. The gate of the PMOS transistor Q21 is coupled to the gate of the NMOS transistor Q22. The source of the P-type MOS transistor Q21 is coupled to the DC voltage source VDD2, and the drain of the P-type MOS transistor Q21 is coupled to the drain of the N-type MOS transistor Q22 to output an analog signal V2, wherein the analog The potential polarity of the signal V2 is opposite to that of the analog signal V1, and the analog signal V2 is the basis for the back-end digital circuit to control its on/reset state. The drain of the transistor QN1 is coupled to the source of the NMOS transistor Q22.
电流供给器330包括N型金氧半晶体管Q31、Q32、Q37及P型金氧半晶体管Q33、Q34。N型金氧半晶体管Q31的漏极通过电流供给器330所产生的等效电流源I2耦接于直流电压源VDD1及N型金氧半晶体管Q31的栅极。N型金氧半晶体管Q32的栅极耦接于N型金氧半晶体管Q31的栅极。N型金氧半晶体管Q37的栅极耦接于N型金氧半晶体管Q32的栅极。P型金氧半晶体管Q33的栅极与漏极耦接于N型金氧半晶体管Q32的漏极。且P型金氧半晶体管Q33的源极耦接于直流电压源VDD1。P型金氧半晶体管Q34的栅极耦接于P型金氧半晶体管Q33的栅极。P型金氧半晶体管Q34的源极耦接于直流电压源VDD1。电流供给器另外包括三个P型金氧半晶体管Q38、Q39、Q40。P型金氧半晶体管Q38、Q39、Q40的栅极彼此相耦接并皆接地。P型金氧半晶体管Q38的源极耦接于直流电压源VDD1。P型金氧半晶体管Q38的漏极耦接于P型金氧半晶体管Q39的源极。P型金氧半晶体管Q39的漏极耦接于P型金氧半晶体管Q40的源极。P型金氧半晶体管Q40的漏极耦接于N型金氧半晶体管Q31的漏极。The current supplier 330 includes N-type MOS transistors Q31 , Q32 , Q37 and P-type MOS transistors Q33 , Q34 . The drain of the NMOS transistor Q31 is coupled to the DC voltage source VDD1 and the gate of the NMOS transistor Q31 through the equivalent current source I2 generated by the current supplier 330 . The gate of the NMOS transistor Q32 is coupled to the gate of the NMOS transistor Q31. The gate of the NMOS transistor Q37 is coupled to the gate of the NMOS transistor Q32. The gate and the drain of the PMOS transistor Q33 are coupled to the drain of the NMOS transistor Q32. And the source of the PMOS transistor Q33 is coupled to the DC voltage source VDD1. The gate of the PMOS transistor Q34 is coupled to the gate of the PMOS transistor Q33. The source of the PMOS transistor Q34 is coupled to the DC voltage source VDD1. The current provider additionally includes three P-type metal-oxide-semiconductor transistors Q38, Q39, and Q40. The gates of the PMOS transistors Q38 , Q39 , and Q40 are coupled to each other and grounded. The source of the PMOS transistor Q38 is coupled to the DC voltage source VDD1. The drain of the PMOS transistor Q38 is coupled to the source of the PMOS transistor Q39. The drain of the PMOS transistor Q39 is coupled to the source of the PMOS transistor Q40. The drain of the PMOS transistor Q40 is coupled to the drain of the NMOS transistor Q31.
反相逻辑模块340包括P型金氧半晶体管Q35及N型金氧半晶体管Q36。P型金氧半晶体管Q35的栅极耦接于反向器CM。P型金氧半晶体管Q35的源极耦接于P型金氧半晶体管Q34的漏极。N型金氧半晶体管Q36的栅极耦接于P型金氧半晶体管Q35的栅极。N型金氧半晶体管Q36的漏极耦接于P型金氧半晶体管Q35的漏极。N型金氧半晶体管Q36的源极耦接于N型金氧半晶体管Q37的漏极。P型金氧半晶体管Q35的基极耦接于直流电压源VDD1。N型金氧半晶体管Q36的基极耦接于N型金氧半晶体管Q37的基极。其中晶体管Q34、Q35在输出电压Vout处产生一等效电容C2,且晶体管Q36、Q37在输出电压Vout处产生等效电容C3。反相逻辑模块340通过电流供给器330所包括的晶体管Q32、Q33、Q34、Q37来得到其所需要的操作电流,电流供给器330亦用来将所述操作电流控制在临界电流强度以下,以产生如图4所示位于电容C2与C3之间节点的开启/重置信号Vout;开启/重置信号Vout的电位逻辑与第二模拟信号V2相反,并直接用于控制上述数字电路的开启/重置状态,换句话说,通过第二模拟信号V2可间接控制上述数字电路的开启/重置状态。The inverting logic module 340 includes a P-type metal-oxide-semiconductor transistor Q35 and an N-type metal-oxide-semiconductor transistor Q36. The gate of the PMOS transistor Q35 is coupled to the inverter CM. The source of the PMOS transistor Q35 is coupled to the drain of the PMOS transistor Q34. The gate of the NMOS transistor Q36 is coupled to the gate of the PMOS transistor Q35. The drain of the NMOS transistor Q36 is coupled to the drain of the PMOS transistor Q35. The source of the NMOS transistor Q36 is coupled to the drain of the NMOS transistor Q37. The base of the PMOS transistor Q35 is coupled to the DC voltage source VDD1. The base of the NMOS transistor Q36 is coupled to the base of the NMOS transistor Q37. The transistors Q34 and Q35 generate an equivalent capacitance C2 at the output voltage Vout, and the transistors Q36 and Q37 generate an equivalent capacitance C3 at the output voltage Vout. The inverting logic module 340 obtains the required operating current through the transistors Q32, Q33, Q34, and Q37 included in the current supplier 330. The current supplier 330 is also used to control the operating current below the critical current intensity, so as to Generate the turn-on/reset signal Vout located at the node between the capacitors C2 and C3 as shown in Figure 4; the potential logic of the turn-on/reset signal Vout is opposite to that of the second analog signal V2, and is directly used to control the turn-on/reset of the above-mentioned digital circuit The reset state, in other words, the on/reset state of the above-mentioned digital circuit can be controlled indirectly through the second analog signal V2.
在图4所示的开启/重置电路300与图8所示的反向放大模块320中,在节点N1(位于N型金氧半晶体管Q11的栅极)的电压随着电压源VDD1提供而上升,当节点N1的电压上升至足够开启(turn on)Q11晶体管后,电流源I1经P型金氧半晶体管Q12与Q13向电容C1充电。因电容器C1的充电,在晶体管Q13的漏极处产生模拟信号V1并提供给反向放大模块320。模拟信号V1的电位会直接影响到反向放大模块320所输出的模拟信号V2的电位,且模拟信号V2的电位也会影响到用来提供给后端数字电路的开启/重置信号Vout的电位。图5为图8所示的反向放大模块包括的晶体管组借由包括至少一个以串迭方式串联的晶体管,将反相放大模块的电压转换特征曲线向右移动的示意图。In the turn-on/reset circuit 300 shown in FIG. 4 and the reverse amplification module 320 shown in FIG. When the voltage of the node N1 rises enough to turn on the transistor Q11, the current source I1 charges the capacitor C1 through the PMOS transistors Q12 and Q13. Due to the charging of the capacitor C1 , an analog signal V1 is generated at the drain of the transistor Q13 and provided to the inverse amplification module 320 . The potential of the analog signal V1 will directly affect the potential of the analog signal V2 output by the reverse amplification module 320, and the potential of the analog signal V2 will also affect the potential of the start/reset signal Vout used to provide the back-end digital circuit . 5 is a schematic diagram of shifting the voltage conversion characteristic curve of the inverting amplifying module to the right by including at least one cascaded transistor group included in the inverting amplifying module shown in FIG. 8 .
请参阅图5,反向放大模块320包括的晶体管组TN,借由包括至少一个以串迭方式串联的晶体管,将反相放大模块320的电压转换特征(voltagetransfer characteristic)曲线L1向右移动至L2,使得模拟信号V1在前述直流电压源VDD1因电源关闭(例如电位由3伏特骤减至0.9伏特)且接着直流电压源VDD1又恰巧开启(例如电位由0.9伏特再次上升至3伏特)过程中,模拟信号V2得以再次触发转态,也就是说反向放大模块320会经由反相逻辑模块340,发出开启/重置信号Vout到如图1-2所示的数字开启/重置脉冲产生器230,进而产生一重置脉冲,以将图1-2所示的数字电路140于以重置。Please refer to FIG. 5 , the transistor group TN included in the inverting amplification module 320 moves the voltage transfer characteristic curve L1 of the inverting amplifying module 320 to the right to L2 by including at least one transistor connected in series. , so that the analog signal V1 is in the process of turning off the DC voltage source VDD1 due to the power supply (for example, the potential drops from 3 volts to 0.9 volts) and then the DC voltage source VDD1 happens to be turned on again (for example, the potential rises from 0.9 volts to 3 volts again), The analog signal V2 can trigger the transition again, that is to say, the inverse amplification module 320 will send the turn-on/reset signal Vout to the digital turn-on/reset pulse generator 230 as shown in FIG. 1-2 via the inversion logic module 340 , and then generate a reset pulse to reset the digital circuit 140 shown in FIGS. 1-2 .
请参阅图6与图7,其中二图分别输入一非理想的电压源VDD1(电压源VDD1连续重复产生开启与关闭的状况,如现有技术所提及)到图3所示的电源开启/重置电路250与图8所示的电源开启/重置电路300后,各自输出开启/重置信号Vout的波形示意图。观察图6可知,开启/重置信号Vout在非理想电压源VDD1的电位由3伏特下降至0.9伏特时也跟随着由3伏特下降至0.9伏特,并随即由0.9伏特直接回升至3伏特,因此会产生如现有技术所述开启/重置信号无法有效的重新开启后端的数字电路的问题。而反观图7可知,开启/重置信号Vout在非理想电压源VDD1的电位由3伏特下降至0.9伏特并跟随着由3伏特下降至0.9伏特时,会受到反向器CM及晶体管组TN的影响而短暂的被下拉至0伏特,然后才由0伏特回升至3伏特,因此开启/重置信号Vout的电位足以使后端的数字电路产生一次有效的开启,而避免了如现有技术所述无法顺利重新开启的问题。Please refer to FIG. 6 and FIG. 7, wherein the two figures respectively input a non-ideal voltage source VDD1 (the voltage source VDD1 continuously and repeatedly generates on and off conditions, as mentioned in the prior art) to the power on/off shown in FIG. After the reset circuit 250 and the power on/reset circuit 300 shown in FIG. 8 , respectively output the waveform diagrams of the on/reset signal Vout. Observing Figure 6, it can be known that when the potential of the non-ideal voltage source VDD1 drops from 3 volts to 0.9 volts, the turn-on/reset signal Vout also drops from 3 volts to 0.9 volts, and then directly rises from 0.9 volts to 3 volts, so There will be a problem that the turn-on/reset signal cannot effectively turn on the back-end digital circuit as described in the prior art. In contrast to FIG. 7, it can be seen that when the potential of the non-ideal voltage source VDD1 drops from 3 volts to 0.9 volts and then drops from 3 volts to 0.9 volts, the turn-on/reset signal Vout will be affected by the inverter CM and the transistor group TN. affected and temporarily pulled down to 0 volts, and then rises from 0 volts to 3 volts, so the potential of the turn-on/reset signal Vout is sufficient to enable the digital circuit at the back end to be effectively turned on once, avoiding the problem described in the prior art. Unable to successfully restart the problem.
在本发明的其它实施例中,图8所示的晶体管组TN可各自被图9所示的晶体管组Tnpn、图10所示的晶体管组Tpnp、图11所示的晶体管组TP所取代,而达成与图8所示晶体管组TN相同的目的;其中晶体管组Tnpn包括有至少一个以串迭方式串联的npn型双载子晶体管Qnpn1、…、Qnpnm,晶体管组Tpnp包括有至少一个以串迭方式串联的pnp型双载子晶体管Qnpn1、…、Qnpnm,且晶体管组TP包括有至少一个以串迭方式串联的P型金氧半晶体管QP1、…、QPm。In other embodiments of the present invention, the transistor group TN shown in FIG. 8 can be replaced by the transistor group Tnpn shown in FIG. 9, the transistor group Tpnp shown in FIG. 10, and the transistor group TP shown in FIG. 11 respectively, and Reach the same purpose as the transistor group TN shown in Figure 8; wherein the transistor group Tnpn includes at least one npn-type bipolar transistors Qnpn1, ..., Qnpnm connected in series in a cascaded manner, and the transistor group Tpnp includes at least one cascaded The pnp-type bipolar transistors Qnpn1, .
除此以外,在本发明的部分实施例中,晶体管组TN、TP、Tnpn、Tpnp的设置位置也并非受限耦接于N型金氧半晶体管Q22。如图12所示,晶体管组TN直接耦接于P型金氧半晶体管Q21,且晶体管QN1的漏极耦接于直流电压源VDD1,晶体管QNm的源极耦接于P型金氧半晶体管Q21的源极。当图12所示的晶体管组TN以晶体管组TP、Tnpn、或Tpnp取代时,其设置方式类似于图8所示晶体管组TN,此处不再多加赘述。再者,如图13所示,互补式金氧半晶体管CM中P型金氧半晶体管Q21与N型金氧半晶体管Q22亦可各自耦接于晶体管组TP与TN,且在本发明的其它实施例中,图13所示晶体管组TP与TN亦可以其它上述的晶体管组替换。因此将图12、13中所示的晶体管组以图8-11所示的晶体管组替换而产生的其它实施例,仍应属于本发明的范畴。Besides, in some embodiments of the present invention, the disposition positions of the transistor groups TN, TP, Tnpn, Tpnp are not limited to be coupled to the NMOS transistor Q22. As shown in FIG. 12 , the transistor group TN is directly coupled to the P-type metal-oxide-semiconductor transistor Q21, and the drain of the transistor QN1 is coupled to the DC voltage source VDD1, and the source of the transistor QNm is coupled to the P-type metal-oxide-semiconductor transistor Q21. source. When the transistor group TN shown in FIG. 12 is replaced by the transistor group TP, Tnpn, or Tpnp, its setting method is similar to that of the transistor group TN shown in FIG. 8 , which will not be repeated here. Moreover, as shown in FIG. 13, the P-type metal-oxide-semiconductor transistor Q21 and the N-type metal-oxide-semiconductor transistor Q22 in the complementary metal-oxide-semiconductor transistor CM can also be coupled to transistor groups TP and TN respectively, and in other aspects of the present invention In an embodiment, the transistor groups TP and TN shown in FIG. 13 can also be replaced by other above-mentioned transistor groups. Therefore, other embodiments produced by replacing the transistor groups shown in FIGS. 12 and 13 with the transistor groups shown in FIGS. 8-11 should still belong to the scope of the present invention.
请参阅图14,其为图4-13所公开电源开启/重置电路的运作方法的概略示意图。如图14所示,所述方法包括步骤如下:Please refer to FIG. 14 , which is a schematic diagram of the operation method of the power on/reset circuit disclosed in FIGS. 4-13 . As shown in Figure 14, the method includes the following steps:
步骤402:使第一模拟信号的电位高低变化跟随第一直流电压源的电位高低变化。Step 402: Make the potential level of the first analog signal vary to follow the potential level of the first DC voltage source.
步骤404:反转第一模拟信号的电位逻辑,以产生第二模拟信号。Step 404: Invert the potential logic of the first analog signal to generate a second analog signal.
步骤406:调整反转时的启始条件,以调整第二模拟信号的电压转换特性曲线。Step 406: Adjust the start condition of the inversion, so as to adjust the voltage conversion characteristic curve of the second analog signal.
步骤408:以第二模拟信号的电位逻辑以产生开启/重置信号,并借由开启/重置信号控制数字电路的开启/重置状态。Step 408 : Use potential logic of the second analog signal to generate an on/reset signal, and control the on/reset state of the digital circuit by the on/reset signal.
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010588188.8A CN102570784B (en) | 2010-12-10 | 2010-12-10 | Power on/reset circuit and control digital circuit on/reset state method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010588188.8A CN102570784B (en) | 2010-12-10 | 2010-12-10 | Power on/reset circuit and control digital circuit on/reset state method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102570784A CN102570784A (en) | 2012-07-11 |
CN102570784B true CN102570784B (en) | 2014-08-27 |
Family
ID=46415437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010588188.8A Active CN102570784B (en) | 2010-12-10 | 2010-12-10 | Power on/reset circuit and control digital circuit on/reset state method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102570784B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107196629B (en) * | 2017-05-04 | 2020-10-23 | 深圳大学 | A Discrete Threshold Voltage Comparator with Zero Static Power |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883532A (en) * | 1997-03-25 | 1999-03-16 | Analog Devices, Inc. | Power-on reset circuit based upon FET threshold level |
US6744291B2 (en) * | 2002-08-30 | 2004-06-01 | Atmel Corporation | Power-on reset circuit |
CN1642006A (en) * | 2004-09-14 | 2005-07-20 | 威盛电子股份有限公司 | Power On Reset Circuit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020109535A1 (en) * | 2001-02-09 | 2002-08-15 | Telcom Semiconductor, Inc. | Power on reset circuit arrangement |
-
2010
- 2010-12-10 CN CN201010588188.8A patent/CN102570784B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883532A (en) * | 1997-03-25 | 1999-03-16 | Analog Devices, Inc. | Power-on reset circuit based upon FET threshold level |
US6744291B2 (en) * | 2002-08-30 | 2004-06-01 | Atmel Corporation | Power-on reset circuit |
CN1642006A (en) * | 2004-09-14 | 2005-07-20 | 威盛电子股份有限公司 | Power On Reset Circuit |
Also Published As
Publication number | Publication date |
---|---|
CN102570784A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101989096B (en) | Start-up circuit for starting up bandgap reference circuit | |
JP5225876B2 (en) | Power-on reset circuit | |
US10804888B1 (en) | Delay circuit and electronic system equipped with delay circuit | |
US8736320B2 (en) | Power-on reset circuit | |
CN101675587A (en) | comparator with complementary differential input stages | |
US9337842B1 (en) | Low voltage differential signaling (LVDS) driving circuit | |
US20100201426A1 (en) | Level shifter circuit | |
US6677798B2 (en) | High speed voltage level shifter | |
CN102006054A (en) | Bootstrap circuit | |
US9397557B2 (en) | Charge pump with wide operating range | |
JP3888464B2 (en) | Semiconductor integrated circuit | |
CN103269217B (en) | Output buffer | |
US6753707B2 (en) | Delay circuit and semiconductor device using the same | |
JP2002290230A (en) | Cmos inverter | |
CN102570784B (en) | Power on/reset circuit and control digital circuit on/reset state method | |
CN109427371B (en) | Power switch, memory device and method for providing power switch voltage output | |
JP4724575B2 (en) | Level conversion circuit | |
TWI477953B (en) | Power on/reset circuit and method of controlling on/reset status of digital circuit thereof | |
JPH09181586A (en) | Reset signal generation circuit | |
JPH10242840A (en) | Semiconductor integrated circuit and drive method for the semiconductor integrated circuit | |
TWI692200B (en) | Turning-on and off reset circuit for carrier tape chip and the working method | |
CN111654070B (en) | Method, switching circuit and light sensor for switching control voltage of light sensor unit | |
CN110350898B (en) | Power-on and power-off reset circuit for carrier chip and working method thereof | |
US20100231273A1 (en) | Semiconductor device | |
TWI533600B (en) | Differential to single-end converter device and method therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |