CN102570280B - Blue, green and ultraviolet solid laser device based on submarine communication application and laser generating method thereof - Google Patents
Blue, green and ultraviolet solid laser device based on submarine communication application and laser generating method thereof Download PDFInfo
- Publication number
- CN102570280B CN102570280B CN 201210005299 CN201210005299A CN102570280B CN 102570280 B CN102570280 B CN 102570280B CN 201210005299 CN201210005299 CN 201210005299 CN 201210005299 A CN201210005299 A CN 201210005299A CN 102570280 B CN102570280 B CN 102570280B
- Authority
- CN
- China
- Prior art keywords
- frequency
- crystal
- light
- waveband
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种基于潜通信应用的蓝、绿、紫外固体激光装置及其激光产生方法,是为了解决目前采用激光二极管或半导体泵浦发射的蓝绿光波,不同程度的存在波段范围较小,功率太低,不能完全满足在海洋通讯中探测需求等技术问题而设计的。本发明以掺杂Nd3+的激光晶体作为工作物质,利用偏振分光棱镜和直角反射棱镜,使不同波长不同偏振方向的基频光在各自独立的谐振腔内分别形成稳定的振荡,同时与非线性和频与倍频技术相结合,实现了蓝、绿、紫外激光同时输出。本发明充分利用了基频光的能量,是具有转换效率高、结构紧凑、运转成本低、调节灵活方便、工作安全、用途广泛等特点,特别适合应用水下探测与水下潜通信等领域。
A blue, green, ultraviolet solid-state laser device and its laser generation method based on latent communication applications, in order to solve the problem that the current blue-green light waves emitted by laser diodes or semiconductor pumps have a small range of wavelength bands and too low power , It is not designed to fully meet the technical problems such as detection requirements in marine communications. The present invention uses Nd 3+ doped laser crystal as the working material, uses polarization beam splitter prism and right-angle reflective prism to make fundamental frequency light with different wavelengths and different polarization directions form stable oscillations in independent resonant cavities, and at the same time, it is compatible with non- The combination of linear sum frequency and frequency doubling technology realizes the simultaneous output of blue, green and ultraviolet lasers. The invention makes full use of the energy of the fundamental frequency light, has the characteristics of high conversion efficiency, compact structure, low operating cost, flexible and convenient adjustment, safe work, wide application, etc., and is especially suitable for the fields of underwater detection and underwater communication.
Description
技术领域technical field
本发明涉及一种激光器,特别涉及基于潜通信应用的全固态0.5um波段范围绿光、0.4um波段范围蓝光及0.2um波段范围紫外光三波长蓝、绿、紫外激光同时输出的固体激光装置及其激光的产生方法。The present invention relates to a laser device, in particular to a solid-state laser device capable of simultaneously outputting three-wavelength blue, green, and ultraviolet lasers based on all-solid-state 0.5um band range green light, 0.4um band range blue light and 0.2um band range ultraviolet light based on latent communication applications and Its laser generation method.
背景技术Background technique
自1960年世界上第一台红宝石激光器诞生以来,各类激光器及激光技术发展极为迅速,其中,多波长激光器的发展备受瞩目,由于它克服了传统激光器输出单一波长的缺陷,在激光医学、激光彩色显示、激光全彩色电影、大气监测及科学实验中占有重要的地位,颇有理论研究价值和应用价值,国内外都有利用非线性光学晶体进行激光频率变换以获得多波长激光的相关报道,但到目前为止,有关多波长激光器件的报道,大多数都集中在医学、显示及演示领域中的应用,如采用一台全固态锁模激光器和一台光纤激光器提供的基频光通过腔外倍频与和频获红、绿、蓝三基色激光同时输出(US.Patent,Pub.No.:US2001/0010698A1,RGB Laser Radiation Source);中国专利(公开号:1411113A)中采用一块PPKTP晶体实现了红、黄、蓝三波长激光同时输出。而在激光水下探测与水下潜通信方面的应用,有关多波长激光装置及应用的报道很少。激光探测技术在水下目标搜索、海洋地质勘探、目标识别等领域都具有重要的应用价值,人们在研究光波在海洋中的传播特性时,发现海水对0.4-0.5um波段内的蓝绿激光的衰减比对其他波段的衰减要小得多,从而证实了在海水中存在一个理想的透光窗口。这一物理现象的发现使激光水下探测成为可能。目前,中国专利(ZL专利号:90100168.6)中采用激光二极管发射的980-1000nm光束通过KTP晶体倍频产生490-500nm的蓝绿激光,但该装置蓝绿光波段范围较小,不能完全满足探测需求。中国专利(ZL专利号:95106927.6)中提到的蓝绿激光血管内照射治疗仪,采用的半导体泵浦的蓝光410nm、绿光532nm,功率在5-200mW之间变化,由于功率太低,只适合于医学某些疾病的治疗。此外,在海洋通讯中,某些地方藻类的存在会影响通讯效果,不利于信息传输,所以在同一激光装置中,应用蓝绿激光进行水下探测,在必要的时候利用紫外激光进行除藻清除,以保证潜通信的顺利进行,而关于此方面的综合应用还未见报道。因此,根据实际需求与潜通信激光装置的发展状况,开发设计此蓝、绿、紫外三波长激光器有着重要的实际应用价值。Since the birth of the world's first ruby laser in 1960, various lasers and laser technologies have developed extremely rapidly. Among them, the development of multi-wavelength lasers has attracted much attention. Because it overcomes the defect of traditional lasers outputting a single wavelength, it is widely used in laser medicine, Laser color display, laser full-color film, atmospheric monitoring and scientific experiments occupy an important position, and have theoretical research value and application value. There are related reports at home and abroad that use nonlinear optical crystals to convert laser frequency to obtain multi-wavelength laser , but so far, most of the reports on multi-wavelength laser devices have focused on applications in the fields of medicine, display and demonstration, such as using an all-solid-state mode-locked laser and a fiber laser to provide fundamental frequency light through the cavity External frequency doubling and sum frequency output red, green and blue primary color lasers at the same time (US.Patent, Pub.No.: US2001/0010698A1, RGB Laser Radiation Source); a PPKTP crystal is used in the Chinese patent (publication number: 1411113A) The simultaneous output of red, yellow and blue three-wavelength lasers is realized. As for the application of laser underwater detection and underwater communication, there are few reports on multi-wavelength laser devices and applications. Laser detection technology has important application value in the fields of underwater target search, marine geological exploration, target recognition, etc. When people study the propagation characteristics of light waves in the ocean, they find that the seawater is sensitive to the blue-green laser in the 0.4-0.5um band. The attenuation is much smaller than for other bands, thus confirming the existence of an ideal light-transmitting window in seawater. The discovery of this physical phenomenon makes laser underwater detection possible. At present, in the Chinese patent (ZL patent number: 90100168.6), the 980-1000nm beam emitted by the laser diode is frequency-multiplied by the KTP crystal to generate a 490-500nm blue-green laser. need. The blue-green laser intravascular irradiation therapy instrument mentioned in the Chinese patent (ZL patent number: 95106927.6) adopts semiconductor-pumped blue light of 410nm and green light of 532nm, and the power varies between 5-200mW. Because the power is too low, only It is suitable for the treatment of certain medical diseases. In addition, in marine communication, the existence of algae in some places will affect the communication effect and is not conducive to information transmission. Therefore, in the same laser device, the blue-green laser is used for underwater detection, and the ultraviolet laser is used for algae removal when necessary. , to ensure the smooth progress of latent communication, but the comprehensive application of this aspect has not been reported yet. Therefore, according to the actual needs and the development status of the latent communication laser device, the development and design of the blue, green and ultraviolet three-wavelength laser has important practical application value.
发明内容Contents of the invention
本发明为了解决目前采用激光二极管或半导体泵浦发射的蓝绿光波,不同程度的存在波段范围较小,功率太低,不能完全满足在海洋通讯中探测需求等技术问题,提供了一种基于潜通信应用的蓝、绿、紫外固体激光装置及其激光产生方法。In order to solve the technical problems of blue-green light waves emitted by laser diodes or semiconductor pumps at present, the existence of different degrees of band range is small, the power is too low, and cannot fully meet the detection requirements in marine communications, etc., and the present invention provides a submarine-based A blue, green, and ultraviolet solid-state laser device for communication applications and a laser generating method thereof.
所述激光装置是一种基于潜通信应用的蓝、绿、紫外固体激光装置,以掺杂Nd3+的激光晶体作为工作物质,利用偏振分光棱镜和直角反射棱镜,使不同波长不同偏振方向的基频光在各自独立的谐振腔内分别形成稳定的振荡,同时与非线性和频与倍频技术相结合,实现蓝、绿、紫外激光同时输出,充分利用了基频光的能量,是具有转换效率高、结构紧凑、运转成本低、调节灵活方便、工作安全、用途广泛的蓝、绿、紫外同时输出的固体激光装置。The laser device is a blue, green and ultraviolet solid-state laser device based on latent communication applications. It uses a laser crystal doped with Nd 3+ as a working material, and uses a polarization beam splitter and a right-angle reflective prism to make lasers with different wavelengths and different polarization directions The fundamental frequency light forms stable oscillations in their independent resonant cavities. At the same time, it is combined with nonlinear sum frequency and frequency doubling technology to realize simultaneous output of blue, green and ultraviolet lasers, making full use of the energy of the fundamental frequency light. It is a solid-state laser device with high conversion efficiency, compact structure, low operating cost, flexible and convenient adjustment, safe work, and wide range of simultaneous output of blue, green, and ultraviolet.
该装置包括双棒串接第一掺杂Nd3+的激光晶体和第二掺杂Nd3+的激光晶体,双棒串接第一掺杂Nd3+的激光晶体和第二掺杂Nd3+的激光晶体的竖直光路上依次设置有第一45°反射镜,第一掺杂Nd3+激光晶体及其泵浦源、第二掺杂Nd3+激光晶体及其泵浦源、第二45°反射镜、偏振分束器、第一倍频晶体、第一平面反射镜、第二倍频晶体、第三45°反射镜;与所述竖直光路垂直的水平光路上面向第一45°反射镜的一面依次设置有第一谐波反射镜、第三倍频晶体和第一耦合输出镜;与所述竖直光路垂直的水平光路上面向第二45°反射镜的一面依次设置有第二谐波反射镜、第四倍频晶体、第一和频晶体和第二耦合输出镜;与所述竖直光路垂直的水平光路上面向第三45°反射镜的一面依次设置有第三谐波反射镜、第二和频晶体和第三耦合输出镜;与所述水平光路垂直的光路上第三45°反射镜的另一面放置有直角反射棱镜;其中:The device includes double rods connecting the first laser crystal doped with Nd 3+ and the second laser crystal doped with Nd 3+ in series, and the double rods connecting the first laser crystal doped with Nd 3+ and the second laser crystal doped with Nd 3 in series + The vertical optical path of the laser crystal is sequentially provided with the first 45° reflector, the first doped Nd 3+ laser crystal and its pumping source, the second doped
所述第一45°反射镜靠近第一掺杂Nd3+的激光晶体的一面镀有1.0um和1.3um波段范围基频光高反膜(反射率R>99.8%);The side of the first 45° reflector close to the first laser crystal doped with Nd 3+ is coated with a high-reflection film (reflectivity R>99.8%) of fundamental frequency light in the range of 1.0um and 1.3um;
所述第二45°反射镜靠近第二掺杂Nd3+的激光晶体的一面镀有1.3um波段范围基频光高反膜(反射率R>99.8%)和1.0um波段范围基频光增透膜(透过率T>99.8%),另一面镀有1.0um波段范围基频光增透膜(透过率T>99.8%);The side of the second 45° reflector close to the second laser crystal doped with Nd 3+ is coated with a 1.3um band range fundamental frequency optical high-reflection film (reflectivity R>99.8%) and a 1.0um band range fundamental frequency optical amplifier. Transparent film (transmittance T>99.8%), the other side is coated with 1.0um band range fundamental frequency light AR coating (transmittance T>99.8%);
所述第三45°反射镜两面均镀有1.0um波段范围基频光高透膜(透过率T>99.8%),靠近第二倍频晶体的一面还镀有0.2um波段范围紫外光高反膜(反射率R>99.8%);Both sides of the third 45° reflector are coated with a high-transmittance film for fundamental frequency light in the 1.0um band range (transmittance T>99.8%), and the side close to the second frequency doubling crystal is also coated with a high-transmittance film for ultraviolet light in the band range of 0.2um. Reflective film (reflectivity R>99.8%);
所述第一平面反射镜两面均镀有0.5um波段范围倍频光增透膜(透过率T>99.8%),靠近第一倍频晶体的一面还镀有1.0um波段范围基频光高反膜(反射率R>99.8%);Both sides of the first plane reflector are coated with a 0.5um band range frequency doubling light anti-reflection film (transmittance T>99.8%), and the side close to the first frequency doubling crystal is also coated with a 1.0um band range fundamental frequency light height Reflective film (reflectivity R>99.8%);
所述偏振分束器靠近第二45°反射镜的一面镀有1.0um波段范围‘s’偏振和‘p’偏振基频光增透膜(透过率T>99.8%),靠近第一倍频晶体的一面镀有1.0um波段范围‘s’偏振光增透膜(透过率T>99.8%),靠近直角反射棱镜的一面镀有1.0um波段范围‘p’偏振光增透膜(透过率T>99.8%)。The side of the polarizing beam splitter close to the second 45° mirror is coated with a 1.0um band range 's' polarized and 'p' polarized fundamental frequency light anti-reflection coating (transmittance T>99.8%), close to the first times One side of the frequency crystal is coated with a 1.0um band range 's' polarized light anti-reflection coating (transmittance T>99.8%), and the side close to the right-angle reflective prism is coated with a 1.0um band range 'p' polarized light anti-reflection coating (transmission Pass rate T>99.8%).
所述第一谐波反射镜两通光面均镀有1.3um和1.0um波段范围基频光增透膜(透过率T>99.8%),靠近第三倍频晶体的一面还镀有0.5um波段范围倍频光高反膜(反射率R>99.8%);第二谐波反射镜两通光面均镀有1.3um波段范围基频光增透膜(透过率T>99.8%),靠近第四倍频晶体的一面还镀有0.6um波段范围倍频光高反膜(反射率R>99.8%);第三谐波反射镜两通光面均镀有1.0um波段范围基频光和0.2um波段范围倍频光增透膜(透过率T>99.8%),靠近第二和频晶体的一面还镀有0.2um波段范围和频光高反膜(反射率R>99.8%)。The two optical surfaces of the first harmonic reflector are coated with 1.3um and 1.0um fundamental frequency anti-reflection coatings (transmittance T>99.8%), and the side close to the third frequency doubling crystal is also coated with 0.5 High-reflection coating for frequency doubling light in the um band range (reflectivity R>99.8%); both optical surfaces of the second harmonic mirror are coated with 1.3um band range fundamental frequency light anti-reflection coating (transmittance T>99.8%) , the side close to the fourth frequency doubling crystal is also coated with a high-reflection coating of frequency doubling light in the 0.6um band range (reflectivity R>99.8%); both optical surfaces of the third harmonic mirror are coated with fundamental frequency in the 1.0um band range Light and 0.2um band range frequency doubled light anti-reflection coating (transmittance T>99.8%), and the side close to the second sum frequency crystal is also coated with 0.2um band range and frequency light high reflection film (reflection rate R>99.8% ).
所述第一耦合输出镜靠近第三倍频晶体的一面镀有1.3um和1.0um波段范围基频光高反膜(反射率R>99.8%)及0.5波段范围倍频光高透膜;第二耦合输出镜靠近第一和频晶体的一面镀有1.3um波段范围基频光和0.6um波段范围倍频光高反膜(反射率R>99.8%)及0.4波段范围和频光高透膜;第三耦合输出镜靠近第二和频晶体的一面镀有1.0um波段范围基频光和0.2um波段范围倍频光高反膜(反射率R>99.8%)及0.2波段范围和频光高透膜(透过率T>99.8%)。The side of the first coupling output mirror close to the third frequency-doubling crystal is coated with a high-reflection film for fundamental-frequency light in the 1.3um and 1.0um band ranges (reflectivity R>99.8%) and a high-transparency film for frequency-doubling light in the 0.5-band range; The side of the second coupling output mirror close to the first sum-frequency crystal is coated with a high-reflection film for fundamental frequency light in the 1.3um band range and frequency-doubling light in the 0.6um band range (reflectivity R>99.8%) and a high-transparency film in the 0.4-band range and frequency range. ; The side of the third coupling output mirror close to the second sum frequency crystal is coated with a high-reflection film (reflectivity R>99.8%) of 1.0um band range fundamental frequency light and 0.2um band range frequency multiplier light and a 0.2 band range sum frequency light height Transmembrane (transmittance T>99.8%).
所述直角反射棱镜22a1面镀有1.0um波段范围‘p’偏振光增透膜(透过率T>99.8%)且垂直于上述第一掺杂Nd3+的激光晶体和第二掺杂Nd3+的激光晶体的竖直光路与竖直光路垂直的水平光路所构成的平面,直角反射棱镜22a2面和a3面均镀有1.0um波段范围‘p’偏振光高反膜(反射率R>99.8%)且两平面互相垂直。The surface of the right-angle reflective prism 22a1 is coated with a 1.0um waveband range 'p' polarized light anti-reflection coating (transmittance T>99.8%) and is perpendicular to the first laser crystal doped with Nd 3+ and the second doped Nd The plane formed by the vertical optical path of the 3+ laser crystal and the horizontal optical path perpendicular to the vertical optical path, the right-angle reflective prism 22a2 surface and a3 surface are coated with a high-reflection film of 'p' polarized light in the 1.0um band range (reflectivity R> 99.8%) and the two planes are perpendicular to each other.
所述基于潜通信应用的蓝、绿、紫外固体激光装置的激光产生方法按照下述步骤进行:The laser generation method of the blue, green and ultraviolet solid-state laser device based on latent communication application is carried out according to the following steps:
1)第一掺杂Nd3+的激光晶体和第二掺杂Nd3+的激光晶体分别吸收侧面第一泵浦源和侧面第二泵浦源辐射的能量后,形成反转粒子数分布,Nd3+在能级4F3/2-4I11/2和4F3/2-4I13/2之间分别跃迁,产生1.0um和1.3um波段范围的受激荧光辐射,辐射的荧光会在各自相应的激光器谐振腔内振荡放大后形成稳定的基频振荡光,其中由两掺杂Nd3+的激光晶体提供的竖直向上发射的1.0um波段范围的基频光经第一45°反射镜反射后第一谐波反射镜入射到第三倍频晶体,经第三倍频晶体倍频产生0.5um波段范围绿光,产生的绿光与未经转换的1.0um波段范围基频光一同到达第一耦合输出镜,1.0um波段范围基频光被反射后再次通过第三倍频晶体产生倍频绿光,两次通过第三倍频晶体产生的倍频绿光被第一谐波反射镜反射后一同经第一耦合输出镜水平输出腔外,两次经倍频后剩余的1.0um波段范围基频光沿原路返回经第一掺杂Nd3+的激光晶体、第二掺杂Nd3+的激光晶体后,与竖直向下产生的1.0um波段范围基频光一同经第二45°反射镜到达偏振分束器,偏振分束器将其分成两路,即竖直通过的‘s’偏振和水平反射的‘p’偏振1.0um波段范围基频光,其中,第一路竖直通过的‘s’偏振1.0um波段范围基频光经第一倍频晶体倍频产生0.5um波段范围绿光后,经第一平面反射镜反射再次通过第一倍频晶体,两次产生的绿光经第一平面反射镜输出到第二倍频晶体,而剩余‘s’偏振1.0um波段范围基频光原路返回到第一耦合输出镜,在第一耦合输出镜和第一平面反射镜之间形成稳定振荡与光放大和倍频绿光的产生与输出;1) After the first laser crystal doped with Nd 3+ and the second laser crystal doped with Nd 3+ respectively absorb the energy radiated by the first pump source on the side and the second pump source on the side, an inverted particle number distribution is formed, Nd 3+ transitions between the energy levels 4 F 3/2 - 4 I 11/2 and 4 F 3/2 - 4 I 13/2 respectively, producing stimulated fluorescence radiation in the 1.0um and 1.3um band ranges, the radiated Fluorescence will oscillate and amplify in their corresponding laser resonators to form stable fundamental-frequency oscillating light, in which the fundamental-frequency light in the 1.0um band range emitted vertically upward by two Nd 3+ -doped laser crystals passes through the first After being reflected by the 45° reflector, the first harmonic reflector is incident on the third frequency-doubling crystal, and the frequency of the third frequency-doubling crystal is doubled to generate green light in the 0.5um band range, which is basically the same as the unconverted 1.0um band range The frequency light reaches the first coupling output mirror together, and the fundamental frequency light in the 1.0um band range is reflected and then passes through the third frequency doubling crystal to generate frequency doubling green light, and the frequency doubling green light generated by the third frequency doubling crystal twice is passed by the first frequency doubling crystal After being reflected by the harmonic reflector, it is output horizontally outside the cavity through the first coupling output mirror, and the remaining fundamental frequency light in the 1.0um band range after twice frequency doubling returns along the original path to the first laser crystal doped with Nd 3+ , the second After the two-doped Nd 3+ laser crystal, together with the fundamental frequency light in the 1.0um band range generated vertically downward, it reaches the polarization beam splitter through the second 45° mirror, and the polarization beam splitter divides it into two paths, namely Vertically passed 's' polarized and horizontally reflected 'p' polarized 1.0um band range fundamental frequency light, wherein the first vertically passed 's' polarized 1.0um band range fundamental frequency light is frequency doubled by the first frequency doubling crystal After the green light in the 0.5um band range is generated, it is reflected by the first plane mirror and then passes through the first frequency doubling crystal. The green light generated twice is output to the second frequency doubling crystal through the first plane mirror, and the remaining 's' polarization is 1.0 The fundamental frequency light in the um band range is returned to the first outcoupling mirror in the original path, and stable oscillation and optical amplification and frequency-doubled green light are generated and output between the first outcoupling mirror and the first plane mirror;
2)经偏振分束器水平方向反射的1.0um波段范围‘p’偏振基频光垂直直角反射棱镜a1面入射到a2面,经a2面和a3面两次反射后,经a1面水平方向输出到达第三45°反射镜;2) The 1.0um waveband range 'p' polarized fundamental frequency light reflected by the polarization beam splitter in the horizontal direction is incident on the a1 surface of the vertical right-angle reflective prism to the a2 surface, after being reflected twice by the a2 surface and a3 surface, it is output through the a1 surface in the horizontal direction Reach the third 45° reflector;
3)步骤1)中所述由第一平面反射镜输出的0.5um波段范围绿光经第二倍频晶体倍频后产生0.26um波段范围紫外光,该波段范围紫外光经第三45°反射镜反射后与步骤2)中到达第三45°反射镜的1.0um波段范围‘p’偏振基频光一同经第三谐波反射镜到达第二和频晶体,经和频作用后,剩余1.0um波段范围‘p’偏振基频光和0.26um波段范围紫外光再次通过第二和频晶体,两次和频作用后产生的0.21um波段紫外激光经第三谐波反射镜反射后由第三耦合输出镜水平输出腔外,剩余1.0um波段范围‘p’偏振基频光则沿原路返回第一耦合输出镜,在第一耦合输出镜和第三耦合输出镜之间形成稳定振荡与光放大,并与0.26um波段紫外光和频产生0.21um波段的紫外激光输出;3) The green light in the 0.5um band range output by the first plane reflector described in step 1) is frequency-multiplied by the second frequency doubling crystal to generate ultraviolet light in the 0.26um band range, and the ultraviolet light in the band range is reflected by the third 45° After mirror reflection, together with the 1.0um polarized fundamental frequency light that reaches the third 45° reflector in step 2), it passes through the third harmonic reflector and reaches the second sum frequency crystal. After the sum frequency action, the remaining 1.0 The 'p' polarized fundamental frequency light in the um band range and the ultraviolet light in the 0.26um band range pass through the second sum frequency crystal again, and the 0.21um band ultraviolet laser light generated after the two sum frequency actions is reflected by the third harmonic reflector and then emitted by the third The outcoupling mirror is horizontally output out of the cavity, and the remaining 1.0um band range 'p' polarized fundamental frequency light returns to the first outcoupling mirror along the original path, forming a stable oscillation and light between the first outcoupling mirror and the third outcoupling mirror Amplify and generate UV laser output in 0.21um band with 0.26um band ultraviolet light;
4)在步骤1)中由两掺杂Nd3+的激光晶体竖直向上发射的1.3um波段范围的基频光经第一45°反射镜、第一谐波反射镜和第三倍频晶体入射到第一耦合输出镜,经反射沿原路返回与两掺杂Nd3+的激光晶体竖直向下发射的1.3um波段范围的基频光一同由第二45°反射镜反射,通过第二谐波反射镜到达第四倍频晶体产生0.6um波段范围红光,第四倍频晶体左端面发出的0.6um波段范围红光经第二谐波反射镜反射后同右端面发出的0.6um波段范围红光与剩余1.3um波段范围的基频光一同通过第一和频晶体产生0.4um波段范围蓝光,由第二耦合输出镜水平输出腔外,剩余未经转换的1.3um波段范围的基频光和0.6um波段范围红光沿原路返回,1.3um波段范围的基频光在第一耦合输出镜和第二耦合输出镜之间形成稳定振荡,0.6um波段范围红光在第二谐波反射镜和第二耦合输出镜之间形成稳定振荡。4) In step 1), the fundamental frequency light in the 1.3um band range emitted vertically upward by two Nd - doped laser crystals passes through the first 45° reflector, the first harmonic reflector and the third frequency doubling crystal Incident to the first coupling output mirror, after reflection, return along the original path and the fundamental frequency light in the 1.3um band range emitted vertically downward by the two Nd 3+ -doped laser crystals is reflected by the second 45° reflector together, and passes through the first The second harmonic reflector reaches the fourth frequency doubling crystal to generate red light in the 0.6um band range, and the red light in the 0.6um band range emitted by the left end face of the fourth frequency doubling crystal is reflected by the second harmonic reflector and is the same as the 0.6um red light emitted by the right end face The red light in the band range and the fundamental frequency light in the remaining 1.3um band range pass through the first sum frequency crystal to generate blue light in the 0.4um band range, which is output outside the cavity horizontally by the second coupling output mirror, and the remaining unconverted fundamental frequency in the 1.3um band range The frequency light and the red light in the 0.6um band range return along the original path, the fundamental frequency light in the 1.3um band range forms a stable oscillation between the first coupling output mirror and the second coupling output mirror, and the red light in the 0.6um band range is in the second harmonic A stable oscillation is formed between the wave reflector and the second outcoupling mirror.
本发明的特点及有益效果:由于采用双棒Nd3+激光晶体提供1.0um和1.3um波段范围双波长基频光,同时应用腔内倍频与和频技术以及采用偏振分束器和直角反射棱镜对不同偏振状态基频光进行控制,充分利用了基频光的能量,具有结构新颖、转换效率高、结构紧凑、运转成本低、调节灵活方便、工作安全、用途广泛的等特点,特别适合应用于水下探测与水下潜通信等领域。Features and beneficial effects of the present invention: due to the use of double-rod Nd 3+ laser crystals to provide dual-wavelength fundamental frequency light in the 1.0um and 1.3um band ranges, and the use of intracavity frequency doubling and sum frequency technology and the use of polarization beam splitters and right-angle reflection The prism controls the fundamental frequency light in different polarization states, and fully utilizes the energy of the fundamental frequency light. It has the characteristics of novel structure, high conversion efficiency, compact structure, low operating cost, flexible and convenient adjustment, safe work, and wide application. It is used in the fields of underwater detection and underwater submersible communication.
附图说明Description of drawings
图1为本发明中蓝、绿、紫外三波长激光同时输出的固体激光装置的结构示意图;Fig. 1 is the structure schematic diagram of the solid-state laser device of blue, green, ultraviolet three-wavelength laser output simultaneously in the present invention;
具体实施方式Detailed ways
附图1为本发明的实施例。Accompanying drawing 1 is an embodiment of the present invention.
下面结合附图对本发明的内容作进一步详细说明。The content of the present invention will be described in further detail below in conjunction with the accompanying drawings.
参看图1,基于潜通信应用的蓝、绿、紫外固体激光装置包括双棒串接第一掺杂Nd3+的激光晶体1和第二掺杂Nd3+的激光晶体2,双棒串接第一掺杂Nd3+的激光晶体1和第二掺杂Nd3+的激光晶体2的竖直光路上依次设置有第一45°反射镜5,第一掺杂Nd3+激光晶体1及其泵浦源3、第二掺杂Nd3+激光晶体2及其泵浦源4、第二45°反射镜6、偏振分束器7、第一倍频晶体8、第一平面反射镜9、第二倍频晶体10、第三45°反射镜11;与所述竖直光路垂直的水平光路上面向第一45°反射镜5的一面依次设置有第一谐波反射镜12、第三倍频晶体13和第一耦合输出镜14;与所述竖直光路垂直的水平光路上面向第二45°反射镜6的一面依次设置有第二谐波反射镜15、第四倍频晶体16、第一和频晶体17和第二耦合输出镜18;与所述竖直光路垂直的水平光路上面向第三45°反射镜11的一面依次设置有第三谐波反射镜19、第二和频晶体20和第三耦合输出镜21;与所述水平光路垂直的光路上第三45°反。射镜11的另一面放置有直角反射棱镜22。其中,所述第一45°反射镜5靠近第一掺杂Nd3+的激光晶体1的一面镀有1.0um和1.3um波段范围基频光高反膜;所述第二45°反射镜6靠近第二掺杂Nd3+的激光晶体2的一面镀有1.3um波段范围基频光高反膜和1.0um波段范围基频光增透膜,另一面镀有1.0um波段范围基频光增透膜;所述第三45°反射镜11两面均镀有1.0um波段范围基频光高透膜,靠近第二倍频晶体10的一面还镀有0.2um波段范围紫外光高反膜;Referring to Figure 1, the blue, green, and ultraviolet solid-state laser devices based on latent communication applications include double rods connected in series with the first laser crystal 1 doped with Nd 3+ and the
所述第一平面反射镜9两面均镀有0.5um波段范围倍频光增透膜,靠近第一倍频晶体8的一面还镀有1.0um波段范围基频光高反膜。Both sides of the
所述偏振分束器7靠近第二45°反射镜6的一面镀有1.0um波段范围‘s’偏振和‘p’偏振基频光增透膜,靠近第一倍频晶体8的一面镀有1.0um波段范围‘s’偏振光增透膜,靠近直角反射棱镜22的一面镀有1.0um波段范围‘p’偏振光增透膜。The side of the polarizing
所述第一谐波反射镜12两通光面均镀有1.3um和1.0um波段范围基频光增透膜,靠近第三倍频晶体13的一面还镀有0.5um波段范围倍频光高反膜;第二谐波反射镜15两通光面均镀有1.3um波段范围基频光增透膜,靠近第四倍频晶体16的一面还镀有0.6um波段范围倍频光高反膜;第三谐波反射镜19两通光面均镀有1.0um波段范围基频光和0.2um波段范围倍频光增透膜,靠近第二和频晶体20的一面还镀有0.2um波段范围和频光高反膜。Both optical surfaces of the first
所述第一耦合输出镜14靠近第三倍频晶体13的一面镀有1.3um和1.0um波段范围基频光高反膜及0.5波段范围倍频光高透膜;第二耦合输出镜18靠近第一和频晶体17的一面镀有1.3um波段范围基频光和0.6um波段范围倍频光高反膜及0.4波段范围和频光高透膜;第三耦合输出镜21靠近第二和频晶体20的一面镀有1.0um波段范围基频光和0.2um波段范围倍频光高反膜及0.2波段范围和频光高透膜。The side of the
所述直角反射棱镜22a1面镀有1.0um波段范围‘p’偏振光增透膜且垂直于上述第一掺杂Nd3+的激光晶体1和第二掺杂Nd3+的激光晶体2的竖直光路与竖直光路垂直的水平光路所构成的平面,a2面和a3面均镀有1.0um波段范围‘p’偏振光高反膜且两平面互相垂直。The surface of the right-angle reflective prism 22a1 is coated with a 1.0um waveband range 'p' polarized light anti-reflection film and is perpendicular to the vertical plane of the first Nd 3+ doped laser crystal 1 and the second Nd 3+ doped
所述第一掺杂Nd3+的激光晶体1和第二掺杂Nd3+的激光晶体2为掺钕钇铝石榴石Nd3+:YAG、掺钕钒酸钇Nd3+:YVO4、掺钕铝酸钇Nd3+:YAP、掺钕氟化钇锂Nd3+:YLF激光晶体中的同一种晶体,晶体两通光面均镀有1.0um和1.3um波段范围基频光增透膜。The first Nd 3+ doped laser crystal 1 and the second Nd 3+ doped
所述第一掺杂Nd3+激光晶体1的泵浦源3和第二掺杂Nd3+激光晶体2的泵浦源4为激光二极管泵浦源或是氙灯泵浦源。The
所述第一倍频晶体8、第三倍频晶体13和第四倍频晶体16为三硼酸锂LBO、β-偏硼酸钡BBO、磷酸钛氧钾KTP中的同一种晶体,或分别为其中的任意一种晶体;所述第二倍频晶体10为铯-锂-硼酸盐晶体CLBO、β-偏硼酸钡BBO和三硼酸铯CBO晶体中的一种晶体;所述第一和频晶体17为三硼酸锂LBO晶体;所述第二和频晶体20为铯-锂-硼酸盐晶体CLBO和β-偏硼酸钡BBO晶体中的一种晶体。The first frequency-
所述直角反射棱镜22的a3和a2两面互相垂直,a1面的长度大于偏振分束器7到第三45°反射镜11的竖直方向光路的长度。The two planes a3 and a2 of the rectangular
基于潜通信应用的蓝、绿、紫外固体激光装置,其激光产生方法按照下述步骤进行:Based on the blue, green and ultraviolet solid-state laser devices for latent communication applications, the laser generation method is carried out according to the following steps:
1)第一掺杂Nd3+的激光晶体1和第二掺杂Nd3+的激光晶体2分别吸收侧面第一泵浦源3和侧面第二泵浦源4辐射的能量后,形成反转粒子数分布,Nd3+在能级4F3/2-4I11/2和4F3/2-4I13/2之间分别跃迁,产生1.0um和1.3um波段范围的受激荧光辐射,辐射的荧光会在各自相应的激光器谐振腔内振荡放大后形成稳定的基频振荡光,其中由两掺杂Nd3+的激光晶体提供的竖直向上发射的1.0um波段范围的基频光经第一45°反射镜5反射后第一谐波反射镜12入射到第三倍频晶体13,经第三倍频晶体13倍频产生0.5um波段范围绿光,产生的绿光与未经转换的1.0um波段范围基频光一同到达第一耦合输出镜14,1.0um波段范围基频光被反射后再次通过第三倍频晶体13产生倍频绿光,两次通过第三倍频晶体13产生的倍频绿光被第一谐波反射镜12反射后一同经第一耦合输出镜14水平输出腔外,两次经倍频后剩余的1.0um波段范围基频光沿原路返回经第一掺杂Nd3+的激光晶体1、第二掺杂Nd3+的激光晶体2后,与竖直向下产生的1.0um波段范围基频光一同经第二45°反射镜6到达偏振分束器7,偏振分束器7将其分成两路,即竖直通过的‘s’偏振和水平反射的‘p’偏振1.0um波段范围基频光,其中,第一路竖直通过的‘s’偏振1.0um波段范围基频光经第一倍频晶体8倍频产生0.5um波段范围绿光后,经第一平面反射镜9反射再次通过第一倍频晶体8,两次产生的绿光经第一平面反射镜9输出到第二倍频晶体10,而剩余‘s’偏振1.0um波段范围基频光原路返回到第一耦合输出镜14,在第一耦合输出镜14和第一平面反射镜9之间形成稳定振荡与光放大和倍频绿光的产生与输出;1) After the first laser crystal 1 doped with Nd 3+ and the
2)经偏振分束器7水平方向反射的1.0um波段范围‘p’偏振基频光垂直直角反射棱镜22a1面入射到a2面,经a2面和a3面两次反射后,经a1面水平方向输出到达第三45°反射镜11;2) The 1.0um polarized fundamental frequency light reflected in the horizontal direction of the
3)步骤1)中所述由第一平面反射镜输出的0.5um波段范围绿光经第二倍频晶体10倍频后产生0.26um波段范围紫外光,该波段范围紫外光经第三45°反射镜11反射后与步骤2)中到达第三45°反射镜11的1.0um波段范围‘p’偏振基频光一同经第三谐波反射镜19到达第二和频晶体20,经和频作用后,剩余1.0um波段范围‘p’偏振基频光和0.26um波段范围紫外光再次通过第二和频晶体20,两次和频作用后产生的0.21um波段紫外激光经第三谐波反射镜19反射后由第三耦合输出镜21水平输出腔外,剩余1.0um波段范围‘p’偏振基频光则沿原路返回第一耦合输出镜14,在第一耦合输出镜14和第三耦合输出镜21之间形成稳定振荡与光放大,并与0.26um波段紫外光和频产生0.21um波段的紫外激光输出;3) The green light in the 0.5um band range output by the first plane reflector described in step 1) is 10 times frequency-multiplied by the second frequency doubling crystal to generate ultraviolet light in the 0.26um band range, and the ultraviolet light in the band range passes through the third 45° Reflected by the reflector 11, together with the 1.0um wave band range 'p' polarized fundamental frequency light that reaches the third 45° reflector 11 in step 2) and arrives at the second sum frequency crystal 20 through the third harmonic reflector 19, and passes through the sum frequency After the action, the remaining 'p' polarized fundamental frequency light in the 1.0um band range and the ultraviolet light in the 0.26um band range pass through the second sum frequency crystal 20 again, and the 0.21um band ultraviolet laser light generated after the two sum frequency actions is reflected by the third harmonic After being reflected by the mirror 19, the third outcoupling mirror 21 is horizontally output out of the cavity, and the remaining 1.0um wavelength range 'p' polarized fundamental frequency light returns to the first outcoupling mirror 14 along the original path, and the first outcoupling mirror 14 and the third outcoupling mirror Stable oscillation and optical amplification are formed between the coupling output mirrors 21, and combined with the 0.26um band ultraviolet light to generate a 0.21um band ultraviolet laser output;
4)在步骤1)中由两掺杂Nd3+的激光晶体竖直向上发射的1.3um波段范围的基频光经第一45°反射镜5、第一谐波反射镜12和第三倍频晶体13入射到第一耦合输出镜14,经反射沿原路返回与两掺杂Nd3+的激光晶体竖直向下发射的1.3um波段范围的基频光一同由第二45°反射镜6反射,通过第二谐波反射镜15到达第四倍频晶体16产生0.6um波段范围红光,第四倍频晶体16左端面发出的0.6um波段范围红光经第二谐波反射镜15反射后同右端面发出的0.6um波段范围红光与剩余1.3um波段范围的基频光一同通过第一和频晶体17产生0.4um波段范围蓝光,由第二耦合输出镜18水平输出腔外,剩余未经转换的1.3um波段范围的基频光和0.6um波段范围红光沿原路返回,1.3um波段范围的基频光在第一耦合输出镜14和第二耦合输出镜18之间形成稳定振荡,0.6um波段范围红光在第二谐波反射镜15和第二耦合输出镜18之间形成稳定振荡。4) In step 1), the fundamental frequency light of the 1.3um waveband range emitted vertically upward by two laser crystals doped with Nd 3+ goes through the first 45°
实施例1Example 1
参看图1为LD侧面泵浦Nd3+:YAG同时输出532nm绿光、440nm蓝光、213nm紫外光三波长可见光激光装置。该装置第一耦合输出镜14与第一45°反射镜5和第一平面反射镜9构成1064nm‘s’偏振光谐振腔,与第一45°反射镜5、偏振分束器7、直角反射棱镜22、第三45°反射镜11以及第三耦合输出镜21构成1064nm‘p’偏振光谐振腔;与第一45°反射镜5、第二45°反射镜6及第二耦合输出镜18构成1319nm基频光谐振腔。双棒串接第一Nd3+:YAG激光晶体1和第二Nd3+:YAG激光晶体2的竖直光路上依次设置有第一45°反射镜5,第一掺杂Nd3+激光晶体1及其泵浦源3、第二掺杂Nd3+激光晶体2及其泵浦源4、第二45°反射镜6、偏振分束器7、第一倍频晶体8、第一平面反射镜9、第二倍频晶体10、第三45°反射镜11;与所述竖直光路垂直的水平光路上面向第一45°反射镜5的一面依次设置有第一谐波反射镜12、第三倍频晶体13和第一耦合输出镜14;与所述竖直光路垂直的水平光路上面向第二45°反射镜6的一面依次设置有第二谐波反射镜15、第四倍频晶体16、第一和频晶体17和第二耦合输出镜18;与所述竖直光路垂直的水平光路上面向第三45°反射镜11的一面依次设置有第三谐波反射镜19、第二和频晶体20和第三耦合输出镜21;在所述第三45°反射镜11的水平光路另一面的垂直光路上放置有直角反射棱镜22。Referring to Fig. 1, it is a three-wavelength visible light laser device with LD side-pumped Nd 3+ :YAG simultaneously outputting 532nm green light, 440nm blue light, and 213nm ultraviolet light. The
所有镜片均为固定在二维调整架上的平面镜,直径均为Φ=20mm,其中,第一45°反射镜5靠近激光晶体的一面镀有1064nm和1319nm基频光高反膜(R>99.8%);所述第二45°反射镜6靠近激光晶体的一面镀有1319nm基频光高反膜(R>99.8%)和1064nm基频光增透膜(T>99.8%),另一面镀有1064nm基频光增透膜(T>99.8%);所述第三45°反射镜11两面均镀有1064nm基频光高透膜(T>99.8%),靠近第二倍频晶体10的一面还镀有266nm紫外光高反膜(R>99.8%);All the lenses are flat mirrors fixed on the two-dimensional adjustment frame, and the diameter is Φ=20mm. Among them, the side of the first 45°
第一45°反射镜5靠近激光晶体的一面镀有1064nm和1319nm基频光高反膜(R>99.8);所述第二45°反射镜6靠近激光晶体的一面镀有1319nm基频光高反膜(R>99.8)和1064nm基频光增透膜(T>99.8),另一面镀有1064nm基频光增透膜(T>99.8);所述第三45°反射镜11两面均镀有1064nm基频光高透膜(T>99.8),靠近第二倍频晶体10的一面还镀有266nm紫外光高反膜(R>99.8);The side of the first 45°
所述第一平面反射镜9两面均镀有532nm倍频光增透膜(T>99.8),靠近第一倍频晶体8的一面还镀有1064nm基频光高反膜(R>99.8)。Both sides of the
所述偏振分束器7靠近第二45°反射镜6的一面镀有1064nm‘s’偏振和‘p’偏振基频光增透膜(T>99.8),靠近第一倍频晶体8的一面镀有1064nm‘s’偏振光增透膜(T>99.8),靠近直角反射棱镜22的一面镀有1064nm‘p’偏振光增透膜(T>99.8)。The
第一谐波反射镜12两通光面均镀有1319nm和1064nm基频光增透膜(T>99.8),靠近第三倍频晶体13的一面还镀有532nm倍频光高反膜(R>99.8);第二谐波反射镜15两通光面均镀有1319nm基频光增透膜(T>99.8),靠近第四倍频晶体16的一面还镀有660nm倍频光高反膜(R>99.8);第三谐波反射镜19两通光面均镀有1064nm基频光和266nm倍频光增透膜(T>99.8),靠近第二和频晶体20的一面还镀有213nm和频光高反膜(R>99.8)。The first
第一耦合输出镜14靠近第三倍频晶体13的一面镀有1319nm和1064nm基频光高反膜(R>99.8)及0.5倍频光高透膜(T>99.8);第二耦合输出镜18靠近第一和频晶体17的一面镀有1319nm基频光和660nm倍频光高反膜(R>99.8)及0.4和频光高透膜(T>99.8);第三耦合输出镜21靠近第二和频晶体20的一面镀有1064nm基频光和266nm倍频光高反膜(R>99.8)及213nm和频光高透膜(T>99.8)。The
直角反射棱镜22a1面镀有1064nm‘p’偏振光增透膜(T>99.8)且垂直于上述第一掺杂Nd3+的激光晶体1和第二掺杂Nd3+的激光晶体2的竖直光路与竖直光路垂直的水平光路所构成的平面,直角反射棱镜22a2面和a3面均镀有1064nm‘p’偏振光高反膜(R>99.8)且两平面互相垂直。The surface of the right-angle reflective prism 22a1 is coated with a 1064nm 'p' polarizing anti-reflection film (T>99.8) and is perpendicular to the vertical plane of the first Nd 3+ -doped laser crystal 1 and the second Nd 3+ -doped
第一Nd3+:YAG激光晶体1和第二Nd3+:YAG激光晶体2中Nd3+的掺杂浓度均为1.0at%,尺寸均为Φ3×10mm,每晶体两通光面均镀有1064nm和1319nm高透膜(T>99.8).The doping concentration of Nd 3+ in the first Nd 3+ :YAG laser crystal 1 and the second Nd 3+ :
第一倍频晶体8和第三倍频晶体13均为II类临界相位匹配的(θ=90°,Φ=23.8°)KTP晶体,尺寸为3mm×3mm×5mm,两通光面均镀有1064nm和532nm双色增透膜(T>99.8%),侧面均匀涂有银粉并用铟箔包裹后放于水冷散热铜块中。Both the first
第二倍频晶体10和第二和频晶体20均采用I类临界相位匹配的BBO晶体,临界角分别为:(θ=47.6°,Φ=0°)和(θ=51.1°,Φ=0°),尺寸均为3mm3mm5mm,侧面均匀涂有银粉并用铟箔包裹后放于水冷散热铜块中。Both the second
第四倍频晶体16和第一和频晶体17分别选用I类非临界相位匹配的LBO晶体(θ=85.9°,Φ=0°)和II类非临界相位匹配的(θ=0°,Φ=0°)LBO晶体,尺寸均为335mm3,两通光面均镀有1319nm、660nm和440nm三色增透膜(T>95.5%)。The fourth
直角反射棱镜22的a2和a3两面互相垂直,a1面的长度大于偏振分束器7到第三45°反射镜11的竖直方向光路的长度。a1面镀有1064nm增透膜(T>99.8%),a2和a3两面镀有1064nm高反膜(R>98.5%)。The two planes a2 and a3 of the rectangular
三波长激光产生方法按如下步骤进行:The three-wavelength laser generation method is carried out as follows:
1)第一Nd3+:YAG激光晶体1和第二Nd3+:YAG激光晶体2分别吸收LD(Laser diode)侧面泵浦源3和4辐射的能量后,形成反转粒子数分布,Nd3+在能级4F3/2-4I11/2和4F3/2-4I13/2之间分别跃迁,产生1064nm和1319nm的受激荧光辐射,辐射的荧光会在各自相应的激光器谐振腔内振荡放大后形成稳定的基频振荡光,其中由两掺杂Nd3+的激光晶体1和激光晶体2提供的竖直向上发射的1064nm的基频光经第一45°反射镜5反射后第一谐波反射镜12入射到第三倍频晶体KTP13,经第三倍频晶体KTP13倍频产生532nm绿光,产生的绿光与未经转换的1064nm基频光一同到达第一耦合输出镜14,1064nm基频光被反射后再次通过第三倍频晶体KTP13产生倍频绿光,两次通过第三倍频晶体13产生的倍频绿光被第一谐波反射镜12反射后一同经第一耦合输出镜14水平输出腔外,两次经倍频后剩余的1064nm基频光沿原路返回经第一Nd3+:YAG激光晶体1、第二Nd3+:YAG激光晶体2后,与竖直向下产生的1064nm基频光一同经第二45°反射镜6到达偏振分束器7,偏振分束器7将其分成两路,即竖直通过的‘s’偏振和水平反射的‘p’偏振1064nm基频光,其中,第一路竖直通过的‘s’偏振1064nm基频光经第一倍频晶体KTP8倍频产生532nm绿光后,经第一平面反射镜9反射再次通过第一倍频晶体KTP8,两次产生的绿光经第一平面反射镜9输出到第二倍频晶体BBO10,而剩余‘s’偏振1064nm基频光原路返回到第一耦合输出镜14,在第一耦合输出镜14和第一平面反射镜9之间形成稳定振荡与光放大和倍频绿光的产生与输出;1) After the first Nd 3+ :YAG laser crystal 1 and the second Nd 3+ :
2)经偏振分束器7水平方向反射的1064nm‘p’偏振基频光垂直直角反射棱镜22的a1面入射到a2面,经a2面和a3面两次反射后,经a1面水平方向输出到达第三45°反射镜11;2) The 1064nm 'p' polarized fundamental frequency light reflected in the horizontal direction by the
3)步骤1)中所述由第一平面反射镜输出的532nm绿光经第二倍频晶体BBO10倍频后产生266nm紫外光,该紫外光经第三45°反射镜11反射后与步骤2)中到达第三45°反射镜11的1064nm‘p’偏振基频光一同经第三谐波反射镜19到达第二和频晶体BBO20,经和频作用后,剩余1064nm‘p’偏振基频光和266nm紫外光再次通过第二和频晶体BBO20,两次和频作用后产生的213nm紫外激光经第三谐波反射镜19反射后由第三耦合输出镜21水平输出腔外,剩余1064nm‘p’偏振基频光则沿原路返回第一耦合输出镜14,在第一耦合输出镜14和第三耦合输出镜21之间形成稳定振荡与光放大,并与266nm紫外光和频产生213nm的紫外激光输出;3) The 532nm green light output by the first plane reflector described in step 1) is frequency-multiplied by the second frequency-doubling crystal BBO10 to generate 266nm ultraviolet light, which is reflected by the third 45° reflector 11 and then compared with step 2 ) arrives at the third 45° reflector 11 in the 1064nm'p' polarized fundamental frequency light and reaches the second sum frequency crystal BBO20 through the third
4)在步骤1)中由两Nd3+:YAG激光晶体竖直向上发射的1319nm基频光经第一45°反射镜5、第一谐波反射镜12和第三倍频晶体13入射到第一耦合输出镜14,经反射沿原路返回与两Nd3+:YAG激光晶体竖直向下发射的1319nm基频光一同由第二45°反射镜6反射,通过第二谐波反射镜15到达第四倍频晶体LBO16产生660nm红光,第四倍频晶体LBO16左端面发出的660nm红光经第二谐波反射镜15反射后同右端面发出的660nm红光与剩余1.3um的基频光一同通过第一和频晶体LBO17产生440nm蓝光,由第二耦合输出镜18水平输出腔外,剩余未经转换的1319nm基频光和660nm红光沿原路返回,1319nm基频光在第一耦合输出镜14和第二耦合输出镜18之间形成稳定振荡,660nm红光在第二谐波反射镜15和第二耦合输出镜18之间形成稳定振荡。4) In step 1), the 1319nm fundamental frequency light emitted vertically upward by two Nd 3+ : YAG laser crystals is incident on the first 45° reflector 5, the first harmonic reflector 12 and the third frequency doubling crystal 13 The first coupling-out mirror 14 returns along the original path after reflection and the 1319nm fundamental frequency light emitted vertically downward by the two Nd 3+ : YAG laser crystals is reflected by the second 45° reflector 6 together, and passes through the second harmonic reflector 15 reaches the fourth frequency doubling crystal LBO16 to produce 660nm red light, the 660nm red light emitted by the left end face of the fourth frequency doubling crystal LBO16 is reflected by the second harmonic reflector 15 and is the same as the 660nm red light emitted by the right end face and the remaining 1.3um base The frequency light passes through the first sum frequency crystal LBO17 to generate 440nm blue light, which is output outside the cavity horizontally by the second coupling output mirror 18, and the remaining unconverted 1319nm fundamental frequency light and 660nm red light return along the original path, and the 1319nm fundamental frequency light is at the A stable oscillation is formed between the first coupling output mirror 14 and the second coupling output mirror 18 , and the 660nm red light forms a stable oscillation between the second harmonic reflection mirror 15 and the second coupling output mirror 18 .
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210005299 CN102570280B (en) | 2012-01-09 | 2012-01-09 | Blue, green and ultraviolet solid laser device based on submarine communication application and laser generating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210005299 CN102570280B (en) | 2012-01-09 | 2012-01-09 | Blue, green and ultraviolet solid laser device based on submarine communication application and laser generating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102570280A CN102570280A (en) | 2012-07-11 |
CN102570280B true CN102570280B (en) | 2013-10-16 |
Family
ID=46415035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210005299 Expired - Fee Related CN102570280B (en) | 2012-01-09 | 2012-01-09 | Blue, green and ultraviolet solid laser device based on submarine communication application and laser generating method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102570280B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104682185B (en) * | 2013-11-26 | 2018-05-15 | 同方威视技术股份有限公司 | A kind of method for improving ultrashort laser frequency multiplication energy stability |
CN106454298A (en) * | 2016-11-24 | 2017-02-22 | 山东大学 | Three-color laser pulse light source for laser television |
CN109713456B (en) * | 2017-10-24 | 2021-03-23 | 蔡钧 | Millimeter wave background absorption device |
CN107968313B (en) * | 2017-12-15 | 2019-07-16 | 中国科学院上海光学精密机械研究所 | Multiwavelength Narrow Linewidth All-Solid-State Lasers for Ocean Exploration |
CN110233416B (en) * | 2019-06-21 | 2020-08-04 | 中国科学院上海光学精密机械研究所 | Tunable blue light pulse laser |
CN113206431B (en) * | 2021-04-21 | 2022-09-02 | 中国科学院上海光学精密机械研究所 | Device for generating deep ultraviolet laser based on optical frequency recombination upconversion |
CN113540955A (en) * | 2021-06-23 | 2021-10-22 | 苏州贝林激光有限公司 | Multi-beam, multi-wavelength output laser device |
CN118249186B (en) * | 2024-04-08 | 2024-09-24 | 重庆师范大学 | An ultra-wideband tunable semiconductor laser covering the blue-green band |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101345389A (en) * | 2008-08-04 | 2009-01-14 | 西北大学 | All-solid-state five-wavelength simultaneous output laser device and five-wavelength laser generation method |
CN101345388A (en) * | 2008-08-04 | 2009-01-14 | 西北大学 | Solid-state laser device with red, yellow, and green simultaneous outputs and laser generating method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10004412A1 (en) * | 2000-02-02 | 2001-10-31 | Schneider Laser Technologies | Color laser radiation source used for color image display, includes pair of laser sources whose outputs are divided in IR region and portion of beam are suitably mixed to produce primary colors |
-
2012
- 2012-01-09 CN CN 201210005299 patent/CN102570280B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101345389A (en) * | 2008-08-04 | 2009-01-14 | 西北大学 | All-solid-state five-wavelength simultaneous output laser device and five-wavelength laser generation method |
CN101345388A (en) * | 2008-08-04 | 2009-01-14 | 西北大学 | Solid-state laser device with red, yellow, and green simultaneous outputs and laser generating method thereof |
Non-Patent Citations (1)
Title |
---|
陈秀艳等.LD侧面泵浦Nd:YAG 1064nm/532nm/660nm三波长激光器.《沈阳师范大学学报(自然科学版)》.2011,第29卷(第3期),第375-378页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102570280A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102570280B (en) | Blue, green and ultraviolet solid laser device based on submarine communication application and laser generating method thereof | |
CN101777724B (en) | End-pumped dual-wavelength coaxial switching output Q-switched base-frequency and double-frequency laser | |
CN101345388B (en) | Solid laser device for simultaneously outputting red, yellow and green light and its laser generation method | |
CN103996968B (en) | A kind of compound cavity configuration from Raman Yellow light laser | |
CN102957083A (en) | Device for realizing all-solid-state deep ultraviolet laser with wavelength of 160-170 nm by direct frequency doubling | |
CN207782132U (en) | A kind of Solid State Laser array beam merging apparatus | |
CN102088158B (en) | Method and device for obtaining high-power ultraviolet laser light | |
CN106229806A (en) | The tunable alaxadrite laser of Raman gold-tinted pumping | |
CN102074889B (en) | Single-frequency visible laser | |
CN103594914B (en) | A kind of yellow orange light laser based on self-frequency doubling laser crystal | |
WO2013169787A1 (en) | Intra-cavity harmonic generation in lasers | |
CN106684683A (en) | Continuous/pulse superposition type single-beam solid laser | |
CN105633786A (en) | Multi-wavelength all-solid-state yellow-light laser | |
CN103311782A (en) | Thulium-doped fiber laser-based method and thulium-doped fiber laser-based device for generating quadruplicated frequency blue laser | |
CN100456577C (en) | Side-pumped high-power red, green, and blue trichromatic lasers operating simultaneously | |
CN102347585B (en) | One-way traveling wave annular cavity single-frequency quasi-three-level solid laser | |
CN101345389B (en) | Full-solid state five-wavelength simultaneously outputting laser device and 5-wavelength laser generation method | |
CN113381279B (en) | A Narrow Linewidth Ultraviolet Raman Laser | |
CN110556702A (en) | Solid blue laser | |
CN102738695A (en) | Semiconductor diode side-pump intracavity frequency doubling ultraviolet laser and method thereof | |
CN101257182A (en) | A dual-cavity interconnected V-shaped structure unidirectional overlapping output quasi-continuous green laser | |
CN118017334A (en) | Compact blue-green pulse laser | |
CN117977364A (en) | A harmless blue laser | |
CN102623885A (en) | All solid Raman self frequency doubling yellow laser of BaTeMo2O9 crystal | |
CN116581631A (en) | Solid laser and intracavity optical polarizing element for same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131016 Termination date: 20140109 |