CN102569432B - Transparent electrode material and preparation method thereof - Google Patents
Transparent electrode material and preparation method thereof Download PDFInfo
- Publication number
- CN102569432B CN102569432B CN201010593306.4A CN201010593306A CN102569432B CN 102569432 B CN102569432 B CN 102569432B CN 201010593306 A CN201010593306 A CN 201010593306A CN 102569432 B CN102569432 B CN 102569432B
- Authority
- CN
- China
- Prior art keywords
- graphene
- metal
- layer
- transparent electrode
- conductive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 62
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 131
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 129
- 229910052751 metal Inorganic materials 0.000 claims abstract description 122
- 239000002184 metal Substances 0.000 claims abstract description 122
- 238000000034 method Methods 0.000 claims abstract description 46
- 238000002834 transmittance Methods 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 24
- 239000010453 quartz Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- -1 polychloroethylene Polymers 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 229920006267 polyester film Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229920006264 polyurethane film Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- 229920000515 polycarbonate Polymers 0.000 claims 2
- 239000004417 polycarbonate Substances 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 138
- 239000010408 film Substances 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 239000004005 microsphere Substances 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000002070 nanowire Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- DVNYTAVYBRSTGK-UHFFFAOYSA-N 5-aminoimidazole-4-carboxamide Chemical compound NC(=O)C=1N=CNC=1N DVNYTAVYBRSTGK-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 210000005097 arteria cerebelosa anteroinferior Anatomy 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000233 ultraviolet lithography Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960004756 ethanol Drugs 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供一种透明电极材料及其制备方法,该材料包括基片和附着在该基片上的导电层,该导电层含有石墨烯与金属,所述导电层的方块电阻为0.001-1000Ω/sq,所述导电层的在可见光区域的透光率为70-98%,在红外光区域的透光率为70-98%。本发明的透明电极因为含有金属和石墨烯的复合结构,使得其不仅具有高透光性、低电阻的优异性能,并且因为石墨烯的加入加强了透明电极的结构稳定性和耐弯曲性,从而进一步增加了电子传输通道,最终改善了透明电极的导电性。本发明的透明电极材料在光电器件、光电探测器以及半导体发光,尤其在柔性太阳能电池、柔性显示器等柔性器件方面用途广泛。本发明的制备方法的工艺简单,易于实现工业化生产。
The invention provides a transparent electrode material and a preparation method thereof. The material comprises a substrate and a conductive layer attached to the substrate. The conductive layer contains graphene and metal, and the sheet resistance of the conductive layer is 0.001-1000Ω/sq The light transmittance of the conductive layer in the visible light region is 70-98%, and the light transmittance in the infrared light region is 70-98%. Because the transparent electrode of the present invention contains a composite structure of metal and graphene, it not only has excellent properties of high light transmittance and low resistance, but also because the addition of graphene strengthens the structural stability and bending resistance of the transparent electrode, thereby The electron transport channel is further increased, and finally the conductivity of the transparent electrode is improved. The transparent electrode material of the present invention is widely used in photoelectric devices, photodetectors and semiconductor light emitting, especially flexible devices such as flexible solar cells and flexible displays. The preparation method of the invention has a simple process and is easy to realize industrialized production.
Description
技术领域 technical field
本发明涉及一种透明电极材料及其制备方法。The invention relates to a transparent electrode material and a preparation method thereof.
背景技术 Background technique
目前,太阳能电池、半导体探测器、电致发光及平板显示器等光电器件均需要低电阻、高透光性能的透明电极。而新一代柔性光电器件在此基础上更需要耐弯曲的透明导电电极。透明导电氧化物薄膜(TCOs),金属膜,碳纳米管以及石墨烯通常作为上述器件的透明电极。TCOs中作为氧化铟系的ITO(掺锡氧化铟)被广泛使用。但是ITO存在许多不足,例如:相对Ag、Ni等金属而言,ITO的电阻率较高不能满足上述器件更低电阻率的发展要求,而且铟储量的匮乏使得ITO的造价昂贵,ITO在柔性基底上不稳定,不耐弯曲,所以希望开发出其替代材料。碳纳米管透光率仅在红外区优于ITO。目前工艺条件下,石墨烯导电性不如Ag、Ni等金属,但是石墨烯具有很好的柔性。金属膜导电性和透光性较好,但是在柔性基片上不稳定。At present, optoelectronic devices such as solar cells, semiconductor detectors, electroluminescence and flat panel displays all require transparent electrodes with low resistance and high light transmission performance. On this basis, the new generation of flexible optoelectronic devices requires bending-resistant transparent conductive electrodes. Transparent conductive oxide films (TCOs), metal films, carbon nanotubes, and graphene are commonly used as transparent electrodes for the aforementioned devices. Among TCOs, ITO (tin-doped indium oxide), which is an indium oxide system, is widely used. However, ITO has many shortcomings. For example, compared with metals such as Ag and Ni, the high resistivity of ITO cannot meet the development requirements of the lower resistivity of the above-mentioned devices, and the lack of indium reserves makes ITO expensive. It is unstable and not resistant to bending, so it is hoped to develop alternative materials. The light transmittance of carbon nanotubes is better than that of ITO only in the infrared region. Under the current process conditions, graphene is not as conductive as Ag, Ni and other metals, but graphene has good flexibility. Metal films have good electrical conductivity and light transmission, but are not stable on flexible substrates.
发明内容 Contents of the invention
本发明的目的是为了克服现有透明电极材料透过率低,电阻率较高,缺乏柔性而不耐挠曲的缺点,提供一种透过率高、导电性能好,柔韧性优异的金属膜与石墨烯复合的透明电极材料及其制备方法。The purpose of the present invention is to overcome the shortcomings of existing transparent electrode materials such as low transmittance, high resistivity, lack of flexibility and resistance to bending, and provide a metal film with high transmittance, good conductivity and excellent flexibility A transparent electrode material composited with graphene and a preparation method thereof.
本发明提供一种透明电极材料,所述透明电极材料包括基片和附着在该基片上的导电层,该导电层含有石墨烯与金属,所述导电层的方块电阻为0.001-1000Ω/sq,所述导电层的在可见光区域的透光率为70-98%,在红外光区域的透光率为70-98%。The present invention provides a transparent electrode material, the transparent electrode material comprises a substrate and a conductive layer attached to the substrate, the conductive layer contains graphene and metal, the sheet resistance of the conductive layer is 0.001-1000Ω/sq, The light transmittance of the conductive layer in the visible light region is 70-98%, and the light transmittance in the infrared light region is 70-98%.
本发明还提供上述透明电极材料的制备方法,该方法包括,在基片上形成导电层,该导电层含有石墨烯与金属,所述导电层的方块电阻为0.001-1000Ω/sq,所述导电层在可见光区域的透光率为70-98%,在红外光区域的透光率为70-98%。The present invention also provides a method for preparing the above-mentioned transparent electrode material. The method includes forming a conductive layer on the substrate, the conductive layer contains graphene and metal, the sheet resistance of the conductive layer is 0.001-1000Ω/sq, and the conductive layer The light transmittance in the visible light region is 70-98%, and the light transmittance in the infrared light region is 70-98%.
本发明的透明电极因为含有金属和石墨烯的复合结构,使得其不仅具有高透光性、低电阻的优异性能,并且因为石墨烯的加入加强了透明电极的结构稳定性和耐弯曲性,从而进一步增加了电子传输通道,最终改善了透明电极的导电性(推测这是因为石墨烯薄膜的柔性,可以改善金属膜在基片上的性能;石墨烯的导电性,在与金属膜复合后可以起到电子桥梁的作用,进一步增加金属膜的导电性;而石墨烯在紫外、可见光、红外光区透过率都很高,不会影响金属膜的透光性。Because the transparent electrode of the present invention contains a composite structure of metal and graphene, it not only has excellent properties of high light transmittance and low resistance, but also because the addition of graphene strengthens the structural stability and bending resistance of the transparent electrode, thereby The electron transmission channel is further increased, and finally the conductivity of the transparent electrode is improved (it is speculated that this is because the flexibility of the graphene film can improve the performance of the metal film on the substrate; The role of the electronic bridge further increases the conductivity of the metal film; while graphene has a high transmittance in the ultraviolet, visible light, and infrared light regions, and will not affect the light transmission of the metal film.
本发明的透明电极材料在光电器件、光电探测器以及半导体发光,尤其在柔性太阳能电池、柔性显示器等柔性器件方面用途广泛。本发明的制备方法的工艺简单,易于实现工业化生产。The transparent electrode material of the present invention is widely used in photoelectric devices, photodetectors and semiconductor light emitting, especially flexible devices such as flexible solar cells and flexible displays. The preparation method of the invention has a simple process and is easy to realize industrialized production.
附图说明 Description of drawings
图1是a型透明电极材料的示意图。Figure 1 is a schematic diagram of a-type transparent electrode materials.
图2是b型透明电极材料的示意图。Fig. 2 is a schematic diagram of a b-type transparent electrode material.
图3是另一种b型透明电极材料的示意图。Fig. 3 is a schematic diagram of another b-type transparent electrode material.
图4-7是本发明的a型或b型透明电极材料的主视图和左(右)视图。4-7 are the front view and left (right) view of the a-type or b-type transparent electrode material of the present invention.
附图标记说明Explanation of reference signs
1为基片;2为金属层;3为石墨烯层;4为由石墨烯和金属的混合物形成的导电层。1 is a substrate; 2 is a metal layer; 3 is a graphene layer; 4 is a conductive layer formed by a mixture of graphene and metal.
具体实施方式 Detailed ways
本发明提供一种透明电极材料,该材料包括基片和附着在该基片上的导电层,该导电层含有石墨烯与金属,所述导电层的方块电阻为0.001-1000Ω/sq,所述导电层的在可见光区域的透光率为70-98%,在红外光区域的透光率为70-98%;优选情况下,所述导电层的方块电阻为0.001-100Ω/sq,所述导电层的在可见光区域的透光率为80-98%,在红外光区域的透光率为80-98%。The invention provides a transparent electrode material, which comprises a substrate and a conductive layer attached to the substrate, the conductive layer contains graphene and metal, the sheet resistance of the conductive layer is 0.001-1000Ω/sq, the conductive The light transmittance of the layer in the visible light region is 70-98%, and the light transmittance in the infrared light region is 70-98%; preferably, the sheet resistance of the conductive layer is 0.001-100Ω/sq, and the conductive layer The light transmittance of the layer in the visible light region is 80-98%, and the light transmittance in the infrared light region is 80-98%.
并且,本发明的透明电极材料在柔性基片上弯曲1000次且每次均弯曲成90°后电阻下降小于2%。Moreover, the resistance of the transparent electrode material of the present invention decreases by less than 2% after being bent 1,000 times on the flexible substrate and bending to 90° each time.
在本发明的透明电极材料中,所述导电层可以由石墨烯与金属的混合物层形成,此时,所述石墨烯和金属的重量比可以为1∶0.01-10000,所述石墨烯与金属的混合物层的层数可以为1-20层,每一层所述石墨烯与金属的混合物层的厚度可以为0.2-300nm;为了获得更好的透光性和挠性,优选情况下,所述石墨烯和金属的重量比优选为1∶0.1-1000,每一层所述石墨烯与金属的混合物层的厚度优选为0.2-100nm。In the transparent electrode material of the present invention, the conductive layer can be formed by a mixture layer of graphene and metal, at this time, the weight ratio of graphene and metal can be 1:0.01-10000, and the graphene and metal The number of layers of the mixture layer can be 1-20 layers, and the thickness of each layer of the mixture layer of graphene and metal can be 0.2-300nm; in order to obtain better light transmittance and flexibility, preferably, the The weight ratio of graphene and metal is preferably 1:0.1-1000, and the thickness of each graphene-metal mixture layer is preferably 0.2-100 nm.
优选情况下,本发明的透明电极材料中的所述导电层也可以由石墨烯层和金属层交替性形成,所述石墨烯层的厚度可以为0.2-10nm,所述石墨烯层的层数可以为1-10层,所述金属层的厚度可以为0.2-300nm,所述金属层的层数可以为1-10层。为了获得更好的透光率和挠性,优选情况下,所述石墨烯层的厚度为0.2-3nm,所述石墨烯层的层数可以为1-2层;所述金属层的厚度为0.5-10nm,所述金属层的层数可以为1-2层。需要明确的是,上述厚度分别指石墨烯层和金属层的平均厚度。Preferably, the conductive layer in the transparent electrode material of the present invention can also be alternately formed by graphene layers and metal layers, the thickness of the graphene layer can be 0.2-10nm, the number of layers of the graphene layer It can be 1-10 layers, the thickness of the metal layer can be 0.2-300nm, and the number of layers of the metal layer can be 1-10 layers. In order to obtain better light transmittance and flexibility, preferably, the thickness of the graphene layer is 0.2-3nm, and the number of layers of the graphene layer can be 1-2 layers; the thickness of the metal layer is 0.5-10nm, the number of layers of the metal layer can be 1-2 layers. It should be clarified that the above-mentioned thickness refers to the average thickness of the graphene layer and the metal layer respectively.
优选情况下,本发明中的所述金属层为图案化的金属膜,所述金属膜优选为选自由微纳金属环组成的连续金属膜、由微纳金属环组成的不连续金属膜、由规则孔排列形成的二维金属微网格、由不规则孔排列形成的二维金属微网格、由连续金属岛组成的金属膜、由不连续金属岛组成的金属膜和由一维金属nm线组成的金属膜中的一种。为了得到更好的导电性,透光性和挠性,进一步优选为由规则孔排列形成的二维金属微网格。Preferably, the metal layer in the present invention is a patterned metal film, and the metal film is preferably selected from a continuous metal film composed of micro-nano metal rings, a discontinuous metal film composed of micro-nano metal rings, a metal film composed of A two-dimensional metal microgrid formed by regular hole arrangement, a two-dimensional metal microgrid formed by irregular hole arrangement, a metal film composed of continuous metal islands, a metal film composed of discontinuous metal islands, and a metal film composed of one-dimensional metal nm One of the metal films composed of wires. In order to obtain better conductivity, light transmission and flexibility, it is further preferred to be a two-dimensional metal microgrid formed by regular hole arrangement.
在本发明的透明电极材料中,所述金属可以为选自银、铜、金、铝、镍、铂、锌、锡、铁、钴、锰、钼和钛中的一种或多种,优选为金或银。In the transparent electrode material of the present invention, the metal can be one or more selected from silver, copper, gold, aluminum, nickel, platinum, zinc, tin, iron, cobalt, manganese, molybdenum and titanium, preferably for gold or silver.
本发明中所涉及的石墨烯可以为本领域常规使用的各种石墨烯,本发明对所述石墨烯的层数无特殊要求,可以为单层石墨烯和多层石墨烯的混合物,所述多层的石墨烯一般为2-10层的多层石墨烯,另外,所述石墨烯为全部由碳原子组成的石墨烯或掺杂有杂原子的石墨烯。其中,所述掺杂有杂原子的石墨烯中的杂原子可以选自氮、氧、硫、硼和磷中的一种或多种。The Graphene involved in the present invention can be various Graphenes conventionally used in this field, the present invention has no special requirement to the layer number of described Graphene, can be the mixture of monolayer Graphene and multilayer Graphene, described The multilayer graphene is generally multilayer graphene with 2-10 layers. In addition, the graphene is graphene composed entirely of carbon atoms or graphene doped with heteroatoms. Wherein, the heteroatoms in the graphene doped with heteroatoms may be selected from one or more of nitrogen, oxygen, sulfur, boron and phosphorus.
在本发明中,可以根据不同的需求选择不同的基片,在本发明的透明电极材料中,所述基片可以为在可见光区域的透光率为90-100%,优选为92-98%、在红外光区域的透光率为90-100%,优选为92-98%的透明高分子膜、玻璃和石英中的一种或多种,所述透明高分子膜可以为聚乙烯醇膜、聚酰亚胺膜、聚酯膜、聚氯乙烯膜、聚碳酸酯膜、聚氨酯膜和聚丙烯酸酯膜中的一种或多种。In the present invention, different substrates can be selected according to different requirements. In the transparent electrode material of the present invention, the substrate can have a light transmittance of 90-100% in the visible light region, preferably 92-98%. 1. The light transmittance in the infrared region is 90-100%, preferably one or more of 92-98% transparent polymer film, glass and quartz, and the transparent polymer film can be a polyvinyl alcohol film , one or more of polyimide film, polyester film, polyvinyl chloride film, polycarbonate film, polyurethane film and polyacrylate film.
本发明提供的透明电极材料上的导电层有三种类型,一种为石墨烯和金属形成的混合物层,另一种为交替的先形成石墨烯层,再形成金属层,还有一种为交替的先形成金属层,再形成石墨烯层,根据制备方法可以将后两者划分为一类。The conductive layer on the transparent electrode material provided by the present invention has three types, one is a mixture layer formed by graphene and metal, the other is an alternating graphene layer first formed, and then a metal layer, and another is an alternate The metal layer is formed first, and then the graphene layer is formed, and the latter two can be divided into one category according to the preparation method.
因此,本发明针对不同类型的导电层,提供了两种相应的制备方法。Therefore, the present invention provides two corresponding preparation methods for different types of conductive layers.
本发明提供了上述导电层由金属和石墨烯的混合物形成的透明电极材料的制备方法,该方法包括,在基片形成导电层,所述导电层由石墨烯和金属的混合物层形成,形成的所述导电层的方块电阻为0.001-1000Ω/sq,所述导电层在可见光区域的透光率为70-98%,在红外光区域的透光率为70-98%。The present invention provides a method for preparing a transparent electrode material in which the above-mentioned conductive layer is formed by a mixture of metal and graphene. The method includes forming a conductive layer on a substrate, and the conductive layer is formed by a mixture layer of graphene and metal. The square resistance of the conductive layer is 0.001-1000Ω/sq, the light transmittance of the conductive layer in the visible light region is 70-98%, and the light transmittance in the infrared light region is 70-98%.
本发明对所述在基片上形成导电层的方法无特殊要求,例如可以按如下步骤进行:将含有石墨烯和金属的分散液附着在基片表面,在60-200℃下放置1-120分钟后,进一步优选为在80-120℃下放置20-40min,然后在140-160℃放置2-10min,然后重复进行0-19次以下步骤:将含有石墨烯和金属的分散液附着在所得到的石墨烯和金属的混合物层的表面,在60-200℃下放置1-120分钟后,得到带有导电层的透明电极材料,进一步优选为在80-120℃下放置20-40min,然后在140-160℃放置2-10min。其中,重复进行步骤可以根据需要来确定是否进行,以及进行的次数,通过上述步骤,可以在透明基底上形成1-20层的导电层。The present invention has no special requirements on the method for forming the conductive layer on the substrate, for example, it can be carried out according to the following steps: attach the dispersion liquid containing graphene and metal to the surface of the substrate, and place it at 60-200°C for 1-120 minutes Finally, it is further preferred to place it at 80-120°C for 20-40min, then at 140-160°C for 2-10min, and then repeat the following steps 0-19 times: attach the dispersion containing graphene and metal to the obtained The surface of the mixture layer of graphene and metal is placed at 60-200°C for 1-120 minutes to obtain a transparent electrode material with a conductive layer, more preferably placed at 80-120°C for 20-40min, and then placed in Place at 140-160°C for 2-10min. Wherein, whether to repeat the steps can be determined according to needs, and the number of times, through the above steps, 1-20 layers of conductive layers can be formed on the transparent substrate.
在上述制备方法中,所述含有石墨烯与金属的分散液中的石墨烯的浓度可以为0.001-10mg/mL,金属的浓度可以为0.01-100mg/mL;为了方便操作,所述含有石墨烯与金属的分散液中石墨烯的浓度优选为0.01-1mg/mL,金属的浓度优选为0.1-10mg/mL。In the above preparation method, the concentration of graphene in the dispersion containing graphene and metal can be 0.001-10mg/mL, and the concentration of metal can be 0.01-100mg/mL; The concentration of graphene in the dispersion liquid with metal is preferably 0.01-1 mg/mL, and the concentration of metal is preferably 0.1-10 mg/mL.
优选情况下,每一次含有石墨烯与金属的分散液的用量为使获得的透明电极材料中每一层所述含有石墨烯与金属的混合物层的厚度为0.2-300nm。Preferably, the amount of the dispersion liquid containing graphene and metal is such that the thickness of each layer of the mixture layer containing graphene and metal in the obtained transparent electrode material is 0.2-300 nm.
在本发明中,将通过该方法制备的透明电极材料称为a型透明电极材料。如图1所示,其中,1为基片;4为由石墨烯和金属的混合物形成的导电层,图1只图示了本发明一种实施方式中的两层的透明电极材料,本领域技术人员可以确定,更多的由石墨烯和金属的混合物形成的导电层可以在由石墨烯和金属的混合物形成的导电层之上依次形成。In the present invention, the transparent electrode material prepared by this method is called a-type transparent electrode material. As shown in Figure 1, wherein, 1 is substrate; 4 is the conductive layer that is formed by the mixture of graphene and metal, and Fig. 1 has only illustrated the transparent electrode material of two layers in an embodiment of the present invention, in the art A skilled person can determine that more conductive layers formed of a mixture of graphene and metal can be sequentially formed on top of the conductive layer formed of a mixture of graphene and metal.
在上述制备方法中,将含有石墨烯和金属的分散液附着在透明基底表面或者附着在所得到的石墨烯和金属的混合物层的表面的方法没有特别的限定,例如可以为选自旋涂法、喷涂法、刮涂法和浸渍法中的一种或多种,优选为旋涂法。In the above-mentioned preparation method, the method of attaching the dispersion liquid containing graphene and metal to the surface of the transparent substrate or the surface of the mixture layer of graphene and metal obtained is not particularly limited, for example, it can be selected from the spin coating method. , one or more of spray coating, blade coating and dipping, preferably spin coating.
根据本发明的方法,所述石墨烯和金属的分散液可以以各种形式提供,例如溶胶形式,所述含有石墨烯和金属的分散液可以参照现有技术进行制备,本发明无特殊要求,在此不再赘述。According to the method of the present invention, the dispersion liquid of described graphene and metal can be provided in various forms, such as sol form, described dispersion liquid containing graphene and metal can be prepared with reference to prior art, the present invention has no special requirements, I won't repeat them here.
本发明还提供上述导电层由石墨烯层和金属层交替形成的透明电极材料的制备方法,该方法包括,在基片上交替形成金属层和石墨烯层,以在基片上形成导电层,所述导电层的方块电阻为0.001-1000Ω/sq,所述导电层在可见光区域的透光率为70-98%,在红外光区域的透光率为70-98%。The present invention also provides a method for preparing the above-mentioned transparent electrode material in which the conductive layer is alternately formed by graphene layers and metal layers. The method includes alternately forming metal layers and graphene layers on the substrate to form a conductive layer on the substrate. The sheet resistance of the conductive layer is 0.001-1000Ω/sq, the light transmittance of the conductive layer in the visible light region is 70-98%, and the light transmittance in the infrared light region is 70-98%.
在本发明中,将导电层由石墨烯层和金属层交替形成的透明电极材料称为b型透明电极材料,其中包括在基片上先形成石墨烯层后形成金属层的透明电极材料,如图2所示,其中,1为基片;2为金属层;3为石墨烯层;和在基片上先形成金属层后形成石墨烯层的透明电极材料,如图3所示,其中,1为基片;2为金属层;3为石墨烯层。图2和图3只是分别图示了本发明两种实施方式中的两层的透明电极材料,本领域技术人员可以确定,更多的石墨烯层或金属层可以在金属层和石墨烯层之上依次形成。In the present invention, the transparent electrode material in which the conductive layer is alternately formed by graphene layers and metal layers is called b-type transparent electrode material, which includes the transparent electrode material in which the graphene layer is first formed on the substrate and then the metal layer is formed, as shown in the figure 2, wherein, 1 is a substrate; 2 is a metal layer; 3 is a graphene layer; and the transparent electrode material that forms a graphene layer after first forming a metal layer on the substrate, as shown in Figure 3, wherein, 1 is Substrate; 2 is a metal layer; 3 is a graphene layer. Fig. 2 and Fig. 3 just illustrate the transparent electrode material of two layers in two kinds of embodiments of the present invention respectively, and those skilled in the art can confirm that more graphene layers or metal layers can be between metal layer and graphene layer formed sequentially.
根据本发明的方法,优选情况下,所述金属层的厚度可以为0.2-300nm,优选为0.5-10nm,所述金属层的层数可以为1-10层,优选为1-2层;所述石墨烯层的厚度可以为0.2-10nm,优选为0.2-3nm;所述石墨烯层的层数可以为1-10层,优选为1-2层。According to the method of the present invention, preferably, the thickness of the metal layer can be 0.2-300nm, preferably 0.5-10nm, and the number of layers of the metal layer can be 1-10 layers, preferably 1-2 layers; The thickness of the graphene layer can be 0.2-10 nm, preferably 0.2-3 nm; the number of layers of the graphene layer can be 1-10 layers, preferably 1-2 layers.
在上述制备方法中,对所述形成石墨烯层的方法没有特别的限定,可以参照现有技术进行,例如可以为选自旋涂法、喷涂法、刮涂法、浸渍法或提拉法,优选为旋涂法;对所述形成金属层的方法也没有特别的限定,例如可以为选自模板法、电纺织法、压印法、自组装法、刻蚀法、沉积法、电磁场引导法、溅射法、溶胶凝胶法、旋涂法、喷涂法、静电纺丝或刮涂法,优选为模板法。In the above-mentioned preparation method, the method for forming the graphene layer is not particularly limited, and can be carried out with reference to the prior art, for example, it can be selected from spin coating method, spray coating method, scraping method, dipping method or pulling method, It is preferably a spin-coating method; there is no particular limitation on the method for forming the metal layer, for example, it can be selected from the template method, electrospinning method, embossing method, self-assembly method, etching method, deposition method, electromagnetic field guidance method , sputtering, sol-gel, spin-coating, spray-coating, electrospinning or blade-coating, preferably a template method.
由于在本发明的制备方法中所使用的金属、基片、以及构成导电层的所述石墨烯与金属的混合物层、石墨烯层的厚度和种类等均与产品中所涉及的相同,在此不再赘述。Since the metal used in the preparation method of the present invention, the substrate, and the mixture layer of graphene and metal that constitute the conductive layer, the thickness and type of the graphene layer, etc. are all the same as those involved in the product, here No longer.
下面结合实施例对本发明进行进一步说明。The present invention is further described below in conjunction with embodiment.
在以下实施例中,用紫外/可见/近红外分光光度计(PerkinElmer Lambda950)测定可见光透过率和红外光透过率;用双电测四探针测试仪(广州四探针科技RTS-9)测定方块电阻;薄膜厚度用扫描探针显微镜测试(DigitalInstruments Dimension 3100);用SEM扫描电镜(日本日立公司,HitachiS-4800)测试材料的表面形貌,尺寸(如平均粒径等)。In the following examples, measure visible light transmittance and infrared light transmittance with ultraviolet/visible/near-infrared spectrophotometer (PerkinElmer Lambda950); ) to measure the sheet resistance; the film thickness is tested with a scanning probe microscope (DigitalInstruments Dimension 3100); the surface morphology and size (such as the average particle size, etc.) of the test material are tested with a SEM scanning electron microscope (Hitachi S-4800, Japan).
制备例1Preparation Example 1
氧化石墨烯溶胶的制备Preparation of graphene oxide sol
向1500g的浓度为98重量%的浓硫酸中加入5.0g的天然鳞片状石墨(粒径为200μm)、5.0g的硝酸钠和25.0g的高锰酸钾,将所得混合物在0℃的冰浴条件下(即通过冰浴使混合物的温度为0℃)搅拌5h后,接着再在30℃下搅拌10h;然后向所得混合物中加入500mL水进行稀释,接着升温至70℃并搅拌2h后,加入6mL的浓度为30重量%的双氧水,搅拌1h后过滤,然后将得到的滤饼用浓度为10重量%的盐酸离心洗涤,接着再用去离子水离心洗涤,将洗涤后的胶状产物加入到40mL的去离子水中,在200W的功率下超声分散得到氧化石墨烯溶胶(氧化石墨烯的含量为20重量%,水的含量为80重量%)。To the concentrated sulfuric acid of 98% by weight, the concentration of 1500g is to add 5.0g of natural flaky graphite (particle diameter is 200 μm), 5.0g of sodium nitrate and 25.0g of potassium permanganate, and the resulting mixture is placed in an ice bath at 0°C. After stirring for 5 h under the same conditions (that is, the temperature of the mixture was kept at 0° C. by ice bath), then stirred at 30° C. for 10 h; The concentration of 6mL is the hydrogen peroxide of 30% by weight, after stirring for 1h, filter, then the obtained filter cake is centrifugally washed with hydrochloric acid of 10% by weight, then centrifugally washed with deionized water, and the colloidal product after washing is added to 40 mL of deionized water was ultrasonically dispersed at a power of 200 W to obtain a graphene oxide sol (the content of graphene oxide was 20% by weight, and the content of water was 80% by weight).
实施例1Example 1
本实施例是为说明本发明的b型透明电极材料的制备方法。This example is to illustrate the preparation method of the b-type transparent electrode material of the present invention.
(1)制备多孔阳极氧化铝模板:采用两步阳极氧化法(根据HidekiMasuda and Kenji Fukuda,Ordered Metal Nanohole Arrays Made by a Two-StepReplication of Honeycomb structures of Anodic Alumina,SCIENCE,268(9)1995)中提供的方法)制备多孔阳极氧化铝片,通过扫描电镜测出该多孔阳极氧化铝片的孔径为50nm,孔间距为150nm;(1) Preparation of porous anodized aluminum template: two-step anodic oxidation method (according to HidekiMasuda and Kenji Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb structures of Anodic Alumina, SCIENCE, 268 (9) 1995) provided method) to prepare a porous anodized aluminum sheet, the aperture of the porous anodized aluminum sheet measured by a scanning electron microscope is 50nm, and the hole spacing is 150nm;
(2)电子束蒸镀金属层:用电子束蒸发仪(Edwars,AUTO 500)向步骤(1)得到的阳极氧化铝片上蒸镀一层金属银,厚度3nm;(2) Electron beam evaporation metal layer: use electron beam evaporation instrument (Edwars, AUTO 500) to step (1) on the anodic aluminum oxide sheet that step (1) obtains and evaporate one layer of metallic silver, thickness 3nm;
(3)去除氧化铝模板:在步骤(2)蒸镀有金属银的阳极氧化铝片下方放置石英片(锦州华美石英电器厂,大小为2cm×2cm,厚度为1mm),在浓度为1%的磷酸溶液中溶解掉阳极氧化铝,带孔金属银网格自然沉降到石英片上;用去离子水洗涤石英片上多余的磷酸和金属离子,100℃下干燥4h;(3) Remove the alumina template: Place a quartz sheet (Jinzhou Huamei Quartz Electric Appliance Factory, 2cm×2cm in size, 1mm in thickness) under the anodized aluminum sheet that has been vapor-deposited with metallic silver in step (2), at a concentration of 1%. Dissolve the anodic aluminum oxide in the phosphoric acid solution, and the metal silver grid with holes will naturally settle on the quartz plate; wash the excess phosphoric acid and metal ions on the quartz plate with deionized water, and dry at 100°C for 4 hours;
(4)制备氧化石墨烯薄膜:在步骤(3)得到的有金属网格的石英片上用旋涂仪以4000rpm的转速旋涂一层6nm厚的制备例1中得到的氧化石墨烯溶胶,100℃下干燥10分钟;(4) prepare graphene oxide thin film: the graphene oxide sol obtained in the thick preparation example 1 of one deck 6nm is spin-coated with spin coater with spin coater on the quartz sheet that metal grid is obtained in step (3), 100 Dry at ℃ for 10 minutes;
(5)热还原氧化石墨烯:在Ar气保护下,将步骤(4)得到的含有厚度为0.8nm的氧化石墨烯薄膜的石英片放入石英管,然后将石英管放入管式炉中,以升温速率每小时200℃缓慢升温到800℃加热10分钟,然后在Ar气保护下在炉中缓慢冷却至室温,还原得到含有石墨烯与金属银的透明电极材料。透明电极材料的主视图和左(右)视图如图4中的A和B所示。(5) Thermal reduction of graphene oxide: under the protection of Ar gas, the quartz sheet containing the graphene oxide film with a thickness of 0.8nm obtained in step (4) is put into a quartz tube, and then the quartz tube is put into a tube furnace , at a heating rate of 200°C per hour and slowly heated to 800°C for 10 minutes, then slowly cooled to room temperature in a furnace under the protection of Ar gas, and reduced to obtain a transparent electrode material containing graphene and metallic silver. The front view and left (right) view of the transparent electrode material are shown in A and B in Fig. 4.
透明电极材料的金属层厚度为3nm,金属层层数为1层;石墨烯层厚度为0.8nm,石墨烯层层数为1层。The thickness of the metal layer of the transparent electrode material is 3 nm, and the number of metal layers is 1 layer; the thickness of the graphene layer is 0.8 nm, and the number of graphene layers is 1 layer.
透明电极材料在可见光区透光率为92%、红外光区透光率为92%、方块电阻5Ω/sq。The transparent electrode material has a light transmittance of 92% in the visible light region, a light transmittance of 92% in the infrared light region, and a sheet resistance of 5Ω/sq.
实施例2Example 2
本实施例是为说明本发明的b型透明电极材料的制备方法。This example is to illustrate the preparation method of the b-type transparent electrode material of the present invention.
(1)化学气相沉积的方法制备氮掺杂石墨烯:用镀膜机(KYUY中科科仪技术发展有限责任公司,型号SBC-2),以Ni为靶材料,沉积时间20s,在石英片(锦州华美石英电器厂,大小为2cm×2cm,厚度为1mm)上热蒸镀50nm厚的Ni。将石英片放入石英管中,通氢气(20sccm)和氩气(100sccm),当炉体中心温度升高到800℃时,通入60sccm的CH4和60sccm的NH3,将石英管放入炉体中心,10分钟后,将样品在氢气流下冷却到室温,得到氮掺杂的石墨烯薄膜,用浓度为1%的磷酸溶液溶解薄膜上的Ni,用去离子水洗涤石墨烯表面三次。(1) The method for chemical vapor deposition prepares nitrogen-doped graphene: with coating machine (KYUY Zhongkekeyi Technology Development Co., Ltd., model SBC-2), with Ni as the target material, deposition time 20s, on a quartz sheet ( Jinzhou Huamei Quartz Electric Appliance Factory, with a size of 2cm×2cm and a thickness of 1mm) was thermally evaporated with 50nm thick Ni. Put the quartz piece into the quartz tube, pass hydrogen (20sccm) and argon (100sccm), when the temperature of the center of the furnace rises to 800°C, feed 60sccm of CH4 and 60sccm of NH3, put the quartz tube into the furnace After 10 min, the sample was cooled to room temperature under hydrogen flow to obtain a nitrogen-doped graphene film. The Ni on the film was dissolved with a phosphoric acid solution with a concentration of 1%, and the graphene surface was washed three times with deionized water.
(2)制备聚苯乙烯微球:在500mL三口烧瓶中加入10mL苯乙烯和150mL水,通氮气排空气15min,恒温水浴70℃下搅拌20min,加入0.2g过硫酸钾,70℃下反应24h。离心分离得到聚苯乙烯微球单分散水溶液(苯乙烯微球浓度为10重量%,苯乙烯微球的平均粒径为1.3μm)。(2) Preparation of polystyrene microspheres: Add 10 mL of styrene and 150 mL of water into a 500 mL three-neck flask, ventilate with nitrogen for 15 min, stir in a constant temperature water bath at 70 °C for 20 min, add 0.2 g of potassium persulfate, and react at 70 °C for 24 h. A monodisperse aqueous solution of polystyrene microspheres was obtained by centrifugal separation (the concentration of styrene microspheres was 10% by weight, and the average particle diameter of the styrene microspheres was 1.3 μm).
(3)以聚苯乙烯微球单层膜为模板制备图案化金属薄膜:向4.95mL聚苯乙烯微球单分散水溶液(苯乙烯微球浓度为10重量%)中加入0.05mL苯乙烯和5mL无水乙醇,再向该溶液中加入0.15μL的硫酸(浓度是98%),超声15分钟,在容器底部放入上述步骤(1)处理的表面有石墨烯薄膜的石英片,放走容器中的液体,用去离子水洗涤三次。用等离子刻蚀(RIE)系统(SENTECH,ETCHCAB200),用氧离子刻蚀10s,聚苯乙烯微球粒径减小到1μm。用磁控溅射仪(ULVAC Inc,ACS-400-C4),在工作压强0.5Pa,功率40W条件下,与石英片垂直溅射10s,在聚苯乙烯微球空隙中沉积金属Al,得到3nm厚的Al,孔间距600nm,孔径1μm。将前述沉积有金属的石英片浸入甲苯溶液中溶解模板聚苯乙烯微球后,并用去离子水洗涤,得到含有金属铝和N掺杂的石墨烯的透明电极材料。透明电极材料的主视图和左(右)视图如图5中的A和B所示。(3) Preparation of patterned metal thin film with polystyrene microsphere monolayer film as template: add 0.05mL styrene and 5mL Dehydrated alcohol, then add 0.15 μ L of sulfuric acid (concentration is 98%) in this solution, ultrasonic 15 minutes, put the quartz sheet that above-mentioned steps (1) process has the surface of graphene film at the bottom of the container, let go in the container liquid, washed three times with deionized water. Using a plasma etching (RIE) system (SENTECH, ETCHCAB200), etching with oxygen ions for 10 s, the particle size of polystyrene microspheres was reduced to 1 μm. Using a magnetron sputtering apparatus (ULVAC Inc, ACS-400-C4), at a working pressure of 0.5Pa and a power of 40W, sputtering perpendicular to the quartz plate for 10s, depositing metal Al in the voids of polystyrene microspheres to obtain 3nm Thick Al, pore spacing 600nm, pore diameter 1μm. The aforementioned quartz plate deposited with metal was immersed in toluene solution to dissolve template polystyrene microspheres, and washed with deionized water to obtain a transparent electrode material containing metal aluminum and N-doped graphene. The front view and left (right) view of the transparent electrode material are shown in A and B in Fig. 5.
透明电极材料的金属层厚度为3nm,金属层层数为1层;石墨烯厚度为1.2nm,石墨烯层层数为1层。The thickness of the metal layer of the transparent electrode material is 3 nm, and the number of metal layers is 1 layer; the thickness of graphene is 1.2 nm, and the number of graphene layers is 1 layer.
透明电极材料的可见光透过率为98%、红外光透过率98%、方块电阻3Ω/sq。The visible light transmittance of the transparent electrode material is 98%, the infrared light transmittance is 98%, and the sheet resistance is 3Ω/sq.
实施例3Example 3
本实施例是为说明本发明的b型透明电极材料的制备方法。This example is to illustrate the preparation method of the b-type transparent electrode material of the present invention.
(1)石墨烯溶胶的制备:15g水中溶解600mg硼氢化钠,将得到的硼氢化钠溶液加入50mL制备例1中得到的氧化石墨烯溶胶中,用5重量%的碳酸钠溶液调节溶液pH值至9,将这些混合物在80℃下搅拌1h,然后用去离子水在5000rpm的转速下离心洗涤5次,将洗涤后的石墨烯溶解在1∶1的水和乙醇混合溶液中,得到浓度为10mg/mL的石墨烯溶胶。(1) Preparation of graphene sol: dissolve 600mg sodium borohydride in 15g water, add the sodium borohydride solution obtained in the graphene oxide sol obtained in 50mL Preparation Example 1, adjust the pH value of the solution with 5% by weight of sodium carbonate solution To 9, these mixtures were stirred at 80°C for 1 h, then centrifuged and washed 5 times with deionized water at a speed of 5000 rpm, and the washed graphene was dissolved in a 1:1 mixed solution of water and ethanol to obtain a concentration of 10mg/mL graphene sol.
(2)石墨烯薄膜的制备:采用浸渍提拉法,将聚对苯二甲酸乙二醇酯薄膜PET(日本艾克AICA,型号HC2106,大小为2cm×2cm,厚度0.188mm)浸入步骤(1)得到的石墨烯溶胶中,然后以与水平面垂直的方向将PET匀速提拉出液面,用去离子水洗涤PET背面多余的石墨烯溶胶,室温下晾干,得到石墨烯层,厚度为7nm。(2) Preparation of graphene film: adopt dipping and pulling method, immerse polyethylene terephthalate film PET (Japan AICA, model HC2106, size is 2cm * 2cm, thickness 0.188mm) into step (1 ) in the graphene sol obtained, then the PET is pulled out of the liquid surface at a uniform speed in the direction perpendicular to the horizontal plane, the excess graphene sol on the back of the PET is washed with deionized water, and dried at room temperature to obtain a graphene layer with a thickness of 7nm .
(3)紫外光刻的方法制备光刻胶模板:采用紫外光刻的方法,先在步骤(2)得到的石墨烯层上用旋涂仪旋涂5mL光刻胶(公司ALLRESIST,型号AR-N4340),然后在暗室中在光刻胶上放置带垂直纳米线网格图案的模板(购买于中科院半导体研究所)紫外曝光,在显影液(ALLRESIST厂家,型号AR300-26)作用下光刻胶图案化刻蚀得到模板纳米线网格图案。在扫描电镜下检测,光刻胶纳米线的宽度为2μm,线间距20μm。(3) Preparation of photoresist template by ultraviolet lithography: using the method of ultraviolet lithography, first spin-coat 5mL photoresist (company ALLRESIST, model AR-N4340) with a spin coater on the graphene layer obtained in step (2) , and then placed a template with a vertical nanowire grid pattern (purchased from the Institute of Semiconductors, Chinese Academy of Sciences) on the photoresist in the darkroom for ultraviolet exposure, and the photoresist was patterned under the action of a developer (ALLRESIST manufacturer, model AR300-26) The template nanowire grid pattern is obtained by etching. Detected under a scanning electron microscope, the photoresist nanowires have a width of 2 μm and a line spacing of 20 μm.
(4)在光刻胶空隙中蒸镀Cu:用热蒸镀的方法,用Cu靶在上述PET片上蒸镀10s,在光刻胶间隙中得到3nm厚的Cu。用显影液溶解洗去光刻胶,再用去离子水反复洗涤3次,得到含有金属Cu与石墨烯的透明电极材料。(4) Evaporate Cu in the photoresist gap: use a thermal evaporation method to vapor-deposit Cu target on the above-mentioned PET sheet for 10 s, and obtain 3 nm thick Cu in the photoresist gap. The photoresist was dissolved and washed off with a developer, and then washed three times with deionized water to obtain a transparent electrode material containing metal Cu and graphene.
(5)将步骤(4)得到的透明电极材料重复前述步骤(1)和(2),在Cu透明薄膜上再制备一层石墨烯薄膜,得到双层石墨烯的透明电极材料。透明电极材料的主视图和左(右)视图如图6中的A和B所示。(5) Repeat the aforementioned steps (1) and (2) for the transparent electrode material obtained in step (4), and prepare a layer of graphene film on the Cu transparent film to obtain the transparent electrode material of double-layer graphene. The front view and left (right) view of the transparent electrode material are shown in A and B in Fig. 6.
透明电极材料的金属层厚度为3nm,金属层层数为1层;石墨烯厚度为1.2nm;石墨烯层数为2层。The thickness of the metal layer of the transparent electrode material is 3nm, and the number of metal layers is 1; the thickness of graphene is 1.2nm; and the number of graphene layers is 2 layers.
透明电极材料的可见光透过率为70%、红外光透过率70%、方块电阻0.001Ω/sq。将上述透明电极材料在弯曲1000次且每次均弯曲成90°后,可见光透过率为70%、红外光透过率70%、方块电阻0.001Ω/sq。The visible light transmittance of the transparent electrode material is 70%, the infrared light transmittance is 70%, and the sheet resistance is 0.001Ω/sq. After the above-mentioned transparent electrode material is bent 1000 times to 90° each time, the visible light transmittance is 70%, the infrared light transmittance is 70%, and the sheet resistance is 0.001Ω/sq.
实施例4Example 4
本实施例是为说明本发明的a型透明电极材料的制备方法。This example is to illustrate the preparation method of the a-type transparent electrode material of the present invention.
(1)石墨烯溶胶的制备:与实施例3的步骤(1)一致,得到浓度为10mg/mL的石墨烯溶胶,用去离子水稀释,得到0.1mg/mL石墨稀溶胶。(1) Preparation of graphene sol: Consistent with step (1) of Example 3, the graphene sol with a concentration of 10 mg/mL was obtained, diluted with deionized water to obtain 0.1 mg/mL graphene sol.
(2)Ag纳米线与石墨烯混合溶胶的制备:将单分散Ag纳米线(根据文献Yi Cui等Scalable Coating and Properties of Transparent,Flexible,SilverNanowire Electrodes,ACS NANO,2010,4(5):2955-2963中的方法制备,颗粒粒径40nm-100nm,2mg/mL)与步骤(1)得到的0.1mg/mL石墨稀溶胶混合,体积混合比例1∶1。超声30分钟(超声功率20kW);(2) Preparation of Ag nanowire and graphene mixed sol: monodisperse Ag nanowire (according to the literature Yi Cui et al. Scalable Coating and Properties of Transparent, Flexible, SilverNanowire Electrodes, ACS NANO, 2010, 4(5): 2955- Prepared by the method in 2963, the particle size is 40nm-100nm, 2mg/mL) is mixed with the 0.1mg/mL graphene sol obtained in step (1), and the volume mixing ratio is 1:1. Ultrasound for 30 minutes (ultrasonic power 20kW);
(3)Ag纳米线与石墨烯混合薄膜的制备:用刮涂的方法将1mL混合溶胶用玻璃棒刮涂到PET(日本艾克AICA,型号HC2106,大小为2cm×2cm,厚度0.188mm)上并晾干,得到透明电极材料。透明电极材料的主视图和左(右)视图如图7中的A和B所示。(3) Preparation of mixed films of Ag nanowires and graphene: Scrape 1mL of mixed sol onto PET (AICA, model HC2106, size 2cm×2cm, thickness 0.188mm) with a glass rod by scrape coating and dried to obtain a transparent electrode material. The front view and left (right) view of the transparent electrode material are shown in A and B in Fig. 7.
透明电极材料的金属Ag与石墨烯混合层厚度为3nm,金属与石墨烯混合层层数为1层。The thickness of the metal Ag and graphene mixed layer of the transparent electrode material is 3 nm, and the number of metal and graphene mixed layers is 1 layer.
透明电极材料的可见光透过率为92%、红外光透过率为92%、方块电阻为100Ω/sq。将上述透明电极材料在弯曲1000次且每次均弯曲成90°后,可见光透过率为92%、红外光透过率92%、方块电阻增加量小于5%。The visible light transmittance of the transparent electrode material is 92%, the infrared light transmittance is 92%, and the sheet resistance is 100Ω/sq. After the above transparent electrode material is bent 1000 times to 90° each time, the visible light transmittance is 92%, the infrared light transmittance is 92%, and the sheet resistance increase is less than 5%.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010593306.4A CN102569432B (en) | 2010-12-17 | 2010-12-17 | Transparent electrode material and preparation method thereof |
PCT/CN2011/076367 WO2012079360A1 (en) | 2010-12-17 | 2011-06-27 | Transparent electrode material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010593306.4A CN102569432B (en) | 2010-12-17 | 2010-12-17 | Transparent electrode material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102569432A CN102569432A (en) | 2012-07-11 |
CN102569432B true CN102569432B (en) | 2014-12-10 |
Family
ID=46244041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010593306.4A Expired - Fee Related CN102569432B (en) | 2010-12-17 | 2010-12-17 | Transparent electrode material and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102569432B (en) |
WO (1) | WO2012079360A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881841B (en) * | 2012-10-16 | 2016-01-20 | 北京大学 | With the semiconductor photoelectric device that copper/graphene combination electrode is anode |
CN102982861A (en) * | 2012-11-27 | 2013-03-20 | 无锡力合光电石墨烯应用研发中心有限公司 | Transparent conductive film layer for capacitive touch screen |
CN103019493A (en) * | 2012-12-24 | 2013-04-03 | 无锡力合光电石墨烯应用研发中心有限公司 | Electrode structure for capacitive touch screens and preparation method thereof |
CN103227241A (en) * | 2013-04-10 | 2013-07-31 | 苏州阿特斯阳光电力科技有限公司 | Preparation method of double-faced crystalline silicon solar cell |
CN104183700A (en) * | 2013-05-23 | 2014-12-03 | 海洋王照明科技股份有限公司 | Flexible transparent conductive graphene film and manufacturing method and application thereof |
CN103325442B (en) * | 2013-06-27 | 2015-11-11 | 北京印刷学院 | A kind of composite transparent conductive film and preparation method thereof |
CN103906365B (en) * | 2014-03-06 | 2017-11-07 | 广东工业大学 | A kind of making apparatus of electronic circuit based on graphene and preparation method thereof |
CN104332695B (en) * | 2014-08-12 | 2017-10-31 | 中国空空导弹研究院 | A kind of refrigeration mode Terahertz/infrared stacked detectors |
US10535790B2 (en) * | 2015-06-25 | 2020-01-14 | Sunpower Corporation | One-dimensional metallization for solar cells |
CN105140358B (en) * | 2015-09-21 | 2018-07-17 | 福州大学 | A method of light emitting diode with quantum dots is prepared based on full doctor blade technique |
CN105225728B (en) * | 2015-09-29 | 2017-01-04 | 惠州易晖光电材料股份有限公司 | A kind of low resistance transparent conductive film and preparation method thereof |
WO2017210819A1 (en) * | 2016-06-06 | 2017-12-14 | 孙英 | Novel electrically conductive graphite material |
CN106037735A (en) * | 2016-07-07 | 2016-10-26 | 苏州海神联合医疗器械有限公司 | High-conductivity electrode applicable to electromyography-evoked potential equipment |
CN106230306A (en) * | 2016-08-09 | 2016-12-14 | 中山市天美能源科技有限公司 | A kind of flexible power generation film and preparation method thereof |
CN106684114B (en) * | 2017-01-04 | 2019-10-18 | 武汉华星光电技术有限公司 | Flexible display device and preparation method thereof |
WO2018229561A1 (en) * | 2017-06-15 | 2018-12-20 | Tata Steel Limited | A process for producing graphene based transparent conductive electrode and the product thereof |
CN107265880B (en) * | 2017-06-26 | 2020-01-03 | 信利光电股份有限公司 | Anti-dazzle glass coating method |
CN107610814B (en) * | 2017-08-30 | 2020-08-11 | 中国科学院宁波材料技术与工程研究所 | A kind of transparent electrode based on ultra-thin metal grid and preparation method thereof |
CN109524481A (en) * | 2017-09-20 | 2019-03-26 | 上海太阳能工程技术研究中心有限公司 | A kind of highly conductive electrode of solar battery of low cost and preparation method thereof |
CN108727068B (en) * | 2018-07-03 | 2021-04-13 | 句容市博远电子有限公司 | Preparation method of thin NTC thermistor |
CN109763178B (en) * | 2019-03-15 | 2023-04-25 | 东华大学 | Combined auxiliary electrode for internal conical surface electrostatic spinning nozzle |
CN110123310A (en) * | 2019-04-19 | 2019-08-16 | 东北大学 | Domain type flexible combination electrocardioelectrode |
CN110429087A (en) * | 2019-06-27 | 2019-11-08 | 重庆惠科金渝光电科技有限公司 | Array substrate metal wire, preparation method thereof and display panel |
CN112531119B (en) * | 2020-12-15 | 2022-08-30 | 中国华能集团清洁能源技术研究院有限公司 | Flexible transparent electrode and battery suitable for flexible photoelectric device and preparation method |
CN113644143B (en) * | 2021-06-25 | 2024-04-30 | 惠州学院 | Full-transparent photoelectric detector and preparation method thereof |
CN116284940A (en) * | 2022-09-06 | 2023-06-23 | 江苏斯迪克新材料科技股份有限公司 | Electromagnetic shielding film and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101442105A (en) * | 2007-11-21 | 2009-05-27 | 中国科学院化学研究所 | Organic field effect transistor and special source/drain electrode and preparation method thereof |
CN101474899A (en) * | 2009-01-16 | 2009-07-08 | 南开大学 | Grapheme-organic material layered assembling film and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI487125B (en) * | 2007-04-20 | 2015-06-01 | Cambrios Technologies Corp | Composite transparent conductor and method of forming same |
-
2010
- 2010-12-17 CN CN201010593306.4A patent/CN102569432B/en not_active Expired - Fee Related
-
2011
- 2011-06-27 WO PCT/CN2011/076367 patent/WO2012079360A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101442105A (en) * | 2007-11-21 | 2009-05-27 | 中国科学院化学研究所 | Organic field effect transistor and special source/drain electrode and preparation method thereof |
CN101474899A (en) * | 2009-01-16 | 2009-07-08 | 南开大学 | Grapheme-organic material layered assembling film and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2012079360A1 (en) | 2012-06-21 |
CN102569432A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102569432B (en) | Transparent electrode material and preparation method thereof | |
Li et al. | Recent progress in silver nanowire networks for flexible organic electronics | |
Zhu et al. | Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires | |
Stewart et al. | Synthesis of Cu–Ag, Cu–Au, and Cu–Pt core–shell nanowires and their use in transparent conducting films | |
Kiruthika et al. | Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network | |
CN102568654B (en) | Transparent conductive film and preparation method of transparent conductive film | |
CN103413594B (en) | Flexible transparent conductive material of topological insulator and preparation method thereof and application | |
Zhao et al. | High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions | |
CN102823012B (en) | Electronic device including the transparent conducting coating containing CNT and nanowire composite | |
CN102782054B (en) | Prepare the method that an applicator, coating include alloying carbon nanotube thin film | |
US9645454B2 (en) | Transparent conductive film and electric device | |
CN104882223A (en) | Oxidized graphene/silver nanowire composite transparent conducting thin film and preparation method thereof | |
WO2013170755A1 (en) | Composite conductive film formed by graphene and metal nanowires, manufacturing method thereof, and application thereof for manufacturing transparent conductive film | |
CN104508758A (en) | Conductive nanowire films | |
CN105350043A (en) | Method for preparing high-performance metallic network transparent conducting electrode through metal plating method | |
JP2011198686A (en) | Light transmissive conductive sheet | |
US20170133527A1 (en) | Method for the preparation of a transparent and conductive auto-supported silver nanowire film and applications thereof | |
Hu et al. | Carbon induced galvanic etching of silicon in aerated HF/H2O vapor | |
Balela et al. | Formation of zinc oxide nanostructures by wet oxidation of vacuum deposited Zn thin film | |
Wang et al. | Low-temperature nanowelding silver nanowire hybrid flexible transparent conductive film for green light OLED devices | |
CN107610814A (en) | A kind of transparency electrode based on super thin metal grid and preparation method thereof | |
KR101500192B1 (en) | Transparent conductive films including graphene layer and mathod for manufacturing the same | |
Kim et al. | Facile fabrication of multifunctional transparent electrodes via spray deposition of indium-tin-oxide nanoparticles | |
CN107946467A (en) | A kind of polymer solar battery based on multiple light trapping structure and preparation method thereof | |
Li et al. | Electrodeposition of PtNPs on the LBL assembled multilayer films of (PDDA-GS/PEDOT: PSS) n and their electrocatalytic activity toward methanol oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141210 Termination date: 20201217 |
|
CF01 | Termination of patent right due to non-payment of annual fee |