CN102569399A - Source-drain self-aligned MOS device and manufacturing method thereof - Google Patents
Source-drain self-aligned MOS device and manufacturing method thereof Download PDFInfo
- Publication number
- CN102569399A CN102569399A CN2011103868169A CN201110386816A CN102569399A CN 102569399 A CN102569399 A CN 102569399A CN 2011103868169 A CN2011103868169 A CN 2011103868169A CN 201110386816 A CN201110386816 A CN 201110386816A CN 102569399 A CN102569399 A CN 102569399A
- Authority
- CN
- China
- Prior art keywords
- layer
- source
- ohmic contact
- dielectric layer
- mos device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 56
- 239000004065 semiconductor Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000005530 etching Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 238000001312 dry etching Methods 0.000 claims description 11
- 150000004767 nitrides Chemical class 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 6
- 238000001039 wet etching Methods 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 4
- 238000005566 electron beam evaporation Methods 0.000 claims description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 3
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 229910005542 GaSb Inorganic materials 0.000 claims description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims 9
- 229910002601 GaN Inorganic materials 0.000 claims 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 4
- 229910017083 AlN Inorganic materials 0.000 claims 2
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 1
- 238000005137 deposition process Methods 0.000 claims 1
- 229910003465 moissanite Inorganic materials 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 abstract description 13
- 239000013078 crystal Substances 0.000 abstract description 12
- 230000003071 parasitic effect Effects 0.000 abstract description 6
- 230000000873 masking effect Effects 0.000 abstract 1
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种源漏自对准的MOS器件及其制作方法,该源漏自对准的MOS器件包括:单晶衬底层;在该单晶衬底上形成的III-V半导体层;在该III-V半导体层上形成的欧姆接触层;在该欧姆接触层上形成的低K介质层;刻蚀该欧姆接触层与该低K介质层形成栅槽,在该栅槽中形成的由绝缘介质制作的侧墙结构;在形成侧墙结构的外延片上形成的高K栅介质层;在栅槽区域的该高K栅介质层之上形成的栅金属电极;以及以该栅金属电极为掩模刻蚀该高K栅介质层和该低K介质层露出欧姆接触层,在露出的该欧姆接触层上形成的源漏金属电极。本发明减小了源漏的寄生电阻,提高了器件的一致性,提高了器件的射频性能。
The invention discloses a source-drain self-aligned MOS device and a manufacturing method thereof. The source-drain self-aligned MOS device comprises: a single crystal substrate layer; a III-V semiconductor layer formed on the single crystal substrate; An ohmic contact layer formed on the III-V semiconductor layer; a low-K dielectric layer formed on the ohmic contact layer; etching the ohmic contact layer and the low-K dielectric layer to form a gate groove, and the gate groove formed in the gate groove A spacer structure made of an insulating medium; a high-K gate dielectric layer formed on the epitaxial wafer forming the spacer structure; a gate metal electrode formed on the high-K gate dielectric layer in the gate groove region; and the gate metal electrode Etching the high-K gate dielectric layer and the low-K dielectric layer for masking to expose the ohmic contact layer, and forming source-drain metal electrodes on the exposed ohmic contact layer. The invention reduces the parasitic resistance of the source and drain, improves the consistency of the device, and improves the radio frequency performance of the device.
Description
技术领域 technical field
本发明涉及半导体集成电路制造技术领域,具体涉及一种源漏自对准的MOS器件及其制作方法。The invention relates to the technical field of semiconductor integrated circuit manufacturing, in particular to a source-drain self-aligned MOS device and a manufacturing method thereof.
背景技术 Background technique
III-V化合物半导体材料相对硅材料而言,具有高载流子迁移率、大的禁带宽度等优点,而且在热学、光学和电磁学等方面都有很好的特性。在硅基CMOS技术日益逼近它的物理极限后,III-V化合物半导体材料以其高电子迁移率特性有可能成为备选沟道材料,用来制作CMOS器件。然而,III-V族半导体器件与硅器件有着许多不同的物理与化学性质,适合于硅器件的MOS结构及制作流程不一定可以应用到III-V族半导体器件中。因此,需要在III-V族半导体上采用新的器件结构和新的制作流程,以充分发挥III-V族半导体材料的材料特性,提高MOS器件的直流特性与射频特性,以满足高性能III-V族半导体CMOS技术的要求。Compared with silicon materials, III-V compound semiconductor materials have the advantages of high carrier mobility, large forbidden band width, etc., and have good characteristics in thermal, optical and electromagnetic aspects. After silicon-based CMOS technology is approaching its physical limit, III-V compound semiconductor materials may become candidate channel materials due to their high electron mobility characteristics for making CMOS devices. However, III-V semiconductor devices have many different physical and chemical properties from silicon devices, and the MOS structure and fabrication process suitable for silicon devices may not necessarily be applicable to III-V semiconductor devices. Therefore, it is necessary to adopt new device structures and new manufacturing processes on III-V semiconductors to give full play to the material properties of III-V semiconductor materials, improve the DC characteristics and radio frequency characteristics of MOS devices, and meet the requirements of high-performance III-V semiconductors. Group V semiconductor CMOS technology requirements.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的主要目的是提供一种源漏自对准的MOS器件及其制作方法,以实现低的源漏电阻,同时可以控制栅源与栅漏的间距,提高III-V MOS器件的电流驱动能力,满足高性能III-V CMOS技术在数字和射频方面的应用需求。In view of this, the main purpose of the present invention is to provide a source-drain self-aligned MOS device and its manufacturing method, to achieve low source-drain resistance, while controlling the distance between gate-source and gate-drain, improving III-V MOS The current drive capability of the device meets the application requirements of high-performance III-V CMOS technology in digital and radio frequency.
(二)技术方案(2) Technical solutions
为达到上述目的,本发明提供了一种源漏自对准的MOS器件,包括:单晶衬底层101;在该单晶衬底101上形成的III-V半导体层102;在该III-V半导体层102上形成的欧姆接触层103;在该欧姆接触层103上形成的低K介质层104;刻蚀该欧姆接触层103与该低K介质层104形成栅槽,在该栅槽中形成的由绝缘介质制作的侧墙结构105;在形成侧墙结构105的外延片上形成的高K栅介质层106;在栅槽区域的该高K栅介质层106之上形成的栅金属电极107;以及以该栅金属电极107为掩模刻蚀该高K栅介质层106和该低K介质层104露出欧姆接触层103,在露出的该欧姆接触层103上形成的源漏金属电极108。To achieve the above object, the present invention provides a source-drain self-aligned MOS device, comprising: a single
为达到上述目的,本发明还提供了一种制作源漏自对准的MOS器件的方法,包括:步骤1:选择一单晶衬底层101;步骤2:在该单晶衬底101上形成III-V半导体层102;步骤3:在III-V半导体层102上形成欧姆接触层103;步骤4:在欧姆接触层103上形成低K介质层104;步骤5:刻蚀欧姆接触层103与低K介质层104,形成栅槽;步骤6:在栅槽中形成由绝缘介质制作的侧墙结构105;步骤7:在形成侧墙结构105的外延片上形成高K栅介质层106;步骤8:在栅槽区域的高K栅介质层106之上形成栅金属电极107;步骤9:以栅金属电极107为掩模刻蚀该高K栅介质层106和低K介质层104,露出欧姆接触层103;步骤10:在露出的欧姆接触层103上形成源漏金属电极108。In order to achieve the above object, the present invention also provides a method for making a source-drain self-aligned MOS device, comprising: step 1: selecting a single
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
本发明提供的这种源漏自对准的MOS器件及其制作方法,利用多层源漏金属层直接在III-V半导体层上形成低电阻欧姆接触,减小了源漏的寄生电阻;通过侧墙工艺实现栅源与栅漏结构的自对准,提高器件的一致性;通过采用低K介质材料分离栅金属以源漏金属,使得栅源、栅漏的寄生电容进一步降低,进而提高器件的射频性能。The source-drain self-aligned MOS device and its manufacturing method provided by the present invention use multi-layer source-drain metal layers to directly form low-resistance ohmic contacts on the III-V semiconductor layer, reducing the parasitic resistance of the source-drain; through The sidewall process realizes the self-alignment of the gate-source and gate-drain structures, and improves the consistency of the device; by using low-K dielectric materials to separate the gate metal from the source-drain metal, the parasitic capacitance of the gate-source and gate-drain is further reduced, thereby improving the device RF performance.
附图说明 Description of drawings
图1是依照本发明实施例的源漏自对准的MOS器件的示意图;1 is a schematic diagram of a source-drain self-aligned MOS device according to an embodiment of the present invention;
图2是依照本发明实施例制作源漏自对准的MOS器件的方法流程图;2 is a flowchart of a method for fabricating a source-drain self-aligned MOS device according to an embodiment of the present invention;
图3-1至图3-9是依照本发明实施例制作源漏自对准的MOS器件的工艺流程图。FIG. 3-1 to FIG. 3-9 are process flow charts for fabricating a source-drain self-aligned MOS device according to an embodiment of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明提供的源漏自对准的MOS器件,利用多层源漏金属层直接在III-V半导体层上形成低电阻欧姆接触,减小了源漏的寄生电阻;通过侧墙工艺实现栅源与栅漏结构的自对准,提高器件的一致性;通过采用低K介质材料分离栅金属以源漏金属,使得栅源、栅漏的寄生电容进一步降低,进而提高器件的射频性能。The source-drain self-aligned MOS device provided by the present invention uses multi-layer source-drain metal layers to directly form low-resistance ohmic contacts on the III-V semiconductor layer, reducing the parasitic resistance of source-drain; realizing gate-source through sidewall technology Self-alignment with the gate-drain structure improves the consistency of the device; by using low-K dielectric materials to separate the gate metal from the source-drain metal, the parasitic capacitance of the gate-source and gate-drain is further reduced, thereby improving the RF performance of the device.
如图1所示,图1示出了依照本发明实施例的源漏自对准的MOS器件的示意图,该源漏自对准的MOS器件包括:单晶衬底层101;在该单晶衬底101上形成的III-V半导体层102;在III-V半导体层102上形成的欧姆接触层103;在欧姆接触层103上形成的低K介质层104;刻蚀欧姆接触层103与低K介质层104形成栅槽,在该栅槽中形成的由绝缘介质制作的侧墙结构105;在形成侧墙结构105的外延片上形成的高K栅介质层106;在栅槽区域的高K栅介质层106之上形成的栅金属电极107;以及以栅金属电极107为掩模刻蚀高K栅介质层106和低K介质层104露出欧姆接触层103,在露出的欧姆接触层103上形成的源漏金属电极108。As shown in FIG. 1, FIG. 1 shows a schematic diagram of a source-drain self-aligned MOS device according to an embodiment of the present invention. The source-drain self-aligned MOS device includes: a single
其中,所述单晶衬底101包括硅(Si)、锗(Ge)、砷化镓(GaAs)、磷化铟(InP)、氮化镓(GaN)、氮化铝(AlN)、碳化硅(SiC)或氧化铝(Al2O3)衬底。所述III-V半导体层102采用III-V族半导体薄层材料,该III-V族半导体薄层材料包括由砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、砷化铟(InAs)、锑化镓(GaSb)、氮化镓(GaN)和氮化铟(InN)构成的群组中的任一种化合物,以及该群组中多个化合物的多元合金;该III-V半导体层102包含一种III-V族半导体或者多种III-V族半导体的多元合金,或者包含由多种III-V族半导体以及合金薄层组合而成的复合沟道。Wherein, the
所述欧姆接触层103采用直接沉积的金属、外延生长的窄禁带III-V半导体薄膜材料,或者低电阻的氮化物,该金属或氮化物可以在III-V半导体层102上直接形成欧姆接触,并且欧姆接触电阻小于5Ωmm,从而减小源漏寄生电阻。The
所述低K介质104,其可以是诸如SiNx、SiO2等介质材料,介电常数K小于4,可以采用ALD或PECVD等方法直接沉积在欧姆接触层上,以分离栅金属电极107与欧姆接触层103。The low-K dielectric 104, which can be such as SiNx, SiO2 and other dielectric materials, has a dielectric constant K less than 4, and can be directly deposited on the ohmic contact layer by ALD or PECVD to separate the
在栅槽中沉积共型的绝缘介质,即构成侧墙结构105的绝缘介质主要采用PECVD生长SiNx,或者ALD沉积的低K介质,侧墙结构的厚度在10纳米到500纳米之间,形成方法采用干法刻蚀时刻蚀速率横纵比大的特点形成。Deposit a conformal insulating medium in the gate groove, that is, the insulating medium constituting the
所述高K栅介质层106,其主要特点是介电常数K大于20,远高于介电常数k=3.9的SiO2,以保证该高K栅介质层106的等效氧化层厚度具有等比例缩小的能力,该高K栅介质层106采用的材料包括氧化物、氮化物、氮氧化物、以及它们的任意混合、或者多层任意组合。The main feature of the high-K gate
栅金属电极107与源漏金属电极108的间距由侧墙结构105的宽度与高K栅介质层106的厚度决定,该间距可由几纳米变化到几百纳米,不受光刻工艺的限制。栅金属电极107的形状为T型结构,其材料结构包括功函数金属层与低电阻栅金属。The distance between the
基于图1所示的源漏自对准的MOS器件的示意图,图2示出了依照本发明实施例制作源漏自对准的MOS器件的方法流程图,该方法包括以下步骤:Based on the schematic diagram of a source-drain self-aligned MOS device shown in FIG. 1, FIG. 2 shows a flow chart of a method for manufacturing a source-drain self-aligned MOS device according to an embodiment of the present invention. The method includes the following steps:
步骤1:选择一单晶衬底层101;Step 1: Select a single
步骤2:在该单晶衬底101上形成III-V半导体层102;Step 2: forming a III-
步骤3:在该III-V半导体层102上形成欧姆接触层103;Step 3: forming an
步骤4:在该欧姆接触层103上形成低K介质层104;Step 4: forming a low-K
步骤5:刻蚀该欧姆接触层103与该低K介质层104,形成栅槽;Step 5: Etching the
步骤6:在该栅槽中形成由绝缘介质制作的侧墙结构105;Step 6: forming a
步骤7:在形成该侧墙结构105的外延片上形成高K栅介质层106;Step 7: forming a high-K gate
步骤8:在栅槽区域的该高K栅介质层106之上形成栅金属电极107;Step 8: forming a
步骤9:以该栅金属电极107为掩模刻蚀该高K栅介质层106和该低K介质层104,露出欧姆接触层103;Step 9: using the
步骤10:在露出的该欧姆接触层103上形成源漏金属电极108。Step 10: forming source-
其中,步骤2中所述在该单晶衬底101上形成III-V半导体层102,是采用MOCVD或者MBE等外延方法实现的。步骤3中所述在III-V半导体层102上形成欧姆接触层103,是采用直接沉积金属、外延生长窄禁带III-V半导体薄膜材料或者低电阻氮化物的方法实现的。步骤4中所述在欧姆接触层103上形成低K介质层104,是采用PECVD或者ALD等低温沉积的方法实现的。步骤5中所述刻蚀欧姆接触层103与低K介质层104形成栅槽,是采用干法刻蚀实现的。步骤6中所述在栅槽中形成由绝缘介质制作的侧墙结构105的步骤中,构成侧墙结构105的绝缘介质是采用PECVD在栅槽中生长SiNx形成的,或者是采用ALD在栅槽中沉积低K介质形成的。步骤7中所述在形成侧墙结构105的外延片上形成高K栅介质层106,是采用ALD沉积技术,或者溅射等方法实现的。步骤8中所述在栅槽区域的高K栅介质层106之上形成栅金属电极107,是采用电子束蒸发、溅射、ALD,以及这三者相结合的方法实现的。步骤9中所述以栅金属电极107为掩模刻蚀该高K栅介质层106和低K介质层104,是采用ICP或者RIE干法刻蚀、湿法腐蚀,以及干法刻蚀与湿法腐蚀相结合的方法实现的。步骤10中所述在露出的欧姆接触层103上形成源漏金属电极108,是采用电子束蒸发和溅射,以及两种方法相结合的方法实现的。Wherein, the formation of the III-
基于图1和图2所示的源漏自对准的MOS器件及其制作方法,图3-1至图3-9示出了依照本发明实施例的制作源漏自对准的MOS器件的工艺流程图,具体包括:Based on the source-drain self-aligned MOS device and its manufacturing method shown in FIG. 1 and FIG. 2, FIG. 3-1 to FIG. 3-9 show the process of manufacturing a source-drain self-aligned MOS device according to an embodiment of the present invention Process flow chart, specifically including:
如图3-1所示,选择一单晶硅衬底101,在该单晶衬底101上异质外延生长InAlAs/InGaAs半导体层102;As shown in FIG. 3-1, a single
如图3-2所示,在InAlAs/InGaAs半导体层102上形成源漏金属Mo层103;As shown in FIG. 3-2, a source-drain
如图3-3所示,在源漏金属Mo层103上沉积低K介质SiO2薄膜104;As shown in FIG. 3-3, a low-K dielectric SiO 2
如图3-4所示,使用光刻工艺定义栅槽,刻蚀低K介质SiO2薄膜104和源漏金属Mo层103,露出InAlAs/InGaAs半导体层102,形成栅槽;As shown in Figure 3-4, use photolithography to define the gate groove, etch the low-K dielectric SiO 2
如图3-5所示,在栅槽中沉积PECVD SiNX介质,采用各向异性干法刻蚀形成SiNX介质侧墙105;As shown in Figure 3-5, PECVD SiNx dielectric is deposited in the gate trench, and anisotropic dry etching is used to form SiNx
如图3-6所示,采用ALD技术在形成SiNX介质侧墙105的外延片上沉积高K栅介质LaAlO3106;As shown in Fig. 3-6, the high-K gate
如图3-7所示,采用PVD方法在栅槽区域的高K栅介质LaAlO3106之上沉积栅金属层TiAl107;As shown in Figure 3-7, the gate metal layer TiAl107 is deposited on the high-K gate
如图3-8所示,以栅金属层TiAl107为掩模采用干法刻蚀方法对高K栅介质LaAlO3106和低K介质SiO2薄膜104进行刻蚀,露出源漏金属Mo层103;As shown in Figure 3-8, the high-K gate
如图3-9所示,在露出的源漏金属Mo层103上制作源漏金属电极108。As shown in FIGS. 3-9 , a source-
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103868169A CN102569399A (en) | 2011-11-29 | 2011-11-29 | Source-drain self-aligned MOS device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103868169A CN102569399A (en) | 2011-11-29 | 2011-11-29 | Source-drain self-aligned MOS device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102569399A true CN102569399A (en) | 2012-07-11 |
Family
ID=46414360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103868169A Pending CN102569399A (en) | 2011-11-29 | 2011-11-29 | Source-drain self-aligned MOS device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102569399A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022135A (en) * | 2012-12-14 | 2013-04-03 | 中国科学院微电子研究所 | III-V group semiconductor nanowire field effect transistor device and manufacturing method thereof |
CN105632900A (en) * | 2015-12-29 | 2016-06-01 | 东莞市青麦田数码科技有限公司 | A method for graphene self-aligned top-gate field-effect transistor devices |
CN105655256A (en) * | 2015-12-30 | 2016-06-08 | 东莞市青麦田数码科技有限公司 | A method of fabricating a self-aligned MOSFET device |
CN106024712A (en) * | 2016-07-29 | 2016-10-12 | 东莞华南设计创新院 | Manufacturing method of self-aligned GaAs PMOS device |
CN107230720A (en) * | 2016-03-25 | 2017-10-03 | 北京大学 | The preparation method of gallium nitride heterojunction field-effect transistor |
CN108198852A (en) * | 2012-09-27 | 2018-06-22 | 英特尔公司 | Non-planar semiconductor device with III-V race's material active area with more dielectric gate stacked bodies |
CN111952177A (en) * | 2020-08-20 | 2020-11-17 | 中国科学院半导体研究所 | HEMT device and manufacturing method thereof |
CN107275413B (en) * | 2012-09-28 | 2021-03-12 | 英特尔公司 | High breakdown voltage III-N depletion MOS capacitor |
CN115631997A (en) * | 2022-12-21 | 2023-01-20 | 泰科天润半导体科技(北京)有限公司 | Method for manufacturing lateral trench silicon carbide MOSFET with improved withstand voltage |
CN118472018A (en) * | 2024-05-27 | 2024-08-09 | 深圳平湖实验室 | Semiconductor device and method for manufacturing the same, and electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6096590A (en) * | 1996-07-18 | 2000-08-01 | International Business Machines Corporation | Scalable MOS field effect transistor |
JP2002016017A (en) * | 2000-06-27 | 2002-01-18 | Nissan Motor Co Ltd | Silicon carbide semiconductor device and method of manufacturing the same |
CN1989601A (en) * | 2004-07-23 | 2007-06-27 | 克里公司 | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
JP2008311406A (en) * | 2007-06-14 | 2008-12-25 | Toyota Motor Corp | Manufacturing method of trench gate type SiC semiconductor device |
JP2011044647A (en) * | 2009-08-24 | 2011-03-03 | Sharp Corp | Group-iii nitride-based field-effect transistor and method of manufacturing the same |
-
2011
- 2011-11-29 CN CN2011103868169A patent/CN102569399A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6096590A (en) * | 1996-07-18 | 2000-08-01 | International Business Machines Corporation | Scalable MOS field effect transistor |
JP2002016017A (en) * | 2000-06-27 | 2002-01-18 | Nissan Motor Co Ltd | Silicon carbide semiconductor device and method of manufacturing the same |
CN1989601A (en) * | 2004-07-23 | 2007-06-27 | 克里公司 | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
JP2008311406A (en) * | 2007-06-14 | 2008-12-25 | Toyota Motor Corp | Manufacturing method of trench gate type SiC semiconductor device |
JP2011044647A (en) * | 2009-08-24 | 2011-03-03 | Sharp Corp | Group-iii nitride-based field-effect transistor and method of manufacturing the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108198852A (en) * | 2012-09-27 | 2018-06-22 | 英特尔公司 | Non-planar semiconductor device with III-V race's material active area with more dielectric gate stacked bodies |
CN108198852B (en) * | 2012-09-27 | 2021-12-28 | 英特尔公司 | Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack |
CN107275413B (en) * | 2012-09-28 | 2021-03-12 | 英特尔公司 | High breakdown voltage III-N depletion MOS capacitor |
CN103022135A (en) * | 2012-12-14 | 2013-04-03 | 中国科学院微电子研究所 | III-V group semiconductor nanowire field effect transistor device and manufacturing method thereof |
CN105632900A (en) * | 2015-12-29 | 2016-06-01 | 东莞市青麦田数码科技有限公司 | A method for graphene self-aligned top-gate field-effect transistor devices |
CN105632900B (en) * | 2015-12-29 | 2018-05-04 | 东莞市青麦田数码科技有限公司 | Preparation method of graphene self-aligned top gate field effect transistor device |
CN105655256A (en) * | 2015-12-30 | 2016-06-08 | 东莞市青麦田数码科技有限公司 | A method of fabricating a self-aligned MOSFET device |
CN107230720A (en) * | 2016-03-25 | 2017-10-03 | 北京大学 | The preparation method of gallium nitride heterojunction field-effect transistor |
CN106024712A (en) * | 2016-07-29 | 2016-10-12 | 东莞华南设计创新院 | Manufacturing method of self-aligned GaAs PMOS device |
CN111952177A (en) * | 2020-08-20 | 2020-11-17 | 中国科学院半导体研究所 | HEMT device and manufacturing method thereof |
CN115631997A (en) * | 2022-12-21 | 2023-01-20 | 泰科天润半导体科技(北京)有限公司 | Method for manufacturing lateral trench silicon carbide MOSFET with improved withstand voltage |
CN118472018A (en) * | 2024-05-27 | 2024-08-09 | 深圳平湖实验室 | Semiconductor device and method for manufacturing the same, and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102569399A (en) | Source-drain self-aligned MOS device and manufacturing method thereof | |
EP2955755B1 (en) | Nitride high-voltage component and manufacturing method therefor | |
TWI533453B (en) | Gallium nitride power semiconductor device with vertical structure | |
US9608115B2 (en) | FinFET having buffer layer between channel and substrate | |
EP2775528B1 (en) | Passivated III-V or Ge fin-shaped field effect transistor | |
CN213459743U (en) | High electron mobility transistor device and electronic device | |
CN109560135B (en) | Semiconductor structure and forming method thereof | |
CN105845723A (en) | Enhanced GaN-based high electron mobility transistor and preparation method thereof | |
CN102769033B (en) | HEMT with high breakdown voltage and method of manufacturing the same | |
CN105006485A (en) | FET based on topology semimetal, and HEMT based on topology semimetal and preparation method thereof | |
WO2023273252A1 (en) | Manufacturing method for n-polar gan transistor structure and semiconductor structure | |
CN112420850A (en) | Semiconductor device and preparation method thereof | |
CN102969360A (en) | III-V group semiconductor nanowire array field effect transistor | |
WO2022041674A1 (en) | Low thermal resistance gallium nitride on silicon microwave/millimeter wave device material structure and preparation method | |
CN109273527B (en) | Semiconductor structure and forming method thereof | |
CN107706232A (en) | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method | |
CN115207086A (en) | Indium phosphide high electron mobility transistor and preparation method thereof | |
CN103022135B (en) | III-V semiconductor nanowire transistor device and manufacturing method thereof | |
US8558242B2 (en) | Vertical GaN-based metal insulator semiconductor FET | |
TWI588944B (en) | High-voltage non-junction field effect component with drift region and manufacturing method thereof | |
CN209447805U (en) | A kind of semiconductor structure | |
CN109346522B (en) | Semiconductor structure and method of forming same | |
CN105655256A (en) | A method of fabricating a self-aligned MOSFET device | |
CN209447804U (en) | A kind of semiconductor structure | |
CN102983172A (en) | GaAs-based vertical structure MOS device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120711 |