CN102567569B - The system and method modeled for the mixed risk of turbine - Google Patents
The system and method modeled for the mixed risk of turbine Download PDFInfo
- Publication number
- CN102567569B CN102567569B CN201110385299.3A CN201110385299A CN102567569B CN 102567569 B CN102567569 B CN 102567569B CN 201110385299 A CN201110385299 A CN 201110385299A CN 102567569 B CN102567569 B CN 102567569B
- Authority
- CN
- China
- Prior art keywords
- data
- gas turbine
- turbine system
- probability
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000002184 metal Substances 0.000 claims description 42
- 238000004458 analytical method Methods 0.000 claims description 39
- 238000012423 maintenance Methods 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 11
- 238000007689 inspection Methods 0.000 claims description 10
- 238000009795 derivation Methods 0.000 claims description 9
- 238000007418 data mining Methods 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 3
- 230000004083 survival effect Effects 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 3
- 238000000611 regression analysis Methods 0.000 claims 2
- 238000010606 normalization Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 40
- 238000004364 calculation method Methods 0.000 description 31
- 230000035882 stress Effects 0.000 description 19
- 238000007619 statistical method Methods 0.000 description 13
- 239000000446 fuel Substances 0.000 description 11
- 238000007726 management method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000012546 transfer Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 238000010219 correlation analysis Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000036962 time dependent Effects 0.000 description 6
- 238000000540 analysis of variance Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 229910001026 inconel Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000491 multivariate analysis Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- JKIYPXKCQBHOLY-UHFFFAOYSA-N 5-(dimethylamino)-2-(1,3-thiazol-2-yldiazenyl)benzoic acid Chemical compound OC(=O)C1=CC(N(C)C)=CC=C1N=NC1=NC=CS1 JKIYPXKCQBHOLY-UHFFFAOYSA-N 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 1
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 1
- 238000010220 Pearson correlation analysis Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013502 data validation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
本发明涉及用于涡轮机的混合风险建模的系统和方法。本文中公开了用于增强涡轮机运行的系统和方法。这样的系统和方法包括混合风险模型(82)。该混合风险模型(82)包括基于物理的子模型(78,102,206)和统计子模型(80,208)。基于物理的子模型(78,102,206)配置成对涡轮机(10)的物理构件建模。统计子模型(80,208)配置成对涡轮机(10)的历史信息建模。混合风险模型(82)配置成计算涡轮机参数(84,86,88,202,204,208)。
The present invention relates to systems and methods for hybrid risk modeling of turbines. Systems and methods for enhancing turbine operation are disclosed herein. Such systems and methods include hybrid risk models (82). The mixed risk model (82) includes physically based submodels (78, 102, 206) and statistical submodels (80, 208). The physics-based submodels (78, 102, 206) are configured to model physical components of the turbine (10). The statistical sub-model (80, 208) is configured to model historical information of the turbine (10). The hybrid risk model (82) is configured to calculate turbine parameters (84, 86, 88, 202, 204, 208).
Description
技术领域 technical field
本文所公开的主题涉及关于风险建模的系统和方法。The subject matter disclosed herein relates to systems and methods related to risk modeling.
背景技术 Background technique
各种各样的系统,诸如涡轮系统,可在不同的构件和子构件之间包括复杂的机械相互关系。例如,涡轮可包括能够进行轴向旋转的一个或多个转子级(例如叶轮和叶片)。各个级的叶片或者轮叶能够将流体流动转换成机械运动。轮叶通过诸如锁线片的各种各样的紧固件附连到转子叶轮上。不幸的是,紧固件可表现出磨损(例如应力开裂)且需要维修或者替换。类似地,涡轮系统的其它构件可表现出磨损且需要维修或者替换。目前,使用手动检查和测试程序来确定构件是否应该进行维修或者替换。这样的检查和测试需要涡轮系统关停,这典型地耗时且昂贵。Various systems, such as turbine systems, can include complex mechanical interrelationships between various components and subcomponents. For example, a turbine may include one or more rotor stages (eg, wheels and blades) capable of axial rotation. The individual stages of blades or vanes are capable of converting fluid flow into mechanical motion. The buckets are attached to the rotor wheel by various fasteners such as lockwires. Unfortunately, fasteners can exhibit wear (eg, stress cracking) and require repair or replacement. Similarly, other components of the turbine system may exhibit wear and require repair or replacement. Currently, manual inspection and testing procedures are used to determine whether a component should be repaired or replaced. Such inspections and tests require turbine system shutdown, which is typically time consuming and expensive.
发明内容 Contents of the invention
下面概述了在范围方面与初始要求保护的发明相称的某些实施例。这些实施例不意图限制所要求保护的发明的范围,而是相反,这些实施例仅仅意图提供对本发明的可行形式的简要概述。事实上,本发明可包括可类似于或者不同于以下所阐述的实施例的各种各样的形式。Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. In fact, the present invention may encompass a wide variety of forms that may be similar to or different from the embodiments set forth below.
在第一实施例中,一种用于分析涡轮机的系统包括混合风险模型。混合风险模型包括基于物理的子模型和统计子模型。基于物理的子模型配置成对涡轮机的物理构件建模。统计子模型配置成对涡轮机的历史信息建模。混合风险模型可计算涡轮机参数。In a first embodiment, a system for analyzing a turbine includes a hybrid risk model. Mixed risk models include physically based and statistical submodels. The physics-based submodel is configured to model the physical components of the turbine. The statistical sub-model is configured to model historical information for the turbine. A mixed risk model calculates turbine parameters.
在第二实施例中,一种非瞬态机器可读计算机介质包括混合风险模型。混合风险模型包括基于物理的子模型和统计子模型。基于物理的子模型配置成对涡轮系统的物理构件建模。统计子模型配置成对历史涡轮系统信息建模。混合风险模型可计算涡轮系统参数。In a second embodiment, a non-transitory machine-readable computer medium includes a hybrid risk model. Mixed risk models include physically based and statistical submodels. The physics-based submodels are configured to model the physical components of the turbine system. The statistical submodel is configured to model historical turbine system information. A hybrid risk model calculates turbine system parameters.
在第三实施例中,一种生成混合风险模型的方法包括分析涡轮机的物理构件以获得基于物理的分析。该方法还包括分析涡轮机的统计信息来获得统计分析。此外,该方法包括集成基于物理的分析和统计分析。以基于物理的分析和统计分析的集成为基础来得出混合风险模型。混合风险模型配置成计算涡轮机参数。In a third embodiment, a method of generating a hybrid risk model includes analyzing physical components of a turbine for a physics-based analysis. The method also includes analyzing statistical information of the turbine to obtain a statistical analysis. Furthermore, the approach includes integrating physics-based analysis and statistical analysis. A hybrid risk model is derived based on the integration of physics-based analysis and statistical analysis. The mixed risk model is configured to calculate turbine parameters.
附图说明 Description of drawings
在参照附图阅读以下详细描述时,本发明的这些和其它特征、方面和优点将变得更好理解,在附图中,类似的符号在所有图中表示类似的部件,其中:These and other features, aspects and advantages of the present invention will become better understood upon reading the following detailed description with reference to the accompanying drawings, in which like symbols refer to like parts throughout the several views, in which:
图1描绘了涡轮系统的一个实施例的截面图,示出了示例性构件;FIG. 1 depicts a cross-sectional view of one embodiment of a turbine system, illustrating exemplary components;
图2描绘了图1中所示的涡轮系统的构件的一个实施例的详图;Figure 2 depicts a detailed view of one embodiment of the components of the turbine system shown in Figure 1;
图3描绘了建模和资产管理逻辑的一个实施例的流程图;Figure 3 depicts a flow diagram of one embodiment of modeling and asset management logic;
图4描绘了混合风险建模逻辑的一个实施例的流程图;Figure 4 depicts a flow diagram of one embodiment of hybrid risk modeling logic;
图5描绘了辨识逻辑(identification logic)的一个实施例的流程图;Figure 5 depicts a flow diagram of one embodiment of identification logic;
图6描绘了维护因子计算逻辑的一个实施例的流程图;Figure 6 depicts a flow diagram of one embodiment of maintenance factor calculation logic;
图7描绘了多个混合风险模型的一个实施例的流程图;以及FIG. 7 depicts a flow diagram of one embodiment of multiple hybrid risk models; and
图8描绘了适用于预测转子叶轮报废的过程的一个实施例的流程图。FIG. 8 depicts a flow diagram of one embodiment of a process suitable for predicting rotor wheel failure.
部件列表:Parts list:
10燃气涡轮发动机10 gas turbine engine
12燃料喷嘴12 fuel nozzles
14压缩机14 compressors
16燃烧器16 burners
18进气口18 air inlet
20级level 20
22级Level 22
24级Level 24
26导叶26 guide vane
28叶片28 blades
30叶轮30 impeller
32轴32 axes
34涡轮34 Turbo
36扩散器36 diffuser
40级Level 40
42级Level 42
44级Level 44
46轮叶46 blades
48叶轮48 impeller
50叶轮50 impeller
52叶轮52 impeller
54轴54 axis
60排气60 exhaust
62锁线片62 Sewing piece
64外部侧64 external side
66内部侧66 inner side
68空气冷却槽68 air cooling slots
70逻辑70 logic
72方框72 squares
74运行数据74 running data
76监测和诊断数据76 Monitoring and diagnostic data
78方框78 squares
80方框80 squares
82混合风险模型82 mixed risk models
84方框84 squares
86方框86 squares
88方框88 squares
90方框90 squares
92逻辑92 logic
94数据源94 data sources
96单元数据96 unit data
98现场监测数据98 field monitoring data
100叶片配置数据100 blade configuration data
102物理模型数据102 Physical Model Data
104逻辑104 logic
106方框106 boxes
108方框108 boxes
110方框110 boxes
112方框112 boxes
114方框114 box
116方框116 boxes
118方框118 box
120方框120 squares
122方框122 boxes
124高风险单元124 High Risk Units
126方框126 squares
128逻辑128 logic
130数据库130 databases
132方框132 boxes
134方框134 boxes
136方框136 boxes
138方框138 squares
140方框140 squares
142方框142 boxes
144方框144 boxes
146方框146 squares
148方框148 squares
150方框150 boxes
152方框152 boxes
154方框154 squares
156方框156 squares
158变量158 variables
160逻辑160 logic
162逻辑162 logic
164逻辑164 logic
166金属属性166 metal properties
168金属温度值168 metal temperature value
170方框170 boxes
172方框172 boxes
174方框174 squares
176方框176 squares
178方框178 squares
180方框180 squares
182方框182 squares
184方框184 squares
186统计值186 stats
188方框188 squares
190方框190 boxes
192方框192 boxes
194方框194 boxes
196方框196 squares
198方框198 squares
200方框200 squares
202方框202 box
204等效燃烧小时模型204 Equivalent Burn Hours Model
206子模型206 submodels
208子模型208 submodels
210子模型210 submodels
212子模型212 submodels
214子模型214 submodels
216保持时间216 hold time
218子模型218 submodels
220子模型220 submodels
222子模型222 submodels
224子模型224 submodels
225子模型225 submodels
226模型226 model
228子模型228 submodels
229金属温度传递函数229 Metal temperature transfer function
230应力230 stress
231分布231 distribution
232子模型232 submodels
234子模型234 submodels
236子模型236 submodels
238子模型238 submodels
240子模型240 submodels
242子模型242 submodels
243基于ISO的子模型243 ISO-based submodels
244ISO金属温度244ISO metal temperature
250逻辑250 logic
252逻辑252 logic
254逻辑254 logic
256模型256 model
258模型258 model
260方框260 square frame
262模型262 model
264模型264 model
266方框266 squares
268方框268 squares
270方框270 squares
272方框272 boxes
274方框274 squares
具体实施方式 detailed description
将在下面描述本发明的一个或多个具体实施例。为了致力于对这些实施例提供简明的描述,可不在说明书中描述实际实现的所有特征。应当理解,在任何工程或设计项目中开发任何这种实际实现时,必须作出许多对于实现而言专有的决定,以实现开发者的具体目的,例如遵守与系统相关的和与商业相关的约束,这些约束可根据不同的实现而改变。此外,应当理解,这种开发工作可为复杂和费时的,但尽管如此,其仍然是受益于本公开的普通技术人员的设计、生产和制造的例行任务。One or more specific embodiments of the invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation may be described in the specification. It should be understood that in developing any such actual implementation in any engineering or design project, a number of implementation-specific decisions must be made to achieve the developer's specific objectives, such as compliance with system-related and business-related constraints , these constraints may vary from implementation to implementation. In addition, it should be understood that such a development effort might be complex and time consuming, but nevertheless would be a routine undertaking of design, production, and manufacture for those of ordinary skill having the benefit of this disclosure.
当介绍本发明的各种实施例的元件时,冠词“一”、“一个”、“该”和“所述”意图指存在一个或多个元件。用语“包括”、“包含”和“具有”意图为包括性的,并且指除了所列元件之外可存在额外的元件。When introducing elements of various embodiments of the invention, the articles "a," "an," "the," and "said" are intended to mean that there are one or more of the elements. The terms "comprising," "comprising," and "having" are intended to be inclusive and mean that there may be additional elements other than the listed elements.
所公开的实施例包括用于预测装备故障、优化运行生命周期和/或改进机械系统的维护过程的系统和方法。更具体地,所公开的实施例包括生成使得能集成基于物理的分析或者模型与在机械机器(诸如以下关于图1更详细地描述的涡轮系统)的现实使用期间观测到的经验数据的统计分析或者模型的混合风险模型。混合风险模型还使得能进行故障的单元级的预测、生命周期优化和/或诸如单独的涡轮系统的单独的单元的改进的管理。也就是说,一组(fleet)涡轮系统,诸如能够从纽约斯卡奈塔(Schenectady)的通用电气公司(General Electric Co.)获得的一组MS-7000F涡轮系统、一组MS-7000FA涡轮系统和/或一组MS-9000F涡轮系统,可在单独涡轮级上操作性地管理,从而允许群组中的基本所有涡轮装置的单独管理。此外,本文中所述的实施例允许在涡轮群组上分享数据、模型、计算和/或处理,从而使得能进行涡轮群组的多级的运行管理(例如,单元级和群组级)。The disclosed embodiments include systems and methods for predicting equipment failure, optimizing operational lifecycles, and/or improving maintenance procedures for mechanical systems. More specifically, the disclosed embodiments include generating statistical analyzes that enable integration of physics-based analyzes or models with empirical data observed during real-world use of mechanical machines, such as the turbine system described in more detail below with respect to FIG. 1 Or a mixed risk model of the model. The hybrid risk model also enables unit-level prediction of failure, lifecycle optimization, and/or improved management of individual units such as individual turbine systems. That is, a fleet of turbine systems such as a fleet of MS-7000F turbine systems, a fleet of MS-7000FA turbine systems available from the General Electric Co. of Schenectady, New York and/or a group of MS-9000F turbine systems, can be operatively managed on individual turbine stages, allowing individual management of substantially all turbine devices in the group. Furthermore, embodiments described herein allow sharing of data, models, calculations, and/or processing across groups of turbines, thereby enabling multi-level operational management of groups of turbines (eg, unit level and group level).
可使用统计分析,例如以便试图基于历史数据预测涡轮构件的故障风险。然而,这种统计分析可能并不准确,尤其是在应用于具体单元的预测时。也可使用构件的基于物理的分析来试图预测装备故障。这样的基于物理的分析可生成包括构件的虚拟表示的模型。然后可使用该虚拟表示来例如模拟构件的“磨损和损坏”。然而,这样的基于物理的分析可能不能单独实现期望水平的预测准确性。所公开的实施例允许导出集成了某些统计分析与基于物理的分析的混合风险模型。该混合风险模型可导致改进的预测准确性。事实上,所公开的实施例允许在单独的涡轮装置或者其它涡轮机的整个寿命期上有更高的改进水平的预测准确性。Statistical analysis may be used, for example, in an attempt to predict the failure risk of turbine components based on historical data. However, this statistical analysis may not be accurate, especially when applied to unit-specific forecasts. Physics-based analysis of components may also be used in an attempt to predict equipment failure. Such physics-based analysis can generate models that include virtual representations of components. This virtual representation can then be used, for example, to simulate "wear and damage" of components. However, such physics-based analysis alone may not achieve the desired level of predictive accuracy. The disclosed embodiments allow the derivation of hybrid risk models that integrate certain statistical and physics-based analyses. This mixed risk model can lead to improved prediction accuracy. In fact, the disclosed embodiments allow for an even higher improved level of predictive accuracy over the lifetime of an individual turbine plant or other turbine.
在某些实施例中,可在系统的运行寿命期间观测具体涡轮系统的行为,且这样的观测可用于预测不希望的维护事件,诸如锁线片中的开裂的出现,其可能需要计划外的维护和/或引起另外的成本。事实上,所公开的实施例通过以下方式改进机械系统的运行寿命:分析来自这样的系统的数据,确定计划外的维护事件的可能性,以及建议替换某些部件,以便最小化或者基本消除系统运行的计划外的中断。因此,可实现涡轮群组中的系统的更加改进的维护计划和资产管理。事实上,所分析的涡轮机的运行寿命可得以改进,同时减少或者基本消除计划外的维护事件的发生。In certain embodiments, the behavior of a particular turbine system can be observed during the operating life of the system, and such observations can be used to predict the occurrence of undesired maintenance events, such as cracks in the lockwire, which may require unplanned maintenance and/or incur additional costs. In fact, the disclosed embodiments improve the operational life of mechanical systems by analyzing data from such systems, determining the likelihood of unplanned maintenance events, and recommending replacement of certain components in order to minimize or substantially eliminate system Unplanned interruption of operations. Thus, more improved maintenance planning and asset management of the systems in the turbine group may be achieved. In fact, the operating life of the analyzed turbine can be improved while reducing or substantially eliminating the occurrence of unscheduled maintenance events.
首先讨论可与所公开的实施例一起使用的某些机械系统的实施例可能是有益的。在了解前述内容的情况下现在参照图1,该图示出了涡轮系统或者燃气涡轮发动机10的一个实施例的截面侧视图。机械系统,诸如涡轮系统10,在运行状态期间经受机械应力和热应力,这可能需要周期性的维护或者替换。在涡轮系统10运行期间,诸如天然气或者合成气的燃料可被引导到涡轮系统10,通过一个或多个燃料喷嘴12进入燃烧器16。空气可通过进气区段18进入涡轮系统10,且可由压缩机14压缩。压缩机14可包括压缩空气的一系列级20,22和24。各个级可包括一组或多组固定的导叶26和旋转而逐步增大压力以提供压缩空气的叶片28。叶片28可附连到连接到轴32上的旋转的叶轮30上。来自压缩机14的压缩的排出空气可通过扩散器区段36离开压缩机14且可被引导到燃烧器16中,以便与燃料混合。例如,燃料喷嘴12可以用于最优的燃烧、排放、燃料消耗和动力输出的合适的比率将燃料空气混合物喷射到燃烧器16中。在某些实施例中,涡轮系统10可包括设置成环形布置的多个燃烧器16。各个燃烧器16可将热燃烧气体引导到涡轮34中。It may be beneficial to first discuss some embodiments of mechanical systems that may be used with the disclosed embodiments. With the foregoing in mind, reference is now made to FIG. 1 , which illustrates a cross-sectional side view of one embodiment of a turbine system or gas turbine engine 10 . Mechanical systems, such as turbine system 10 , are subjected to mechanical and thermal stress during operating conditions, which may require periodic maintenance or replacement. During operation of turbine system 10 , fuel such as natural gas or syngas may be directed to turbine system 10 through one or more fuel nozzles 12 and into combustor 16 . Air may enter turbine system 10 through intake section 18 and may be compressed by compressor 14 . Compressor 14 may include a series of stages 20 , 22 and 24 that compress air. Each stage may include one or more sets of stationary guide vanes 26 and blades 28 that rotate to provide compressed air in steps of increasing pressure. Blades 28 may be attached to a rotating impeller 30 connected to a shaft 32 . Compressed discharge air from compressor 14 may exit compressor 14 through diffuser section 36 and may be directed into combustor 16 for mixing with fuel. For example, fuel nozzle 12 may inject a fuel-air mixture into combustor 16 at a suitable ratio for optimal combustion, emissions, fuel consumption, and power output. In certain embodiments, turbine system 10 may include a plurality of combustors 16 arranged in an annular arrangement. Each combustor 16 may direct hot combustion gases into a turbine 34 .
如所描绘的,涡轮34包括三个单独的级40、42和44。各个级40、42和44包括联接到相应的转子叶轮48、50和52上的一组叶片或者轮叶46,转子叶轮48、50和52附连到轴54上。随着热燃烧气体导致涡轮叶片46旋转,轴54旋转来驱动压缩机14以及任何其它合适的负载,诸如发电机。最终,涡轮系统10使燃烧气体扩散和排放通过排气区段60。As depicted, turbine 34 includes three separate stages 40 , 42 and 44 . Each stage 40 , 42 and 44 includes a set of blades or buckets 46 coupled to a respective rotor wheel 48 , 50 and 52 which is attached to a shaft 54 . As the hot combustion gases cause turbine blades 46 to rotate, shaft 54 rotates to drive compressor 14 and any other suitable load, such as an electrical generator. Ultimately, turbine system 10 diffuses and exhausts the combustion gases through exhaust section 60 .
涡轮构件,诸如叶片或者轮叶46,可通过诸如图2中所示的锁线片的紧固件来附连到转子叶轮48、50和52上。叶片46和锁线片在发动机运行期间经受高温和高压。可执行周期性的检查来测试和证实锁线片和叶片46处于规定的运行参数内。例如,可使用涡流测试来针对各个叶片46分析锁线片、空气冷却的槽、外柄脚圆角以及内柄脚圆角。然而,通常使涡轮系统10离线来执行这些测试,这可能非常昂贵而且低效。Turbine components, such as blades or vanes 46 , may be attached to rotor wheels 48 , 50 , and 52 by fasteners, such as lockwires shown in FIG. 2 . The blades 46 and lockwires are subjected to high temperatures and pressures during engine operation. Periodic inspections may be performed to test and verify that the lockwire and blade 46 are within specified operating parameters. For example, eddy current testing may be used to analyze lockwires, air-cooled slots, outer tang fillets, and inner tang fillets for each blade 46 . However, these tests are typically performed offline with the turbine system 10, which can be very expensive and inefficient.
图2示出了转子叶轮(例如,转子叶轮48、50或者52)的一个实施例的详图。各个转子叶轮48、50或者52包括紧固装置,诸如锁线片62,其适用于将叶片46联接到相应的转子叶轮48、50或者52。锁线片62包括大体背离转子叶轮48、50或者52的中心而面向外的外部侧64,以及大体朝向转子叶轮48、50或者52的中心而面向内的内部侧66。转子叶轮48、50或者52还包括用来在叶轮旋转期间降低叶轮48、50或者52的温度的空气冷却槽68。锁线片62和空气冷却槽68可经历计划外的维护事件。例如,开裂形成可发生在锁线片62的外部侧64或者内部侧66处。类似地,空气冷却槽68可在其周边周围经历开裂形成。FIG. 2 shows a detailed view of one embodiment of a rotor wheel (eg, rotor wheel 48 , 50 , or 52 ). Each rotor wheel 48 , 50 or 52 includes fastening means, such as lockwires 62 , adapted to couple the blades 46 to the respective rotor wheel 48 , 50 or 52 . The lockwire 62 includes an outer side 64 facing outward generally away from the center of the rotor wheel 48 , 50 or 52 , and an inner side 66 facing inward generally towards the center of the rotor wheel 48 , 50 or 52 . The rotor wheel 48, 50 or 52 also includes air cooling slots 68 for reducing the temperature of the wheel 48, 50 or 52 during wheel rotation. The lockwires 62 and the air cooling slots 68 may experience unscheduled maintenance events. For example, crack formation may occur at either the outer side 64 or the inner side 66 of the lockwire 62 . Similarly, the air cooling slot 68 may undergo crack formation around its perimeter.
如以下进一步详细讨论的,所公开的实施例包括生成模型,诸如混合风险模型,其能够捕捉所分析的构件(例如,叶轮48、50,52)的物理性质以及集成基于物理的模型与统计分析。这种单元级混合风险模型可用来例如针对群组中的具体涡轮系统10来预测计划外的事件的风险。也可使用部件级混合风险模型来关于部件和部件位置-诸如锁线片62外部侧64、锁线片62内部侧66以及空气冷却槽68-预测群组中的计划外的事件的风险。因此,可计算基于实际的燃烧小时的数量的单独的涡轮系统或者单元10的计划外的维护事件的概率。此外,混合风险模型可用于优化群组中的各个或者所有涡轮单元10的运行。例如,可通过使用本文中所述的预测实施例实现更高效的维护和停机时间计划。将理解,本文中所述的技术可用于经历“磨损和损坏”的几乎任何机械系统。事实上,适用于管理各种各样的机械资产的资产管理逻辑,诸如以下图3中的资产管理逻辑,可用于许多机械系统,包括涡轮系统10。As discussed in further detail below, the disclosed embodiments include generative models, such as hybrid risk models, capable of capturing the physical properties of the analyzed components (e.g., impellers 48, 50, 52) and integrating physics-based models with statistical analysis . Such a unit-level hybrid risk model may be used, for example, to predict the risk of an unplanned event for a specific turbine system 10 in a cluster. The component level hybrid risk model can also be used to predict the risk of unplanned events in a cluster with respect to components and component locations such as the outside side 64 of the lockwire 62 , the inside side 66 of the lockwire 62 , and the air cooling slot 68 . Accordingly, the probability of an unscheduled maintenance event for an individual turbine system or unit 10 based on the actual number of hours fired may be calculated. Furthermore, a hybrid risk model may be used to optimize the operation of individual or all turbine units 10 in a group. For example, more efficient maintenance and downtime planning can be achieved through use of the predictive embodiments described herein. It will be appreciated that the techniques described herein can be used with virtually any mechanical system that experiences "wear and tear". In fact, asset management logic suitable for managing a wide variety of mechanical assets, such as the asset management logic in FIG. 3 below, can be used for many mechanical systems, including turbine system 10 .
图3是可用于对涡轮机的资产-诸如涡轮系统10-进行建模和管理的逻辑70的一个实施例的流程图。将理解,逻辑70和所公开的实施例可用于任何涡轮机,诸如涡轮、压缩机以及泵。涡轮可包括燃气涡轮、蒸汽涡轮、风力涡轮、水力涡轮等等。此外,逻辑70可包括可由计算装置用来将诸如传感器数据的数据转换成混合风险模型和资产管理过程的非瞬态机器可读代码或者计算机指令。此外,本文所述的逻辑70以及模型和子模型中的任一个可存储在控制器中,且用来控制例如与涡轮机和涡轮机的资产有关的逻辑和维护活动。因此,可收集(方框72)来自各个单独的涡轮系统10的各种各样的数据。数据可包括运行数据74以及监测和诊断(M&D)数据76。运行数据74可包括群组中的各个单元10的维护历史,包括维护日志数据,诸如硬件配置历史,以及维修的日期和类型。运行数据74还可包括涡轮启动(例如热启动、中间启动以及冷启动)的日期和类型以及任何计划外的维护事件(例如锁线开裂、空气冷却槽开裂)。M&D数据76可包括例如由涡轮10上的许多位置和系统处(诸如燃料喷嘴12、压缩机14、燃烧器16、涡轮34和/或排气区段60上)的传感器传输的数据。此外,感测的数据可包括温度、压力、流率、旋转速度、振动和/或功率产生量(例如瓦特、安培、伏特)。FIG. 3 is a flowchart of one embodiment of logic 70 that may be used to model and manage a turbine asset, such as turbine system 10 . It will be understood that the logic 70 and disclosed embodiments may be used with any turbomachine, such as turbines, compressors, and pumps. Turbines may include gas turbines, steam turbines, wind turbines, water turbines, and the like. Additionally, logic 70 may include non-transitory machine-readable code or computer instructions that may be used by a computing device to convert data, such as sensor data, into a hybrid risk model and asset management process. Additionally, the logic 70 and any of the models and sub-models described herein may be stored in a controller and used to control logic and maintenance activities related to, for example, turbines and assets of the turbines. Accordingly, a wide variety of data from each individual turbine system 10 may be collected (block 72 ). Data may include operational data 74 and monitoring and diagnostic (M&D) data 76 . Operational data 74 may include maintenance history for individual units 10 in the group, including maintenance log data, such as hardware configuration history, and dates and types of repairs. Operating data 74 may also include dates and types of turbine starts (eg, warm starts, intermediate starts, and cold starts) and any unscheduled maintenance events (eg, cracked lockwires, cracked air cooling slots). M&D data 76 may include, for example, data transmitted by sensors at numerous locations and systems on turbine 10 , such as on fuel nozzles 12 , compressor 14 , combustor 16 , turbine 34 , and/or exhaust section 60 . Additionally, sensed data may include temperature, pressure, flow rate, rotational speed, vibration, and/or power production (eg, watts, amps, volts).
可针对群组中的各个单元10得出基于物理的维护因子(MF)计算(方框78)。在一个实施例中,MF计算基于寿命参数(LP)函数或者曲线。使用LP函数来针对某部件和/或部件中的位置,诸如锁线片62和/或空气冷却槽68,限定某些温度处的运行使用寿命。LP函数可通过经由基于物理的建模技术-诸如低周疲劳(LCF)寿命预测建模、计算流体动力学(CFD)、有限元分析(FEA)、实体建模(例如,参数化和非参数化建模)和/或3维到2维FEA映射来对机械构件(例如叶片、锁线片、空气冷却槽)建模而得出。事实上,可使用各种各样的建模技术,包括热流体动力学技术,该技术可产生涡轮系统10和涡轮构件的数值和物理建模。在一个实施例中,可在多种金属温度处基于金属的温度、应力和每次启动的燃烧小时(即,N比率)作为传递函数得出LP函数,如以下更详细地描述。然后可将LP函数规格化,产生规格化寿命参数(NLP)函数或者曲线。然后MF可大体作为NLP的倒数而获得,也就是说,MF=SSF*1/NLP,其中SSF是针对不同的构件配置(例如,弯曲槽相对于方形槽)的应力比例因子,如下文更详细地描述。A physics-based maintenance factor (MF) calculation may be derived for each unit 10 in the group (block 78). In one embodiment, the MF calculation is based on a Life Parameter (LP) function or curve. The LP function is used to define operating life at certain temperatures for a component and/or location in a component, such as lockwire 62 and/or air cooling slot 68 . LP functions can be obtained via physics-based modeling techniques—such as low cycle fatigue (LCF) life prediction modeling, computational fluid dynamics (CFD), finite element analysis (FEA), solid modeling (e.g., parametric and nonparametric Modeling) and/or 3D to 2D FEA mapping to model mechanical components (e.g. blades, lockwires, air cooling slots). In fact, a wide variety of modeling techniques may be used, including thermo-fluid dynamics techniques that result in numerical and physical modeling of the turbine system 10 and turbine components. In one embodiment, the LP function may be derived as a transfer function at various metal temperatures based on the metal's temperature, stress, and burn hours per start (ie, N ratio ), as described in more detail below. The LP function can then be normalized to produce a Normalized Life Parameter (NLP) function or curve. MF can then be obtained roughly as the inverse of NLP, that is, MF=SSF*1/NLP, where SSF is the stress scaling factor for different member configurations (e.g., curved slots versus square slots), as described in more detail below described.
可使用数据挖掘活动(方框80),其可使用运行数据74和M&D数据76作为输入。数据挖掘输入可经预处理,然后被分析以从数据中提取模式。数据挖掘技术可包括聚类技术、分类技术、回归建模技术、规则学习(例如关联)技术和/或统计技术,其适用于确认模式或者输入数据中的关系。例如,聚类技术可发现数据中的在某种意义上“相似的”组或者结构。分类技术可作为某些组的部件(例如有更高的概率会遇到计划外的维护事件的涡轮10)来对数据点分类。回归技术可用来寻找能够在某一误差范围内对数据建模的函数。规则学习技术可用来寻找变量之间的关系。例如,使用规则学习可导致使某些冷启动程序与增加的叶片磨损相关。基于物理的MF计算(方框78)和数据挖掘(方框80)可使得能够生成多位置多级的混合风险模型82。A data mining activity may be employed (block 80 ), which may use operational data 74 and M&D data 76 as input. Data mining input can be preprocessed and then analyzed to extract patterns from the data. Data mining techniques may include clustering techniques, classification techniques, regression modeling techniques, rule learning (eg, association) techniques, and/or statistical techniques suitable for identifying patterns or relationships in input data. For example, clustering techniques can discover groups or structures in data that are in some sense "similar". Classification techniques may classify data points as certain groups of components, such as turbines 10, have a higher probability of encountering unplanned maintenance events. Regression techniques can be used to find functions that model data within a certain margin of error. Rule learning techniques can be used to find relationships between variables. For example, learning using rules may result in associating certain cold start procedures with increased blade wear. Physics-based MF calculation (block 78 ) and data mining (block 80 ) may enable generation of a multi-location multi-level hybrid risk model 82 .
多位置多级的混合风险模型82可在涡轮系统10的不同的层级处操作,例如,该模型可使得能够有作为整体针对涡轮系统10、针对诸如转子或者压缩机的涡轮系统构件、针对诸如转子叶片的单独的转子构件、以及针对转子叶轮的单独的区段(诸如锁线片62和空气冷却槽68)进行预测的能力。混合风险模型还可在系统-诸如涡轮系统10-的位置上操作。用于预测结果的实例位置可包括进气区段,压缩机区段,转子区段以及排气区段。事实上,可使用涡轮系统10的任何位置或者区段。此外,多位置多级的混合风险模型82使得能够进行计划外的事件预测(方框84)、转子寿命优化(方框86)和/或转子报废(方框88)。The multi-location, multi-level hybrid risk model 82 can operate at different levels of the turbine system 10, for example, the model can enable analysis of the turbine system 10 as a whole, for turbine system components such as rotors or compressors, for turbine system components such as rotors or The individual rotor components of the blades, as well as the ability to predict for individual segments of the rotor wheel such as lockwire 62 and air cooling slots 68 . The hybrid risk model can also operate at the location of a system, such as turbine system 10 . Example locations for predicting results may include an intake section, a compressor section, a rotor section, and an exhaust section. Virtually any location or section of turbine system 10 may be used. Additionally, the multi-location, multi-level hybrid risk model 82 enables unplanned event prediction (block 84 ), rotor life optimization (block 86 ), and/or rotor retirement (block 88 ).
计划外的事件预测(方框84)可用来预测计划外的事件,诸如锁线片事件、空气冷却槽事件、金属应力相关事件、温度应力相关事件和/或运行使用相关事件。也就是说,可针对单独的单元10预测计划外的维护事件(诸如锁线片开裂)发生的概率,且可在事件实际发生之前采取修正措施。例如,燃烧小时可用来预测关于具体转子叶轮的计划外的维护事件的高可能性。涡轮系统10然后可经历预防性维护以检查和/或更换转子叶轮。事实上,这样的预测能力使得诸如涡轮系统10的涡轮机能有更优化的使用寿命和改进的性能。因此,本文所公开的技术的预测能力允许进行转子寿命优化(方框86)。Unplanned event prediction (block 84 ) may be used to predict unplanned events, such as lockwire events, air cooling slot events, metal stress related events, temperature stress related events, and/or operational usage related events. That is, the probability of an unplanned maintenance event, such as a split seam, can be predicted for an individual unit 10, and corrective action can be taken before the event actually occurs. For example, burn hours may be used to predict a high likelihood of an unscheduled maintenance event for a particular rotor wheel. Turbine system 10 may then undergo preventive maintenance to inspect and/or replace the rotor wheel. In fact, such predictive capabilities allow for more optimized service life and improved performance of turbines such as turbine system 10 . Thus, the predictive capabilities of the techniques disclosed herein allow for rotor life optimization (block 86).
可例如通过基于具体涡轮系统10的实际的使用和寿命历史以及一个或多个混合风险模型82而生成和遵循维护程序来优化转子寿命(方框86)。维护程序可将涡轮系统10的之前的维护历史、构件安装历史(例如,所安装的构件的类型)、运行小时(包括热启动、温启动和冷启动小时)、所燃烧的燃料的类型(例如液体燃料、合成气)、所产生的负载、运行数据74和/或M&D数据76考虑在内。也可使用用于预测转子报废(方框88)的程序,如下文更详细地描述,以便最大化转子在报废以及更换该转子之前的使用(例如,使用小时)。Rotor life may be optimized, for example, by generating and following maintenance procedures based on the actual usage and life history of the particular turbine system 10 and one or more hybrid risk models 82 (block 86 ). The maintenance program may include previous maintenance history of turbine system 10, component installation history (e.g., type of component installed), hours of operation (including hot start, warm start, and cold start hours), type of fuel burned (e.g., liquid fuels, syngas), resulting loads, operating data 74 and/or M&D data 76 are taken into account. A procedure for predicting rotor retirement (block 88 ), as described in more detail below, may also be used to maximize the use (eg, hours of use) of the rotor prior to retirement and replacement of the rotor.
用于涡轮系统10的资产管理(方框90)因而可包括计划外的事件预测(方框84),转子寿命优化(方框86)以及转子报废程序(方框88)。涡轮系统10可进一步通过以下方式来管理:生成例如适用于追踪涡轮构件和相关资产的计算机化的系统,包括计划的和计划外的维护事件的发生,构件安装历史,运行小时,负载,以及其它运行数据74和M&D数据76。这种计算机化的系统还可包括存储混合风险模型82和指令以便用新数据74和76来更新混合风险模型82的非瞬态计算机介质。因此,计算机化的系统可在消费者现场处使用,以便管理单独的涡轮系统10或者一组涡轮系统10。事实上,这种计算机化的资产管理系统可通过持续地监测系统10、更新混合风险模型82以及使得能够更好地使用被管理的资产而增加一组涡轮系统10的运行寿命。Asset management (block 90 ) for the turbine system 10 may thus include unplanned event prediction (block 84 ), rotor life optimization (block 86 ), and rotor retirement procedures (block 88 ). The turbine system 10 may further be managed by creating, for example, a computerized system suitable for tracking turbine components and related assets, including the occurrence of planned and unplanned maintenance events, component installation history, operating hours, loads, and other Operational data 74 and M&D data 76 . Such a computerized system may also include a non-transitory computer medium storing hybrid risk model 82 and instructions to update hybrid risk model 82 with new data 74 and 76 . Accordingly, the computerized system may be used at a customer site to manage individual turbine systems 10 or a group of turbine systems 10 . In fact, such a computerized asset management system can increase the operational life of a fleet of turbine systems 10 by continuously monitoring the systems 10, updating the hybrid risk model 82, and enabling better use of managed assets.
图4是适用于得到混合风险模型82的逻辑92的一个实施例的流程图。在所示的实例中,使用一个或多个数据源94来提供数据输入,诸如单元10数据96、OSM(现场监测)数据98、轮叶或者叶片配置数据100、以及物理模型数据102。数据源94可包括设置在涡轮系统10上的传感器,维护日志(例如计划外的事件、计划的事件),工程图纸(例如CAD图纸),工程模型(例如CFD模型、FEA模型、实体模型、热模型),以及目前的涡轮系统配置。然后可在物理和统计分析逻辑104中使用数据96、98、100和102。逻辑104可首先执行单元数据清理(方框106)。单元数据清理(方框106)可例如通过去除不正确记录和/或重复的记录来预处理数据记录。单元数据清理(方框106)还可将某些记录转换成包括相同的单位(例如,公制单元、英制单位),将时标规格化(例如,从秒转换成分),且更一般而言,准备数据以用于进一步处理。然后可使用“清洁的”数据来得出基于物理的寿命曲线(方框108),或者LP,如下文关于图4-6更详细地描述。在导出基于物理的寿命曲线之后,可发生M&D数据预处理(方框110),以适用于过滤和清理M&D数据。M&D数据的预处理非常类似于单元数据清理(方框106)。也就是说,M&D数据预处理(方框110)可包括去除无效的记录,使数据规格化,以及准备数据以进行进一步处理。FIG. 4 is a flowchart of one embodiment of logic 92 suitable for deriving the hybrid risk model 82 . In the example shown, data input is provided using one or more data sources 94 , such as unit 10 data 96 , OSM (on-site monitoring) data 98 , bucket or blade configuration data 100 , and physical model data 102 . Data sources 94 may include sensors placed on turbine system 10, maintenance logs (e.g., unplanned events, planned events), engineering drawings (e.g., CAD drawings), engineering models (e.g., CFD models, FEA models, solid models, thermal model), and the current turbine system configuration. Data 96 , 98 , 100 and 102 may then be used in physical and statistical analysis logic 104 . Logic 104 may first perform cell data scrubbing (block 106). Cell data cleaning (block 106 ) may preprocess data records, eg, by removing incorrect records and/or duplicate records. Unit data cleaning (block 106) may also convert certain records to include the same units (e.g., metric units, imperial units), normalize time scales (e.g., convert from seconds to fractions), and more generally, Prepare data for further processing. The "cleaned" data may then be used to derive a physics-based lifetime profile (block 108), or LP, as described in more detail below with respect to FIGS. 4-6. After deriving the physics-based lifetime curves, M&D data pre-processing (block 110) may occur, suitable for filtering and cleaning the M&D data. Preprocessing of M&D data is very similar to cell data cleaning (block 106). That is, M&D data preprocessing (block 110) may include removing invalid records, normalizing the data, and preparing the data for further processing.
M&D数据预处理(方框110)之后则可为任务分析(方框112)。任务分析(方框112)可包括M&D数据76的数学和/或统计分析且可集成以上关于图3所述的MF方程。任务分析(方框112)可用来针对群组中的各个单独的单元10计算一组值,诸如关于多个M&D变量的中点、中值、平均数、百分数、累积分布函数和/或概率密度函数。M&D变量的非穷尽性列举可包括发电机瓦特(DWATT)、涡轮马力(TNH)、燃料基准(FSR)、压缩机入口导叶(CSGV)的位置、环境入口温度(TAMB)、压缩机入口温度(CTIM)、压缩机排放温度(CTD)、压缩机排放压力(CPD)、压缩机压力比率(CPR)、燃料行程基准位置(FSR)、以%表示的高压涡轮轴速度(TNH)、排气温度(TTXM)、燃烧基准温度(TTRF1)、第一级前内部涡轮叶轮空间温度(TTWS1F1)和/或第一级后外部涡轮叶轮空间温度(TTWS1AO)、冷启动的数量、热启动的数量以及温启动的数量。事实上,可使用各种各样的涡轮系统10值和性能参数。M&D data preprocessing (block 110) may be followed by task analysis (block 112). Task analysis (block 112 ) may include mathematical and/or statistical analysis of the M&D data 76 and may integrate the MF equations described above with respect to FIG. 3 . Task analysis (block 112) can be used to calculate a set of values for each individual unit 10 in the group, such as midpoint, median, mean, percentage, cumulative distribution function, and/or probability density for a plurality of M&D variables function. A non-exhaustive list of M&D variables may include generator watts (DWATT), turbine horsepower (TNH), fuel reference (FSR), compressor inlet guide vane (CSGV) position, ambient inlet temperature (TAMB), compressor inlet temperature (CTIM), Compressor Discharge Temperature (CTD), Compressor Discharge Pressure (CPD), Compressor Pressure Ratio (CPR), Fuel Stroke Reference Position (FSR), High Pressure Turbine Shaft Speed in % (TNH), Exhaust temperature (TTXM), combustion reference temperature (TTRF1), internal turbine wheelspace temperature before first stage (TTWS1F1) and/or external turbine wheelspace temperature after first stage (TTWS1AO), number of cold starts, number of hot starts, and The number of warm starts. In fact, a wide variety of turbine system 10 values and performance parameters may be used.
M&D数据的量可非常大,在一些情况下,在两年或者更多年的过程中以大约五分钟的间隔来收集数据。任务分析(方框112)帮助确认特别适用于在分析过程中使用的变量。这样的变量被视为“关键X”变量,且用于这样的变量的辨识逻辑在下文关于图5更详细地描述。任务分析(方框112)还将大的M&D数据集提取或者缩减到适用于用作其它分析逻辑(诸如用来计算等效燃烧小时(方框114)的逻辑)的输入的选定的统计和数学值(例如中点、中值、平均数、百分数、累积分布函数和/或概率密度函数)。例如,任务分析(方框112)可对于以上所述的M&D变量(例如,DWATT、TNH、FSR、CSGV、TAMB等等)中的各个来计算大约三年、两年、一年、六个月、三个月的中值、中点和/或平均数,它们可用来计算等效燃烧小时(方框114)。The volume of M&D data can be very large, and in some cases data is collected at about five minute intervals over the course of two or more years. Task analysis (block 112) helps identify variables that are particularly suitable for use in the analysis process. Such variables are considered "key X" variables, and the identification logic for such variables is described in more detail below with respect to FIG. 5 . The task analysis (block 112) also extracts or reduces the large M&D data set to selected statistics and Mathematical values (eg, midpoint, median, mean, percentage, cumulative distribution function, and/or probability density function). For example, the mission analysis (block 112) may calculate approximately three-year, two-year, one-year, six-month , the three-month median, midpoint, and/or average, which can be used to calculate equivalent burn hours (box 114).
等效燃烧小时(Equivalent_FH)导出(方框114)通过方程Equivalent_FH=MF*FH而集成了基于物理的模型分析与统计分析,其中FH对应于给定的涡轮系统或者单元10的实际的燃烧小时。事实上,等效燃烧小时使得单独的单元10能够被追踪和管理,且集成了基于物理的和统计MF分析与涡轮群组中的各个单独的单元10的经验燃烧小时。可如下文更详细地描述的那样使用另外的统计技术,诸如相关分析(方框116),以处理数据。Equivalent_FH derivation (block 114 ) integrates physics-based model analysis with statistical analysis through the equation Equivalent_FH=MF*FH, where FH corresponds to the actual combustion hours for a given turbine system or unit 10 . In fact, the equivalent burn hours enable individual units 10 to be tracked and managed, and integrate physics-based and statistical MF analysis with the empirical burn hours of each individual unit 10 in the turbine group. Additional statistical techniques, such as correlation analysis (block 116), may be used to process the data as described in more detail below.
可使用相关分析(方框116),例如以便找出适用于预测使用的变量之间的关系。在某些实例中,皮尔森(Pearson)相关分析可用来描述所有M&D因子或者变量之间的关系,且可得出和使用表示两个变量之间的依赖性的皮尔森系数。此外,等效燃烧小时可与所有M&D因子相关。此外,可使用基于物理的相关,其中变量基于它们的对应的测量位置和物理特性(例如,构件几何结构、金属类型)而彼此相关。可使用其它统计相关技术,诸如t-统计、组间相关和/或组内相关。相关分析(方框116)和多变量分析(方框118)有助于确认特别适合在预测过程中使用的变量。这样的变量被视作“关键X”变量,且用于这样的变量的辨识逻辑在下文中关于图5来更详细地描述。Correlation analysis (block 116) may be used, for example, to find relationships between variables suitable for predictive use. In some instances, Pearson correlation analysis can be used to describe the relationship between all M&D factors or variables, and a Pearson coefficient representing the dependence between two variables can be derived and used. Additionally, equivalent burn hours can be correlated to all M&D factors. Furthermore, physics-based correlations may be used, where variables are related to each other based on their corresponding measurement locations and physical properties (eg, component geometry, metal type). Other statistical correlation techniques can be used, such as t-statistics, inter-group correlations, and/or intra-group correlations. Correlation analysis (box 116) and multivariate analysis (box 118) help identify variables that are particularly suitable for use in the forecasting process. Such variables are considered "key X" variables, and the identification logic for such variables is described in more detail below with respect to FIG. 5 .
多变量分析(方框118)可包括方差技术的分析(ANOVA)和/或逻辑分析。可使用ANOVA,例如以便分析特定的变量(例如,M&D数据)的方差,以及基于变化的可能的源将该方差分成方差组分。例如,温启动可导致等效燃烧小时的变化的较大的部分。逻辑分析(即,分对数建模)使得能够通过将数据拟合成逻辑曲线(例如,S形曲线)而导出事件发生的概率。可使用其它多变量分析技术,诸如MANOVA和多重判别分析,如下文所述。然后可在风险建模分析,诸如Weibull风险建模(方框120)中使用通过“关键X”分析而找出的合适的变量。在某些实施例中,Weibull风险建模(方框120)可用来得出一组比例风险模型。比例风险模型可使在计划外的维护事件(例如,空气冷却槽开裂、锁线片开裂、叶轮替换、叶片开裂)发生之前经过的时间与一个或多个共同变元(例如,M&D因子、等效燃烧小时)相关。例如,提高温启动一定百分比可提高内侧第一级的计划外的事件发生的概率。Weibull风险建模(方框120)还可结合适用于在观测之间,诸如在涡轮检查之间分析事件发生的间隔审查措施。间隔审查措施因而使得能够在两个检查事件之间导出可用来预测计划外的事件发生的可能性的残存函数。Multivariate analysis (block 118) may include analysis of variance techniques (ANOVA) and/or logistic analysis. ANOVA can be used, for example, to analyze the variance of a particular variable (eg, M&D data) and divide that variance into variance components based on likely sources of variation. For example, a warm start may result in a larger fraction of the change in equivalent burn hours. Logistic analysis (ie, logarithmic modeling) enables the derivation of the probability of an event occurring by fitting the data to a logistic curve (eg, an S-shaped curve). Other multivariate analysis techniques can be used, such as MANOVA and multiple discriminant analysis, as described below. Suitable variables identified by the "key X" analysis can then be used in a risk modeling analysis, such as Weibull risk modeling (block 120). In some embodiments, Weibull hazard modeling (block 120) can be used to derive a set of proportional hazards models. A proportional hazards model allows the time elapsed until an unplanned maintenance event (e.g., cracked air cooling slot, cracked seam, impeller replacement, cracked blade) to occur with one or more common variables (e.g., M&D factor, etc. effective burning hours) related. For example, increasing warm actuation by a certain percentage increases the probability of an unplanned event at the medial first level. Weibull risk modeling (block 120) may also incorporate interval review measures suitable for analyzing event occurrences between observations, such as between turbine inspections. The interval inspection measure thus enables the derivation of a survival function between two inspection events that can be used to predict the likelihood of an unplanned event occurring.
因此,风险分析和建议(方框122)可使用Weibull风险建模(方框120)和前述统计技术(例如,等效燃烧小时计算114,相关分析116,多变量分析118),以得出混合风险模型82组以及确定可在群组中运行的任何高风险单元124。事实上,混合风险模型82和高风险单元124的列表可部署至消费者(方框126),以用于管理涡轮运行和资产。消费者然后可通过使得针对群组中的单独的单元10能够有更加高效和有目的的维护计划而使用混合风险模型82来改进涡轮系统10的使用。这样的能力可导致群组中的单元10的寿命增加以及维护成本降低。Therefore, the risk analysis and recommendations (block 122) can use Weibull risk modeling (block 120) and the aforementioned statistical techniques (e.g., equivalent burn hours calculation 114, correlation analysis 116, multivariate analysis 118) to arrive at a mix The risk model 82 groups and determines any high risk units 124 that can be run in the group. In fact, the hybrid risk model 82 and list of high risk units 124 can be deployed to customers (block 126 ) for use in managing turbine operations and assets. The customer can then use the hybrid risk model 82 to improve usage of the turbine system 10 by enabling more efficient and purposeful maintenance planning for the individual units 10 in the group. Such a capability may result in increased longevity and reduced maintenance costs of the units 10 in the group.
图5示出了使得能将诸如M&D变量的多个变量分类成特别适用于在预测过程中使用的变量的“关键X”辨识逻辑128的一个实施例。如上所述,M&D变量的数量可非常大,且针对各个M&D变量收集的数据的量可在若干年的跨度上以一定间隔(例如,大约五分钟)收集。因此,“关键X”辨识逻辑128使得能减少预测过程中使用的变量的量。逻辑128可首先通过数据提取(方框132)来使用M&D数据库130,以提取对应于M&D变量(包括例如DWATT、TNH、FSR、CSGV、TAMB、TIM、CTD、CPR、TNH、TTXM、TTRF1、TTWS1F1以及TTWS1AO)的数据。然后逻辑128可通过数据过滤(方框134)来使用提取的数据,以验证数据和过滤数据。数据验证可包括去除不正确数据,诸如当所有值都应当为正的(例如时间值)时具有负值的数据。类似地,数据过滤可去除或者过滤可能没用的某些数据,例如其中TNH<95且DWATT<15的数据点。逻辑128然后可通过单元统计分析(方框136)使用经过滤的数据,以针对群组中的各个单元10得出一组统计值。这样的值可包括最大、最小、中值、中点、累积分布函数和/或概率密度函数。在某些实施例中,单元统计分析136可基于每30秒、1分钟、5分钟、10分钟或者30分钟收集的数据得出统计值。然后数据插补(imputation)(方框138)可例如通过使用在单元统计分析(方框136)中发现的中值而插补或者分配任何缺失的值。例如,可针对在单元统计分析(136)期间发现的各个相应的变量对任何缺失的CTD,TTWS1F1,或者TTWS1A0值分配(方框138)中值。FIG. 5 shows one embodiment of "key X" identification logic 128 that enables classification of multiple variables, such as M&D variables, into variables that are particularly suitable for use in the forecasting process. As noted above, the number of M&D variables can be very large, and the amount of data collected for each M&D variable can be collected at intervals (eg, about five minutes) over a span of several years. Thus, the "key X" identification logic 128 enables a reduction in the amount of variables used in the forecasting process. Logic 128 may first use M&D database 130 through data extraction (block 132) to extract data corresponding to M&D variables (including, for example, DWATT, TNH, FSR, CSGV, TAMB, TIM, CTD, CPR, TNH, TTXM, TTRF1, TTWS1F1 and TTWS1AO) data. The logic 128 may then use the extracted data through data filtering (block 134 ) to validate the data and filter the data. Data validation may include removing incorrect data, such as data with negative values when all values should be positive (eg, time values). Similarly, data filtering may remove or filter certain data that may not be useful, such as data points where TNH<95 and DWATT<15. Logic 128 may then use the filtered data through unit statistical analysis (block 136 ) to derive a set of statistics for each unit 10 in the group. Such values may include maximum, minimum, median, midpoint, cumulative distribution function, and/or probability density function. In some embodiments, unit statistical analysis 136 may derive statistics based on data collected every 30 seconds, 1 minute, 5 minutes, 10 minutes, or 30 minutes. Data imputation (block 138) may then impute or assign any missing values, for example by using the median value found in the cell statistical analysis (block 136). For example, any missing CTD, TTWS1F1, or TTWS1A0 values may be assigned (block 138) a median value for each corresponding variable found during unit statistical analysis (136).
然后数据处理(方框140)可基于M&D数据库130处理和得出相关值。例如,TTWS1_temp可基于两个TTWS1值-诸如两个最近的值(即,在时间n和时间n+1处发现的值)之间的最大温度比较而得出。金属温度计算(方框142)然后可使用基于物理的函数来计算涡轮系统10中的不同位置处的金属温度。例如,可针对位于涡轮转子第一级中的空气槽或者针对位于同一涡轮转子第二级中的锁线片来发现诸如因科镍合金(例如,因科镍合金IN706)的金属的温度。事实上,金属温度计算(方框142)可用来计算涡轮系统10中的大量位置处的金属温度。可基于方程ΔT=TACT-TISO来发现温度差ΔT,其中TACT是涡轮位置(例如空气冷却槽、锁线片)处的实际的温度,而TISO是ISO日(ISO-day)温度。更具体地,ISO日温度对应于典型地用于比较目的的国际标准化组织(ISO)基准温度。这样的基准温度可在诸如ISO文献2314“燃气涡轮接受测试(GasTurbine-Acceptance Test)”的ISO文献中找到。Data processing (block 140 ) may then process and derive correlation values based on the M&D database 130 . For example, TTWS1_temp may be derived based on a maximum temperature comparison between two TTWS1 values, such as the two most recent values (ie, the values found at time n and time n+1). Metal temperature calculations (block 142 ) may then use physics-based functions to calculate metal temperatures at various locations in the turbine system 10 . For example, the temperature of a metal such as Inconel (eg, Inconel IN706) may be found for an air slot located in a first stage of a turbine rotor or for a lockwire located in a second stage of the same turbine rotor. In fact, the metal temperature calculation (block 142 ) may be used to calculate the metal temperature at a number of locations in the turbine system 10 . The temperature difference ΔT can be found based on the equation ΔT = T ACT - T ISO , where T ACT is the actual temperature at the turbine location (eg, air cooling slot, lockwire) and T ISO is the ISO-day temperature . More specifically, the ISO diurnal temperature corresponds to the International Organization for Standardization (ISO) reference temperature typically used for comparison purposes. Such reference temperatures can be found in ISO documents such as ISO document 2314 "Gas Turbine-Acceptance Test".
然后可通过金属温度过滤过程(方框144)处理温度差ΔT,以便过滤不同的位置处的温度范围。也就是说,给定范围之外的某温度测量结果可能不能使用,从而产生在得出其它计算中有用的温度范围。例如,对于小于-91°F的值,ΔT可设定为-91°F,而对于大于209°F的值,ΔT可设定为209°F。因此,金属温度过滤过程(方框144)可有助于减少异常值。The temperature difference ΔT may then be processed through a metal temperature filtering process (block 144 ) in order to filter the temperature ranges at different locations. That is, certain temperature measurements outside a given range may not be used, resulting in a temperature range that is useful in deriving other calculations. For example, for values less than -91°F, ΔT may be set to -91°F, and for values greater than 209°F, ΔT may be set to 209°F. Therefore, the metal temperature filtering process (block 144 ) may help reduce outliers.
然后可使用规格化寿命参数(NLP)计算(方框146)来得出规格化寿命参数(LP)。如上所述,LP针对给定的材料和位置在不同的金属温度处计算。更具体地,基于计划外的事件发生(例如,空气冷却槽开裂,锁线片开裂,叶轮替换,叶片开裂)之前剩下的时间的LP计算或者风险可作为金属温度T金属、关注的位置处的应力σ、每次启动的燃烧小时(即,N比率)的函数来计算。LP可针对不同的位置(例如,空气冷却槽、锁线片)和配置,针对实际的温度、ISO日温度以及模型化的(温度)(例如,“虚拟”温度)而得出。配置可包括涡轮机架类型(例如7F、7FA、7FA+、7FA+e),轮叶或者叶片类型(例如级1B、级2B),所使用的轮叶设计(原始设计、新设计)和/或轮叶是否是后切式轮叶。通过使用一组基于物理的建模技术,诸如低周疲劳(LCF)寿命预测建模、计算流体动力学(CFD)、有限元分析(FEA)、实体建模(例如,参数化和非参数化建模)和/或3维到2维的FEA映射,可得出合适的函数LP=function(T金属、σ、N比率)。然后可通过使用例如方程NLP=LP/LPISO来规格化各种温度处的所得的LP参数(即,转换成NLP)。A normalized life parameter (NLP) calculation (block 146) may then be used to derive a normalized life parameter (LP). As mentioned above, LP is calculated at different metal temperatures for a given material and location. More specifically, LP calculations based on the time remaining before an unplanned event (e.g., cracked air cooling slots, cracked lockwires, impeller replacement, cracked blades) or risk can be used as metal temperature T metal , at the location of interest Calculated as a function of the stress σ of , the burning hours per start (ie, the N ratio ). LP can be derived for different locations (eg, air cooling slots, seams) and configurations, for actual temperatures, ISO diurnal temperatures, and modeled (eg, "virtual" temperatures). Configurations may include turbine frame type (e.g. 7F, 7FA, 7FA+, 7FA+e), blade or blade type (e.g. stage 1B, stage 2B), blade design used (original design, new design) and/or wheel Whether the blade is a back-cut vane. By using a set of physics-based modeling techniques such as low-cycle fatigue (LCF) life prediction modeling, computational fluid dynamics (CFD), finite element analysis (FEA), solid modeling (e.g., parametric and non-parametric Modeling) and/or FEA mapping from 3D to 2D, a suitable function LP=function(T metal , σ, N ratio ) can be derived. The resulting LP parameters at various temperatures can then be normalized (ie converted to NLP) by using, for example, the equation NLP=LP/ LPISO .
NLP曲线可通过将NLP参数置于NLP曲线的y轴中而将ΔT值置于x轴中来绘制。在一个实施例中,NLP曲线可通过使用用于负ΔT值的非线性拟合或者函数以及用于正ΔT值的指数拟合或者函数拟合分散的点而得出。所得的NLP曲线对任何给定的ΔT映射NLP参数。MF计算(方框148)然后可通过使用方程MF=SSF*1/NLP将NLP参数转换成MF值,其中SSF是应力比例因子σ。应力比例因子σ可基于使用中的配置(例如,涡轮机架、轮叶类型、轮叶设计以及轮叶切口)而改变。MF计算的更多的细节-包括具有混合硬件配置的单元10的MF计算的变化在下文中关于图6来描述。NLP curves can be plotted by placing NLP parameters in the y-axis and ΔT values in the x-axis of the NLP curve. In one embodiment, the NLP curve may be derived by fitting the scattered points using a nonlinear fit or function for negative ΔT values and an exponential fit or function for positive ΔT values. The resulting NLP curve maps the NLP parameters for any given ΔT. The MF calculation (block 148) can then convert the NLP parameters to MF values by using the equation MF=SSF*1/NLP, where SSF is the stress scaling factor σ. The stress scaling factor σ may vary based on the configuration in use (eg, turbine frame, bucket type, bucket design, and bucket cutout). More details of the MF calculation - including variations of the MF calculation for units 10 with mixed hardware configurations - are described below with respect to FIG. 6 .
等效燃烧小时计算(方框150)然后可基于方程Equivalent_FH=MF*FH计算等效燃烧小时(Equivalent_FH),其中对应于给定的单元10的实际的燃烧小时。然后可执行相关分析(方框152),如上文关于图4所述,包括使用ANOVA技术和/或逻辑分析(方框154)。相关分析152可使用统计和/或基于物理的相关性来映射M&D数据76中的不同的变量之间的关系。在一个实例中,逻辑128可使用数据挖掘分类技术,诸如二次判别分析(QDA)分类(方框156),来对数据进行分类。例如,QDA分类(方框156)可基于正确故障预测、不正确故障预测、正确故障挂起(例如,系统停止)以及不正确故障挂起来对数据分类。因而QDA分类(方框156)可用于针对多变量风险建模的比较措施(例如,ANOVA)。使用前述技术的结果是标识适用于在预测计划外的事件时使用的一个或多个“关键X”变量。例如,可使用Equivalent_FH、启动以及百分比温启动作为“关键X”变量158来更好地预测级1W处的内部锁线片开裂。类似地,可使用Equivalent_FH和N比率作为“关键X”变量158来更好地预测级(state)2W处的内部锁线片开裂。将理解,其它统计技术可用来实现“关键X”变量158-例如使用任何合适的相关分析,包括其它形式的多变量分析(例如,MANOVA)和/或合适的判别分析技术(例如线性判别分析、规则化QDA)。Equivalent Fire Hours Calculation (Block 150 ) The Equivalent Fire Hours (Equivalent_FH) may then be calculated based on the equation Equivalent_FH=MF*FH, which corresponds to the actual Fire Hours for a given unit 10 . Correlation analysis may then be performed (block 152), as described above with respect to FIG. 4, including using ANOVA techniques and/or logistic analysis (block 154). Correlation analysis 152 may use statistical and/or physically based correlations to map relationships between different variables in M&D data 76 . In one example, the logic 128 may classify the data using data mining classification techniques, such as Quadratic Discriminant Analysis (QDA) classification (block 156). For example, QDA classification (block 156 ) may classify the data based on correct failure prediction, incorrect failure prediction, correct failure pending (eg, system halted), and incorrect failure pending. The QDA classification (block 156) can thus be used for comparative measures (eg, ANOVA) for multivariate risk modeling. The result of using the foregoing techniques is the identification of one or more "key X" variables suitable for use in predicting unplanned events. For example, Equivalent_FH, Startup, and Percent Warm Startup can be used as "key X" variables 158 to better predict internal seam cracking at stage 1W. Similarly, the Equivalent_FH and N ratios can be used as "key X" variables 158 to better predict internal seam cracking at state 2W. It will be appreciated that other statistical techniques may be used to implement the "key X" variable 158 - for example using any suitable correlation analysis, including other forms of multivariate analysis (e.g., MANOVA) and/or suitable discriminant analysis techniques (e.g., linear discriminant analysis, Regularized QDA).
图6示出了图5中所示的MF计算逻辑148的一个实施例的更详细的视图。在所示的实施例中,MF计算逻辑148可进一步细分为MF传递函数计算逻辑160,实际金属温度计算逻辑162以及混合硬件配置逻辑164。MF传递函数逻辑160可使得能够导出适用于计算基础MFb的一组LP函数,而实际金属温度计算逻辑162可用于计算ΔT实际。然后可使用基础MFb来获得各个单独的单元10的MF。因此,可将各个涡轮系统10的具体配置考虑在内,包括通过混合硬件配置逻辑164而具有混合硬件的配置。对可能已经例如利用更加新的构件设计来改造的混合硬件配置进行配置。事实上,本文中所述的MF计算逻辑148使得能够对具有原始的和更新的硬件配置的混合的单独的涡轮系统10进行MF计算。FIG. 6 shows a more detailed view of one embodiment of the MF calculation logic 148 shown in FIG. 5 . In the illustrated embodiment, MF calculation logic 148 may be further subdivided into MF transfer function calculation logic 160 , actual metal temperature calculation logic 162 , and hybrid hardware configuration logic 164 . MF transfer function logic 160 may enable the derivation of a set of LP functions suitable for calculating the base MF b , while actual metal temperature calculation logic 162 may be used to calculate ΔTactual . The base MF b can then be used to obtain the MF of each individual unit 10 . Accordingly, the specific configuration of each turbine system 10 may be taken into account, including configurations having mixed hardware via the mixed hardware configuration logic 164 . Configure hybrid hardware configurations that may have been retrofitted, for example with newer component designs. In fact, the MF calculation logic 148 described herein enables MF calculations for individual turbine systems 10 having a mix of original and updated hardware configurations.
在涡轮10构件和/或位置(例如,内部锁线片)的基于物理的建模(方框170)期间,除了ISO日和金属温度值168之外,MF传递函数逻辑160可使用金属属性166,诸如金属类型和材料成分。如上所述,基于物理的建模(方框170)可通过使用诸如LCF寿命预测建模,CFD,FEA,实体建模(例如,参数化和非参数化建模)和/或3维到2维FEA映射的技术基于T金属、σ,以及N比率作为函数而得出LP。然后可计算(方框172)多个“虚拟”温度T虚拟的LP(即,LPT)和ISO日温度的LP(即,LPISO)。用语“虚拟”温度用来指示一系列温度值,其可包括实际的测得温度。例如,该用语可指示开始于-10°F而结束于1200°F,具有1°F递增量的温度序列(即,-10°F、-9°F、-8°F、...、1200°F)中的所有温度。这种计算允许通过使用方程NLPT=LPT/LPISO(方框174)导出规格化LPT(NLPT)。然后可基于方程ΔT虚拟=T虚拟-TISO(方框178)计算(方框176)ΔT虚拟。During physics-based modeling (block 170) of turbine 10 components and/or locations (e.g., internal lockwires), the MF transfer function logic 160 may use the metal properties 166 in addition to the ISO date and metal temperature values 168 , such as metal type and material composition. As mentioned above, physics-based modeling (block 170) can be achieved by using methods such as LCF life prediction modeling, CFD, FEA, solid modeling (eg, parametric and non-parametric modeling), and/or 3D to 2D The technique of dimensional FEA mapping derives LP based on the T metal , σ, and N ratios as a function. The LP for a number of " virtual " temperatures Tvirtual (ie, LP T ) and the LP for ISO diurnal temperatures (ie, LP ISO ) may then be calculated (block 172 ). The term "virtual" temperature is used to indicate a range of temperature values, which may include the actual measured temperature. For example, the term may indicate a temperature sequence beginning at -10°F and ending at 1200°F with 1°F increments (i.e., -10°F, -9°F, -8°F, ..., 1200°F) for all temperatures. This calculation allows the derivation of normalized LP T (NLP T ) by using the equation NLP T =LP T /LP ISO (block 174). ΔTvirtual may then be calculated (block 176) based on the equation ΔTvirtual = Tvirtual -T ISO (block 178).
NLPT和ΔT虚拟值然后可用作数据拟合过程(方框180)的一部分,其中NLPT和ΔT虚拟值设置为分散的点,使NLPT值在y轴中而ΔT虚拟值在x轴中。在一个实施例中,可通过使用用于负或者零ΔT虚拟值的非线性拟合或者函数以及用于正ΔT虚拟值的指数拟合或者函数拟合NLPT相对于ΔT虚拟(的关系)的分散点来得出(方框180)传递函数。也就是说,小于或者等于零的x轴值使用非线性拟合来拟合,而正的x轴值使用指数拟合来拟合。The NLP T and ΔT dummy values can then be used as part of the data fitting process (block 180), wherein the NLP T and ΔT dummy values are set as scattered points such that the NLP T values are in the y-axis and the ΔT dummy values are in the x-axis middle. In one embodiment, the NLP T can be fitted with respect to (the relationship of) the ΔT dummy by using a nonlinear fit or function for negative or zero ΔT dummy values and an exponential fit or function for positive ΔT dummy values The points are scattered to derive (block 180) the transfer function. That is, x-axis values less than or equal to zero are fitted using a nonlinear fit, while positive x-axis values are fitted using an exponential fit.
对于所有的ΔT实际值计算NLP(方框182)然后可使用得出的传递函数。如所描绘的那样,可通过使用实际金属温度计算逻辑162来计算ΔT实际值。如上文关于图4所述,逻辑162可执行任务分析(方框184)。任务分析可导致一组基于统计性能的值186。例如可基于各种位置和/或构件部分的金属温度传递函数以及使用性能值186作为输入来计算(方框188)实际的温度T实际。得出的金属温度函数因此适用于基于M&D数据76计算特定位置(例如锁线片、空气冷却槽)处的金属的实际的温度。然后可通过使用方程ΔT实际=T实际-TISO计算(方框190)ΔT实际值。The NLP is calculated for all ΔT actual values (block 182) and the resulting transfer function can then be used. As depicted, the ΔT actual value may be calculated using actual metal temperature calculation logic 162 . As described above with respect to FIG. 4, logic 162 may perform task analysis (block 184). Task analysis can result in a set of values 186 based on statistical performance. The actual temperature Tactual may be calculated (block 188 ), for example, based on the metal temperature transfer function for various locations and/or component parts and using the property value 186 as input. The derived metal temperature function is thus suitable for calculating the actual temperature of the metal at a particular location (eg, lockwire, air cooling slot) based on the M&D data 76 . The ΔT actual value may then be calculated (block 190 ) by using the equation ΔT actual = T actual - T ISO .
然后可基于方程MFB=1/NLPT计算(方框192)MFB。MFB可单独恰当地用来预测计划外的事件(例如在其中基本的硬件使用标准配置(例如,默认安装配置)来进行配置的情况下)。然而,可例如通过利用具有更加新的设计的构件(例如,后切转子叶片)更换诸如转子叶片的构件而修改一些单元。因此,MFB可通过混合硬件配置逻辑164来修改以便将混合硬件配置考虑在内。MF B may then be calculated (block 192 ) based on the equation MF B =1/NLP T . MF B alone may well be used to anticipate unplanned events (eg, in cases where the underlying hardware is configured using a standard configuration (eg, default installation configuration)). However, some units may be modified eg by replacing components such as rotor blades with components of a more recent design (eg back cut rotor blades). Accordingly, MF B may be modified by the hybrid hardware configuration logic 164 to take the hybrid hardware configuration into account.
混合硬件配置逻辑164可提取各个单元10的硬件和软件配置(方框194),包括各个单元10使用的配置和各个配置i的运行时间的历史列表。然后可基于方程RTi=Ti/FH计算(方框196)各个配置i的运行时间比率RTi,其中Ti是配置起作用的时间,而FH是单元的总燃烧小时。然后可对各个配置i计算(方框198)应力比例因子SSFi。SSFi基于例如金属类型、构件几何结构和/或位置将配置i所特有的应力考虑在内。然后可通过使用公式SSF=∑(RTi*SSFi)来计算(方框200)混合配置SSF。因此,可通过使用方程MF=MFB*SSF计算(方框202)MF来将混合硬件配置考虑在内。这种计算使得预测技术能够应用于基本任何涡轮系统10,而不管配置类型或者配置安装日期。The hybrid hardware configuration logic 164 may extract the hardware and software configuration of each unit 10 (block 194), including a historical listing of the configurations used by each unit 10 and the runtime of each configuration i. The run time ratio RT i for each configuration i can then be calculated (block 196 ) based on the equation RT i =T i /FH, where T i is the time the configuration is active and FH is the total burn hours of the unit. Stress scaling factors SSF i may then be calculated (block 198 ) for each configuration i . SSF i takes into account stresses specific to configuration i based on eg metal type, component geometry and/or location. The hybrid configuration SSF can then be calculated (block 200 ) by using the formula SSF=Σ(RT i *SSF i ). Thus, mixed hardware configurations may be taken into account by calculating (block 202) MF using the equation MF = MF B *SSF. Such calculations enable the predictive technique to be applied to substantially any turbine system 10 , regardless of configuration type or configuration installation date.
图7描绘了分级混合风险模型82的实施例。所描绘的实施例包括等效燃烧小时模型204(即,Equivalent_FH=MF*FH),其使得能集成适用于计算直到计划外的维护事件发生的时间的经验分析与基于物理的分析。混合风险模型82可包括MF计算子模型206和燃烧小时子模型208。燃烧小时子模型208使得能计算给定的单元10中观测到的燃烧小时,其可包括适用于从观测到的燃烧小时中去除错误和无效数据的数据清理和验证技术。MF计算子模型206使得能基于例如NLP子模型210计算MF(例如,SSF*1/NLP)。在该实施例中,NLP子模型210可包括实际的等效FH子模型212,其适用于使用M&D数据的大约两年的价值(即,Equivalent_FH2YR)计算实际的等效燃烧小时。将理解,其它实施例可使用较小或者较大的数据时间线,诸如6个月、1年、1.5年、2.5年或者4年。NLP子模型210还可包括适用于计算ISO日等效燃烧小时(即,Equivalent_FHISO)的ISO-等效FH子模型214。因此,NLP子模型210可通过使用方程NLP=Equivalent_FH2YR/Equivalent_FHISO计算NLP值。FIG. 7 depicts an embodiment of a hierarchical mixture risk model 82 . The depicted embodiment includes an Equivalent Burned Hours model 204 (ie, Equivalent_FH=MF*FH), which enables the integration of empirical and physics-based analyzes suitable for calculating the time until an unplanned maintenance event occurs. The hybrid risk model 82 may include a MF calculation submodel 206 and a burn hours submodel 208 . The burn hours sub-model 208 enables the calculation of the observed burn hours in a given unit 10, which may include data cleaning and validation techniques suitable for removing erroneous and invalid data from the observed burn hours. The MF calculation submodel 206 enables calculation of MF (eg, SSF*1/NLP) based on, for example, the NLP submodel 210 . In this embodiment, the NLP submodel 210 may include an actual equivalent FH submodel 212 adapted to calculate actual equivalent burn hours using approximately two years' worth of M&D data (ie, Equivalent — FH 2YR ). It will be appreciated that other embodiments may use smaller or larger data timelines, such as 6 months, 1 year, 1.5 years, 2.5 years, or 4 years. The NLP submodel 210 may also include an ISO-equivalent FH submodel 214 suitable for calculating ISO daily equivalent burn hours (ie, Equivalent_FH ISO ). Therefore, the NLP sub-model 210 can calculate the NLP value by using the equation NLP=Equivalent_FH 2YR /Equivalent_FH ISO .
实际的等效FH子模型212可通过使用方程Equivalent_FH2YR=Ni, HT-2YR*Hold_Time(保持时间)来计算Equivalent_FH2YR值,其中Ni,HT-2YR是对于给定的循环保持时间(HT)216或者停留时间,直到诸如金属中出现开裂的计划外的事件开始的初始寿命或者循环数。换句话说,Ni, HT-2YR基于某温度处的保持或者停留时间216测量这样的循环数:在此循环数期间,位置或者具有特定金属类型(例如,因科镍合金IN706)的构件可开始开裂。可作为HT216、依赖于时间的参数PT、疲劳参数PFAT以及持续循环的LFC参数Ni,20CPM的函数通过到初始子模型218的循环来计算Ni,HT-2YR。The actual Equivalent_FH submodel 212 can calculate the Equivalent_FH 2YR value by using the equation Equivalent_FH 2YR = N i, HT - 2YR * Hold_Time (hold time), where N i, HT - 2YR is the holding time for a given cycle (HT ) 216 or dwell time, initial life or number of cycles until the onset of an unplanned event such as cracking in the metal. In other words, N i, HT-2YR measures the number of cycles based on hold or dwell time 216 at a temperature during which a location or component with a particular metal type (e.g., Inconel IN706) can Started to crack. N i,HT-2YR may be calculated by looping through to the initial submodel 218 as a function of HT 216 , the time-dependent parameter PT , the fatigue parameter P FAT , and the LFC parameter N i,20CPM of the continuous cycle.
到初始子模型218的循环使用保持时间216,循环疲劳子模型222,低周疲劳子模型224以及依赖于时间的参数子模型224来得出所实施的计算。模型220,222以及224包括在使用实际数据而非基于ISO的数据的实际的子模型225中。保持时间216是保持或者停留期中所花费的时间量的测量。循环疲劳子模型222可基于方程PFAT=1/Ni,20CPM计算疲劳参数PFAT,其中Ni,20CPM由低周疲劳子模型224得出。低周疲劳子模型224例如可针对给定的温度和金属(例如,因科镍合金IN706)作为单轴应变范围Δε的函数得出每分钟20次循环(CPM)时的Ni,20CPM。将理解,可使用其它CPM值,诸如5CPM、15CPM、25CPM、30CPM等等。The cycle to initial submodel 218 uses hold time 216 , cyclic fatigue submodel 222 , low cycle fatigue submodel 224 , and time dependent parameter submodel 224 to derive the calculations performed. Models 220, 222, and 224 are included in an actual sub-model 225 that uses actual data rather than ISO-based data. Hold time 216 is a measure of the amount of time spent in a hold or dwell period. The cycle fatigue sub-model 222 can calculate the fatigue parameter P FAT based on the equation P FAT =1/N i,20CPM , where N i,20CPM is derived from the low cycle fatigue sub-model 224 . The low cycle fatigue submodel 224 may, for example, yield Ni,20CPM at 20 cycles per minute (CPM) as a function of the uniaxial strain range Δε for a given temperature and metal (eg, Inconel IN706 ). It will be appreciated that other CPM values may be used, such as 5 CPM, 15 CPM, 25 CPM, 30 CPM, and the like.
依赖于时间的参数子模型220使得能计算依赖于时间的参数PT。PT是适用于测量直到损坏发生的时间的参数,并且可基于以上关于图3和4更详细地描述的金属温度传递函数229而获得,其又使用从任务分析112得出的M&D分布231。在一个实施例中,依赖于时间的参数PT还可包括中期寿命“Neuberized”应力模型226。也就是说,说明应变因子Kσ和应力因子Kε之间的弹性应力集中因子 的关系的Neuber的规则可由应力模型226使用。循环疲劳子模型222还可包括应变范围Δε子模型228,其可基于弹性应力230。也就是说,应变范围Δε可作为温度和弹性应力230的函数通过子模型228得出。ISO-等效FH子模型214可包括一组子模型232、234、236、238、240、242,它们基本类似于子模型220、222、224、226、228。然而,子模型232、234、236、238、240和242使用ISO金属温度244而不是使用实际的温度。因此,子模型234、234、236、238、240和242包括在使用ISO数据而非仅实际的数据的基于ISO的子模型243中。The time-dependent parameter submodel 220 enables the calculation of the time-dependent parameter PT . PT is a parameter suitable for measuring the time until damage occurs and can be obtained based on the metal temperature transfer function 229 described in more detail above with respect to FIGS. 3 and 4 , which in turn uses the M& D distribution 231 derived from the mission analysis 112 . In one embodiment, the time-dependent parameter PT may also include a mid-life “Neuberized” stress model 226 . That is, to account for the elastic stress concentration factor between the strain factor K σ and the stress factor K ε Neuber's rule for the relationship can be used by the stress model 226 . Cyclic fatigue submodel 222 may also include strain range Δε submodel 228 , which may be based on elastic stress 230 . That is, the strain range Δε can be derived by submodel 228 as a function of temperature and elastic stress 230 . The ISO-equivalent FH submodel 214 may include a set of submodels 232 , 234 , 236 , 238 , 240 , 242 that are substantially similar to the submodels 220 , 222 , 224 , 226 , 228 . However, sub-models 232, 234, 236, 238, 240, and 242 use ISO metal temperature 244 instead of actual temperatures. Thus, submodels 234, 234, 236, 238, 240, and 242 are included in ISO-based submodel 243 that uses ISO data rather than just actual data.
更具体地,依赖于时间的参数子模型234使用金属温度传递函数和ISO金属温度244来计算适用于测量直到损坏发生的时间的参数。循环疲劳子模型236可得出疲劳参数PISO-FAT=1Ni,20ISO-CPM,其中Ni, 20ISO-CPM由低周疲劳子模型238得出。低周疲劳子模型238例如可对于给定的ISO金属温度244和金属(例如,因科镍合金IN706)作为单轴应变范围Δε的函数得出每分钟20次循环(CPM)时的Ni,20ISO-CPM。类似地,应变240和应力242子模型可基于给定的ISO金属温度244而得出应变和应力。More specifically, the time-dependent parameter submodel 234 uses the metal temperature transfer function and the ISO metal temperature 244 to calculate parameters suitable for measuring the time until damage occurs. The cycle fatigue sub-model 236 can obtain the fatigue parameter P ISO-FAT =1N i,20ISO-CPM , wherein N i, 20ISO-CPM is obtained from the low cycle fatigue sub-model 238 . The low cycle fatigue submodel 238 may, for example, yield Ni at 20 cycles per minute (CPM) for a given ISO metal temperature 244 and metal (e.g., Inconel IN706) as a function of the uniaxial strain range Δε , 20ISO-CPM . Similarly, the strain 240 and stress 242 submodels may derive strain and stress based on a given ISO metal temperature 244 .
图8描绘了适用于通过应用以上关于图7所描述的混合模型而预测转子叶轮报废的总量N的逻辑250。逻辑250可进一步细分为单元级分析逻辑252和部件级分析逻辑254。单元级分析逻辑252可包括适用于预测计划外的事件的发生的单元级风险模型256。单元级风险模型256可使用以上关于图7所描述的混合风险模型,且可用来预测针对单独的单元10的计划外的维护事件的发生的概率。单元级风险模型256可包括例如针对涡轮构件中的具体位置-诸如锁线片的内部侧而得出的等效燃烧小时混合模型204。类似地,也可使用对涡轮构件中的不同的位置(诸如锁线片的外部侧)建模的第二单元级风险模型258。因此,第二单元级风险模型258也可包括关于图7所描述的、但涉及与由单元级风险模型256模型化的位置(例如,锁线片的内部侧)不同的模型化位置(例如,锁线片的外部侧)的混合风险模型的实施例。FIG. 8 depicts logic 250 suitable for predicting the total amount N of rotor wheel scrapping by applying the hybrid model described above with respect to FIG. 7 . Logic 250 may be further subdivided into unit-level analysis logic 252 and component-level analysis logic 254 . Unit-level analysis logic 252 may include a unit-level risk model 256 suitable for predicting the occurrence of unplanned events. The unit level risk model 256 may use the hybrid risk model described above with respect to FIG. 7 and may be used to predict the probability of occurrence of an unplanned maintenance event for an individual unit 10 . The unit level risk model 256 may include, for example, the equivalent burn hour mixing model 204 derived for a specific location in the turbine component, such as the inner side of the lockwire. Similarly, a second element level risk model 258 modeling different locations in the turbine component, such as the outer side of the lockwire, may also be used. Accordingly, the second unit-level risk model 258 may also include modeled locations as described with respect to FIG. 7 (eg, Example of a mixed risk model for the outer side of the lockwire).
然后可例如基于单元级风险模型256和258得出(方框260)单元10的风险-诸如由于锁线片开裂(内部或者外部开裂)而引起的故障-的预测。风险的预测(方框260)可包括比例风险模型(PHM),诸如Weibull PHM,其适用于使某些变量(例如,Equivalent_FH,N比率,温启动百分比)与计划外的维护事件发生前的燃烧小时相关。例如,Weibull PHM可使得能基于给定的单元10的当前的燃烧小时而导出各种计划外的事件发生的概率。A prediction of the risk of the unit 10 , such as failure due to lockwire cracking (either internal or external), may then be derived (block 260 ), eg, based on the unit-level risk models 256 and 258 . The prediction of risk (block 260) may include a proportional hazards model (PHM), such as a Weibull PHM, which is adapted to relate certain variables (e.g., Equivalent_FH, N ratio , warm start percentage) to the combustion rate prior to an unplanned maintenance event. hour dependent. For example, the Weibull PHM may enable the derivation of the probability of occurrence of various unplanned events based on the current burn hours of a given unit 10 .
部件级分析逻辑254可结合适用于对与具体部件和部件位置相关联的风险建模的部件级风险模型262。例如,可得出部件级风险模型262以对锁线片的内部侧建模。换句话说,部件级风险模型262类似于单元级风险模型256,但是涉及对通用部件的位置的风险、而非与单独的单元10中的部件的使用相关联的风险进行建模。类似地,可得出部件级风险模型264,以便对与通用部件的不同的位置(诸如锁线片的外部侧)相关联的风险建模。模型262和264则可用于预测开裂的锁线片的数量(方框266)。在一个实施例中,开裂的锁线片的数量的预测(方框266)可包括使用由模型262和264得出的概率函数Pr(i),其中Pr(i)是单个片i的开裂的概率。因此,可基于模型262和264得出一组概率函数{Pr(1),Pr(2),...Pr(i),...,Pr(片的总数量)}。The component level analysis logic 254 may incorporate a component level risk model 262 adapted to model risks associated with specific components and component locations. For example, a component-level risk model 262 may be derived to model the interior side of the lockwire. In other words, the component-level risk model 262 is similar to the unit-level risk model 256 , but involves modeling the risks of the location of common components rather than the risks associated with the use of components in individual units 10 . Similarly, a component-level risk model 264 may be derived to model risks associated with different locations of a common component, such as the exterior side of a lockwire. Models 262 and 264 may then be used to predict the number of split lockwires (block 266). In one embodiment, the prediction of the number of cracked lockwires (block 266) may include using the probability function Pr(i) derived from models 262 and 264, where Pr(i) is the number of cracked lockwires for individual piece i. probability. Therefore, a set of probability functions {Pr(1), Pr(2), . . . Pr(i), .
在所示的实施例中,使用Monte Carlo模拟(方框268)来预测达到或者超过某叶轮报废阈值的概率Pr(≥报废阈值)。例如,如果三个或者更多个相邻的锁线片开裂,则可达到或者超过叶轮报废阈值。可使用任何合适的Monte Carlo模拟,包括通过基于采样的随机变量模拟该组概率函数{Pr(1),Pr(2),...Pr(i),...,Pr(片的总数量)}来计算概率分布的迭代模拟。例如,在各次迭代期间,该组概率函数{Pr(1),Pr(2),...Pr(i),...,Pr(片的总数量)}可用来计算和存储一组概率值。随着模拟了更多的迭代,所存储的值就用来限定概率Pr(≥报废阈值)。因此,可基于所有模拟迭代或者情况的加总得出叶轮报废的概率(方框270)。In the illustrated embodiment, a Monte Carlo simulation (block 268 ) is used to predict the probability Pr of reaching or exceeding a certain impeller failure threshold (≥retirement threshold). For example, if three or more adjacent lockwires are cracked, the impeller scrapping threshold may be met or exceeded. Any suitable Monte Carlo simulation can be used, including simulating the set of probability functions {Pr(1), Pr(2), . . . Pr(i), . . . , Pr(the total number of slices )} to compute an iterative simulation of the probability distribution. For example, during each iteration, the set of probability functions {Pr(1), Pr(2), ... Pr(i), ..., Pr (total number of slices)} can be used to compute and store a set of probability value. As more iterations of the simulation are performed, the stored values are used to define the probability Pr (≥rejection threshold). Accordingly, the probability of impeller failure may be derived based on summation of all simulation iterations or scenarios (block 270 ).
在一个实施例中,可基于实际的检查结果计算(方框272)叶轮报废比率的概率。例如,可分析检查日志来确定实际的故障相对于预测的故障的比率。叶轮报废比率的概率(方框272)然后可与得出的叶轮报废概率(方框270)集成,以计算叶轮报废的总量(方框274)。事实上,通过应用本文中所述的技术,包括使用混合风险模型,可通过使得能对可能需要报废的叶轮的数量进行预测来显著地改进维护。例如,从制造商处取得替换转子叶轮可能需要某些交付时间或者等待时间。因此,部件购买或者部件补充系统可在实际的报废之前订购替换叶轮。将理解,本文所述的技术可用于其它应用中,诸如财政和/或决策支持应用。通过具有可用于计划外的事件预测的显著地改进的一套技术,现在可做出集成了商业运行与工程分析的财政决策。例如,与存货管理、部件取得、逻辑、维护规划、维护运行等等相关的商业运行可得以改进。In one embodiment, a probability of impeller failure rate may be calculated (block 272 ) based on actual inspection results. For example, inspection logs may be analyzed to determine the ratio of actual failures to predicted failures. The probability of impeller scrapping rate (block 272) may then be integrated with the derived impeller scrapping probability (block 270) to calculate the total amount of impeller scrapping (block 274). In fact, by applying the techniques described herein, including the use of a hybrid risk model, maintenance can be significantly improved by enabling predictions of the number of impellers that may need to be retired. For example, obtaining a replacement rotor wheel from the manufacturer may require some lead time or wait time. Accordingly, a parts purchase or parts replenishment system may order a replacement impeller prior to actual retirement. It will be appreciated that the techniques described herein may be used in other applications, such as financial and/or decision support applications. With a dramatically improved set of techniques available for unplanned event prediction, financial decisions that integrate business operations and engineering analysis can now be made. For example, business operations related to inventory management, parts procurement, logic, maintenance planning, maintenance operations, etc. may be improved.
本发明的技术效果包括使得能够将基于物理的建模与统计技术集成到混合模型中的建模技术。混合模型可导致对诸如计划外的维护事件的事件的改进的预测估计。Technical effects of the invention include modeling techniques that enable the integration of physically based modeling and statistical techniques into hybrid models. Hybrid models can lead to improved predictive estimates of events such as unplanned maintenance events.
此书面描述使用了实例来公开本发明,包括最佳模式,并且还使得本领域的任何技术人员能够实践本发明,包括制造和使用任何装置或系统,以及执行任何结合的方法。本发明的可授予专利的范围由权利要求限定,并且可包括本领域技术人员想到的其它实例。如果这样的其它实例具有不异于权利要求的字面语言的结构元素,或如果它们包括与权利要求的字面语言无实质性差异的等效结构元素,则这样的其它实例意图处于权利要求的范围内。This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims .
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/950891 | 2010-11-19 | ||
US12/950,891 US8712739B2 (en) | 2010-11-19 | 2010-11-19 | System and method for hybrid risk modeling of turbomachinery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102567569A CN102567569A (en) | 2012-07-11 |
CN102567569B true CN102567569B (en) | 2016-12-14 |
Family
ID=
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6226597B1 (en) * | 1996-11-27 | 2001-05-01 | Hamilton Sundstrand Corporation | Method of maintaining components subject to fatigue failure |
CN101025804A (en) * | 2006-02-22 | 2007-08-29 | 通用电气公司 | Method, system, and computer program product for performing prognosis and asset management services |
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6226597B1 (en) * | 1996-11-27 | 2001-05-01 | Hamilton Sundstrand Corporation | Method of maintaining components subject to fatigue failure |
CN101025804A (en) * | 2006-02-22 | 2007-08-29 | 通用电气公司 | Method, system, and computer program product for performing prognosis and asset management services |
Non-Patent Citations (1)
Title |
---|
An Integrated Framework for Gas Turbine Power Plant Operational Modeling and Optimization;Yongjun Zhao;《Georgia Institute of Technology》;20051231;第1-8章 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8712739B2 (en) | System and method for hybrid risk modeling of turbomachinery | |
EP2400118B1 (en) | Turbomachine airfoil life management system and method | |
CN106404403B (en) | Method and system for analysis of turbines | |
CN102155301B (en) | System and method for monitoring gas turbine | |
JP5715377B2 (en) | Turbine operation deterioration judgment system and method | |
US20140244133A1 (en) | Aircraft engine systems and methods for operating same | |
US20160123175A1 (en) | Hybrid model based detection of compressor stall | |
Olsson et al. | A data-driven approach for predicting long-term degradation of a fleet of micro gas turbines | |
JP2013140580A (en) | Method and system for maintenance of turbomachinery | |
Zorchenko et al. | Technologies used by General Electric to create digital twins for energy industry | |
WO2015175181A1 (en) | System and method for evaluating opportunities to extend operating durations | |
Verbist | Gas path analysis for enhanced aero-engine condition monitoring and maintenance | |
CN102567569B (en) | The system and method modeled for the mixed risk of turbine | |
KR101719715B1 (en) | Operating method for supporting maintenance for gas turbine | |
Benvenuti | Innovative Gas Turbine Performance Diagnostics And Hot Parts Life Assessment Techniques. | |
Raghavan et al. | Artificial neural networks based parametric curve generation for health assessment of industrial gas turbine systems | |
Gorelik et al. | Effect of manufacturing variability on turbine engine performance: a probabilistic study | |
Musa et al. | Energy Reports | |
Guo et al. | A digital twin-oriented data-physics-AI integrated framework for RUL prediction of gas turbine blade | |
Olayo et al. | Efficiency-Focused Maintenance Model to Recover the Performance of a Gas Turbine with Inlet Air Cooling and Affected by Fouling. | |
Loboda | Development and Evaluation of Algorithms for Gas Turbine Condition Monitoring and Diagnostics | |
Sulaiman et al. | Development of Gas Compressor Diagnostic Program Using Knowledge Based Management Concept | |
Ajoko et al. | Mathematical modelling of gas turbine diagnosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240110 Address after: Swiss Baden Patentee after: GENERAL ELECTRIC CO. LTD. Address before: New York, United States Patentee before: General Electric Co. |