Background technology
As the five-axle number control machine tool of the free form surface of processing metal mould etc., have the parts of turning axle beyond using on linear shifting axle basis.Known have the linear shifting axle of X, Y, Z and a five-axis machine tool of two turning axles, adds man-hour carrying out multiaxis, because the appearance of turning axle can be processed cutter with different angles to workpiece.Appearing at when process flexibility is strengthened greatly of turning axle also makes the establishment of five job sequences become loaded down with trivial details, and be abstract, indigestion.In general, the five-shaft numerical control job sequence is difficult to accomplish with artificial hand-written mode, is the NC program of concrete lathe and can only handle the cutter spacing data-switching that CAD/CAM is generated through postposition.In case machine tool structure or cutter for same change, original program just can not be used.The cooked mode of this " key is driven once lock ", low operability of efficient and versatility are poor.In the production in enormous quantities that becomes increasingly complex and accuracy requirement is increasingly high is processed; This cooked mode serious limit the performance of five-axis machine tool working ability and efficient; Become the bottleneck that the 5-shaft linkage numerical control processed and applied is promoted and developed, there is following drawback in this tupe:
1. must use expensive CAM software and specific rearmounted process software;
2. processing produces a large amount of small program processing instructions to simple path, needs system to have jumbo memory device to store tediously long job sequence;
3. a large amount of small program segments can increase the weight of the communication load between programing system and the CNC system, reduces the reliability of total system;
4. numerical control device needs plenty of time and processing power to analyze tediously long program, is difficult to guarantee the level and smooth processing under the high-precision high-speed;
5. the lathe to the different motion structure need generate different job sequences;
6. can't control the processing speed of feed.
Can directly carry out multiaxis processing based on CAD/CAM system or profiling data for digital control system, need directly carry out interpolation from the instruction point.At this moment, need five-shaft numerical control to take all factors into consideration Machine Tool Dynamics constraint and machining path constraint, through in real-time interpolation, accomplishing the conversion that programming instruction arrives Machine-Tool Control point under the workpiece coordinate system.
In addition; Instruction under the workpiece coordinate system directly drives five-axis machine tool and carries out method for processing and become known technology; Program path is carried out being undertaken by program speed F the path interpolation of each interpolation cycle t, carry out the kinematics conversion then, each is processed to drive lathe.But carry out each interpolated point that path interpolation obtain according to program speed F and interpolation cycle t this moment, can not guarantee to retrain apart from the dynamics that satisfies lathe between adjacent interpolated point, may cause each overproof situation in the interpolation process, to occur.Turning axle occurs with angular unit simultaneously, the cutter shaft direction interpolating method of vector units form is not handled.
Summary of the invention
Overproof or the discontinuous problem of axle motion that possibly cause to the real-time interpolation that exists in the prior art based on instruction; The technical matters that the present invention will solve provides a kind of combining with digital control system Machine Tool Dynamics constraint of being controlled and the five-axle numerical control system cutter heart point interpolation path interpolation method that machining path retrains, and realizes continuous stably five processing cutter heart points interpolation.
For solving the problems of the technologies described above, the technical scheme that the present invention adopts is:
Five-axle numerical control system cutter heart point interpolation of the present invention path interpolation method is used for having the digital control system that the five-axis machine tool of three linear axes and two turning axles is used through control, may further comprise the steps:
Instruction is resolved: confirm the cutter heart dot position information and the tool orientation information of path starting point and terminal point, cutter heart point speed of feed, interpolation cycle; Through five-axis machine tool structural parameters in the system, confirm that programming instruction information is to the transformational relation of lathe coordinate system lower shaft positional information in the workpiece coordinate system simultaneously;
Path interpolation pre-service: confirm cutter heart point interpolation step-length and segment length, and according to the required cutter heart point interpolation cycle number of programming instruction;
Minor axis interpolation Time Calculation: confirm to accomplish needed each movement travel in whole cutter heart point interpolation path,, calculate and accomplish cutter heart point interpolation path required minor axis interpolation time and an interpolation cycle number in conjunction with the maximum constraints speed of each;
The shortest interpolation cycle number of constraint of velocity:, confirm the shortest interpolation cycle number under the constraint of velocity condition according to cutter heart point interpolation cycle number and axle interpolation cycle number;
Each interpolation position calculates: count the tool setting heart locus of points based on the shortest interpolation cycle and handle, confirm the movement position of each each interpolation cycle, calculate the movable information of accomplishing each through inverse kinematics then and calculate;
The acceleration constraint is judged: each carried out the acceleration constraint judges, and then servo when each motion meets the acceleration constraint requirements with issuing after each movable information process cubic spline smoothing processing, finish this operation.
When if each motion does not meet the acceleration constraint requirements, return minor axis interpolation Time Calculation step.
The cutter heart point interpolation time is:
Wherein, L is the displacement of the center cutter point of each interpolation cycle under the instruction speed F, and D is the center cutter point distance segment length that starting point is breasted the tape, and t is an interpolation cycle.
The displacement L of the center cutter point of each interpolation cycle under the instruction speed F is:
L=F×t
Wherein F is cutter heart point speed of feed.
The center cutter point distance segment length D that starting point is breasted the tape is:
Wherein, x
s, y
s, z
sBe the center cutter point position coordinates of path starting point, x
e, y
e, z
eCenter cutter point position coordinates for the path terminus.
The minor axis interpolation time calculates through following formula
Wherein, each maximal rate is respectively n
Mx, n
My, n
Mz, n
MaAnd n
Mc, each movement travel is respectively Δ x, Δ y, Δ z, Δ α and Δ B.
The shortest interpolation cycle number of constraint of velocity does
Wherein, L is the displacement of the center cutter point of each interpolation cycle under the instruction speed, and D is the center cutter point distance segment length that starting point is breasted the tape, and t is an interpolation cycle, t
MinBe the minor axis interpolation time.
The present invention has following beneficial effect and advantage:
1. the present invention is when carrying out the interpolation of cutter heart point; Machine Tool Dynamics constraint that the combining with digital control system is controlled and machining path constraint; Program path is carried out interpolation processing, thereby can carry out five processing cutter heart points interpolation stably through having the five-axis machine tool of 2 turning axles.
Embodiment
Fig. 1 is digital control system 10 structural drawing that are suitable for parameter configuration mode of the present invention.Based on component model, with bus the digital control system structure has been comprised human interface components 21, task controller assembly 22, PLC assembly 24, motion controller assembly 23 and control bus 25 assemblies and be connected in the digital control system 10.
Wherein human interface components 21: be responsible for user management, data acquisition, transmission new data provide unanimity to controller and for various device user interface; Also need the needed various information of explicit user simultaneously, like job sequence, at present conditions of machine tool, the data handled etc.
Task controller assembly 22: explain and carry out job sequence, add process sequence control in man-hour and for the detection diagnosis and the processing capacity of mistake.According to part program, task controller controlled motion controller and I/O controller are accomplished processing tasks.
PLC assembly 24: be responsible for the I/O control of sensor and actuator, mainly comprise lathe power-on and power-off, emergency stop switch, cold switch etc.
Motion controller assembly 23: be responsible for detecting each kinematic axis current location, calculate next movement position and result of calculation is sent to the control bus assembly to control execution etc. with command forms.
Control bus assembly 25: be responsible for from motion controller assembly and PLC assembly, receiving order, and order is sent in the bus driver card to drive digital servo 26, simultaneously servo condition is fed back to motion controller assembly 23 and PLC assembly 24.
In this embodiment,, have X axle, Y axle, Z axle and A axle, the B axle of linear axes, 2 turning axles in the C axle with digital control system 10 control gang tools.Each axle control structure outputs to servo 26 from the axle movement instruction of control bus 25 with each instruction.Servo 26 organization instructions drive each servo motor 34.Servo motor 34 is built-in with the speed/positional detecting device simultaneously, will feed back in the meeting servo 26 from the speed/positional feedback signal of this speed/positional detecting device, carries out the FEEDBACK CONTROL of speed/positional.
As shown in Figure 2, five-axle numerical control system cutter heart point interpolation of the present invention path interpolation method is used for having the digital control system that the five-axis machine tool of three linear axes and two turning axles is used through control, may further comprise the steps:
Instruction is resolved: confirm the cutter heart dot position information and the tool orientation information of path starting point and terminal point, cutter heart point speed of feed, interpolation cycle; Through five-axis machine tool structural parameters in the system, confirm that programming instruction information is to the transformational relation of lathe coordinate system lower shaft positional information in the workpiece coordinate system simultaneously;
Path interpolation pre-service: confirm cutter heart point interpolation step-length and segment length, and according to the required cutter heart point interpolation cycle number of programming instruction;
Minor axis interpolation Time Calculation: confirm to accomplish needed each movement travel in whole cutter heart point interpolation path,, calculate and accomplish cutter heart point interpolation path required minor axis interpolation time and an interpolation cycle number in conjunction with the maximum constraints speed of each;
The shortest interpolation cycle number of constraint of velocity:, confirm the shortest interpolation cycle number under the constraint of velocity condition according to cutter heart point interpolation cycle number and axle interpolation cycle number;
Each interpolation position calculates: count the tool setting heart locus of points based on the shortest interpolation cycle and handle, confirm the movement position of each each interpolation cycle;
Acceleration constraint is judged: each is carried out acceleration constraint judgement, when each motion meets the acceleration constraint requirements, then each movable information is carried out issuing after the cubic spline optimization servo, finish this operation;
When if each motion does not meet the acceleration constraint requirements, return minor axis interpolation Time Calculation step.
Calculating and accomplishing the required minor axis interpolation time of cutter heart point interpolation path is according to each interpolation stroke; And the maximal rate of each permission; Guarantee the shortest interpolation Time Calculation that each arrives simultaneously; According to cutter heart point routing information and cutter heart point programming speed of feed, calculate the cutter heart point interpolation time.
Comprise the job sequence that uses CAD/CAM system or profiling data directly to carry out multiaxis processing from data input device 31 through man-machine interface (HMI) 21 inputs.If each is linear axes X axle, Y axle and Z axle for the five-axis machine tool that digital control system 10 is controlled, turning axle is α axle and β axle.
In the instruction analyzing step, the concrete lathe configuring condition of at first controlling according to digital control system utilizes formula (1) and formula (2), and can obtain turning axle and generating tool axis vector and instruction point and the kinematics transformational relation of each has
(i
i?j
i?k
i)=F
R(α
i,β
i)(1)
(x
i?y
i?z
i)=F
L(x
mi?y
mi?z
miα
iβ
i)(2)
(i in formula 1 and the formula 2
ij
ik
i) be the generating tool axis vector under arbitrary i interpolation workpiece coordinate system constantly, (x
Miy
Miz
Miα
iβ
i) be each shaft position instruction under arbitrary i interpolation moment lathe coordinate system.
Suppose that the path starting point and the center cutter point coordinate of terminal point that are obtained under the workpiece coordinate system by instruction are p
s=(x
sy
sz
s) and p
e=(x
ey
ez
e), the tool orientation vector is the q that vector form is described
s=(i
sj
sk
s) and q
e=(i
ej
ek
e) or (α of turning axle instruction type
s, β
s) and (α
e, β
e), cutter heart point speed of feed is F, interpolation cycle t.
In the interpolation pre-treatment step of path, obtain the displacement L of the center cutter point of each interpolation cycle under the instruction speed F by formula (3) earlier.
L=F×t (3)
Again according to starting point and terminal point center cutter point position (x
sy
sz
s) and (x
ey
ez
e), obtain the center cutter point distance segment length D that starting point is breasted the tape by formula (4).
In minor axis interpolation Time Calculation step, according to the information of starting point and terminal point, through type (1) and formula (2) can obtain each stroke in the interpolation process
Because in the machine tool structure, the performance of each is different, also need confirm transition shortest time t
MinGuarantee that each can arrive simultaneously.If each maximal rate is respectively n
Mx, n
My, n
Mz, n
MaAnd n
McThen have
Count in the n solution procedure at the shortest interpolation cycle,, can obtain that the maximum speed of clamping down on of each does in the interpolation process according to formula (5) and formula (6)
If n be cutter heart point from the required interpolation hop count of origin-to-destination, then have
Interpolation time when at this moment, cutter heart spot speed is F is t
t=nt.Through type (7) can obtain
In inverse kinematics calculating and each movable information calculation procedure, after having confirmed interpolation hop count n, to starting point (x
sy
sz
s) and terminal point (x
ey
ez
e) the center cutter point path that forms carries out the n five equilibrium, utilizes formula (8) to obtain the center cutter point interpolation position of each interpolation cycle, have
I=0 in the formula, 1 ..., n.(x
iy
iz
i) center cutter point position coordinates when being each interpolation cycle.
Next carry out analyzing and processing to rotatablely moving, if turning axle adopts the linear interpolation mode, the turning axle angle of then using formula (9) to obtain each interpolation cycle does
If turning axle adopts the vector interpolation mode, then at first with start vector (i
sj
sk
s) and finish vector (i
ej
ek
e), carry out the n five equilibrium, obtain the generating tool axis vector (i of each interpolation cycle
ij
ik
i).Use formula (1) to obtain corresponding turning axle angle
then
Confirming the center cutter point coordinate (x of each interpolation cycle
iy
iz
i) and turning axle coordinate (α
iβ
i) after, use formula (2) obtains pairing each the reference mark positional information (x of each interpolation cycle
Miy
Miz
Miα
iβ
i).
In acceleration constraint determining step, with each interpolation of obtaining constantly each movement position information of lathe be basis, carry out acceleration constraint judgement.With the X axle is example, and the location point sequence is { x
s, x
1..., x
I-1, x
i, x
I+1..., x
e.If the permission peak acceleration of X axle is α
Xmax, then use the x axle acceleration α of formula (10) to i interpolation section
XiCalculate.
I=0 in the formula, 1 ..., n-1.If the intersegmental acceleration of each interpolation satisfies peak acceleration constraint, each control point information of then being tried to achieve is carried out cubic spline and is issued servo 26 after level and smooth.If the intersegmental acceleration of each interpolation does not satisfy the peak acceleration constraint; Then with interpolation hop count n; Increase progressively to handle and get the n=n+1 continued and handle, after satisfying peak acceleration constraint condition, again each control point information of being tried to achieve is carried out cubic spline and issue servo 26 after level and smooth.