CN102564584B - Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector - Google Patents
Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector Download PDFInfo
- Publication number
- CN102564584B CN102564584B CN 201110379701 CN201110379701A CN102564584B CN 102564584 B CN102564584 B CN 102564584B CN 201110379701 CN201110379701 CN 201110379701 CN 201110379701 A CN201110379701 A CN 201110379701A CN 102564584 B CN102564584 B CN 102564584B
- Authority
- CN
- China
- Prior art keywords
- equivalent
- photodetector
- circuit
- veriloga
- equivalent circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000000694 effects Effects 0.000 title claims abstract description 10
- 238000013461 design Methods 0.000 claims abstract description 12
- 238000012360 testing method Methods 0.000 claims description 18
- 238000004088 simulation Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 10
- 230000035945 sensitivity Effects 0.000 claims description 6
- 230000005622 photoelectricity Effects 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 19
- 238000012986 modification Methods 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明公开了一种高灵敏度量子效应光电探测器等效电路的建模方法,其特点是对量子点-量子阱光电探测器采用不同的辐照功率和器件偏压下的电特性测试,应用“VerilogA”语言建立等效电路模型,然后利用电路模拟软件进行验证,为读出电路的设计提供准确反映不同结构器件特性的光电探测器模型。本发明与现有技术相比具有建模程序简单、修改灵活、效率高,对应的不同的光功率和器件偏压参数的设置修改方便,不同光功率和器件偏压的实现可通过在等效电路模型属性中对应的预先设好的光功率和器件偏压参数中直接输入具体数据即可。
The invention discloses a modeling method for the equivalent circuit of a high-sensitivity quantum effect photodetector. The "VerilogA" language establishes an equivalent circuit model, and then uses circuit simulation software to verify it, providing a photodetector model that accurately reflects the characteristics of different structural devices for the design of the readout circuit. Compared with the prior art, the present invention has the advantages of simple modeling program, flexible modification and high efficiency. The specific data can be directly input in the corresponding pre-set optical power and device bias parameters in the circuit model properties.
Description
技术领域 technical field
本发明涉及电子、电路设计技术领域,尤其是一种高灵敏度量子效应光电探测器等效电路的建模方法。 The invention relates to the technical field of electronics and circuit design, in particular to a modeling method for an equivalent circuit of a high-sensitivity quantum effect photodetector.
背景技术 Background technique
光电探测器担当着将接受到的光信号转换为电信号的角色。近年来随着量子阱、量子点物理和材料技术的进展,量子效应光电探测器也应运而生。量子效应光电探测器在微光照射下,具有暗电流小、灵敏度大、动态范围大、光电转换效率高等优点,它广泛应用于医疗、生物分子科学、环境监测等领域。读出电路在光电探测系统中的主要功能是对探测器微弱信号进行预处理,并在信号处理级间提供一个接口,在对读出电路的设计中需要一个能准确反映量子效应光电探测器特性的等效电路。 Photodetectors play the role of converting received light signals into electrical signals. In recent years, with the development of quantum well, quantum dot physics and material technology, quantum effect photodetectors have emerged as the times require. Quantum-effect photodetectors have the advantages of small dark current, high sensitivity, large dynamic range, and high photoelectric conversion efficiency under low-light irradiation. They are widely used in medical, biomolecular science, and environmental monitoring. The main function of the readout circuit in the photodetection system is to preprocess the weak signal of the detector and provide an interface between the signal processing stages. In the design of the readout circuit, a photodetector that can accurately reflect the quantum effect is required. the equivalent circuit.
目前,已经对一些典型的光电探测器件建立了一些等效电路模型,这些模型大都是基于光电探测器内部物理方程的基础上得到的。由于光电探测器器件内部的物理特性参数过多以及在求解大量的物理特性方程时基于多种假设得到的近似表达式均会在很大程度上影响等效电路模型的精度,从而为其读出电路的设计带来困难。而且求解过程中,由于光电探测器的复杂结构及其使用的各种材料参数,也会使得建模过程中的程序编制复杂化。 At present, some equivalent circuit models have been established for some typical photodetector devices, and most of these models are obtained based on the internal physical equations of photodetectors. Due to the excessive number of physical characteristic parameters inside the photodetector device and the approximate expressions obtained based on various assumptions when solving a large number of physical characteristic equations, the accuracy of the equivalent circuit model will be greatly affected. The design of the circuit poses difficulties. Moreover, during the solution process, due to the complex structure of the photodetector and various material parameters used, it will also complicate the programming in the modeling process.
在专利号:ZL 200910047116.X的《一种光探测器读出电路的设计方法》中提出了较简便实用的等效电路建模方法,该方法是根据器件的I-V和C-V等电特性直接拟合得出的,这种建模方法的局限性在于:不能反映出不同辐照光功率下光电探测器的I-V和C-V特性,而光电探测器I-V,C-V特性会随辐照光功率而变化。因此目前这种对光电探测器的等效电路的建模方法具有一定的局限性。 In the patent number: ZL 200910047116.X "A Design Method for Photodetector Readout Circuit", a simple and practical equivalent circuit modeling method is proposed, which is based on the I-V and C-V electrical characteristics of the device. It is concluded that the limitation of this modeling method is that it cannot reflect the I-V and C-V characteristics of photodetectors under different irradiated light powers, and the I-V and C-V characteristics of photodetectors will change with the irradiated light power. Therefore, the current modeling method of the equivalent circuit of the photodetector has certain limitations.
发明内容 Contents of the invention
本发明的目的是针对现有技术的不足而提供的一种高灵敏度量子效应光电探测器的等效电路建模方法,采用“VerilogA”语言准确实现不同辐照功率和器件偏压下的光电探测器特性参数,以特性参数建立与光电探测器可精确匹配的等效电路,建模程序简单、效率高,大大减少了光电探测器内部的物理特性参数过多而影响模型精度以及复杂程序的编制,对应不同的光功率和器件偏压参数的设置、修改和输入非常方便,为读出电路设计提供准确的反映不同器件结构特性的光电探测器模型。 The purpose of the present invention is to provide an equivalent circuit modeling method for a high-sensitivity quantum effect photodetector aimed at the deficiencies of the prior art, using the "VerilogA" language to accurately realize photoelectric detection under different irradiation powers and device bias voltages The characteristic parameters of the photodetector are used to establish an equivalent circuit that can be accurately matched with the photodetector. The modeling program is simple and efficient, which greatly reduces the influence of too many physical characteristic parameters inside the photodetector and the establishment of complex programs. , it is very convenient to set, modify and input corresponding to different optical power and device bias parameters, and provide accurate photodetector models that reflect the structural characteristics of different devices for readout circuit design.
本发明的目的是这样实现的:一种高灵敏度量子效应光电探测器等效电路的建模方法,其特点是对量子点-量子阱光电探测器采用不同的辐照功率和器件偏压下的电特性测试,应用“VerilogA”语言建立等效电路模型,然后利用电路模拟软件进行验证,为读出电路的设计提供准确反映不同结构器件特性的光电探测器模型,具体建模方法包括下列步骤: The object of the present invention is achieved like this: a kind of modeling method of quantum effect photodetector equivalent circuit of high sensitivity, it is characterized in that quantum dot-quantum well photodetector adopts different radiation power and device bias For the electrical characteristic test, the equivalent circuit model is established by using the "VerilogA" language, and then verified by circuit simulation software to provide a photodetector model that accurately reflects the characteristics of different structural devices for the design of the readout circuit. The specific modeling method includes the following steps:
(1)、光电探测器的特性参数测试和拟合 (1) Testing and fitting of characteristic parameters of photodetectors
a、基于光电测试平台,作出光电探测器的电流-电压特性(I-V)特性曲线簇,并用“Origin”软件采用分段拟合得到不同辐照光功率下的I与V之间的函数关系: ,由此在等效电路中可以用一个受控电流源来实现,使输出电流为电压的函数; a. Based on the photoelectric test platform, make the current-voltage characteristic (I-V) characteristic curve cluster of the photodetector, and use the "Origin" software to obtain the function between I and V under different irradiated light powers by segmental fitting relation: , so it can be realized with a controlled current source in the equivalent circuit, so that the output current is a function of the voltage;
b、基于光电测试平台,作出光电探测器的电容-电压(C-V)特性曲线簇,以“ Origin”软件采用分段拟合得到不同辐照光功率下的C与V之间的函数关系:,并采用“VerilogA”语言对等效电容进行描述,由此在等效电路中可以用一个“VerilogA”语言描述电流源形式的可变电容来实现,其电容大小为电压的函数; b. Based on the photoelectric test platform, make the capacitance-voltage (C-V) characteristic curve cluster of the photodetector, and use the "Origin" software to obtain the functional relationship between C and V under different irradiated light powers by segment fitting : , and use the "VerilogA" language to describe the equivalent capacitance, so in the equivalent circuit, a "VerilogA" language can be used to describe the variable capacitance in the form of a current source, and its capacitance is a function of voltage;
(2)、对等效电路中的电阻进行“VerilogA”语言描述 (2) "VerilogA" language description for the resistance in the equivalent circuit
以电容反馈互阻放大器(CTIA)型读出结构的参考电压值为等效电路模型的输出电压,由此得到等效电路模型的输出阻抗,采用“VerilogA”语言对等效输出电阻进行描述,由此在等效电路中可以用一个“VerilogA”语言描述的电流源形式的输出阻抗来实现; The reference voltage of the sensing structure in the capacitive feedback transimpedance amplifier (CTIA) type The value is the output voltage of the equivalent circuit model, and thus the output impedance of the equivalent circuit model is obtained , using the "VerilogA" language to describe the equivalent output resistance, so that the equivalent circuit can be realized with an output impedance in the form of a current source described in the "VerilogA"language;
(3)、等效电路的建模 (3) Modeling of equivalent circuit
将上述采用“VerilogA”语言描述的电流源形式的可变电容与电流源形式的输出阻抗并联,构成能与光电探测器准确匹配的等效电路模型。 The above-mentioned variable capacitance in the form of a current source described in the "VerilogA" language is connected in parallel with the output impedance in the form of a current source to form an equivalent circuit model that can accurately match the photodetector. the
(4)、等效电路模型的仿真模拟 (4) Simulation of equivalent circuit model
将上述建立的等效电路模型,利用电路模拟软件“Cadence”的“Spectre”仿真器对等效电路模型进行仿真模拟,将仿真结果与实际测试的I-V和C-V特性曲线簇进行比对,以此验证等效电路模型的正确性,为读出电路的设计提供准确的光电探测器模型。 Use the "Spectre" simulator of the circuit simulation software "Cadence" to simulate the equivalent circuit model established above, and compare the simulation results with the actually tested I-V and C-V characteristic curve clusters. Verify the correctness of the equivalent circuit model and provide an accurate photodetector model for the design of the readout circuit. the
本发明与现有技术相比具有以下优点: Compared with the prior art, the present invention has the following advantages:
1、电路建模程序简单、效率高,大大减少了光电探测器内部的物理特性参数过多而影响模型精度以及复杂程序的编制; 1. The circuit modeling program is simple and efficient, which greatly reduces the influence of too many physical characteristic parameters inside the photodetector and the establishment of complex programs that affect the model accuracy;
2、等效电路可以直接和读出电路进行连接,方便光电探测器设计相匹配的读出电路; 2. The equivalent circuit can be directly connected to the readout circuit, which is convenient for the photodetector to design a matching readout circuit;
3、使用“VerilogA”语言建模,对应不同的光功率和器件偏压参数的设置修改非常方便,不同光功率和器件偏压的实现可通过在等效电路模型属性中对应的预先设好的光功率和器件偏压参数中直接输入具体数据即可,修改灵活。 3. Using "VerilogA" language modeling, it is very convenient to set and modify the parameters corresponding to different optical power and device bias voltage. The realization of different optical power and device bias voltage can be achieved through the corresponding preset in the equivalent circuit model properties The specific data can be directly input in the optical power and device bias parameters, and the modification is flexible.
附图说明 Description of drawings
图1为光电探测器的微光I-V特性曲线簇图; Figure 1 is a cluster diagram of the low-light I-V characteristic curve of the photodetector;
图2为光电探测器的微光C-V特性曲线簇图; Figure 2 is a cluster diagram of the low-light C-V characteristic curve of the photodetector;
图3为“VerilogA”单元文件页面图; Figure 3 is a page diagram of the "VerilogA" unit file;
图4为电流源形式的电阻示意图; Figure 4 is a schematic diagram of resistance in the form of a current source;
图5为电流源形式的电阻属性页面图; Figure 5 is a diagram of the resistance property page in the form of a current source;
图6为等效电路中的可变电容示意图; Figure 6 is a schematic diagram of the variable capacitor in the equivalent circuit;
图7为简化的光电探测器等效电路图; Figure 7 is a simplified photodetector equivalent circuit diagram;
图8为等效电路模型的I-V特性仿真波形图; Figure 8 is the I-V characteristic simulation waveform diagram of the equivalent circuit model;
图9为等效电路模型的C-V特性仿真波形图。 Figure 9 is a simulation waveform diagram of the C-V characteristics of the equivalent circuit model. `` ``
具体实施方式 Detailed ways
下面以一种灵敏度较高的量子效应光电探测器在5nW以下的光功率辐照下等效电路建模的实施例,对本发明作进一步说明,其具体建模步骤如下: Below with a kind of embodiment that the quantum effect photodetector with a kind of sensitivity is higher under the light power irradiation below 5nW equivalent circuit modeling, the present invention will be further described, and its specific modeling steps are as follows:
(1)、光电探测器的特性参数测试 (1) Test of characteristic parameters of photodetectors
基于光电测试平台,采用Kelthley 4200-SCS半导体特性分析仪和波长为633nm的氦氖激光器,测试量子点-量子阱光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nW 、1 nW、2 nW和5 nW的I-V和C-V电特性参数,并作出光电探测器电特性曲线簇。 Based on the photoelectric test platform, using the Kelthley 4200-SCS semiconductor characteristic analyzer and the He-Ne laser with a wavelength of 633nm, the quantum dot-quantum well photodetectors are tested under the conditions of no light (dark current) and irradiated light power of 0.2 nW and 0.5 nW, 1 nW, 2 nW and 5 nW I-V and C-V electrical characteristic parameters, and make a photodetector electrical characteristic curve cluster.
参阅附图1,可以看出本微光测试系统的量子效应光电探测器低温下(120K)噪声很小(pA),具有高的灵敏度和微光特性。
Referring to accompanying
参阅附图2,可以看出光电探测器电容在反偏下变化较小。 Referring to Figure 2, it can be seen that the capacitance of the photodetector changes little under reverse bias.
(2)、光电探测器特性曲线的拟合 (2) Fitting of photodetector characteristic curve
根据测试做出光电探测器的I-V和C-V特性曲线簇,为了实现这种光电探测器高灵敏度的特点,实际器件应该工作在反偏情况下,利用“Origin”软件拟合得到不同辐照光功率下的I-V和C-V之间的函数关系:和,其中:V代表器件偏压,P代表辐照光功率,特性曲线的拟合具体步骤如下: According to the test, the IV and CV characteristic curve clusters of the photodetector are made. In order to realize the high sensitivity of the photodetector, the actual device should work under the reverse bias condition, and use the "Origin" software to fit different irradiated optical powers. The following functional relationship between IV and CV: and , where: V represents the bias voltage of the device, P represents the irradiated optical power, and the specific steps of fitting the characteristic curve are as follows:
a、I-V特性曲线簇拟合 a. I-V characteristic curve cluster fitting
为了使拟合后的特性曲线能较好的和测试得到的I-V特性曲线相重合,采用“Origin”软件分段拟合得到不同辐照光功率下的I与V之间的函数关系:,由此可以在等效电路中可以用一个受控电流源来实现,使输出电流为电压的函数,I-V特性曲线簇拟合时将器件偏压-3V至0之间分为两段,分别是[-1.5,0]和[-3,-1.5]。 In order to make the fitted characteristic curve coincide well with the IV characteristic curve obtained from the test, the "Origin" software is used to fit the function in sections to obtain the functional relationship between I and V under different irradiated light powers: , so it can be realized with a controlled current source in the equivalent circuit, so that the output current is a function of the voltage, and the device bias voltage between -3V and 0 is divided into two sections when the IV characteristic curve cluster is fitted, respectively is [-1.5,0] and [-3,-1.5].
当器件偏压时,光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nW 、1 nW、2 nW和5 nW的函数关系如下式(1)表示: (1) When the device bias When the photodetector has no light (dark current) and irradiated light power is 0.2 nW, 0.5 nW, 1 nW, 2 nW and 5 nW respectively The functional relationship is represented by the following formula (1): (1)
当器件偏压时,光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nW 、1 nW、2 nW和5 nW的函数关系如下式(2)表示: (2) When the device bias When the photodetector has no light (dark current) and irradiated light power is 0.2 nW, 0.5 nW, 1 nW, 2 nW and 5 nW respectively The functional relationship is represented by the following formula (2): (2)
b、C-V特性曲线簇拟合 b. C-V characteristic curve cluster fitting
为了使拟合后的特性曲线能较好的和测试得到的C-V特性曲线相重合,采用“Origin”软件分段拟合得到不同辐照光功率下的C与V之间的函数关系:,并用“VerilogA”语言对等效电容进行描述,由此可以在等效电路中可以用一个“VerilogA”语言描述电流源形式的可变电容来实现,其电容大小为电压的函数,C-V特性曲线簇拟合在器件偏压[-3,0]范围内采用一次拟合。 In order to make the fitted characteristic curve coincide well with the CV characteristic curve obtained from the test, the "Origin" software is used to fit the function in sections to obtain the functional relationship between C and V under different irradiated light powers: , and use the "VerilogA" language to describe the equivalent capacitance, so that in the equivalent circuit, a "VerilogA" language can be used to describe the variable capacitance in the form of a current source. The capacitance is a function of voltage, and the CV characteristic curve The cluster fit uses a single fit over the device bias range [-3,0].
当器件偏压时,光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nW 、1 nW、2 nW和5 nW的函数关系如下式(3)表示: (3) When the device bias When the photodetector has no light (dark current) and irradiated light power is 0.2 nW, 0.5 nW, 1 nW, 2 nW and 5 nW respectively The functional relationship is expressed in the following formula (3): (3)
(3)、对等效电路中的电阻进行“VerilogA”语言描述 (3) "VerilogA" language description for the resistance in the equivalent circuit
光电探测器等效电路的电流源实现是将I-V之间的函数关系:,光电探测器的等效电阻如下式(4)表示: The current source implementation of the photodetector equivalent circuit is the functional relationship between IV: , the equivalent resistance of the photodetector is expressed by the following formula (4):
(4) (4)
由于本光电探测器的读出采用电容反馈互阻放大器(CTIA)结构,使得光电探测器等效电路模型的输出电压大小为CTIA型读出电路的参考电压值,而输出电流为,由此可以得到等效电路模型的输出阻抗如下式(5)表示: Since the readout of the photodetector adopts the capacitive feedback transimpedance amplifier (CTIA) structure, the output voltage of the equivalent circuit model of the photodetector is the reference voltage of the CTIA readout circuit value, while the output current is , so the output impedance of the equivalent circuit model can be obtained as follows:
(5) (5)
以CTIA型读出结构的参考电压值为等效电路模型的输出电压,由此得到等效电路模型的输出阻抗,并采用“VerilogA”语言对等效输出电阻进行描述,由此在等效电路中可以用一个“VerilogA”语言描述的电流源形式的输出阻抗来实现。 Reference voltage in CTIA-type readout structure The value is the output voltage of the equivalent circuit model, and thus the output impedance of the equivalent circuit model is obtained , and use the "VerilogA" language to describe the equivalent output resistance, so the equivalent circuit can be realized by using a "VerilogA" language to describe the output impedance in the form of a current source.
参阅附图3,创建一个电流源形式的等效输出电阻“VerilogA”文件和 “symbol” 符号,在“Cadence”软件下新建“VerilogA”的单元文件“Cell”,并制做一个电流源形式的等效输出电阻符号。 Refer to Figure 3, create a current source form equivalent output resistance "VerilogA" file and "symbol" symbol, create a new "VerilogA" unit file "Cell" under the "Cadence" software, and make a current source form Equivalent output resistance symbol.
参阅附图4,将器件偏压和辐照光功率分别设为“biasvoltage”和“photopower”两个参数,并在电流源形式的等效输出电阻的属性中进行设置。因为光电探测器的电流受器件偏压和辐照光功率的影响,而等效输出电阻和输出电流有关,所以光电探测器等效电路模型中的电流源形式的电阻应该具有一个受控电流源的特点,受器件偏压和辐照光功率控制。 Referring to Figure 4, set the device bias voltage and irradiated optical power as the two parameters of "biasvoltage" and "photopower" respectively, and set them in the properties of the equivalent output resistance in the form of a current source. Because the current of the photodetector is affected by the bias voltage of the device and the irradiated light power, and the equivalent output resistance is related to the output current, the resistance in the form of a current source in the equivalent circuit model of the photodetector should have a controlled current source The characteristics are controlled by device bias voltage and irradiated light power.
参阅附图5,由于上述步骤中已对光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nW 、1 nW、2 nW和5 nW的函数关系进行了描述,所以只要在电流源的属性中将器件偏压和光功率对应的参数“biasvoltage”和“photopower”直接输入数据即可,参数设置和修改都非常方便。 Referring to accompanying drawing 5, since in the above steps, the photodetector has been subjected to light powers of 0.2 nW, 0.5 nW, 1 nW, 2 nW and 5 nW in the absence of light (dark current) and irradiated light power respectively The functional relationship is described, so as long as the parameters "biasvoltage" and "photopower" corresponding to the device bias voltage and optical power are directly input in the properties of the current source, the parameter setting and modification are very convenient.
如当器件偏压为-2V和光功率为1nW时,只要在“biasvoltage”选项中输入“-2”,在“photopower”选项中输入“1”即可,采用“VerilogA”语言描述的电流源式的等效电阻表达如下式(6)表示: For example, when the bias voltage of the device is -2V and the optical power is 1nW, just enter "-2" in the "biasvoltage" option and "1" in the "photopower" option, and use the current source formula described in the "VerilogA" language The equivalent resistance expression of the following formula (6):
(6) (6)
由于CTIA型读出电路的参考电压=2.5V,所以电流源式的等效电阻,在电流源形式的等效输出电阻的“VerilogA”语言描述时定义电流源的两个端口为“ns”和“ps”,并设定器件的偏压和光功率两个参数“biasvoltage”和“photopower”的初值,实际使用时可在器件属性中进行修改,因为I-V特性是分段拟合的,不同的光功率对应不同的I-V曲线,所以在用“VeriolgA” 语言描述时分别使用了“if-else”和“case”语句来实现。 Since the reference voltage of the CTIA-type readout circuit =2.5V, so the equivalent resistance of the current source , in the "VerilogA" language description of the equivalent output resistance in the form of a current source, define the two ports of the current source as "ns" and "ps", and set the two parameters of the bias voltage and optical power of the device "biasvoltage" and " The initial value of "photopower" can be modified in the device properties in actual use, because the IV characteristics are fitted in pieces, and different optical powers correspond to different IV curves, so the "VeriolgA" language is used to describe "if-else" and "case" statements.
(4)、对等效电路中的可变电容进行“VerilogA”语言描述 (4) "VerilogA" language description for the variable capacitance in the equivalent circuit
参阅附图6,创建一个可变电容的“VerilogA”文件和“Symbol” 符号,建立一个可变电容的单元“cell”和 “Symbol” 符号,因为光电探测器的电容受器件偏压和辐照光功率的影响,所以光电探测器等效电路模型中的电容应该是一个受器件偏压和辐照光功率控制的可变电容。将器件偏压和辐照光功率分别设为“biasvoltage”和“photopower”两个参数,设置和修改方法同电流源形式的等效输出电阻相同,采用“VerilogA”语言描述的电流源式的可变电容表达如下式(7)表示: Refer to Figure 6, create a variable capacitance "VerilogA" file and "Symbol" symbol, create a variable capacitance unit "cell" and "Symbol" symbol, because the capacitance of the photodetector is affected by the device bias and radiation Therefore, the capacitance in the equivalent circuit model of the photodetector should be a variable capacitance controlled by the bias voltage of the device and the irradiated light power. Set the bias voltage of the device and the irradiated optical power as two parameters of "biasvoltage" and "photopower" respectively, the setting and modification methods are the same as the equivalent output resistance of the current source form, and the current source form can be described by "VerilogA" language The expression of the variable capacitance is expressed in the following formula (7):
(7) (7)
即,这里的电容C本身也是随器件偏压和光功率变化的,所以电容C必须放在括号里面, 电容 C和器件偏压和光功率的关系为:。在电流源形式的可变电容“VerilogA”语言描述时,定义了电流源的两个端口为“ns”和“ps”,并设定器件的偏压和光功率两个参数“biasvoltage”和“photopower”的初值,实际使用时可在器件属性中进行修改,因为在器件偏压范围内的C-V特性曲线是一次拟合的,不同的光功率对应不同的C-V特性曲线,所以在用“VeriolgA” 语言描述时使用了“case”语句来实现。 Right now , the capacitor C itself also changes with the device bias voltage and optical power, so the capacitor C must be placed in brackets. The relationship between the capacitor C and the device bias voltage and optical power is: . When describing the variable capacitor in the form of current source "VerilogA", the two ports of the current source are defined as "ns" and "ps", and the two parameters "biasvoltage" and "photopower" of the bias voltage and optical power of the device are set. "The initial value can be modified in the device properties in actual use, because the device bias The CV characteristic curve within the range is one-time fitting, and different optical powers correspond to different CV characteristic curves, so the "case" statement is used to realize it when described in the "VeriolgA" language.
(5)、等效电路的建模 (5) Modeling of equivalent circuit
参阅附图7,采用“VerilogA”语言将受控电流源和等效输出电阻用一个程序来描述,并生成一个“Symbol”符号,使得到的等效电路模型只包含两部分,一部分是电流源形式的电阻,另一部分是个可变电容,即光电探测器可等效为一个电流源形式的电阻与可变电容并联的电路模型。 Referring to accompanying drawing 7, use "VerilogA" language to describe the controlled current source and equivalent output resistance with a program, and generate a "Symbol" symbol, so that the obtained equivalent circuit model only includes two parts, one part is the current source The other part is a variable capacitor, that is, the photodetector can be equivalent to a circuit model in which a resistor in the form of a current source is connected in parallel with a variable capacitor.
(6)、对等效电路模型进行仿真模拟验证 (6) Carry out simulation simulation verification on the equivalent circuit model
参阅附图8,将上述建好的光电探测器的等效电路模型,利用电路模拟软件“Cadence”的“Spectre”仿真器分别对等效电路模型在器件偏压[-3,0]内进行直流分析和器件偏压“biasvoltage”和光功率“photopower”两个参数进行参数扫描,对上述建立的等效电路模型进行仿真模拟,将仿真得到的等效电路模型I-V特性结果与实际测试的I-V特性曲线簇进行对比验证。 Referring to accompanying drawing 8, use the "Spectre" simulator of the circuit simulation software "Cadence" to carry out the equivalent circuit model of the photodetector built above in the device bias voltage [-3,0] respectively. DC analysis and parameter sweep of device bias voltage "biasvoltage" and optical power "photopower" are used to simulate the equivalent circuit model established above. Curve clusters were compared for verification.
参阅附图9,将上述建好的光电探测器的等效电路模型,在器件偏压[-3,0]内对等效电路模型做交流分析并做器件偏压“biasvoltage”和光功率“photopower”两个参数进行参数扫描,将仿真得到的等效电路模型C-V特性结果与实际测试的C-V特性曲线簇进行对比验证。 Referring to Figure 9, the equivalent circuit model of the above-built photodetector is used for AC analysis of the equivalent circuit model within the device bias voltage [-3,0] and the device bias voltage "biasvoltage" and optical power "photopower "Two parameters are scanned, and the C-V characteristic results of the equivalent circuit model obtained by simulation are compared with the actual test C-V characteristic curve clusters for verification.
通过上述等效电路模型的I-V和C-V仿真曲线与实际测试的I-V和C-V曲线簇的比对,可以看出两者能很好地吻合,验证仿真曲线与实际测试的I-V和C-V曲线簇相重合,由此能够验证等效电路模型的正确性,可以为读出电路的设计提供准确反映不同结构器件特性的光电探测器模型。 By comparing the I-V and C-V simulation curves of the above equivalent circuit model with the actual test I-V and C-V curve clusters, it can be seen that the two can be well matched, verifying that the simulation curves coincide with the actual test I-V and C-V curve clusters , so that the correctness of the equivalent circuit model can be verified, and a photodetector model that accurately reflects the characteristics of different structural devices can be provided for the design of the readout circuit.
以上实施例只是对本发明做进一步说明,并非用以限制本发明专利,凡为本发明等效实施,均应包含于本发明专利的权利要求范围之内。 The above embodiments are only to further illustrate the present invention, and are not intended to limit the patent of the present invention. All equivalent implementations of the present invention should be included in the scope of claims of the patent of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110379701 CN102564584B (en) | 2011-11-25 | 2011-11-25 | Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110379701 CN102564584B (en) | 2011-11-25 | 2011-11-25 | Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102564584A CN102564584A (en) | 2012-07-11 |
CN102564584B true CN102564584B (en) | 2013-10-30 |
Family
ID=46410610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110379701 Expired - Fee Related CN102564584B (en) | 2011-11-25 | 2011-11-25 | Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102564584B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832176B (en) * | 2012-08-29 | 2014-07-30 | 华东师范大学 | Packaging method of quantum effect photoelectric detector and readout integrated circuit |
CN104598680B (en) * | 2015-01-14 | 2017-07-04 | 华东师范大学 | The method of the modeling and simulation of the quantum photoelectric detector equivalent circuit based on neural network algorithm |
CN106503285B (en) * | 2016-09-14 | 2019-04-30 | 西安电子科技大学 | A Modeling Method of Circuit Irradiation Effect Based on VHDL-AMS |
CN112484867B (en) * | 2020-10-09 | 2022-07-01 | 天津大学 | Method for improving detection efficiency of single photon detection front-end circuit |
CN115146782B (en) * | 2021-03-31 | 2024-11-15 | 本源量子计算科技(合肥)股份有限公司 | Quantum circuit compiling method and device, compiling frame and quantum operating system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101504313A (en) * | 2009-03-06 | 2009-08-12 | 华东师范大学 | Design method for photoelectric detector reading circuit |
CN101540197A (en) * | 2009-04-22 | 2009-09-23 | 华东师范大学 | Design method of emptying CTIA reading circuit of photo memory unit |
CN102081680A (en) * | 2009-11-30 | 2011-06-01 | 上海华虹Nec电子有限公司 | Method for modeling P-channel metal oxide semiconductor (PMOS) one-time programmable memory (OTP) device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001024111A1 (en) * | 1999-09-30 | 2001-04-05 | Routech, Inc. | Automatic routing system for pc board design |
US8108815B2 (en) * | 2009-05-26 | 2012-01-31 | International Business Machines Corporation | Order independent method of performing statistical N-way maximum/minimum operation for non-Gaussian and non-linear distributions |
GB2475235B (en) * | 2009-11-09 | 2014-01-08 | Toshiba Res Europ Ltd | A photon detector |
-
2011
- 2011-11-25 CN CN 201110379701 patent/CN102564584B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101504313A (en) * | 2009-03-06 | 2009-08-12 | 华东师范大学 | Design method for photoelectric detector reading circuit |
CN101540197A (en) * | 2009-04-22 | 2009-09-23 | 华东师范大学 | Design method of emptying CTIA reading circuit of photo memory unit |
CN102081680A (en) * | 2009-11-30 | 2011-06-01 | 上海华虹Nec电子有限公司 | Method for modeling P-channel metal oxide semiconductor (PMOS) one-time programmable memory (OTP) device |
Also Published As
Publication number | Publication date |
---|---|
CN102564584A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102564584B (en) | Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector | |
CN103389451B (en) | Testing method and testing device for avalanche photodiode | |
CN103633937B (en) | A kind of solar cell parameter extracting method based on Lambert W function and fitting of a polynomial | |
CN103323106B (en) | A kind of luminous power test macro | |
CN104020404B (en) | Construction method for optical coupler low-frequency noise equivalent circuit comprising internal defect | |
CN102288891A (en) | Method for extracting parameters of solar cell | |
CN102243069A (en) | Method and device for determining leaf area index | |
CN102254065B (en) | Method for extracting parameters of bipolar transistor and equivalent circuit of bipolar transistor | |
CN103954905A (en) | Digital circuit fault detecting circuit and method for detecting faults by utilizing same | |
CN204142612U (en) | PM2.5 pick-up unit | |
CN104569899B (en) | A kind of high-precision high voltage DC mutual inductor verification instrument | |
CN112595415A (en) | Photoelectric signal segmentation detection and acquisition device | |
CN103926550B (en) | A kind of device and method that electric power mutual-inductor is verified based on virtual instrument | |
CN102593713B (en) | Circuit for simulating automatic power control of semiconductor laser | |
CN104598680B (en) | The method of the modeling and simulation of the quantum photoelectric detector equivalent circuit based on neural network algorithm | |
CN101504313B (en) | A Design Method of Photodetector Readout Circuit | |
CN101540197B (en) | Design method of emptying CTIA reading circuit of photo memory unit | |
CN104729994B (en) | For enhancing the method and apparatus of Raman spectrometer signal-to-noise ratio | |
CN204649838U (en) | Charging pile charge metering verifying attachment | |
CN103148779A (en) | Adjusting device of light source in position measurement equipment | |
CN103163443A (en) | Instrument for automatically testing parameters of avalanche photo diode (APD) | |
CN104062619B (en) | Verification system for on-line monitoring device of double-signal-source capacitive equipment | |
CN206389333U (en) | Based on Embedded solar cell test system | |
CN205898622U (en) | A processing circuit for light scattering method raise dust monitor | |
CN204214987U (en) | Intelligent bottom shielding of bushing leakage current detects debugging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131030 |
|
CF01 | Termination of patent right due to non-payment of annual fee |