CN102562239A - Method for monitoring exhaust temperature of aircraft engine - Google Patents
Method for monitoring exhaust temperature of aircraft engine Download PDFInfo
- Publication number
- CN102562239A CN102562239A CN2011103695719A CN201110369571A CN102562239A CN 102562239 A CN102562239 A CN 102562239A CN 2011103695719 A CN2011103695719 A CN 2011103695719A CN 201110369571 A CN201110369571 A CN 201110369571A CN 102562239 A CN102562239 A CN 102562239A
- Authority
- CN
- China
- Prior art keywords
- input
- exhaust temperature
- model
- partiald
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种航空发动机排气温度的监测方法,该方法包括以下步骤:(1)采集并且存储发动机排气温度数据;(2)提取指定时段的发动机排气温度历史数据,构建用于建立和测试预测模型的多维训练样本集和测试样本集以及用于预测的模型输入;(3)建立基于卷积和离散过程神经网络的预测模型,采用Levenberg-Marquardt算法训练预测模型,测试并且存储预测模型;(4)使用预测模型预测发动机排气温度,并且应用于航空发动机状态监控。本发明的方法有利于提高航空发动机状态监视和维修保障水平,从而达到保证飞行安全的目的。
The invention discloses a method for monitoring the exhaust temperature of an aero-engine. The method comprises the following steps: (1) collecting and storing engine exhaust temperature data; Establish and test the multidimensional training sample set and test sample set of the prediction model and the model input for prediction; (3) establish a prediction model based on convolutional and discrete process neural networks, use the Levenberg-Marquardt algorithm to train the prediction model, test and store Predictive model; (4) Use the predictive model to predict the engine exhaust temperature, and apply it to the monitoring of the state of the aeroengine. The method of the invention is beneficial to improving the status monitoring and maintenance support level of the aeroengine, so as to achieve the purpose of ensuring flight safety.
Description
技术领域 technical field
本发明涉及一种航空发动机排气温度的监测方法。The invention relates to a method for monitoring the exhaust temperature of an aeroengine.
背景技术 Background technique
航空发动机是飞机的心脏,其健康状态是影响航空安全的关键因素。排气温度是表征航空发动机健康状态和决定发动机是否可以安全使用的关键参数,是航空公司进行发动机调度和制定合理的发动机检测、维修计划的重要指标,对排气温度进行监视和趋势预测可以保证发动机的安全运行,并且为发动机的维修保障提供决策支持。由于排气温度在随时间不断变化的过程中受到许多复杂非线性时变因素的影响,对其变化趋势进行精确预测是一个实际技术难题,现有技术中只有过程神经网络能够对排气温度中的时间累积效应进行有效处理,而采用过程神经网络对排气温度进行预测时,首先要将采集到的离散排气温度数据拟合成连续函数得到网络输入,然后将输入函数和权函数正交基展开,以简化时间聚合运算中的积分运算。这种处理方法存在的不足是:(1)离散采样数据可能不存在解析函数形式;(2)对输入函数和权函数进行正交基展开时,基函数的个数选择没有理论依据,只能依靠试探确定;(3)拟合离散样本生成输入函数、对输入函数和权函数进行基展开的过程可能造成一定的信息丢失导致精度损失。以上不足导致已有过程神经网络模型的使用过程复杂,且对发动机排气温度的预测难以取得较好效果,从而限制了过程神经网络在航空发动机排气温度监测工程实际中的应用。Aeroengine is the heart of an aircraft, and its health is a key factor affecting aviation safety. Exhaust temperature is a key parameter that characterizes the health status of an aeroengine and determines whether the engine can be used safely. The safe operation of the engine, and provide decision support for the maintenance of the engine. Since the exhaust temperature is affected by many complex nonlinear time-varying factors in the process of changing with time, it is a practical technical problem to accurately predict its change trend. In the prior art, only the process neural network can predict the exhaust temperature. The time accumulation effect of time is effectively processed, and when the process neural network is used to predict the exhaust temperature, the collected discrete exhaust temperature data must first be fitted to a continuous function to obtain the network input, and then the input function and the weight function are orthogonal Basis expansion to simplify integration operations in temporal aggregation operations. The shortcomings of this processing method are: (1) the discrete sampling data may not exist in the form of analytical functions; (2) when performing orthogonal basis expansion on the input function and weight function, there is no theoretical basis for the number of basis functions to be selected, and only Determined by trial and error; (3) The process of fitting discrete samples to generate input functions and performing basis expansion on input functions and weight functions may cause certain information loss and precision loss. The above deficiencies make the use of the existing process neural network model complex, and it is difficult to achieve good results in the prediction of engine exhaust temperature, which limits the application of process neural network in the actual engineering of aeroengine exhaust temperature monitoring.
因此,急需一种实用而有效的方法对排气温度进行监视和趋势预测,从而提高航空发动机状态监视和维修保障水平,从而保证飞行安全。Therefore, there is an urgent need for a practical and effective method to monitor and predict the trend of exhaust temperature, so as to improve the status monitoring and maintenance support level of aero-engines, so as to ensure flight safety.
发明内容 Contents of the invention
本发明的目的是为了提供一种能够对航空发动机排气温度随时间变化的过程进行监视和趋势预测的方法。The purpose of the present invention is to provide a method capable of monitoring and predicting the trend of the process of the exhaust temperature of the aeroengine changing with time.
为达到以上目的,本发明的方法具有如下步骤:To achieve the above object, the method of the present invention has the following steps:
步骤(1):通过安装在航空发动机上的温度传感器采集发动机排气温度数据,并且通过飞机通信寻址与报告系统传输到地面的发动机性能监控中心进行预处理并且存储;Step (1): collect the engine exhaust temperature data through the temperature sensor installed on the aeroengine, and transmit it to the engine performance monitoring center on the ground through the aircraft communication addressing and reporting system for preprocessing and storage;
步骤(2):从发动机性能监控中心数据库提取指定时段的发动机排气温度历史数据,构成一维的排气温度时间序列,在此基础上构建用于建立和测试预测模型的多维训练样本集、测试样本集以及用于预测的预测模型输入,其具体方法为:采用排气温度时间序列的前m个值对第m+1个值进行预测,使用排气温度历史数据构成一个m列的变量矩阵X,将变量矩阵X的每一列视为同一个变量在不同时刻的取值,从而变量矩阵X每一列的数据可视为时间段[0,T]内对应变量的L个离散采样,采用前L行作为输入就可以模拟过程式输入,根据以上原理可以构建样本对{di,xi},其中xi为L×m的矩阵,对应变量矩阵X中的前L行,其中xi的每一列对应一个过程式输入,di为对应目标值。对于长度为N的排气温度时间序列,可以构建N-m-L+1个样本对,将构建的样本对按照一定的比例划分为训练样本集和测试样本集;Step (2): Extract the historical data of engine exhaust temperature for a specified period from the database of the engine performance monitoring center to form a one-dimensional exhaust temperature time series. On this basis, construct a multi-dimensional training sample set for establishing and testing the prediction model, The test sample set and the prediction model input for prediction, the specific method is: use the first m values of the exhaust temperature time series to predict the m+1th value, and use the exhaust temperature historical data to form an m-column variable Matrix X, each column of the variable matrix X is regarded as the value of the same variable at different times, so the data of each column of the variable matrix X can be regarded as L discrete samples of the corresponding variable in the time period [0, T], using The first L rows can be used as input to simulate procedural input. According to the above principles, a sample pair {d i , xi } can be constructed, where xi is an L×m matrix, corresponding to the first L rows in the variable matrix X, where xi Each column of corresponds to a procedural input, and d i is the corresponding target value. For the exhaust temperature time series with length N, Nm-L+1 sample pairs can be constructed, and the constructed sample pairs can be divided into training sample set and test sample set according to a certain ratio;
步骤(3):建立基于卷积和离散过程神经网络的预测模型,采用步骤(2)建立的训练样本集对预测模型进行训练,然后采用测试样本集对预测模型进行测试,确定合适的预测模型参数,存储预测模型,其具体方法为:建立发动机排气温度预测的卷积和离散过程神经网络预测模型,其拓扑结构为一个输入层、一个隐含层和一个输出层,模型采用向量输入以模型过程式输入,采用卷积和运算处理时间累积效应。输入步骤(2)生成的排气温度历史数据就可以得到排气温度的预测值,其预测值由如下的卷积和离散过程神经网络预测模型决定:Step (3): Establish a prediction model based on convolutional and discrete process neural networks, use the training sample set established in step (2) to train the prediction model, and then use the test sample set to test the prediction model to determine the appropriate prediction model Parameters, storage prediction model, the specific method is: build the convolution and discrete process neural network prediction model of engine exhaust temperature prediction, its topological structure is an input layer, a hidden layer and an output layer, the model uses vector input to The model is procedurally input, and convolution and operations are used to handle the cumulative effect of time. The predicted value of the exhaust temperature can be obtained by inputting the exhaust temperature historical data generated in step (2), which is determined by the following convolutional and discrete process neural network prediction models:
其中,*表示卷积运算,ωji为连接隐层第j个神经元与输入层第i个输入单元的权向量,xi为长度为L的输入向量,为输入层第i个输入单元;vj为连接隐层第j个神经元和输出神经元的权值;为隐层第j个神经元的激励阈值;θ2为输出层激励阈值,根据Levenberg-Marquardt训练算法采用训练样本对预测模型进行训练,并采用测试样本对预测模型的预测效果进行测试。如果测试效果满足要求,进行下一步骤,否则,重复进行步骤(3)直到获得满意的预测效果,存储最终得到的预测模型;Among them, * represents the convolution operation, ω ji is the weight vector connecting the j-th neuron of the hidden layer and the i-th input unit of the input layer, x i is the input vector of length L, and is the i-th input unit of the input layer; v j is the weight connecting the jth neuron of the hidden layer and the output neuron; is the excitation threshold of the jth neuron in the hidden layer; θ2 is the excitation threshold of the output layer. According to the Levenberg-Marquardt training algorithm, the prediction model is trained with training samples, and the prediction effect of the prediction model is tested with test samples. If the test effect meets the requirements, proceed to the next step, otherwise, repeat step (3) until a satisfactory prediction effect is obtained, and store the final prediction model;
步骤(4):输入步骤(2)中采用发动机排气温度历史数据生成的用于预测的模型输入样本,使用预测模型对未来一段时间内的发动机排气温度进行预测,并且将其应用于航空发动机实际状态监控,包括判断排气温度变化趋势,监测排气温度是否有突变。Step (4): Input the model input samples for prediction generated by using the historical data of engine exhaust temperature in step (2), use the prediction model to predict the engine exhaust temperature in a period of time in the future, and apply it to aviation Monitoring of the actual state of the engine, including judging the trend of the exhaust temperature and monitoring whether there is a sudden change in the exhaust temperature.
本发明具有如下的有益效果:The present invention has following beneficial effect:
通过本发明的方法,可以对航空发动机排气温度时变过程进行精确建模,从而能够有效处理排气温度时间序列的时间累积效应,因此具有更高的预测精度,相较于已有方法对发动机排气温度的预测具有更好的适应性,从而有利于从而提高航空发动机状态监视和维修保障水平,从而达到保证飞行安全的目的。Through the method of the present invention, the time-varying process of the exhaust temperature of the aeroengine can be accurately modeled, so that the time accumulation effect of the exhaust temperature time series can be effectively dealt with, so it has higher prediction accuracy, compared with the existing method for The prediction of engine exhaust temperature has better adaptability, which is conducive to improving the status monitoring and maintenance support level of aeroengines, so as to achieve the purpose of ensuring flight safety.
附图说明 Description of drawings
图1是卷积和离散过程神经元示意图,Figure 1 is a schematic diagram of convolutional and discrete process neurons,
图2是卷积和离散过程神经网络示意图,Figure 2 is a schematic diagram of convolutional and discrete process neural networks,
图3是航空发动机排气温度监测方法流程图。Fig. 3 is a flowchart of a method for monitoring exhaust gas temperature of an aero-engine.
具体实施方式 Detailed ways
本实施方式的方法步骤如下:The method steps of this embodiment are as follows:
(1)通过安装在航空发动机上的温度传感器采集发动机排气温度数据,并且通过飞机通信寻址与报告系统传输到地面的发动机性能监控中心进行预处理并且存储;(1) Collect the engine exhaust temperature data through the temperature sensor installed on the aeroengine, and transmit it to the engine performance monitoring center on the ground through the aircraft communication addressing and reporting system for preprocessing and storage;
(2)从发动机性能监控中心数据库提取指定时段的发动机排气温度历史数据,构成一维的排气温度时间序列,在此基础上构建用于建立和测试预测模型的多维训练样本集、测试样本集以及用于预测的预测模型输入,(2) Extract the historical data of engine exhaust temperature for a specified period from the database of the engine performance monitoring center to form a one-dimensional exhaust temperature time series. On this basis, construct a multi-dimensional training sample set and test sample for establishing and testing the prediction model set and the predictive model input for prediction,
记由发动机排气温度历史数据构成的时间序列为选取前m个数据构成一个输入向量对第m+1个数据进行预测,可以得到以下的矩阵:Record the time series composed of historical data of engine exhaust temperature as Select the first m data to form an input vector to predict the m+1th data, and the following matrix can be obtained:
其中将变量矩阵X的每一列视为同一个变量在不同时刻的取值,从而变量矩阵X每一列的数据可视为时间段[0,T]内对应变量的L个离散采样,采用前L行作为输入就可以模拟过程式输入,根据以上原理可以构建样本对{di,xi},其中xi为L×m的矩阵,对应变量矩阵X中的前L行,其中xi的每一列对应一个过程式输入,di为对应目标值。对于长度为N的排气温度时间序列,可以构建N-m-L+1个样本对。按照以上的方法构建训练样本集、测试样本集以及用于预测的预测模型输入;in Each column of the variable matrix X is regarded as the value of the same variable at different times, so the data of each column of the variable matrix X can be regarded as L discrete samples of the corresponding variable in the time period [0, T], using the first L rows As the input, the procedural input can be simulated. According to the above principles, the sample pair {d i , xi } can be constructed, where xi is an L×m matrix, corresponding to the first L rows in the variable matrix X, and each column of xi Corresponding to a procedural input, d i is the corresponding target value. For the exhaust gas temperature time series with length N, Nm-L+1 sample pairs can be constructed. Construct the training sample set, test sample set and prediction model input for prediction according to the above method;
(3)建立基于卷积和离散过程神经网络的预测模型,采用步骤(2)建立的训练样本集对预测模型进行训练,然后采用测试样本集对预测模型进行测试,确定合适的预测模型参数,存储预测模型,(3) set up the predictive model based on convolution and discrete process neural network, adopt the training sample set that step (2) establishes to predictive model is trained, adopt test sampled set to test predictive model then, determine suitable predictive model parameter, store predictive models,
具体方法为:将如附图1所示的卷积和离散过程神经元按照一定的拓扑结构组合成卷积和离散过程神经网络预测模型。卷积和离散过程神经元通过卷积和运算来实现对时间累积效应的处理。由卷积和运算的原理可知其中为卷积计算的结果,记为其运算结果的第L个元素,则对于第i个输入向量xi与其对应权值的卷积和运算有:The specific method is as follows: the convolution and discrete process neurons shown in Figure 1 are combined into a convolution and discrete process neural network prediction model according to a certain topology. Convolution and Discrete Process Neurons process the cumulative effects of time through convolution and sum operations. From the principle of convolution and operation, we can know that in For the result of convolution calculation, record is the Lth element of its operation result, then for the convolution sum operation of the i-th input vector x i and its corresponding weight:
显然的值与输入向量xi的每一个元素都有关系,因此取为卷积和离散过程神经网络时间聚合运算的结果。记ωi(l)=wi(L-l+1),显然ωi亦为长度为L的向量,则(2)式可以写为:obviously The value of is related to each element of the input vector x i , so take Results of temporal aggregation operations for convolutional and discrete process neural networks. Note ω i (l) = w i (L-l+1), obviously ω i is also a vector with length L, then formula (2) can be written as:
因此,卷积和离散过程神经元的输入输出映射关系由以下方程决定:Therefore, the input-output mapping relationship of convolutional and discrete process neurons is determined by the following equation:
式中,xi是长度为L的输入向量,ωi为权向量,其长度也为L,θ为激励阈值。*表示卷积运算,f(·)为激励函数,为sigmoid函数。In the formula, x i is the input vector with length L, ω i is the weight vector, and its length is also L, and θ is the excitation threshold. *Indicates convolution operation, f( ) is the activation function, which is the sigmoid function.
建立拓扑结构如附图2所示卷积和离散过程神经网络预测模型,具体为含有n个输入单元,为n个长度为L的向量;隐层含有m个卷积和离散过程神经元,激励函数为sigmoid函数;输出层有一个传统神经元,其激励函数为线性函数,预测模型的预测结果由以下方程决定:Establish the topological structure as shown in Figure 2. The convolution and discrete process neural network prediction model specifically contains n input units, which are n vectors of length L; the hidden layer contains m convolution and discrete process neurons, and the excitation The function is a sigmoid function; the output layer has a traditional neuron, and its activation function is a linear function, and the prediction result of the prediction model is determined by the following equation:
式中,*表示卷积运算,ωji为连接隐层第j个神经元与输入层第i个输入单元的权向量,xi为长度为L的输入向量,为输入层第i个输入单元;vj为连接隐层第j个神经元和输出神经元的权值;为隐层第j个神经元的激励阈值;θ2为输出层激励阈值。In the formula, * represents the convolution operation, ω ji is the weight vector connecting the jth neuron of the hidden layer and the i-th input unit of the input layer, x i is the input vector of length L, and is the i-th input unit of the input layer ;v j is the weight connecting the jth neuron of the hidden layer and the output neuron; is the excitation threshold of the jth neuron in the hidden layer; θ 2 is the excitation threshold of the output layer.
采用Levenberg-Marquardt训练算法对卷积和离散过程神经网络进行训练。设定网络的学习误差精度、最大迭代次数;初始化网络待训练参数ωji,vj,θ1,θ2以及迭代次数q,然后将所有训练样本输入到网络。利用式(6)计算网络的实际输出,然后计算误差es=ds-ys,其中ys表示第S个输入对应的网络输出值,ds是与其对应的目标值;接下来按下式计算平方和误差SSE:Convolutional and discrete process neural networks were trained using the Levenberg-Marquardt training algorithm. Set the learning error precision and the maximum number of iterations of the network; initialize the network parameters to be trained ω ji , v j , θ 1 , θ 2 and the number of iterations q, and then input all training samples to the network. Use formula (6) to calculate the actual output of the network, and then calculate the error e s = d s -y s , where y s represents the network output value corresponding to the Sth input, and d s is the corresponding target value; then press The formula calculates the sum of square error SSE:
按照下式以迭代的方式调整参数矩阵W:Adjust the parameter matrix W iteratively according to the following formula:
式中:q为迭代次数;I为单位矩阵;μ为学习速率;W(q)和W(q+1)分别指第q次和第q+1次迭代的权矩阵,ΔW(q)为第q次迭代的权矩阵增量;E(W(q))为第q次迭代的误差矩阵,J(W)为关于W的Jacobi矩阵,J(W(q))为关于W(q)的Jacobi矩阵,J(W)的表达式具体可写为如下形式:In the formula: q is the number of iterations; I is the identity matrix; μ is the learning rate; W(q) and W(q+1) refer to the weight matrix of the qth iteration and the q+1th iteration respectively, and ΔW(q) is The weight matrix increment of the qth iteration; E(W(q)) is the error matrix of the qth iteration, J(W) is the Jacobi matrix about W, and J(W(q)) is about W(q) The Jacobi matrix, the expression of J(W) can be specifically written as the following form:
记则Jacobi矩阵J(W)中的元素可由下式加以计算:remember Then the elements in the Jacobi matrix J(W) can be calculated by the following formula:
当网络的训练误差满足精度要求或者达到最大迭代次数时候停止网络训练,网络训练结束后采用测试样本对预测模型的预测效果进行测试,如果预测效果满足发动机排气温度预测的实际需求,则保存模型,否则,重复该步骤直到得到满意的模型。When the training error of the network meets the accuracy requirements or reaches the maximum number of iterations, the network training is stopped. After the network training is completed, the test sample is used to test the prediction effect of the prediction model. If the prediction effect meets the actual needs of engine exhaust temperature prediction, the model is saved. , otherwise, repeat this step until a satisfactory model is obtained.
步骤(4):输入步骤(2)中采用发动机排气温度历史数据生成的用于预测的模型输入样本,使用预测模型对未来一段时间内的发动机排气温度进行预测,并且将其应用于航空发动机实际状态监控,包括判断排气温度变化趋势,监测排气温度是否有突变。Step (4): Input the model input samples for prediction generated by using the historical data of engine exhaust temperature in step (2), use the prediction model to predict the engine exhaust temperature in a period of time in the future, and apply it to aviation Monitoring of the actual state of the engine, including judging the trend of the exhaust temperature and monitoring whether there is a sudden change in the exhaust temperature.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103695719A CN102562239A (en) | 2011-11-13 | 2011-11-13 | Method for monitoring exhaust temperature of aircraft engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103695719A CN102562239A (en) | 2011-11-13 | 2011-11-13 | Method for monitoring exhaust temperature of aircraft engine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102562239A true CN102562239A (en) | 2012-07-11 |
Family
ID=46408644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103695719A Pending CN102562239A (en) | 2011-11-13 | 2011-11-13 | Method for monitoring exhaust temperature of aircraft engine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102562239A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106560609A (en) * | 2015-10-02 | 2017-04-12 | 通用汽车环球科技运作有限责任公司 | Exhaust System Temperature Estimation Systems And Methods |
CN106560610A (en) * | 2015-10-02 | 2017-04-12 | 通用汽车环球科技运作有限责任公司 | Exhaust System Pressure Estimation Systems And Methods |
CN108153982A (en) * | 2017-12-26 | 2018-06-12 | 哈尔滨工业大学 | Based on performance prediction method after the aeroplane engine machine maintenance for stacking own coding deep learning network |
CN108170945A (en) * | 2017-12-26 | 2018-06-15 | 哈尔滨工业大学 | A kind of aeroplane engine machine maintenance final vacuum temperature margin Forecasting Methodology |
CN109556877A (en) * | 2018-12-21 | 2019-04-02 | 成都飞机工业(集团)有限责任公司 | A kind of exhaust temperature of aircraft engine scaling method |
CN109598371A (en) * | 2018-11-21 | 2019-04-09 | 北京航空航天大学 | A kind of aircraft carries the temperature predicting method and system of electronic equipment |
CN109932066A (en) * | 2019-03-04 | 2019-06-25 | 深圳供电局有限公司 | Temperature early warning method and device for energy storage battery, computer equipment and storage medium |
WO2019144384A1 (en) * | 2018-01-26 | 2019-08-01 | 大连理工大学 | Method for predicting exhaust temperature in aircraft engine starting process |
CN110160585A (en) * | 2019-05-24 | 2019-08-23 | 北京立群建筑科学研究院 | Environment detection method, device, equipment and storage medium |
CN110362064A (en) * | 2019-07-17 | 2019-10-22 | 东北大学 | A kind of method for diagnosing faults of exhaust temperature of aircraft engine sensor |
CN110646212A (en) * | 2019-10-23 | 2020-01-03 | 成都飞机工业(集团)有限责任公司 | Novel method for calibrating aircraft engine |
CN110659755A (en) * | 2018-06-28 | 2020-01-07 | 比亚迪股份有限公司 | Modeling method, device and storage medium for predicting motor temperature |
CN110718001A (en) * | 2019-10-24 | 2020-01-21 | 哈尔滨工业大学 | LSTM and SVR model-based single-step prediction method for performance parameters of aircraft auxiliary power unit |
CN111649951A (en) * | 2020-04-15 | 2020-09-11 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Aero-engine fault detection method, device, computer equipment and storage medium |
CN112377306A (en) * | 2020-11-04 | 2021-02-19 | 中国人民解放军陆军装甲兵学院 | Diesel engine running state prediction method |
CN112860693A (en) * | 2021-01-29 | 2021-05-28 | 西藏宁算科技集团有限公司 | CAE simulation analysis strength durability performance data management method and device |
CN114001360A (en) * | 2021-12-31 | 2022-02-01 | 南京沃谱瑞环境研究院有限公司 | Burning rotary kiln intelligent control method and system based on Internet of things |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060142932A1 (en) * | 2004-12-28 | 2006-06-29 | Honda Motor Co., Ltd | Plant temperature control system |
CN101266145A (en) * | 2008-04-14 | 2008-09-17 | 西安理工大学 | Barometric altimeter and measurement method realized by multi-layer perceptron neural network |
CN101788692A (en) * | 2009-11-24 | 2010-07-28 | 西北电网有限公司 | Short-time wind speed forecasting method based on neural network |
-
2011
- 2011-11-13 CN CN2011103695719A patent/CN102562239A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060142932A1 (en) * | 2004-12-28 | 2006-06-29 | Honda Motor Co., Ltd | Plant temperature control system |
CN101266145A (en) * | 2008-04-14 | 2008-09-17 | 西安理工大学 | Barometric altimeter and measurement method realized by multi-layer perceptron neural network |
CN101788692A (en) * | 2009-11-24 | 2010-07-28 | 西北电网有限公司 | Short-time wind speed forecasting method based on neural network |
Non-Patent Citations (2)
Title |
---|
丁刚: "基于过程神经网络的航空发动机排气温度预测", 《航空动力学报》 * |
金向阳: "航空发动机振动趋势预测的过程神经网络", 《振动、测试与诊断》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106560610A (en) * | 2015-10-02 | 2017-04-12 | 通用汽车环球科技运作有限责任公司 | Exhaust System Pressure Estimation Systems And Methods |
CN106560609A (en) * | 2015-10-02 | 2017-04-12 | 通用汽车环球科技运作有限责任公司 | Exhaust System Temperature Estimation Systems And Methods |
CN106560609B (en) * | 2015-10-02 | 2019-11-26 | 通用汽车环球科技运作有限责任公司 | Exhaust system temperature estimating system and method |
CN108153982A (en) * | 2017-12-26 | 2018-06-12 | 哈尔滨工业大学 | Based on performance prediction method after the aeroplane engine machine maintenance for stacking own coding deep learning network |
CN108170945A (en) * | 2017-12-26 | 2018-06-15 | 哈尔滨工业大学 | A kind of aeroplane engine machine maintenance final vacuum temperature margin Forecasting Methodology |
CN108170945B (en) * | 2017-12-26 | 2021-07-02 | 哈尔滨工业大学 | A method for predicting the exhaust temperature margin of aero-engine after repair |
WO2019144384A1 (en) * | 2018-01-26 | 2019-08-01 | 大连理工大学 | Method for predicting exhaust temperature in aircraft engine starting process |
CN110659755A (en) * | 2018-06-28 | 2020-01-07 | 比亚迪股份有限公司 | Modeling method, device and storage medium for predicting motor temperature |
CN110659755B (en) * | 2018-06-28 | 2024-03-05 | 比亚迪股份有限公司 | Modeling method, apparatus and storage medium for predicting motor temperature |
CN109598371A (en) * | 2018-11-21 | 2019-04-09 | 北京航空航天大学 | A kind of aircraft carries the temperature predicting method and system of electronic equipment |
CN109598371B (en) * | 2018-11-21 | 2021-02-02 | 北京航空航天大学 | Temperature prediction method and system for electronic equipment on aircraft |
CN109556877A (en) * | 2018-12-21 | 2019-04-02 | 成都飞机工业(集团)有限责任公司 | A kind of exhaust temperature of aircraft engine scaling method |
CN109932066A (en) * | 2019-03-04 | 2019-06-25 | 深圳供电局有限公司 | Temperature early warning method and device for energy storage battery, computer equipment and storage medium |
CN110160585A (en) * | 2019-05-24 | 2019-08-23 | 北京立群建筑科学研究院 | Environment detection method, device, equipment and storage medium |
CN110362064B (en) * | 2019-07-17 | 2022-06-24 | 东北大学 | Fault diagnosis method for aero-engine exhaust temperature sensor |
CN110362064A (en) * | 2019-07-17 | 2019-10-22 | 东北大学 | A kind of method for diagnosing faults of exhaust temperature of aircraft engine sensor |
CN110646212A (en) * | 2019-10-23 | 2020-01-03 | 成都飞机工业(集团)有限责任公司 | Novel method for calibrating aircraft engine |
CN110718001A (en) * | 2019-10-24 | 2020-01-21 | 哈尔滨工业大学 | LSTM and SVR model-based single-step prediction method for performance parameters of aircraft auxiliary power unit |
CN111649951A (en) * | 2020-04-15 | 2020-09-11 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Aero-engine fault detection method, device, computer equipment and storage medium |
CN112377306A (en) * | 2020-11-04 | 2021-02-19 | 中国人民解放军陆军装甲兵学院 | Diesel engine running state prediction method |
CN112860693B (en) * | 2021-01-29 | 2023-07-18 | 西藏宁算科技集团有限公司 | CAE simulation analysis intensity durability data management method and device thereof |
CN112860693A (en) * | 2021-01-29 | 2021-05-28 | 西藏宁算科技集团有限公司 | CAE simulation analysis strength durability performance data management method and device |
CN114001360B (en) * | 2021-12-31 | 2022-04-26 | 南京沃谱瑞环境研究院有限公司 | Burning rotary kiln intelligent control method and system based on Internet of things |
CN114001360A (en) * | 2021-12-31 | 2022-02-01 | 南京沃谱瑞环境研究院有限公司 | Burning rotary kiln intelligent control method and system based on Internet of things |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102562239A (en) | Method for monitoring exhaust temperature of aircraft engine | |
CN114048600B (en) | Digital twin-driven multi-model fusion industrial system anomaly detection method | |
CN110738360B (en) | Method and system for predicting residual life of equipment | |
CN106951695A (en) | Plant equipment remaining life computational methods and system under multi-state | |
CN102880905B (en) | Online soft measurement method for normal oil dry point | |
CN111881495A (en) | Prestress steel structure safety assessment method based on digital twinning | |
CN102269972A (en) | Method and device for compensating pipeline pressure missing data based on genetic neural network | |
CN102081020A (en) | Material fatigue-life predicting method based on support vector machine | |
CN103953490A (en) | Implementation method for monitoring status of hydraulic turbine set based on HLSNE | |
CN113204921B (en) | Remaining service life prediction method and system of aircraft turbofan engine | |
CN109580222A (en) | Based on variation mode decomposition-transfer entropy bearing degradation state recognition prediction technique | |
CN106127300A (en) | A kind of rotating machinery health status Forecasting Methodology | |
CN105320987B (en) | A kind of satellite telemetering data intelligent interpretation method based on BP neural network | |
CN112001110A (en) | Structural damage identification monitoring method based on vibration signal space real-time recursive graph convolutional neural network | |
CN108628164A (en) | A kind of semi-supervised flexible measurement method of industrial process based on Recognition with Recurrent Neural Network model | |
CN101799888A (en) | Industrial soft measurement method based on bionic intelligent ant colony algorithm | |
CN112668526B (en) | Bolt group loosening positioning monitoring method based on deep learning and piezoelectric active sensing | |
CN115270239A (en) | Bridge reliability prediction method based on dynamic characteristics and intelligent algorithm response surface method | |
CN107295537A (en) | A kind of method and system for wireless sensor network reliability of testing and assessing | |
CN106610584A (en) | Remanufacturing process quality control method based on neural network and expert system | |
CN116451567A (en) | Leakage assessment and intelligent disposal method for gas negative pressure extraction pipeline | |
CN114399064A (en) | Equipment health index construction method based on multi-source sensor data fusion | |
CN101587154A (en) | Quick mode estimation mode estimating method suitable for complicated node and large scale metric data | |
Zhao et al. | Impact monitoring of large size complex metal structures based on sparse sensor array and transfer learning | |
Wang et al. | Elevator fault diagnosis based on digital twin and PINNs-e-RGCN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120711 |